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Volim buku, buka je stvaraǌe.

I love noise since noise is creation.

— Nikola Tesla

To my parents. . .





Abstract
Wearable electronics are occupying an increasing portion of our daily activities. The span of

wearable applications extends from purely medical, over different security services to various

sports and fashion devices.

Antennas play one of the most important roles in wearable networks as they have a key

contribution to the overall efficiency of a wearable wireless link. This work focuses on the de-

sign and practical realization of robust wearable antennas intended for voice communication

inside the Ultra High Frequency (UHF) band. The proposed antennas are mainly envisioned

for security services such as military, police or rescue services. To this aim, several questions

have been addressed while analyzing and designing the proposed antennas.

The on-body environment significantly affects the characteristics of an antenna. The

coupling between the antenna and the host body influences both the antenna and the body

characteristics. On one hand, the complex lossy nature of the hosting body tends to deteriorate

the radiation performances of the wearable antenna, while on the other hand, the radiation

from the antenna can cause an increase of the temperature of the wearer’s body (localy and/or

of the entire body).

The wearability aspect also requires that the size and the profile of the antenna are appro-

priate so that it can be easily integrated into the wearer’s garment. The size of the wearable

antennas becomes more critical at lower frequencies (for instance UHF), where the wave-

lengths become comparable with the size of the body, thus adding an additional limitation

while selecting the type of the antenna. A Planar Inverted F Antenna (PIFA) was selected as

an appropriate antenna candidate addressing the introduced specifications. In parallel with

the antenna prototype, a suitable technology, combining flexible conductors and stretchable

substrates, has been proposed. The suggested technology also enables an adjustment of the

electric properties of the designated substrate materials. Several antenna prototypes were

successfully designed, fabricated and characterized.

Finally, a set of tests in realistic everyday conditions were performed, thus validating the

performance of the proposed antenna concepts along with the proposed technology and

assessing their potential of being used for commercial purposes. We believe that the obtained

results provide useful guidelines for future design of robust flexible wearable antennas.

Key words: Wearable antennas, security services, Ultra High Frequency (UHF), Planar In-

verted F Antenna (PIFA), polydimethylsiloxane (PDMS), copper meshes, robustness, flexibility,

waterproof, Specific Absorption Rate (SAR).
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Kurzfassung

Tragbare Elektronik findet sich immer häufiger in Anwendungen unseres täglichen Lebens.

Die Spannweite reicht von rein medizinischen über verschiedene Sicherheitsdienste bis hin

zu Sport- und Modeaccessoires.

Antennen spielen dabei eine entscheidende Rolle, da sie einen wichtigen Beitrag zur Effizi-

enz der tragbaren und drahtlosen Übertragungssysteme leisten. Diese Dissertation konzen-

triert sich daher auf die Entwicklung und die praktische Realisierung von robusten tragbaren

Antennen für die Sprachübertragung im UHF-Band. Die vorgeschlagenen Lösungen sind

hauptsächlich für Sicherheitsdienste wie Militär, Polizei und Rettungsdienste gedacht. Zu

diesem Zweck wurden verschiedene Aspekte während der Analyse und der Entwicklung der

Antennen betrachtet.

Der menschliche Körper beeinflußt sehr stark die Antennencharakteristik. Die Koppelung

zwischen der Antenne und dem Körper beeinträchtigt dabei die Eigenschaften von beiden.

Einerseits verschlechtert die komplexe, verlustbehaftete Natur des menschlichen Körpers die

Abstrahleigenschaften der Antenne während andererseits die Antennenstrahlung zu einer

Temperaturerhöhung lokal oder im gesamten Körper führen kann.

Um die Antennen am Körper tragen zu können, muß ihre Größe und ihr Profil geeignet

gewählt werden, damit sie in die Kleidungsstücke ihres Trägers integriert werden können.

Die Antennengröße ist jedoch bei niedrigen Frequenzen (z. B. im UHF-Band) ein kritischer

Faktor, weil die Wellenlänge in der Größenordnung des menschlichen Körpers liegt. Dies führt

zu weiteren Einschränkungen bei der Wahl des Antennentyps. Als möglicher Kandidat für

eine Antenne wurde eine PIFA ausgewählt, um die gegebenen Spezifikationen zu erfüllen.

Zusammen mit dem Antennenprototyp wurde eine geeignete Technologie gesucht, die flexible

Leiter und dehnbare Substrate miteinander verbindet. Die gewählte Technologie erlaubt

darüberhinaus eine Anpassung der elektrischen Eigenschaften der entwickelten Substrate.

Mehrere Antennenprototypen wurden erfolgreich entwickelt, hergestellt und charakterisiert.

Abschließend wurden mehrere Tests unter Alltagsbedingungen durchgeführt, um einerseits

die Leistungsfähigkeit der vorgeschlagenen Antennenkonzepte und der gewählten Technolo-

gie zu verifizieren und um andererseits die Möglichkeiten einer Vermarktung abzuschätzen.

Die gewonnenen Erkenntnisse liefern wertvolle Richtlinien für zukünftige Lösungen von

robusten und flexiblen tragbaren Antennen.

Schlagworte: tragbare Antennen, UHF, PIFA, polydimethylsiloxane (PDMS), Kupfergitter
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Résumé
Les dispositifs électroniques intégrés à nos vêtements occupent une partie grandissante de nos

activités quotidiennes. La panoplie d’applications liées aux dispositifs portatifs, intégrés aux

textiles s’étend du domaine purement médical, aux différents systèmes de sécurité, jusqu’au

monde du sport et de la mode.

Dans le concept "wearableles antennes jouent un rôle déterminant puisque la communi-

cation s’effectue sans fil pour des dispositifs à même le corps. Plus précisément, cette étude

se focalise sur le conception et la réalisation pratique d’une antenne robuste intégrée aux

habits, pour une communication vocale dans la bande des Ultra Hautes Fréquences (UHF).

Les antennes proposées ici sont conçues principalement pour des applications de défense

et sécurité, typiquement des systèmes militaires, policiers ou encore de secours. Dans cette

perspective, l’analyse et le design de l’antenne proposée a soulevé un nombre de questions

pertinentes auxquelles ce travail se veut de répondre.

L’environnement proche ou même au contact du corps humain apporte des changements

significatifs au fonctionnement propre de l’antenne. Les influences qui existent entre le corps

porteur et l’antenne entraine une relation bidirectionnelle corps-antenne. D’un côté, la nature

complexe et dissipative du corps humain a tendance à détériorer les performances de la

propagation d’onde, de l’autre côté une propagation d’onde excessive de l’antenne peut

causer une augmentation néfaste de la température du corps de l’usager (localement et/ou

de l’ensemble du corps). La forme ainsi que la taille sont sujet aux contraintes qu’impose

le vêtement de l’usager. La taille de ces dispositifs est d’autant plus critique aux fréquences

"basses"(typiquement les UHF) pour lesquelles la longueur d’onde est comparable à la taille

du corps, ce qui est un critère additionnel à prendre en compte lors du choix de l’antenne.

L’antenne planaire F inversée (PIFA) satisfait les contraintes mentionnées ci-dessus.

En parallèle avec la conception de cette antenne, une nouvelle technologie alliant un

conducteur flexible et un substrat extensible a été développée. Cette technologie permet un

ajustement des propriétés diélectriques du substrat. Plusieurs prototypes ont étés conçus,

fabriqués et caractérisés avec succès.

Finalement, un ensemble de test a été mené dans des conditions réalistes de la vie quoti-

dienne, qui valident la performance de l’antenne présentée et de la technologie en vue d’un

réel potentiel de commercialisation. Nous croyons que le résultat de ce travail servira de cadre

utile à la future conception d’antennes flexible robustes.
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Mots clefs: antennes intégrées aux vêtements, systèmes de sécurité, Ultra Hautes Fréquences

(UHF), Antenna Planaire F Inversée (PIFA), PDMS, maillage de cuivre, robustesse, flexibilité,

étanchéité, densité d’absorption spécifique (DAS).
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Sa�etak
Wearable electronics (elektornski ure�aji koji se nose u blizini ǉudskog tela
ili na samom telu) zauzimaju sve va�nije mesto u naxoj svakodnevnici. Wea-

rable aplikacije nalaze se u najrazliqitijim ure�ajima, poqevxi od qisto
medicinskikih, preko razliqitih bezbednosnih slu�bi, pa sve do sportskih
i modnih ure�aja.

Antene igraju znaqajnu ulogu u wearable mre�ama, pre svega zbog ǌiho-
ve kǉuqne uloge u obezbe�ivaǌu efikasnih wearable be�iqnih linkova. Ovaj
rad se usredsre�uje na dizajn i praktiqnu izradu robusnih wearable antena,
nameǌenih za govornu komunikaciju unutar ultravisokih frekvenciskih (UHF)

opsega. Predlo�ene antene su uglavnom nameǌene bezbednosnim slu�bama, kao
xto su vojska, policija ili spasilaqke slu�be. U to ime, nudi se odgovor na
nekoliko pitaǌa podstreknutih tokom analize i dizajna predlo�enih antena.

Prisustvo ǉudskog tela znaqajno utiqe na osobine same antene. Sprega
koja se javǉa izme�u antene i tela na kome je ona postavǉena utiqe ne samo
na antenu, nego i na samo telo. S jedne strane, slo�eni sastav ǉudskog tela,
po karakteru sklon proizvodǌi elektriqnih gubitaka usled prisustva raz-
liqitih tkiva, pogorxava radijacijske osobine wearable antene, dok s druge
strane, zraqeǌe koje dolazi od antene mo�e znaqajno da pove�a telesnu tem-
peraturu tela (lokalno i/ili po celom telu).

Wearable aspekt tako�e iziskuje da veliqina i profil antene budu odgo-
varaju�i kako bi se antena lako ugradila u uniformu nosioca. Veliqina
wearable antene postaje jox kritiqnija na ni�im frekvencijama (na pr. UHF) ,
gde talasna du�ina postaje uporediva sa veliqinom ǉudskog tela, dodaju�i
dodatna ograniqeǌa pri izboru tipa antene. Planar Inverted F Antenna (PIFA) oda-
brana je kao odgovaraju�i kandidat koji odgovara zadatim specifikacijama.

Istovremeno sa odabirom tipa antene, predlo�ena je i odgovaraju�a tehno-
logija kojom se kombinuju savitǉivi (fleksibilni) provodnici i rastegǉivi
(elastiqni) substrati. Ponu�ena tehnologija tako�e omogu�ava podexavaǌe
elektriqnih osobina odabranih substratnih materijala. Nekoliko prototi-
pova antena uspexno je dizajnirano, proizvedeno i izmereno.

Na samom kraju, opse�na mereǌa u realnim okolnostima sprovedena su u
razliqitim svakodnevnim okolnostima, potvr�uju�i jox jednom odabir antena
zajedno sa predlo�enom tehnologijom i nude�i ih za potencijalnu tr�ixnu
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upotrebu. Verujemo da ostvareni rezultati obezbe�uju utabanu putaǌu za
daǉi razvoj robusnih fleksibilnih wearable antena.

Kǉuqne reqi: Wearable antene, bezbednosne slu�be, ultravisoke frekvencije
(UHF), Planar Inverted F Antenna (PIFA), polydimethylsiloxane (PDMS), bakarne mre�e,
robusnost, fleksibilnost, vodootpornost, Specific Absorption Rate (SAR).
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Rezime
Wearable electronics (elektornski uredi koi se nosat vo blizina na qovekovoto
telo ili na samoto telo) zazemaat sé pova�no mesto vo naxeto sekojdnevie.

Wearable aplikacii se naoǵaat vo najrazliqni uredi, poqnuvajḱi od qisto
medicinski, preku razliqni bezbednosni slu�bi, pa se do sportski i modni
uredi.

Antenite igraat znaqajna uloga vo wearable mre�ite, pred se poradi nivna-
ta kluqna uloga vo obezbeduvaǌe na efikasni wearable bez�iqni linkovi. Ovoj
trud se vsredotoquva na dizajn i praktiqna izrabotka na robusniwearable an-
teni, nameneti za govorna komunikacija vo ramkite na ultravisoki frekven-
ciski (UHF) pojasi. Predlo�enite anteni glavno se nameneti za bezbednosnite
slu�bi, kako xto se vojskata, policijata ili spasuvaqkite slu�bi. Vo toa
ime, se nudi odgovor na nekolku praxaǌa potiknati vo tekot na analizite i
dizajnot na predlo�enite anteni.

Prisustvoto na qovekvooto telo znaqajno vlijae na osobenostite na samata
antena. Spregata xto se javuva pomeǵu antenata i qovekvooto telo na koe xto
e postavena vlijae ne samo na antenata tuku i na samoto telo. Od edna strana,
slo�eniot sostav na qoveqkoto telo, po priroda sklono kon sozdavaǌe elek-
triqni gubitoci poradi prisustvoto na razliqni tkiva, gi vloxuva radia-
ciskite osobenosti na wearable antenata, dodeka od druga strana, zraqeǌeto
koe doaǵa od antenata mo�e da dovede do znaqajno zgolemuvaǌe na telesnata
temperatura na teloto (lokalno i/ili po celoto telo).

Wearable aspektot isto taka bara goleminata i profilot na samata antena
da bidat soodvetni taka xto antenata lesno bi se vgradila vo uniformata na
nositelot. Veliqinata na wearable antena stanuva uxte pokritiqna na niski
frekvencii (na pr. UHF) , kade xto branovata dol�ina stanuva sporedliva so
goleminata na qoveqkoto telo, dodavajḱi dopolnitelni ograniquvaǌa pri iz-
borot na tipot na antena. Planar Inverted F Antenna (PIFA) e izbrana kako soodveten
kandidat koj odgovara na zadadenite specifikacii.

Istovremeno so odbirot na tipot na antena, predlo�ena e i soodvetna teh-
nologija koja xto kombinira sovitlivi (fleksibilni) provodnici i rasteg-
livi (elastiqni) substrati. Ponudenata tehnologija isto taka ovozmo�uva
podesuvaǌe na elektriqnite karakteristiki na izbranite substratni mate-

ix



rijali. Nekolku prototipovi na anteni uspexno se dizajnirani, proizvedeni
i izmereni.

Za kraj, napraveni se temelni mereǌa vo realni okolnosti pokrivajḱi raz-
liqni sekojdnevni situacii, potvrduvajḱi go uxte ednax izborot na slek-
tiranite anteni zaedno so predlo�enata tehnologija i nudejḱi gi istite
za potencijalna pazarna upotreba. Veruvame deka ostvarenite rezultati go
poploquvaat patot za ponatamoxen razvoj na robusni fleksibilni wearable

anteni.

Kluqni zborovi: Wearable anteni, bezbednosni slu�bi, ultravisoki frek-
vencii (UHF), Planar Inverted F Antenna (PIFA), polydimethylsiloxane (PDMS), bakarni
mre�i, robusnost, fleksibilnost, vodootpornost, Specific Absorption Rate (SAR).
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1 Introduction

Taman si nauqio da budex dijete, a postajex
mladi�. Kad nauqix da budex mladi�,
postajex zreo qovek. Shvati�ex uvek smo
poqetnici u ovom �ivotu.

As soon as you have learned to be a child, you become a

young man. Once you have learned to be a young man,

you turn into a mature person. Then you learn that we

are eternal beginners in this world.

—Nikola Tesla’s father, Milutin Tesla

The general trend in today’s communications is achieving the highest possible level of porta-

bility. Voice communication, data transfer, positioning and entertainment are just some of

the many applications that are covered by modern communication systems. Specific needs

of different population groups lead to different requirements, varying from purely medical,

through practical and efficient performance of different rescue and security services, to sports,

entertainment or even fashion applications [1].

In recent years mobility is often equalized with wearability, where having all the devices and

gadgets integrated in the clothes or mounted on the body offer the wearers’ freedom in their

daily activities. One of the last example of wearable electronics are smart watches [2]. To

undertake the classification and understanding of different wearable aspects, the Institute of

Electrical and Electronics Engineers (IEEE), IEEE 802, established in December 2006 a task

group, entitled IEEE 802.15.6, for the standardization of Wireless Body Area Network (WBAN)

applications [3]. A general idea about the WBAN concept [4] is illustrated in Fig. 1.1.

Depending on the type of communication, WBANs can be divided in three different categories:

On-body, communication within the same body (wearer), Off-body, communication between
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Chapter 1. Introduction

Fig. 1.1: Wireless Body Area Network (WBAN) concept [4].

the body (wearer) and an external unit, and In-body, communication between the implanted

device in the body and device mounted on the body [5–7].

On-body communication describes the case when different wearable devices are mounted on

the same body. The devices can communicate between themselves and all the data can be

forwarded and collected in one point (device), which is usually called central master device.

This device is often considered as a hub and all the gathered data can be further proceeded to

an external unit. Today on-body communication is mainly intended for health monitoring

and sport. Communication between the hub device and the external unit is an example of

Off-body communication.

The communication link between any of the body mounted devices and an external unit is

defined as an Off-body communication. External units can be computers, smart phones, base

stations or other wearable devices mounted on a different wearer, which actually introduces

a separate sub-group of off-body communication, known as Body-to-Body communication.

Body-to-Body communication is widely spread in different security and rescue service ap-

plications, where in some situation the wearers communicate directly between themselves,

without using base stations or other intermediate points.

2



The third category of WBANs is the In-body communication. In-body links provide a link

between an implant and a device mounted on the wearer. Instead of communicating with an

external unit, as defined in the off-body concept, the In-body concept shortens the path and

establishes a link with the device mounted on the wearer, thus overcoming the problem of the

strong attenuation caused by the lossy nature of the human body. In-body communication is

mainly used for medical purposes [8, 9]. An example presented in Fig. 1.2 shows a modern

hospital environment, where the three different networks are represented, In-, On- and Off-

Body communication [8].

Fig. 1.2: Intra body concept [8].

Off-body communication is the wider research interest of this thesis. More precisely, a voice

communication link in the Ultra High Frequency (UHF) band, 380-400 MHz, within the exist-

ing voice communication platforms will be a subject of consideration. The communication is

intended for security and rescue services, where links between a wearer and a base station or

between two wearers are needed. In both scenarios, off-body communication is required.

The main scope of the thesis is the development and design of robust wearable antennas for

voice communication at UHF frequencies. The proposed wearable antennas must have good

performances in various scenarios. The antennas need to maintain robust and reliable com-

munication links in everyday security activities (e.g. police and military) or rescue operation

scenarios, in urban and rural environment.

The proposed wearable antennas should be suitable for the integration in the wearer’s uni-

form, provide stable links and be resilient to different environmental and weather conditions

(e.g. water, rain, humid, snow, ice, etc.). In some situations, the wearers need to maintain

different types of communication, thus requiring multiband or separate antennas for ser-

vices like Global Positioning System (GPS) or satellite communication, raising the question of

interoperability.
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1.1 Context of the Work

The research carried out in this thesis has been accomplished in the framework of a collabora-

tion between Armasuisse1 and the Laboratory of Electromagnetics and Acoustics (LEMA) at

École Politechnique Fédérale de Lausanne (EPFL).

The aim of this collaboration was the design and development of a robust wearable antenna

intended for a voice communication for security service purposes. The proposed antenna

should work at UHF frequencies or more specifically inside the Tetrapol communication

band [10]. Tetrapol communication band is a frequency range exclusively dedicated for voice

communication for different security services such as army, police, rescue services etc. In

Switzerland this band is defined between 380-430 MHz [11].

Among the project requirements, a list of the most relevant ones is presented here:

• The antenna should operate inside the 380-430 MHz frequency band (Tetrapol).

• Indoor and outdoor communication.

• Robustness of the antennas:

– Robustness against the body influence.

– Robustness against different mechanical (e.g. bending, twisting, etc.) or environ-

mental influences (e.g. different weather conditions like rain, snow, ice, etc.).

• Suitable antenna size for easy integration within the wearers’ uniform.

• Fulfilling the potential hazard health regulations (Specific Absorption Rate (SAR)).

In the second part of this project, an additional collaboration was established with a branch of a

Swiss based company, the RUAG Network Enabled Operations - NEO Services department [12].

They already had an existing commercially available communication platform intended for

the Tetrapol band, "POLYCOM Radio portable COVERT700" [13]. Since they did not have

their own antennas, their goal was to find appropriate wearable antennas which can be an

alternative to the limited choice of the existing commercial antennas.

At this point, additional requirements were established in agreement with RUAG. The goal was

to test the wearable antennas developed in the first part of this project in different realistic

everyday conditions like indoor, in urban, in rural and in an open-field environment and at

the same time to compare our antennas with the commercial ones. Thanks to this initiative

and the communication equipment provided by RUAG, interesting measurements and results

1Project: Study on Wearable Antennas, contract Nr 041-18, Swiss Science and Technology Federal Department
of Defense, Civil Protection and Sport (DDPS), armasuisse.
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were obtained and they are mainly addressed in Chapter 5. This collaboration is still active

and future goals have been already set beyond the duration of this PhD. The main target is

to improve the existing antenna prototypes making them suitable for serial production and

further commercial use.

The wider context of the performed work underlines the importance and the need for develop-

ment of new wearable antennas intended for the security services. Nowadays, in Europe and

worldwide, there are two main players in the field of Public Safety and Security (PSS) networks

and Public Access Mobile Radio (PAMR) operators, Terrestrial Trunked Radio (TETRA) [14] and

Tetrapol [10], communication platforms. The span of the potential customers spreads over

different groups and services like police, fire and rescue services. This type of communication

is also widely exploited by sectors like transportation, oil & gas and industry networks who are

either privately owned or run by network operators who invest in the network and sell their

communications services [14].

If we look closer at the numbers related to the above mentioned communication system, a

real potential and need can be seen. Namely, today more than 1 850 000 users are covered by

Tetrapol, with 85 networks in more than 30 countries [15]. On the other side, TETRA radio is

also on a constant increase since its beginning in 1997, when the first TETRA voice network in

the world was implemented at Gardermoen Airport in Norway, until today, with more than

250 TETRA networks being used by governments for public safety, military and defense, and

other public services [16].

Up to date, the largest TETRA network, is the Airwave network in Great Britain, which has

3600 base stations and approximately 350 000 users. Germany’s network, nearing completion,

will become the largest in the world, with more than 500 000 users, while the North American

market has just been opened up to TETRA technology [16]. Therefore, there is a constant need

for wearable antennas that are able to provide robust and reliable communications within the

TETRA and Tetrapol systems.

Although the research carried out in this thesis deals mainly with the antennas intended for

UHF frequency range, the technology proposed here can be easily extended to any type of

tailored wearable antenna solutions, where robustness against the mechanical influences and

environmental conditions is one of the highest priority.
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1.2 Challenges and Motivation

Any wearable antenna design faces many challenges during the development process. If

we look into the design of robust wearable antennas intended for the UHF range, being our

particular case of interest, some of the initial challenges can be even more emphasized. Several

of them are listed below:

• Antenna ⇔ Human body interaction (coupling).

• Technology and used materials (flexibility and waterproof).

• Integration within the wearers’ uniform (size, shape, conformation).

• SAR reduction.

In the design of a wearable antenna, the interaction between the antenna and the wearer is

one of the main challenges and is thus central to this research. Translated into electromagnetic

language, this interaction can be defined as coupling.

Several strategies can be chosen in order to mitigate the coupling effects. Selecting an antenna

with an appropriate structure (e.g. presence of a ground plane and/or polarization perpendic-

ular to the wearer) and an adequate radiation pattern can reduce the coupling effects. The

selection of the antenna type at the same time intertwines with the integration problem, as we

require an antenna that can be integrated in the wearer’s uniform. It should thus be of suitable

size and low profile, while fulfilling the requirements of coupling and radiation.

Another approach for the coupling mitigation can be the use of substrate materials with higher

relative permittivities, able to confine certain portion of the EM radiation, thus reducing the

coupling towards the body. Yet, one should be careful because high permittivity may worsen

the antenna’s performance. Therefore, there is a trade-off between the coupling reduction and

the overall antenna characteristics.

The choice of materials, substrate and conductive, determines the mechanical characteristics

of the wearable antennas in terms of their robustness and resilience against bending, twisting

or being repellent to water. The selection of materials along with compatible manufacturing

processes is of particular interest for this work. This is the key to our final goal of creating a

robust and resilient structure, i.e. wearable antenna.

Recently, hazard health issues and their influence are becoming more emphasized in the

wearable antennas context. With a constant and everyday exposure of the wearers to a various

EM radiation, the regulatory offices are becoming more strict, while requiring the reduction

of the human body exposures to the EM radiation. This raises the question of SAR, which is

directly related to the coupling level. SAR is the way to monitor human body exposure to the
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electromagnetic (EM) radiation and it is defined as a ratio between the transferred power and

the mass of the body where the SAR values are evaluated [17].

The motivation of this PhD thesis is to link the context of the proposed project with the

challenges which have arose. In other words, the goal is to develop a robust wearable antenna

for UHF band that can be easily integrated into the wearer’s uniform, ensuring at the same

time a minimal coupling to the body. The proposed concepts and solutions can provide a

solid guideline for the future design of robust wearable antennas.

1.3 Thesis Outline and Original Contribution

This thesis concerns the design, optimization and characterization of robust wearable anten-

nas intended to operate in harsh environment. Fig. 1.3 depicts the thesis flow in an illustrative

manner. Descriptions and the original contributions are addressed in the following sections.

Fig. 1.3: Thesis outline.

Chapter 2 - Wearable Antennas Background and Overview

Description: Although the concept of wearable antennas is relatively recent, there exist many

publications on the topic. Publications found in literature cover different types of antennas,

various operating frequency bands, different conductive and substrate materials, different

technologies etc. Therefore, in order to have a clear starting point for the design and develop-

ment of wearable antennas, some overview is needed.

Original contribution: A summary and classification of the literature on wearable antennas

is performed. The classification is done according to the application groups they belong to,

different antenna families, different technologies and materials and the appropriate frequency

bands.
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Chapter 3 - Materials, Characterization and Technology

Description: Wearable antennas can be built from different conductive and substrate materials.

Variable mechanical (bending , crumpling, etc.) and weather conditions (rain, snow, ice, etc.)

require appropriate materials with suitable electromagnetic (EM) and mechanical proper-

ties. A set of fabrication processes and materials combinations are found among different

technologies.

Original contribution: A theoretical study over a range of possible materials is performed. A

silicone based elastomer, polydimethylsyloxane (PDMS), is selected as a base material for the

substrates. The initial liquid state of the PDMS is loaded with preselected inclusions, thus

changing the final EM properties like permittivity and losses. Perforated or mesh structured

conductive sheets are completely embedded inside the liquid elastomer, resulting in a final

waterproof antenna. This technology was selected to continue with the design of the foreseen

robust wearable antenna.

Fig. 1.4: System.

Chapter 4 - Antenna Prototypes

Description: The choice of the antenna type is mainly determined by the factors defined in the

application’s specification like required communication (e.g. Off-body), allocated frequency

bands and available space for placement. A low profile of the antenna and a minimal coupling

to the wearer ensure easy integration and reliable communication links when mounted on the

body.

Original contribution: A Planar Inverted F Antenna (PIFA) is proposed as an antenna solution

for UHF frequencies. The optimized antenna design with a height of 11 mm, λ0/70, (rather

low with respect to the operating frequency of 385 MHz), makes it suitable for integration into

8
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the wearer’s uniform. The optimization of the ground plane and the feeding structure leads

to a minimum coupling to the wearer and thus better radiation performances. A complete

encapsulation of all the conductive parts inside the PDMS results in a flexible and waterproof

antenna.

Chapter 5 - System Measurements and Comparison with the Commercial Antennas

Description: Performance of antennas in various everyday situations and different environ-

mental conditions, both urban and rural, provides the full picture of their behavior.

Original contribution: A set of measurements performed on body and in free space shows

that the antennas operate stably, without being affected by the environment. Additional tests

performed with an operational voice communication equipment report steady and reliable

functioning in various realistic conditions. Moreover, in most of the comparisons with the

antennas found on the market, PIFAs exhibit better performances.

Chapter 6 - Specific Absorption Rate (SAR), Near-field Effects and Radiation Efficiency

Description: Near-field effects should be taken into account when dealing with wearable

antennas. The presence of the human body in the antenna’s near-field region affects the

overall performance. The coupling between the antenna and the wearer reduces the radiation

efficiency and increases the SAR values. In some cases by applying some simple modifications

within the antenna’s structure, the unwanted effects can be mitigated.

Original contribution: The selection of the PIFA (presence of a ground plane + part of the

feeding structure perpendicularly oriented with respect to the wearer), already mitigates the

coupling effects. The introduction of an air-gap (lossless medium) in the antenna’s near-

field region, improves the radiation efficiency of the PIFA. Reduction of the SAR is achieved

by reducing the high current density regions (e.g. ground plane extension) and by using

substrates with higher permittivity.

Chapter 7 - Conclusions and Perspectives

The last part summarizes the work performed during this PhD thesis, emphasizing the most

important conclusions and original contributions. Perspectives for future work are proposed

based on the topics covered in the thesis.

The original contributions of this thesis have been validated via two journal publications and

several presentations in international peer reviewed conferences. The link between thesis

chapters and publications is summarized in Table 1.1. The complete list of publications can

be found at the end of this document, on page 169.
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Chapter Topic Publications

3

Flexible copper-mesh conductors

& Adjusting the EM properties of PDMS
[18, 19]

Perforated (hexagonal shape) copper-bronze conductive sheets

& pure PDMS
[19]

4 Antenna prototypes - PIFA antennas [19, 20]

5
Stability of the proposed antennas (On-body vs. Free space) [21]

System measurements [22]

6 Near-field effects & SAR [23]

Tab. 1.1: Link between the thesis chapters, topics and publications.
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2 Wearable Antennas Background and

Overview

Wearable antennas have been a topic of interest for more than the past decade, and hundreds

of scientific papers can be found on the subject. This large number of publications asks for

some classification in order to get an overview of the trends and challenges. To this aim an

overview of wearable antennas according to the applications, antenna families, materials and

technology and allowed frequency bands, is proposed.

2.1 Applications

2.1.1 Security (Military and Police) and Rescue Service Applications

Our main focus will be orientated towards wearable robust antennas intended to operate

in various harsh environments. These antennas are mainly used for security and defense

applications [24] and within different rescue services like firefighters [25], mountain and water

rescue workers [26, 27].

(a) (b)

Fig. 2.1: Illustrative examples of wearable antennas applications: (a) Army forces and (b) Firefighters.
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Frequency bands intended for security and rescue applications are regulated by special gov-

ernment regulatory offices. In our case we will mainly consider the regulations and frequency

allocations of the Swiss authorities [11], which are overlapping with the International Telecom-

munication Union (ITU) regulations [28]. A band of interest is the Tetrapol communication

band, 380-430 MHz, widely used by different security and emergency services within the

Private Mobile Radio (PMR) applications [10].

There are two common requirements for most of the wearable antennas used in security and

rescue service applications: the size miniaturization and the resilience of the antenna to the

environment.

The wavelength of the antennas operating inside the Tetrapol band, if observed in a free space,

is rather large. For example, for an antenna operating at 400 MHz, the wavelength is around

80 cm, which will lead to physically large antennas not suited to be mounted on a wearer.

Therefore, miniaturization is required to overcome the size problem. Antennas proposed for

these applications should be small, non-protrusive, low profile and conformable so that can

be easily mounted inside the uniform and placed around the wearer’s body.

Apart from the antenna size, another important aspect is the environment and weather

conditions where wearable antennas operate. As most of the wearers from the indicated

groups operate outdoor, robustness against water, rain, moisture, mud, etc., is among the

antenna requirements. Moreover, taking into account that the uniforms need to be washed an

integrated antenna should withstand this process.

Several antenna prototypes exist in literature and on the market [24, 25, 29–33]. All the re-

ported antennas have a size suitable for placement on the wearer. Some of the antennas are

waterproof and most of them are too specific and customized and cannot be widely used for

different situations. For example, the antenna presented in [24] is exclusively designed for

armor vests used by the military and law enforcement agencies. It is an asymmetric dipole

antenna that can be integrated only in the specified vests. Another dipole wearable antenna

type is presented by the same authors in [29], a conformal Asymmetric Meandered Flare (AMF)

dipole antenna. The antenna’s conductive surface is fabricated by using precise embroider-

ing techniques in order to produce fully flexible antenna conformal to the wearer and his

clothes, see Fig. 2.2. More wearable antenna prototypes operating between 0.1-1 GHz, mainly

for military applications, are presented in [30], exploiting different conductive and textile

materials.

A set of textile wearable antennas intended for firefighter services have been introduced

by Hertleer et al. A textile GPS wearable antenna is presented in [31], and the antenna in-

tended for voice communication between the firefighters is shown in [25]. Same authors
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have reported a multiband circularly polarized patch antenna for positioning and satellite

communication [32].

Fig. 2.2: Asymmetric Meandered Flare (AMF) wearable dipole antenna [29].

Importance of the wearable devices in the everyday operations of modern security and rescue

services is reported in [33]. Different parameters can be monitored with the units integrated

in their garments like psychological parameters, actual position or the conditions on the field

where they operate.

In summary, all the concerned applications mentioned above, such as military, fire fighters

or rescue services, require an involvement of different electronic devices and equipment

in their daily activities. Depending on the type of application and activities they perform,

different wearable antennas are needed. Therefore, wearable antennas play an important role

in ensuring robust and reliable communication links and thus performance of these services.

2.1.2 Medical Applications

Medical applications consume large portion of the WBANs [34]. These applications are mainly

used for health monitoring of different categories of patients and elderly people. They can

monitor 24 hours a day different parameters and detect changes, for instance blood pressure,

heart rate or body temperature [35]. With the more emphasized use of smart phones, collected

data from the medical applications can be directly sent to the hospital or responsible medical

doctors [36, 37]. An illustrative example of wearable medical applications [38] is presented in

Fig. 2.3.

Before showing some of the typical wearable antenna prototypes found among the medical

applications, a short overview of their dedicated standards and frequency bands will be
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Fig. 2.3: Wireless Body Area Network for Ubiquitous Health Monitoring [38].

presented. The large number of bands indicates how widely these applications are spread,

emphasizing their importance.

Depending on the type of devices (implanted or on body) and the required communication

(In-, On- or Off-body) different standards have been defined. The Federal Communications

Commission (FCC) has established a Medical Implant Communication Service (MICS) like the

band for communication with medical implants [39], while in Europe the same standard is

regulated by the European Telecommunications Standards Institute (ETSI) [40]. In 2009, the

Medical Device Radio Communications Service (MedRadio) range, 401-406 MHz, has been

created by the FCC for diagnostic and therapeutic purposes in implanted medical devices and

devices worn on the body [41].

Large number of wearable applications operate inside one of the FCC proposed Industrial

Scientific Medical (ISM) bands, 902-9281 MHz, 2.4-2.4835 GHz and 5.725-5.875 GHz. Some

of the bands are used on a secondary basis because they are already utilized in other appli-

cations. These ISM bands are submitted to certain restrictions, like short distance operation

or low emitted power, in order to allow their co-existence in the spectrum with minimal

interference [39, 41].

1Applies only for Region 2 according to the International Telecommunication Union (ITU) [28].
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In 2002, a spectrum from 3.1-10.6 GHz has been allocated by the FCC for Ultra Wideband

(UWB) applications [42]. A lot of research and different types of wearable medical applications

can be found in this band, making it one of the most exploited frequency ranges for WBAN

applications [5].

The most recent frequency band with a potential to be used for wearable applications is

the millimeter wave range between 57-64 GHz, or also known as a 60 GHz band [43]. Some

research about the propagation characteristics at 60 GHz for WBAN has been done in [44, 45]

while antenna designs are proposed in [46, 47] giving promising results.

The large choice of frequency bands used for medical WBAN applications leads to various

wearable antenna families. Several implantable and wearable antennas are presented within

the following subsection.

Implantable antennas are a specific group challenging to design, fabricate and package and

implant. The antenna and the accompanying electronic components need to be implanted

into the human or animal body, leading to a complex procedure. The antenna needs to

be small, compact, built out of appropriate bio-compatible materials and when implanted

providing a reliable communication link towards the external units and devices [48]. An

overview and analysis on the development and implantation of these antennas is presented

in [49]. Several other implantable antenna designs are shown in [50–53].

Wearable antennas on the other side, offer more freedom in terms of size, shape and com-

munication link, because they are placed on the wearer’s body. Different antenna types used

for medical purposes are found in the literature, e.g. patch antenna [54], monopole type an-

tenna [55], PIFA [56], Planar Inverted Conical Antenna (PICA) [57], printed strip antenna [58],

classical dual-band patch antenna [59], etc. Each of the antenna types will be overviewed in

more details in the antenna families section 2.2.

Medical applications will remain one of the main consumers of various wearable devices. Con-

stant progress of the wearables allows monitoring of various health activities and parameters.

The fact that nowadays smart phones and other wireless devices (e.g. tablets, lap tops, etc.)

can act as reliable hubs and transceivers, make the wearable applications even more favorable.

Wearable antennas will continue to be the crucial connection between the on-body devices

and the external units, providing reliable and on time communication.
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2.1.3 Sport, Entertainment and Fashion Applications

Another attractive market for wearables is sport, entertainment and fashion applications.

Nowadays consumers enjoy keeping track of performances in any kind of sports activity they

do. Different wearable applications are able to track and record speed, elevation, distance

and other similar parameters. Most of the tracking can be performed with the currently

existing smart phones, but some separate wearable devices also exist. Several wrist watches

with built-in GPS antennas, that can measure time, distance, position of the wearer or even

the heart rate, can be found on the market [60, 61]. Wearable GPS antennas [62–64] play

important role in performance of such systems. Furthermore, for the purposes of professional

sportsmen, wearable devices are used in a more extensive manner. All the collected data from

different wearable sensors are analyzed and used for further improvement for the sportspeople

performances [65].

Interesting examples of wearable antennas intended for integration into the shoes and thus

potential use for sports applications are presented in [66, 67]. In [66], two different UWB

wearable antenna prototypes, (a monopole and a Vivaldi type) are proposed in order to

provide a link between the footwear sensors and the rest of the body centric network, while

in [67], mainly the channel aspects and the influence of the rapid and repetitive movement of

the foot on the overall communication are considered.

(a) (b) (c)

Fig. 2.4: Illustrative examples of wearable antennas applications in Sports, Entertainment and Fashion:
(a) Skiing [68], (b) Swimming and (c) Intelligent shoes [69].

Entertainment applications is also a market for the wearable technologies. They offer a lot

of possibilities to this industry. Some examples of entertainment wearables present on the

market, include a bluetooth jacket [70], intelligent shoes [69] or a ski monitoring system,

flaik [68]. The list of wearable applications used in sports, entertainment and fashion is

growing rapidly, occupying significant part of the market [71].
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2.2. Antenna Families

2.2 Antenna Families

Different types (families) of antennas are used in different situations. Wearable antennas

follow similar trends and thus wide number of various antenna types can be found in the

literature. The following four antenna families are considered for the purposes of this thesis:

• Dipole antennas.

• Monopole antennas.

• Patch antennas.

• Planar Inverted F Antennas (PIFAs).

The antennas’ size plays an important role for their placement on the wearer. The gain and

effective area are directly proportional to the antenna’s size measured in wavelengths [72].

Usually, antennas that are smaller than quarter a free space wavelength are considered to

be electrically small or miniature antennas [73]. Before considering each of the indicated

antenna family, a short overview of the miniaturization techniques will be presented.

2.2.1 Introduction into Miniaturization Techniques

In order to be practical, wearable antennas should often be small in size, which can be

problematic for the designs especially in the UHF band. Therefore, a short overview of

miniaturization techniques will be presented. Antenna miniaturization is always a matter of

compromise between size and radiation characteristics [73].

The fundamental physical limits on antenna EM performance related to size are well known

since the early days of wireless communication [74–76]. The study of these limits regained a

huge interest in the nineties with the boom of mobile phones (see for instance [77]). Lately,

these limits have been refined taking into account antennas shape [78].

Apart from restrictions in bandwidth2, gain, efficiency and polarization purity [79], the process

of miniaturization brings to the surface problem of feeding a small antenna efficiently. In gen-

eral, antennas are either balanced or unbalanced, and their feeding should be in accordance

to this. The majority of small antennas are of unbalanced character and the reduction of their

size is always followed by the reduction of their ground (often a plane). A reduced ground

cannot absorb the charge flow as proper ground would, leading to spurious ground currents

altering the radiation characteristics of the antenna [80]. Electrically small antennas require

thus specific measurement techniques.

2Industrial standard bandwidth (-10 dB bandwidth in the |S11|).
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The main techniques available for antenna miniaturization are presented in [73]:

• Material or lumped element loading, usually at the expense of the bandwidth of the

antenna.

• Geometrical loading, by using bends and slots.

• Using grounds and short circuits.

• Using the antenna’s environment to enhance the radiation.

Examples of miniaturization techniques [73], are illustrated in Fig. 2.5, and Fig. 2.6, [81, 82],

where an environment (human body) is used for the miniaturization.

(a) (b)

Fig. 2.5: Miniaturization techniques [73]: (a) Geometrical transformation steps (bending) of a
monopole into Inverted F Antenna (IFA) and (b) A capacitor–plate antenna (loaded monopole).

(a) (b)

Fig. 2.6: (a) Printed patch antenna for GPS for watch application [81] and (b) SMILA (Smart
Monobloc-Integrated L-Antenna) [82].

2.2.2 The Dipole and Related Antennas

Let us first consider the dipole as a candidate for a body-worn antenna. The dipole is the

most basic design of an antenna, it is a symmetric structure, consisting of a straight thin wire

conductor of a certain length and a center feeding, see for instance Fig. 2.7. The maximal

radiation power is achieved in the plane perpendicular to the dipole. The typical radiation

pattern is therefore in the shape of a torus. The dipole is a typical resonant antenna, having

well defined resonances precisely located in frequency.
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Fig. 2.7: Dipole antenna.

Dipole antennas are widely used for wearable applications and several antenna designs are

presented in the literature. In [24], a wearable asymmetric dipole antenna was introduced for

military applications. Compared to the conventional center-fed dipole, asymmetry provides a

broader frequency band and a slightly smaller size. The model is designed to be placed on

the armor vest, and miniaturization techniques are applied (bending) to reduce the size. The

main limitation of this antenna is that it has to be placed on flat surfaces, see Fig. 2.8. Similar

wearable antennas, exclusively dedicated for armor vests, are presented in [83].

Fig. 2.8: Asymmetric wearable dipole antenna for armor vests [24].

Volakis et al. [29, 84] have investigated more conventional models of dipole antennas that

can be used in a larger field of applications as they are conformable. Their mounting around

the wearer’s body is more convenient compared to the previous examples. The presented

antennas are based on a printed wide dipole, with slight differences between them. The first

is the so called bow-tie dipole, the second a flare dipole, while the last one is an Asymmetric

Meandered Flare (AMF), and they are all shown in Fig. 2.9. Apart from being conformal, the

dimensions of those antennas, 305 x 38 mm2, allow to place several of them on the same

wearer. Their overall size makes them suitable for placing at different positions of the human

body like chest, back, shoulders, etc.

Table 2.1 gives an overview of the advantages and disadvantages of dipole antennas while

placed on the wearer’s body.
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Fig. 2.9: Wide printed dipole antennas for wearable applications, from left to right: Bow-Tie, Flare and
Asymmetric Meandered Flare (AMF) dipole [84].

Advantages , Disadvantages /

Single and sharp resonant behavior,
good for filtering input signal

Due to the lossy body nature the antenna
requires wider operating frequency bandwidth

Radiation pattern - "Torus shape"
perpendicular to the wearer’s body

Radiation pattern - "Torus shape"
part of the energy still penetrates into the body

Most of the models are
flexible and conformal for mounting

Narrow fractional bandwidth,
up to 10%

Miniaturization - bending or
meandering the antenna structure

Balanced feeding,
need for baluns in some cases
The lack of the ground plane

and polarization parallel to the wearer
increases the penetration

of the radiation inside the body

Tab. 2.1: A summary of the positive and negative aspects for dipole antennas when used for wearable
applications [85].

2.2.3 Monopole Antennas

The monopole antenna can be near-resonant (length is approximately a quarter-wavelength)

or electrically short (length is much shorter than a quarter-wavelength). Compared to the
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dipole, the monopole requires a ground plane in its structure. The dimensions of the ground

plane may vary from a fraction of a wavelength to many wavelengths [86]. The monopole has

many variations, see for instance Fig. 2.5.

(a) (b)

Fig. 2.10: Monopole antenna: (a) Quarter-wavelength monopole and (b) Electrically short monopole.

In the case of wearable applications, the presence of the ground is an advantage, since it allows

some shielding of the body. The protrusion of the antenna orthogonally to the body however

is a serious disadvantage and miniaturization is required to make the monopole low profile.

Most of the monopole antennas found in the literature have planar characteristics, because it

is much easier to integrate planar structure into the garment or any kind of uniform [55, 87].

Button Antenna as a Special Monopole Antenna Case

An especially interesting sub-group of monopole antennas is the button antenna. It is designed

by loading the monopole antenna with a certain load, composed of metal in most of the cases,

leading to a decrease of its height. This loading method is successfully applied in many button

antennas, as it will be seen from the examples shown in this section.

The existing literature gives some examples of button antennas integrated into wearable

applications. For example in [88], a dual-band metallic button antenna is shown for body area

network applications, for covering both Off- and On-body communications. The operating

frequencies of this antenna are 2.45 GHz and 5.5 GHz. For the specified frequencies the

dimensions of the antenna are the following: ground plane size of 50 x 50 mm2, top disc

diameter 16 mm, and total height of 8.3 mm. The 3D model of the antenna is presented in Fig.

2.11 (a).

More complex loading shapes are also present in literature. An antenna loaded with a G-

shaped metallic structure has been reported in [90]. This antenna operates at ISM bands and

it is a dual band antenna with overall size of 40 x 40 mm2 of the ground plane and 10 mm

in the height. The geometrical shape of the loading can be adapted to the desired feature of

the antenna. Another monopole loaded antenna has been introduced by Koohestani et al.,
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(a) (b)

Fig. 2.11: (a) Monopole button antenna loaded with a disc [88] and (b) Monopole antenna loaded with
a cross shape structure (Swiss flag cross) [89].

where a cross (Swiss flag symbol) is used as a shape for loading a vertically polarized UWB

antenna [89], see Fig. 2.11 (b).

Most of these antennas operate inside the ISM or UWB bands. Communication distance is

aimed for a short range, from a few centimeters up to 10 meters [57], where the majority of

applications using button antennas are for indoor communication. Button antennas remain

good candidates for applications where a compact antenna integrated in different parts of the

clothes is needed for short range communication.

Advantages , Disadvantages /

Presence of a ground plane
Protrusive structure

Polarization perpendicular
to the wearer

Printed monopole
planar structure

Polarization perpendicular
to the wearer

Button antenna
compact → easy integration

Mostly for ISM & UWB bands
short distance communic.

Tab. 2.2: A summary of the positive and negative aspects for the monopole and button antennas when
used for wearable applications [85].

2.2.4 Patch Antennas

The microstrip patch is a planar antenna, consisting of a radiating patch on one side of a

dielectric substrate, and the ground plane on the other. The radiating elements are made

of conducting materials (e.g. copper, usually photo-etched). Patches can be found in any

geometrical shape, but the most common have some regular shapes as square, rectangular,

circular, triangular, elliptical, etc. They radiate primarily because of the fringing fields between

the patch and the ground plane, see for instance Fig. 2.12. The radiation pattern of these

antennas is perpendicular to the plane of the patch [72].
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Fig. 2.12: Cross section of a microstrip patch antenna.

Different structures can be used for feeding the patch antennas, such as microstrip line, coaxial

probe, aperture coupling or proximity coupling [72]. The variety of the feeding techniques

provides some degrees of freedom in the design phase, as well as in later stages while mounting

them on the wearer’s body. The microstrip patch is a candidate for any narrowband wearable

application, as it has a low profile and can be made conformal for integration into the clothing.

The presence of the ground plane is an additional advantage when these antennas are used in

wearable applications, preventing the radiation into the wearer’s body.

Patch antennas are mainly used in GPS and ISM bands. Hertleer et al. have introduced

several patch based antennas operating inside the ISM and GPS bands, intended for wearable

applications [25, 31, 91]. All the proposed antennas are built out of specific textile materials,

conductive and dielectric, and are mainly used for fire fighter service applications.

An alternative shape to the conventional rectangular patch antenna can be a circular disk mi-

crostrip antenna. The main advantage of circular configuration, compared to the rectangular

geometry, is that the circular disk occupies less physical area, leading to an easier integration

in arrays for instance. In [92] circular disk microstrip Wireless Local Area Network (WLAN)

wearable antenna is presented, operating at 2.45 GHz. Using a copper as a conducting layer,

this antenna achieves a gain of 5.7 dBi, slightly lower than its rectangular counterpart which

has a gain of 5.9 dBi.

A complete textile patch antenna is shown in [93], where both the substrate and the patch

are textile materials with good conductive and dielectric characteristics respectively. Zelt3

material is used for building the patch and the ground plane, while Felt4 is used as a substrate

material. Both materials will be considered in more details in the section considering the

materials. Fig. 2.13 depicts the top view of the discussed antenna. The dimensions of this

patch are: 13.5 x 13.3 cm2, i.e. half wavelength at 920 MHz.

A summary about the suitability of patch antennas when used in wearable applications is

shown as an overview of advantages and disadvantages, Table 2.3.

3Zelt is a widely known material for building tents.
4Felt is a type of textile material.
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Fig. 2.13: Patch antenna using Zelt fabric as conductor and Felt as a substrate [93].

Advantages , Disadvantages /

Light weight and low volume Narrow bandwidth

Conformability Low efficiency

Low cost of fabrication Low gain

Supports linear and
circular polarization

Extraneous radiation
from feeds and junctions

High level of integrability Low power handling capacity

Capable of multiband operations Surface wave excitation

Mechanically robust

Tab. 2.3: A summary of the positive and negative aspects for patch antennas when used for wearable
applications [85].

2.2.5 Planar Inverted F Antennas (PIFAs)

A Planar Inverted-F Antenna (PIFA) is the last family of antennas enclosed in this overview

which is a subject of consideration. Basically, PIFA is a kind of inverted F antenna (IFA) with

the wire radiator element replaced by a plate to expand the bandwidth. On one hand, the PIFA

is derived from the monopole antenna, where by bending and shortening, its characteristic

shape is achieved [94], while on the other hand, it can also be considered as a short circuited

patch antenna [95]. The addition of the shorting strip allows a good impedance match to be

achieved with a top plate, which is typically less than λ/4 long [73]. The PIFA consists of a

ground plane, a top plate element, a feed wire attached between the ground plane and the top

plate, and a shorting wire or strip that is connected between the ground plane and the top

plate. Fig. 2.14 illustrates a typical PIFA configuration.
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Fig. 2.14: Configuration of PIFA.

PIFA is a widely deployed antenna among many Personal Communication System (PCS)

devices because of its characteristics. PIFAs have many advantages that make them very good

candidates for the hand-held and mobile devices [96]. They are highly integrable into a casing

or other components of the environment and have a reduced backward radiation towards the

users’ body. In this way, the SAR is significantly reduced, which is an important aspect when it

comes to the body-worn antennas [97]. They exhibit moderate to medium gain in both vertical

and horizontal states of polarization. This feature is very useful in certain situations where the

antenna does not have a fixed position and different reflections are present in its environment.

For the applications where larger bandwidth is required, several different techniques can be

used for its enhancement [98]:

• Varying the size of the ground plane.

• Use of a thick air substrate.

• Use of parasitic resonators with resonant lengths close to main resonant frequency.

• Adjusting the location and spacing between the shorting posts.

• Use of stacked elements.

PIFAs have two main advantages making them suitable for wearable applications:

• Presence of the ground plane in its structure which insulates the antenna from the

wearer, thus reducing the coupling (favorable for off-body communications).

• Antennas low profile allows easy integration within the wearer’s garments.

As an interesting candidate for UHF wearable applications, an overview of PIFAs used in

WBANs is presented. A simple PIFA prototype, built out of textile materials, intended for

wearable applications is presented in [99]. The antenna operates at 2.45 GHz, with the overall
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dimensions 50 x 24 x 10 mm3, see Fig. 2.15. The presented antenna is characterized in free

space and when placed in the vicinity of the human body.

(a) (b)

Fig. 2.15: PIFA wearable antenna [99]: (a) A 3-D model and (b) Fabricated PIFAs using ShieldIt
conductive textiles.

Simulated and experimental results indicated that the textile PIFAs are able to operate with

a reflection coefficient below -10 dB, and fractional bandwidth of around 27%. On average

the measured gain is 1.6 dBi, while the efficiency ranges between 77-85% (measurements

obtained in free space, not on body or phantom).

Two more antennas based on the PIFA concept, operating at 2.45 GHz and 5.2 GHz, are pre-

sented in the literature, the dual-band Sierpinski fractal textile PIFA [100], and a broadband

all-textile slotted PIFA [101]. Sierpinski fractal antenna incorporates a triangular Sierpinski

radiator at the top and a standard rectangular ground plane at the bottom. It operates in

dual-band mode, at 2.45 and 5.2 GHz, respectively, and has a volume of 44 x 34 x 6 mm3. The

measured gain and efficiency of this antenna are 3.1 dBi and 70%, respectively (measurements

obtained in free space). The slotted PIFA provides increased bandwidth because of the in-

troduced slot in the radiating patch of the antenna and a fractional bandwidth of more than

46%.

A wearable PIFA shown in [102] is based on the same concept of multiband operation, but

with a tuning function. A variable capacitance is used for tuning the antenna frequency

without changing the dimensions of the antenna. The proposed antenna can cover three

bands at higher frequencies, the ISM band (2.40-2.48 GHz), Wireless Broadband (2.30-2.40

GHz) and Universal Mobile Telecommunications System (UMTS, Rx 2.1-2.17 GHz) band. The

slot structure in the patch covers also the lower band (950-956 MHz). The overall antenna’s

dimensions are 40 x 20 x 6 mm3.

In the frame of this work, the PIFA wearable antennas operating inside the UHF frequency

band are of particular interest and are described bellow. A modified E-shaped PIFA (see Fig.

2.16) introduced in 2004, [103], has been one of the pioneering antennas in the frame of this

thesis project. It has been intended to operate inside the Tetrapol communication band,

380-400 MHz. The antenna exhibits -12 dBi gain while mounted on the body, which is better
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than the conventional half-wavelength dipoles. The proposed antenna has overall dimensions

of 30 x 30 x 2 cm3, which makes it suitable for mounting, but the area occupied is still fairly

large. However this antenna can be seen as a good starting example for development of UHF

wearable antennas.

Fig. 2.16: Modified E-PIFA structure [103].

Lilja et al. have developed a body-worn antenna integrated into the life-jacket for rescue

satellite systems [27]. The proposed antenna is a PIFA operating at 406 MHz. Light-weight and

low-loss foam is used as a substrate while the conductive layers are implemented by using

inkjet-printing. Additional protective layers for mechanical-abrasion and salty environment

are added. The used technology makes the antenna waterproof and resilient to the salty water.

The antenna has a rather large fractional bandwidth of more than 30%. Large bandwidth is

achieved by making the antenna large and thick enough, 28.3 x 6.5 x 1.75 cm3.

PIFAs exhibit good performance when used for wearable applications. The antenna’s structure,

and the low coupling to the wearer provides stable and reliable performance. The low profile

of the antenna makes it a suitable candidate for integration into the wearer’s uniform. Overall,

PIFAs are very good candidates for wearable UHF voice communication applications like

Tetrapol or Polycom. Table 2.4 summarizes the most relevant advantages and disadvantages

of the PIFAs when used for wearable applications.
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Advantages , Disadvantages /

PIFA structure:

good compromise

fc vs. size (low profile)

vs. on-body placement

PIFA structure:

at UHF frequencies the size

still fairly large

Moderate to medium gain Moderate to medium efficiency

Reduced coupling

to the wearer (low SAR)

Tab. 2.4: A summary of the positive and negative aspects for the PIFAs when used for wearable
applications [85].

2.2.6 Commercially Available UHF Wearable Antennas

In addition to the antennas found in the literature, there are also wearable antennas available

on the market. Our interest will be narrowed to the antennas operating at UHF frequencies.

Due to the specificity of the band and government regulations, to our knowledge there are not

many UHF wearable antennas offered on the market.

Wearable UHF antennas are mainly provided by Pharad [104], a United States (US) based

company and British aerospace and defense (BAE Systems) [105] and Panorama [106], both

located in the United Kingdom (UK). There are probably other companies providing wear-

able antennas for UHF band, but no sufficient information is accessible. Two commercially

available antennas, from Pharad and Panorama, are presented in this section. The antenna

prototypes are shown in Fig. 2.17.

(a) (b)

Fig. 2.17: Commercial TETRAPOL wearable antennas: (a) Tetra Wearable Antenna [104] and (b) Covert
dipole antenna [106].

The wearable antenna developed by Pharad is mainly aimed for soldiers engaged in urban and

combat missions. The antenna is fabricated out of thin flexible material that conforms to the

body or tactical vest. Since the antenna is completely sealed inside the waterproof material it
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is not known what type of antenna is used. According to the radiation pattern (please refer

to the antenna data sheet [107]) and non-stable behavior of the antenna when placed on the

wearer (our personal experience while measuring it), the antenna is most probably a patch

antenna with a very small ground plane. Additional non-stability comes from the feeding

cable that also contributes to the overall radiation. Since the antenna is rather small for the

given frequency, the feeding cable helps in order to achieve the desired frequency, 380-430

MHz.

The second commercial antenna is the one offered by Panorama. It is a body worn dipole

antenna mainly intended for undercover operations. Since the dipole legs consist of flexible

conductor surrounded by soft insulation, this antenna can be easily mounted around the

wearer’s body. This antenna operates inside the Tetrapol communication band 380-430 MHz.

Some of the basic characteristics of the presented antenna are found in the corresponding

data sheet [108]. Yet, the optimum performance of the antenna is obtained when the dipole

legs are vertically oriented on the wearer’s back, thus requiring custom tailored sleeves for

their placement (information obtained from an internal police report [109]). As in the case of

the Pharad wearable antenna, the coaxial cable contributes to the final radiation, thus making

this antenna also non-stable. The presented commercial antennas were used for comparing

purposes with the antennas proposed by the author. The obtained results will be presented in

Chapter 5.

As has been shown, most commercial antennas couple energy to the feeding cable mak-

ing it non-robust and sensitive to the surroundings. As previously mentioned, one of the

most important contributions of this thesis has been to propose an antenna design which

overcomes/alleviates this problem.

2.3 Materials and Fabrication Methods

Materials play an important role in the design and fabrication of wearable antennas. The

integration of the antennas into the wearers’ clothes indirectly imposes the potential choice of

conductive and substrate materials. A wide range of materials can be found in the literature:

textiles, specially treated yarns, printed conductors, polymers, etc. [110–112].

Selected materials need to be combined through the set of technological and fabrication

processes in order to built the final antenna structures. Several different technologies found in

the literature are presented. A set of embroidering techniques, ink-jet printing, Substrate Inte-

grated Waveguide (SIW) technology and a combination of polymers and different conductive

materials [113, 114].
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The operating environment also influences the performance of the antenna. Apart from the

body’s influence on the antennas, they can be also also exposed to different harsh environment,

manifested through different weather conditions like rain, humidity, snow, mud, ice, etc. This

is an additional reason why a careful selection of the materials should be considered [115].

2.3.1 Textiles

Textile materials are among the most deployed materials for building wearable antennas. They

are light weight and can be easily integrated in the wearer’s garments. The proposed textiles

need to satisfy certain electromagnetic, mechanical and environmental conditions.

Starting from the EM properties, we will consider a simple patch antenna in order to under-

stand the role of the different materials. The materials used for the radiating patch and the

ground plane need to have good conducting characteristics and low losses, while the dielectric

material should have constant thickness and low loss dielectric permittivity [116].

On one hand, wearable antennas need to be conformable and when mounted on the wearer

should remain stable and to provide reliable radiation. On the other hand, by bending and

crumpling the textile, being the two most frequent situations, the features of the antenna can

be deteriorated. Therefore, precaution should be taken in the design procedure and material

selection [117].

Textile materials used for fabrication of wearable antennas are divided in two major groups,

conductive and dielectric materials. An overview of the conductive materials is reported

in [30]:

• Conducting Ribbon. This is a commercially available product consisting of typically 3-6

tracks of conductive thread woven into a non-conductive backing ribbon fabric.

• Insulated wire. This is a standard flexible insulated wire which is an ideal candidate for

the broadband dipole.

• Conducting Paint. These materials are consisting of high silver content to produce a

low electrical resistance.

• Conducting Nylon. Material available from a variety of manufacturers.

• Conducting Thread. Material suitable for spiral antennas.

• Screen Print. Easy way to write a pattern on some textile.

• Coated copper fabric. There are a variety of commercial processes available to coat

fabric with copper.
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(a) (b) (c) (d)

Fig. 2.18: Different textile materials used for wearable antennas’ design [30]: (a) Conducting nylon
spiral antenna, (b) Embroidered conducting thread spiral, (c) Conducting paint spiral and (d) Copper

coated fabric bow-tie antenna.

Some of the materials and technologies presented in [30] are shown in Fig. 2.18.

More conductive materials are found in [116,118], and they are presented in Table 2.5, showing

their thickness and surface sheet resistance.

Material Thickness [mm] Sheet resistance [Ω/�]

Silver-Copper-Nickel plated woven fabric 0.15 0.02

FlecTron 0.15 0.1

Zelt 0.06 0.01

Nora (Nylon fabric) 0.15 0.02

Knitted P130 0.55 <1

Tab. 2.5: Conductive materials used for wearable antennas [25, 116–118].

Preparation of the textile conductive materials requires certain procedures and techniques. As

an example, we will consider plating of the textile yarns when used as conductors, presented

in [118].

Nickel-Plated fabric is one possible solution. This material shows excellent resistance against

corrosion, but since the plating is applied after the weaving process, woven fibers are not

entirely plated where they cross each other. As a result, a single fiber is not continuously

conductive. The electrical current cannot flow along a single fiber, but instead must “hop” over

the small overlapping plating or crossing fibers. These transitions over the fibers are the main

reason for high sheet resistance of about 5Ω/�. Another drawback of these structures is the

inhomogeneous sheet resistance [118]. Fig. 2.19 (a) depicts the structure of the Nickel-Plated

fabric and its cross section.

The inhomogeneity problem is overcome by plating the fibers of the fabrics before knitting

and weaving, Fig. 2.19 (b) and (c), respectively, thus resulting in a lower electrical resistance,

< 1 Ω/�. Their shapes can be manufactured precisely, but the bending of such antenna

becomes limited. The edges of the knitted fabric tend to fray easily due to the nature of the
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knitting process. Overall, the woven fabric possesses good electrical properties for building

well-behaved and geometrically accurate antennas [118].

(a) (b) (c)

Fig. 2.19: Conductive fabrics [118]: (a) Nickel-Plated fabric and cross section drawing, (b)
Platted-knitted (P130) and (c) Platted-woven (Nora fabric).

Another solution is Silver-Plated Knitted Fabric. This fabric has very good mechanical prop-

erties and the antenna composed of it is bendable and can comfortably be integrated into

the clothing. The manufacturing process is however not easy because precise shaping and

assembly of the antenna is required [118]. Different techniques and fabrication steps have

been presented by Ukkonen et al. [119], where analysis of the sheet resistance from different

structures are reported.

In order to give an idea of how these materials behave and perform when concrete antenna

prototypes are built, a comparison of gain [dBi], efficiency [%], and bandwidth [%] of ref-

erence copper patch antenna, electro-textile patch antenna (metallic), and electro-textile

patch antenna (fabric) is shown, Table 2.6. All the antennas radiate in free space (no presence

of body or phantom). It can be seen that some of the features like gain and efficiency are

deteriorated compared to the reference copper patch antenna, while the bandwidth is im-

proved. This shows that textiles and fabrics can successfully replace conventional conducting

materials [116].

Material Gain [dBi] Efficiency [%] Bandwidth [%]

Reference copper patch antenna 7.4 95 2.2

Electro-textile patch antenna (metallic) 7.1 88 2.6

Electro-textile patch antenna (fabric) 6.6 79 2.9

Tab. 2.6: Performance of electro-textile patch antennas compared with the conventional copper patch
antennas(@ 2.44 GHz) [116].

The choice of dielectric materials is larger compared to the conductive ones. Simply, most of

the textiles have low relative permittivity and relatively low loss tangent angle, thus making

them suitable substrates for wearable antennas. Since no additional fabrication treatments

are required, theoretically most of the textiles can be used as substrate materials. Table 2.7
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presents the different dielectric materials found among the wearable applications, showing

their thicknesses and the electrical characteristics (relative permittivity and loss tangent).

Material Single layer thickness [mm] εr tan δ

Felt 1.1 1.38 0.023

Woolen felt 3.5 1.45 0.02

Polyamide fabric 6 1.14 Negligible

Fleece 2.56 1.25 Negligible

Closed-cell foam 3.94 1.52 0.012

Silk 0.58 1.75 0.012

Tween 0.68 1.69 0.008

Panama 0.437 2.12 0.018

Moleskin 1.17 1.45 0.05

PTFE 11.66 2.05 0.0017

Cordura NA 1.90 0.0098

Cotton NA 1.60 0.04

100% polyester NA 1.90 0.0045

Quartzel fabric NA 1.95 0.0004

Cordura/lycra NA 1.50 0.0093

Jeans textile 1 1.7 0.025

Acrylic textile 0.5 2.6 NA

Tab. 2.7: Dielectric materials used for wearable antennas [25, 116, 116–118].

2.3.2 Printed Technology

Printing is an alternative method for deploying conductive layers on the substrates. Printing

technology can easily shape the required pattern of the conductive paste since it is fast, it

consumes the minimum required material and it does not require masks. In majority of the

cases silver and copper nanoparticles are used for creating the conducting lines. Carbon

nanotube inks are also considered as potential solution, but due to the low conductivity they

are used less compared to the silver and copper particles [120].

Printing is considered as more ecological compared to etching, because no waste is created.

Namely, with etching the unwanted metal from the substrate’s surface is removed, while

the printing delivers only the required ink droplet to the desired area. One of the main

disadvantages of the printed technology is the low efficiency of the fabricated antennas, being

around 70% [121, 122].
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Whittow et al. in [121, 122], have presented an overview of various wearable antennas fabri-

cated with printing technology. The antennas can be printed on different substrate materials

like paper [120], Polyethylene Terephthalate (PET) [123] or Kapton [124]. For example in [125] a

stretchable PIFA is fabricated by deposing a nanoscale thin (50-100 nm) gold film on a silicone

elastomer, polydimethylsyloxane (PDMS).

Most of the printed antennas found in the literature work between 2-5 GHz, suggesting

that printed technology is more convenient for smaller and more compact antennas, where

precision is important, rather than for larger antennas operating for instance at 400 MHz.

However, with the constant advance of the materials and machines for different printings, this

technology can be successfully used for wearable antennas fabrication.

2.3.3 Substrate Integrated Waveguide (SIW) Technology

Substrate integrated waveguide (SIW) is a relatively young technology, which appeared in

2001 [126]. The possibility to integrate passive components and active elements on the same

substrate makes this technology favorable for different types of applications. Filters, couplers

or oscillators, amplifiers as well as antennas can be combined and fabricated on the same

substrate [127]. The first traces of SIW technology used for wearable antennas date back to

2010, when Langley et al. [128], introduced SIW for channeling the EM signals between two

wearable antennas mounted on the same wearer. The textile material was used as a common

substrate where the SIW waveguide was designed in order to maximize the communication

between the two antennas. When an off-body communication was needed, the SIW waveguide

was switched off.

By then, the potential of SIW technology was also recognized for off-body communications.

Different designs of miniaturized half mode cavities appeared as wearable antennas [129].

Bozzi et al. introduced the SIW technology for different substrates. In [130] they present

plastic-based SIW components and antennas, where the SIW is implemented on polyethylene

terephthalate (PET) substrate. An inkjet-printed SIW structure on low-cost material was

presented in [131], where low-cost and eco-friendly interconnects and components were

fabricated and tested on multilayer paper substrates.

Wearable antennas based on the fundamental half-mode SIW cavities are presented in [132–

134]. Cavity based antennas are popular for wearable applications because of their stable

performance in the vicinity of the human body. They radiate only in one hemisphere [133].

There are different approaches for fabricating SIW structures. In [132], vias for the integrated

waveguide are realized by passing the conductive yarns through the low-loss foam, using

computer steered embroidery, while in [133, 134], copper tube eyelets are utilized for the SIW

realization. Some of the structures built with the SIW technology are shown in Fig. 2.20.

34



2.3. Materials and Fabrication Methods

(a) (b) (c)

Fig. 2.20: Illustrative examples of wearable antennas and interconnection structures built in SIW
technology: (a) Dual-band Half-Mode Substrate Integrated Waveguide (HMSIW) on-body

antenna [134], (b) UWB SIW textile antenna [133] and (c) SIW interconnects [130].

SIW technology is a good candidate for building robust and stable wearable antennas for

on-body performance. With modern computer embroidery machines different shapes and

structures can be realized. However, all the presented antennas in the literature are for

frequencies above 2.4 GHz, so it would be interesting to design and study the behavior of

wearable SIW antennas at lower frequencies, for instance in UHF band.

2.3.4 Polymer Substrates

In recent years, flexible and stretchable electronics built on flexible polymer substrates have

received an increasing attention due to their wide use in different types of applications. Stretch-

able sensors, bio-integrated electronics, or flexible displays are some of the possible appli-

cations where they find their use. A comprehensive overview of the different applications,

materials and their physical and chemical characteristics is presented in [135]. Following the

similar trends, many wearable antennas are built on different polymer substrates.

In [136], several polymer based materials are introduced as potential candidates for flexible

antenna’s substrates, Liquid Crystal Polymers (LCP), Polyetherimide (PEI) or Polyethylene

terephthalate (PET). Nevertheless, one particular elastomer recently has been extensively used

in micro-fabrication and flexible electronics, the so-called PDMS [137]. The most deployed

type of PDMS is the Sylgard RTV 184, from Dow Corning [138]. PDMS is chemically inert, ther-

mally stable, permeable to gases, simple to handle and manipulate, and exhibits isotropic and

homogenous properties [139], which make it a suitable candidate for flexible and strechable

antennas. There are also different variations of the PDMS appearing on the market [139]. For

example, there are more PDMS based materials like the ultraviolet (UV) light cured PDMS,

X-34-4184-A/B Liquid Silicone Rubber UV Cure Type (PDMS) [140], which essentially has
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similar characteristics with the Sylgard 184, but the only difference is the possibility of the fast

curing by using the UV light.

In [141–143], PDMS was used as a silicone elastomer for the design of stretchable microfluidic

antennas: Microfluidic channels were created inside the PDMS where fluid metal alloys were

injected. In [144, 145], micro-machined PDMS membranes for ultra-flexible planar antennas

obtained through complex technological operations were presented. Using elastic membranes

instead of bulk substrates improves the overall radiation efficiency of the antennas. Other

examples of flexible antennas based on PDMS were presented in [125], where a PIFA was

fabricated by depositing nanoscale gold (Au) film on PDMS, see Fig. 2.21 (a). Wang et al. [146],

reported conformal antennas based on embroidered conductive metal-polymer fibers (E-fiber)

on polymer-ceramic composites (PDMS), see Fig. 2.21 (b).

(a) (b)

Fig. 2.21: Antenna prototypes built on PDMS substrates: (a) Stretchable PIFA based on a new
metallization technique of depositing nanoscale thin Au film on a PDMS elastomer [125] and (b)

Antenna array built on embroidered E-fibers and polymer composites (PDMS) [146].

2.4 Frequency Band Selection

The selection of the available frequency bands are regulated by the frequency allocation plans

published by government offices. Specific frequency bands indirectly can determine the size

of the antenna and influence the choice of the antenna type. Too low frequencies would

result in large antenna structures that would be hard to integrate on the user’s body, whereas

too high frequencies would result in very small structures sensitive to fabrication tolerances,

leading to the increase of the fabrication costs. Moreover, as the frequency increases, so does

the complexity of the embedded electronics and the antenna feeding, which again increases

the fabrication costs.

The International Telecommunication Union (ITU), which is the United Nations (UN) spe-

cialized agency for information and communication technologies (ICTs), allocates the global

radio spectrum and develops different technical standards [147]. Each country regulates its

own frequency spectrum, but in most of the cases in accordance with the ITU regulations
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and recommendations. In Switzerland these regulations are regulated by the Swiss National

Frequency Allocation Plan and Specific Assignments governed by the Federal Office of Com-

munications, OFCOM, Frequency Management Division [11]. Swiss frequency allocation plan

is in accordance with the ITU regulations.

This section provides information on some of the general characteristics on wave propagation,

and frequency bands suitable for wearable antenna’s applications.

2.4.1 Wave Propagation Characteristics

Electromagnetic wave propagation is strongly linked to the frequency, where the wavelength

determines the size of the obstacles or transmission medium that will mostly influence the

wave and its propagation [148]. For frequency ranges from a few Hz up to several GHz, THz or

higher, the size of the wavelength goes from several km down to a few nm, respectively. Table

2.8 shows several radio wave bands and their corresponding propagation phenomena, as well

as the considered wavelength.

Band Frequency Wavelength Propagation

Very Low Frequency (VLF) 3-30 kHz 100-10 km Ionosphere refraction

Low Frequency (LF) 30-300 kHz 10-1 km Ionosphere refraction

Medium Frequency (MF) 300-3000 kHz 1-0.1 km Ionosphere refraction

High Frequency (HF) 3-30 MHz 100-10 m Ionosphere refraction

Very High Frequency (VHF) 30-300 MHz 10-1 m Direct waves

Ultra High Frequency (UHF) 300-3000 MHz 100-10 cm Direct waves

Super High Frequency (SHF) 3-30 GHz 10-1 cm Direct waves

Extremely High Frequency (EHF) 30-300 GHz 10-1 mm Direct waves high absorption

Tab. 2.8: Radio Spectrum [149].

According to this table and previously introduced limitations, three frequency bands are

possibly seen as appropriate solutions for Body-Worn antennas, VHF, UHF and SHF band.

The sizes of the antennas operating at those three bands are convenient so that they can be

easily placed on the wearer’s body.

Frequency bands lower than VHF are not good since their wavelengths are longer than 10

m and they are usually used for very long distances. On the other end of the frequency

spectrum, EHF band faces the problem of traveling of such waves across most of the obstacles

like walls, trees, buildings, and even the atmosphere. The smaller the wavelength is, the

more interference with small objects appears, at some point even interfering with molecules.
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Fig. 2.22 shows the absorption characteristics of the atmosphere in dB/km as a function of

frequency [148].

Fig. 2.22: Specific attenuation due to atmospheric gases [148].

The majority of the signal absorption is caused by two compounds, oxygen (O2) and water

vapor (H2O). As can be seen from Fig. 2.22, the first peak occurs at 22 GHz due to the water

and the second at 63 GHz due to the oxygen. These graphs apply from a sea level to around 1

km of altitude.

2.4.2 Frequency Bands Suitable for Wearable Antennas for Security and Rescue

Service Applications

An overview of the frequency bands that can be used for security and rescue applications

defined by the OFCOM and ITU regulations is shown. Apart from the exclusively dedicated

bands, some adjacent or even overlapping civilian bands are included for allowing a polyvalent

use of the bands.
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30.500–87.500 MHz

As a result of the migration from analogue to digital broadcasting, the analogue TV transmitters

in band I, 47 – 68 MHz, were shut down at the end of 2008. This band is therefore available for

military use, except the sub-band 50 – 52 MHz that is assigned to the amateur radio service.

Tactical mobile systems for voice and data communications are planned in this frequency

range.

The wavelengths at these frequencies are between 3.5-10 m, respectively, and long distance

communication could be achieved. The higher the antenna is mounted above the ground,

the longer the distances that can be covered. The size of the antenna at these frequencies is

fairly large for placing it around the body. One of the solutions can be applying some of the

mentioned miniaturization techniques, but in that case antenna’s performances will deterio-

rate. Another issue appearing with this frequency band is the existence of Electromagnetic

Compatibility (EMC) problem due to the emergence of Power Line Communication (PLC)

devices. After all, this frequency band does not seem as a convenient solution for wearable

antennas due to its narrow bandwidth, fairly large antennas, and the appearance of the EMC

problem5.

230–400 MHz

This range is fully coordinated with the North Atlantic Treaty Organization (NATO) and is

used for tactical Unmanned Aerial Vehicle (UAV) systems and for national crisis management

(e.g. emergency organizations). This is a very important band for military use. No major

changes are foreseen in the use of these frequencies. A special emphasis can be put on the

ranges 380-385 MHz and 390-395 MHz that are intended for Digital Land Mobile System for

Emergency Services in Switzerland6.

380–470 MHz

This frequency band has been designated as a “tuning range” for future narrow band Public

Protection and Disaster Relief (PPDR) systems7. Inside this band there are two sub-bands

that can be of particular interest regarding the security and rescue service applications. Both

418-420 MHz and 428-430 MHz are exclusively dedicated only for military use. No major

changes are foreseen in the use of these frequencies8.

5See page 41-44 [11].
6See page 55 [11].
7See page 9 [11].
8See page 55-62 [11].
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2.4–2.5 GHz

This range is also known as a Short Range Distance (SRD) and it is allocated for the civil

administration. It is also part of the ISM band that was originally internationally dedicated for

RF electromagnetic fields for industrial, scientific and medical purposes. Wireless network

equipment compatible with IEEE 802.11b, and 802.11g standards operates at 2.4 GHz.

4.4–5 GHz

Military fixed link systems are operating in this frequency range. The band is of great signifi-

cance to the military because future broadband requirements can be implemented with new

technologies in this range9.

5.250–5.725 GHz

This band is dedicated for the new sensor systems that will be used by Swiss army and NATO.

It has a broadband radio characteristics which are expected to be very important for the new

broadband technologies used by the military. Since this band is not exclusively dedicated to

military use, it is also used by some civilian broadband systems10.

Ultra Wideband (UWB)

According to the FCC, ultra wideband (UWB) is defined as any system having a bandwidth of

at least 500 MHz or a fractional bandwidth larger than 0.2. In 2002 FCC allowed the frequency

band between 3.1-10.6 GHz for unlicensed UWB transmission [42]. The transmitted power

is spread over the entire spectrum by using short time pulses (impulse radio) which ensures

good EMC with the various devices (Military and Civil) using the wide frequency range of this

technology. There is a positive trend of using the UWB band for wearable applications. This is

mainly due to the suitability of the impulse radio technology for wearable communication, as

it can help mitigate the problems caused by fading and environmental changes [150].

15.700–17.300 GHz

This band is dedicated exclusively to military applications, and it is mostly used for sensors

systems, both in Switzerland and in NATO. Its broadband radio nature makes it a good can-

9See page 92 [11].
10See page 94-96 [11].
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didate for the future broadband military applications. It is to be widely deployed in Wireless

Access Systems (WAS), and Radio Local Area Networks (RLANs)11.

Other Frequency Bands

There are also other available bands above 20 GHz, but as was presented in Fig. 2.22, wave-

lengths of the electromagnetic waves higher than 20 GHz suffer the high atmospheric absorp-

tion. These bands are predominantly used for the satellite applications or extremely short

terrestrial communication. For example, 19.700 GHz – 21.200 GHz band is allocated for fixed

and mobile satellite space-to-Earth military communications12.

In summary, security and rescue services, and in particular military applications, have the

advantage of using wide span of bands in the whole frequency spectrum. On the other hand,

considering all these bands from the wearable antenna point of view, not all of them can

compete as convenient candidates. While for the lower frequencies the main problem is the

size of the antenna for a chosen frequency, for the higher frequencies the difficulties are mainly

due to the high atmospheric absorption of the signals.

2.4.3 Tetrapol Communication Band

Tetrapol is a digital cellular trunked radio for voice and data communication. Originally it

has been developed by the French company, Matra Communication. This radio system is

intended for private and public radio applications and for emergency services. Two groups

are mainly using Tetrapol system, Private Mobile Radio (PMR) and Public Access Mobile Radio

(PAMR) [10].

Tetrapol is used by various groups of customers like safety agencies, utility transport or emer-

gency services like rescue, police or military. Nowadays there are almost 2 000 000 users in

more then 30 countries worldwide. In most of the cases it is used by security forces [15].

In Switzerland, Tetrapol digital trunked radio has been chosen as a national radio network for

rescue and security services, Polycom [151]. This network should serve the needs of different

services across the country like border guards, police, firefighters, first aid, civil protection and

military formations.

Among the several services provided by Tetrapol, the two main ones are the network mode

and direct mode communication. The network mode establishes a communication always

through a base station, and all the services are monitored by this station. In the direct mode,

11See page 109 [11].
12See page 112 [11].
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two or more mobile stations communicate directly, without using the base station. This mode

is also known as walkie-talkie mode. The big advantage of the direct mode is its usage in the

areas where no infrastructure exists or when there is no radio coverage (e.g. tunnels, mountain

areas, etc.) [10]. Direct mode communication is one of the favorable choice for rescue services.

The dedicated operating frequency for the Swiss national emergency and radio network is

between 380-400 MHz. Wearable antennas proposed in this thesis are intended for the UHF

band and to be incorporated among the existing communication security systems, for instance

Polycom system [13]. Some of the major Tetrapol parameters are presented in Table 2.9. More

detailed study and analysis on the Tetrapol system are reported in [152].

Parameter Value

Channel spacing 12.5 kHz

Transmission power of
base station per carrier frequency (typically)

25 W ERP

Transmission power
of mobile equipment

1 W, 2 W, 10W

Receiver sensitivity, dynamic
Mobile Station (MS): -119 dBm

Base Station (BS): -113 dBm

Mode Semi-duplex

Channel access method
Frequency Division

Multiple Access (FDMA)

Modulation
Gaussian Minimum
Shift Keying (GMSK)

Range
Rural: ca. 20 km

Suburban: ca. 6 km

Tab. 2.9: Tetrapol parameters [10].

2.5 Conclusions

An overview of different wearable antennas found in the literature and on the market was pre-

sented in this chapter. We have selected four categories in order to simplify their classification:

applications, antenna types and families, materials and technology and the available allocated

frequency bands.

The classification based on the four categories gives a picture of published work and a starting

point for the design and development of wearable antennas. In order to provide a better

overview of the performed classification, some of the characteristics, linked with several

different parameters are shown in Table 2.10. This table classifies the antennas according to

their operating frequency linking the latter with the communication range, data rates and size

and materials the antennas are built of.
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Operating frequency
Wavelength

400 MHz
0.75 m

868 MHz
0.345 m

2.45 GHz
0.12 m

3-10.6 GHz
0.1 - 0.003 m

Range
up to

several km
up to 9 m 2 -10 m 1 -10 m

Indoor � � � �

Outdoor
up to

several km
mainly indoor

RFID

ZigBee as an
extreme case
up to 100 m

mainly indoor

Fractional
Bandwidth (%)

10 % 2 % 4 - 8 % 50 - 60 %

Data Rates 10-20 Kbps 32 Kbps
up to

150 Mbps
0.1 - 1 Gbps

Dimensions
(Typical)

30 x 20 cm2 10 x 6 cm2 4 x 4 cm2 From: 6 x 6 cm2

To: 1.5 x 1.5 cm2

Diversity Space
occupies large
area (VESTS)

easy placement
on the body

easy placement
on the body

easy placement
on the body

Choice of materials
conventional

conduct. & subst.
+ textiles

wide range
of textiles

wide range
of textiles

wide range
of textiles

Tab. 2.10: Antenna characteristics overview over the four frequency ranges [85].

The main focus of the thesis research is on the short to medium range coverage and medium

data throughput. Depending on the application requirements and the band characteristics,

the proposed antennas should be designed for some of the available frequency bands between

300 MHz and 10.6 GHz.
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3 Materials, Characterization and

Technology

Materials, characterization of their properties and a technology proposed for building robust

and flexible wearable antennas are reported in this chapter. In the first part, the main emphasis

is put on the choice of dielectric and conductive materials, while the second part provides

more details regarding the proposed technology and the built antenna prototypes.

During the selection process of dielectric and conductive materials, a set of criteria have been

introduced, considered and followed, emphasizing the three most important ones:

• Electromagnetic (EM) properties - Permittivity and Losses.

• Mechanical properties - Flexibility and Softness.

• Chemical properties - Bio-compatibility and Waterproof aspects.

The overview performed in Section 2.3 (Materials and Fabrication methods) provided a good

starting point for selection of the appropriate materials. Among the considered ones, polymer

based dielectrics and mesh/perforated conductors are good candidates according to the

defined criteria. Polydimethylsyloxane (PDMS) is selected as a substrate material, while

copper mesh and perforated copper-bronze sheets are used as conductors. The initial viscous

condition of the PDMS has two advantages. First, it enables embedding the conductors inside

the substrate, thus avoiding the adhesion problem between the polymers and classical solid-

sheet conductors and second, since the conductive parts are encapsulated inside the substrate,

it is enough that only the substrate material is waterproof or bio-compatible.

This chapter is organized as follows: in the first part PDMS is investigated from the EM and

mechanical point of view, and ways to adjust its EM properties are proposed. Copper mesh

structures and custom perforated copper-bronze conductive sheets are considered in the

second part. Finally, a complete fabrication process is shown by fabricating a real antenna

prototype.
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3.1 Dielectric Materials

Different types of dielectrics can be used as antenna substrates. From the EM point of view,

two important characteristics matter: low permittivity and low losses improve the antenna’s

radiation characteristics, i.e. bandwidth and radiation efficiency [72]. Therefore, the efforts

will be concentrated on lowering the permittivity and losses of the selected dielectric materials.

3.1.1 Polymers

The word polymer comes from the classical Greek words poly, which means "many" and meres

meaning "parts". In other words, polymers are long-chain molecules composed by repeating

a large number of units of an identical structure [137]. Polymers can be found in nature

like cellulose, proteins or silk or can be synthetically produced like nylon or the polymer we

are looking at, PDMS. Polymers that are able to change their initial size are also known as

elastomers [153].

Elastomers are rubber-like polymers with low elastic modulus and high yield strain. Simply

stated, an elastomer is resistive to the external applied forces and has a tendency to return

to its original shape. These characteristics come from their molecular structure, where each

chain behaves as a spring, thus resulting in overall elastic structure [135].

3.1.2 Polydimethylsyloxane - PDMS

Polydimethylsiloxane (PDMS) is a silicone-based elastomer widely used in different types

of applications like microsystems, bioMEMS, microfluidic chips, actuators or stretchable

electronics [135]. PDMS serves also as a base material for transfer printing and soft lithog-

raphy. Initially it was developed as a high-voltage outdoor insulator material [135]. PDMS

is chemically inert, thermally stable, permeable to gases, simple to handle and manipulate,

and exhibits isotropic and homogenous properties [139]. It is an excellent water isolator thus

enabling a long-term, stable device operation (e.g. antenna). It has good radio frequency (RF)

and mechanical characteristics, low dielectric constant and good chemical stability [154].

The initial fluid state of PDMS allows the preparation of composite substrates of various

concentrations, thus controlling the range of dielectric constants and the flexibility that can

be obtained. Moreover, the fluid state of the elastomer also offers control over the substrate

thickness as well as the possibility of immersing the antenna inside the substrate. Based on the

presented criteria and characteristics, PDMS was selected as a basic material for the antenna

substrate.
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3.2 Adjusting the EM Properties of PDMS

As already stated, PDMS has been used as a substrate in various electronic and antenna

applications [125, 135, 141, 142, 144, 146]. In most of the cases, Sylgard RTV 184, a silicone

elastomer kit, produced by the Dow Corning Corporation, has been used as PDMS [155]. The

only available data from the producer, regarding the relative permittivity of the Sylgard PDMS

are for frequencies at 100 Hz and 100 KHz, 2.72 and 2.68, respectively [138].

On the other hand, there are reported measured values for the relative permittivity and loss

tangent for a similar polymer, Sylgard RTV 182, between 0.1-40 GHz, in [156]. The measured

values are εr =2.77 and tan δ=0.012. Ideally, for the purposes of wearable antenna design, we

would like to have lower relative permittivity and loss tangent in order to improve the radiation

performance of the antenna like bandwidth and antenna’s radiation efficiency [72].

Nevertheless, up to the author’s knowledge the possibility of doping the PDMS with different

inclusions to tune its mechanical and EM properties has not been reported yet. For that

reason, a method of loading PDMS with different materials is presented. Several potential

fillers were investigated, sample prototypes built and permittivity and loss values measured

and compared. Finally, the combination of PDMS+filler with the lowest permittivity and the

lowest losses was selected for the design of a wearable antenna prototype. Substrates with a

higher relative permittivity are useful for the design of electronic circuits, while most of the

antenna designs require substrates with lower permittivity.

Sylgard RTV 184, a silicone elastomer kit, produced by the Dow Corning Corporation, was

selected for PDMS [155]. Sylgard RTV 184 is liquid in its initial stage and solidifies when the

proper polymerizer is added. Depending on the polymerization conditions, cured in the oven

or at room temperature, the process can last from 2-3 hours to one or two days [138].

Three types of micro-spheres were tested as inclusions suitable to lower the permittivity: hol-

low glass, phenolic and silicate micro-spheres, with diameters between 20-50 µm [157]. Liquid

PDMS was mixed with the polymerizer as indicated in [155], and then for each case different

inclusions were added. For each of the inclusions the amount of the added micro-spheres

was determined through a set of trials and tests [158]. The mixture of the PDMS+inclusions

is mixed until certain homogeneity is achieved. All the mixing procedures are done by hand

and in non-controlled laboratory conditions, leading to some side effects like appearance of

air-bubbles inside the mixture. In order to prevent excessive air, before curing the samples are

exposed to a degassing procedure with a simple vacuum pump. More details on the degassing

process are given in the section 3.4. Four different combinations of PDMS+inclusions were

poured in customized molds and left to polymerize at room temperature for 48 hours. The

four polymerized samples are depicted in Fig. 3.1.
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Fig. 3.1: PDMS loaded with different inclusions, from left to right: pure PDMS (no inclusions), hollow
glass, phenolic, and silicate micro-spheres.

Characterization of the Built Samples

The samples were characterized with two different methods, using a waveguide (WG) as a

probe holder and a network analyzer for characterization in X-band (9.5-11.3 GHz) and a

commercial probe station at lower frequencies (0.2-5 GHz) [159]. Since the dimension of

the inclusions is several orders of magnitude smaller than the wavelength at the desired

frequencies, the built samples can be considered as homogeneous dielectrics.

The WG method measures both reflection and transmission, with the dielectric sample com-

pletely filling the cross-section of the waveguide, 22 x 10 mm2. A detailed description of the

used method is reported in [160]. In order to minimize the potential measurement errors, one

sample was measured several times and the obtained values were averaged. There were no

significant discrepancies between the measured values for the same sample.

A second method used for characterization of the built samples, is a probe method based

on the reflection measurements only. A commercial APC-7 coaxial probe and the Agilent

85070E probing kit were used for the measurements at lower frequencies. Both, the equipment

and the method are fully described in the Agilent application note Basics of measuring the

dielectric properties of the materials [159]. Since the probe comes in direct contact with the

sample, and the pressure applied by the probe is determined by the human factor, some

measurement uncertainties can appear. The samples need to be as flat as possible, thus

avoiding the presence of air between the probe and the material. Therefore, if the pressure

is too low, some air might appear between the probe and the sample, thus influencing the

measured values. On the other hand, a too high pressure might modify the structure of the

sample, again leading towards incorrect measured values. At the end, a moderate pressure
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was defined. The samples were measured from four different sides and the obtained values

were averaged. A situation where one of the samples was measured is shown in Fig. 3.2.

Fig. 3.2: A sample of PDMS measured with the Agilent probe set-up.

The acquired results from both methods are presented in Table 3.1. The last two columns in

this table report the volume [%] of the inclusions with the respect to the volume of the PDMS

and the relative permittivities of the inclusive materials themselves (glass, phenol and silica),

respectively. Since the Sylgard RTV 182 PDMS was already investigated and characterized

in some previous works, we compared the obtained results for pure PDMS with the results

reported in [156]. There is a slight discrepancy in the obtained values, for relative permittivity

2.75 vs. 2.65 (ours) and 0.015 vs. 0.02 (ours) for the loss tangent. One of the reasons for the

slight discrepancy and uncertainties might lay in the difference of the used PDMS, Sylgard

RTV 182 vs. Sylgard RTV 184 (ours).

The lowest permittivity and the lowest losses were obtained by using the hollow glass micro-

spheres as fillers. The spheres are made of glass and filled with air (relative permittivity close to

1). Both, permittivity and losses, were reduced for the case of the loaded PDMS, compared to

the non-loaded one. However, since the glass micro-spheres are fragile and while mixing the

materials manually, certain number of spheres can brake, full control over the final permittivity

and losses cannot be guaranteed.

Fig. 3.3 and 3.4 report the performed measurements for the relative permittivity and loss

tangent for the pure PDMS and PDMS loaded with glass micro-spheres. The measurements

were done with the WG method in X-band (9.5-11.3 GHz).
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Silgard - 184 RTV
mixed with:

WG method
9.5−11.3 GHz

Probe method
0.2−5 GHz

Volume [%] εr
a

εr tan δ εr tan δ incl. vs. Sylgard incl. material

No inclusions 2.65 0.02 2.76 0.03

Glass micro-spheres 1.85 0.014 2.00 0.03 12.7% 4-10

Phenolic micro-spheres 2.24 0.022 2.58 0.04 12.7% 8

Silicate micro-spheres 2.45 0.02 2.62 0.04 45% 2.5-3.5

Tab. 3.1: Measurement results.

aThis column reports the values for the relative permittivity of the basic materials like glass, phenol and silica.
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Fig. 3.3: Measured values for the relative permittivity, for pure PDMS and PDMS loaded with glass
micro-spheres, with the WG method.
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Fig. 3.4: Measured values for the loss tangent, for pure PDMS and PDMS loaded with glass
micro-spheres, with the WG method.
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3.3 Conductive Materials

For testing purposes, the first selected material was a thin copper-beryllium (Cu-Be) conduc-

tive sheet. Cu-Be sheet was attached to the PDMS in the initial liquid phase and cured in an

oven at 80◦C for 3 hours. Once the PDMS was polymerized, the structure was twisted and

bended in order to assess its mechanical properties. As can be seen from Fig. 3.5 (a), the

copper-beryllium sheet detached from the PDMS substrate, first on the corners then over

the entire structure, thus illustrating the adhesion problem as one of the main issues when

dealing with PDMS and conventional conductive sheets. Moreover, the flexibility of the final

structure is not sufficient. Therefore, it was decided that another approach will be used in

order to obtain better adhesion and flexibility. The selection of the conductive materials was

partially influenced by the choice of PDMS as a substrate. Indeed, the liquid state of PDMS

can be used to pass through the perforated or mesh structures, resulting in an encapsulated

conductor.

(a) (b)

Fig. 3.5: PDMS cross-sections: (a) Copper-Berylium sheet attached to the PDMS – poor adhesion and
(b) Copper mesh sheet “sandwiched” between the PDMS layers – excellent adhesion.

3.3.1 Copper Mesh Structures as Conductors

Mesh structures are flexible, they have good conductivity (as already seen for plated and

intertwined structure in section 2.3.1, silver-plated woven/knitted yarns), and they allow an

easy flow of the PDMS through the mesh, thus mitigating the adhesion issue. Once the PDMS

is polymerized, the conductive mesh is completely encapsulated and sandwiched between

the PDMS layers, resulting in a robust and flexible structure, see for instance Fig. 3.5 (b).

Two different mesh structures were considered, a structure with a finer mesh, having a wire

diameter of 0.1143 mm, an opening size 0.14 mm and a thickness of 0.2286 mm [161], and

a structure with coarser mesh having a wire diameter of 0.3810 mm, an opening size of 0.76

mm and an overall thickness of 0.762 mm [162]. Fine mesh structures are mainly used for
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the fabrication of antennas where the precision is important, especially at higher frequencies,

(2.45 GHz or in UWB band, 3.1-10.6 GHz). The coarse mesh structures can be used for cases

where precision is not that critical, for instance at UHF frequencies and for the ground planes.

PDMS loaded with glass micro-spheres was used to test the flow of the mixture through the

fine mesh structure. Microscopic pictures shown in Fig. 3.6 (a) and (b), depict the pure copper

mesh and penetration of the loaded PDMS through the mesh, respectively. It can be seen

that the loaded PDMS easily passes through the mesh, although the size of the spheres is in a

similar range as the size of the apertures.

Copper mesh structures are good candidates for building robust and flexible antennas. On one

hand, they increase the flexibility, while on the other hand, by letting the PDMS or any other

liquid dielectric, flow through the mesh ensures the robustness of the final product. However,

due to the intertwined and non-soldered assembly, mesh structures are not sufficiently precise

for some applications.

(a) (b)

Fig. 3.6: Microscopic pictures of: (a) Pure copper mesh and (b) Penetration of PDMS mixed with the
hollow glass micro-spheres (20-50 µm) through the copper mesh structure.

3.3.2 Perforated Conductive Sheets

In order to overcome the imprecision issue, perforated thin conductive sheets, for instance

copper-bronze, were also considered for the fabrication of flexible antennas. The perforations

increase the overall flexibility and allow the free flow of PDMS through the conductive sheet.

Compared to the mesh structures, the perforated structures provide higher fabrication preci-

sion, but at the same time increase the overall production complexity, as the conducing plate

has to be etched or laser cut.

Different arrangements can be used for the perforation process and optimizing the position

and shape of the "holes" can bring some advantages to the final structure. For example,

hexagon shaped perforations ensure the optimal deployment of the holes over the conductive

sheet and at the same time contribute to some miniaturization of the antenna design. Indeed,
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hexagon patterns enlarge the current path on the antenna, thus making the antenna electri-

cally larger. A hexagon perforated copper-bronze conductive sheet is presented in Fig. 3.7.

The proposed sheet has a thickness of 300 µm, while the perforation was done using a classic

photo-lithographic etching process. Details regarding the size and spacing of the hexagon

perforations will be reported in Chapter 4 along with the concerned antenna prototypes.

Fig. 3.7: Copper-bronze conductive sheet perforated with hexagonal shapes.

3.4 Technology

This section describes all the steps performed during the fabrication process of a robust

flexible antenna built using pure and/or loaded PDMS and copper mesh and/or perforated

copper sheets. A simple patch antenna operating at 2.5 GHz is used as an example for the

demonstration purposes. For this particular case, fine copper mesh structure was used as a

conductor and PDMS loaded with glass micro-spheres as a substrate material.

Simulations and Tailoring - Copper-mesh structures - The antenna was designed and simulated

with the commercially available 3D EM full wave software HFSS [163]. Once the optimal

performance was obtained the dimensions of the antenna were extracted and used for tailoring

the fine copper mesh conductive sheet1. HFSS model of the patch antenna and the 2D sketches

with all the dimensions are shown in Fig. 3.8, while Table 3.3 reports the values of all the

geometrical parameters.

Since the mesh structure is rather soft, it can be cut with scissors. However, the non-soldered

intertwined structure tend to fray on the edges, thus not allowing a full control over the

dimensions and shape. One of the solutions can be soldering the edges, as shown in Fig.

3.13 (a), but it is time consuming. Therefore, in order to achieve certain precision, etching is

considered as an alternative.
1For the simulation purposes no mesh structure was used. Instead, just a copper conductive sheet with the

same thickness as the mesh and characteristics as indicated in the HFSS materials library. The structure of the
mesh is dense enough so that can be considered as a solid conductor.
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(a) HFSS model (b) Side view - feeding

(c) Top view

Fig. 3.8: A patch antenna model and 2D sketches of the designed antenna prototype: (a) HFSS model,
(b) Side view - coaxial cable feeding and (c) Top view - PDMS, ground plane, patch and position of the

feeding.

Parameter Value [mm] Parameter Value [mm] Parameter Value [mm]

GPL 60 FL 12.5 SUBT 7

GPW 60 FW 17.5 Lcxi n 13

RPL 39 SB 2 Lcxout 10

RPW 35 ST 1 coaxi n 0.65

sepL 10.5 CT 0.035 coaxout 2.2

sepW 12.5 H 3 tef 2.6

Tab. 3.2: Values of the designed parameters indicated in Fig 3.8.

Simulations and Tailoring - Perforated conductive sheets - For the antennas where the conduc-

tors are perforated with etching, preparation and extraction of the file formats require some

additional intermediate processing steps. After the design and optimization of the antenna

in HFSS, the obtained shapes are further processed in order to produce the etching mask,

needed for the photo-lithographic procedure.
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Spacing - Both proposed conductors, copper mesh and etched copper-bronze sheet, are thin

and flexible. For the antennas that have a ground plane and radiating part, the distance

between them should remain constant all the time. For that reason, foam spacers can be

used in order to assure the parallelism between the sheets, Fig. 3.9 (a). From the EM point of

view, the foam spacers do not affect much the performance of the antenna. Still, since their

permittivity and losses are different from the filling materials (i.e. PDMS), certain imprecision

might appear. A solution can be found in making the spacers from the same material as the

substrate itself, thus avoiding the non-controlled effects. In Fig. 3.9 (b) spacers in a shape of

cylinder are produced from the same material as the substrate itself, in this case pure PDMS.

(a) Foam spacers (b) Spacers in the shape of cylinder fabricated from
the same material as the substrate, PDMS

Fig. 3.9: Spacing with different materials.

Molds - The initial liquid state of the PDMS requires custom fabricated molds, where all the

conductive parts are fixed before they are sprinkled with the elastomer. All the molds are

prepared in-house, using a 3D computer-aided design (CAD) software, Solidworks [164], for

modeling and computerized numerical control (CNC) machines for fabrication. All the molds

are fabricated from polyvinyl chloride (PVC). In Fig. 3.10 three different molds, for antennas

operating at different frequencies, are presented. For easier extraction of the polymerized

antennas, some of the molds are built in modular way, while all the inner parts of the molds

are lubricated with vaseline.

(a) (b) (c)

Fig. 3.10: Custom fabricated molds from PVC for different antenna types operating at different
frequencies (a) Patch antenna @ 2.45 GHz, ( b) PIFA @ 363 MHz and (c) PIFA @ 385 MHz.
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For the concrete design of patch antenna, the mold prototype and the conductive parts of

the antenna placed inside the mold are shown in Fig. 3.11, while the 2D sketches and all the

dimensions are shown in Fig. 3.12 and Table 3.3, respectively.

(a) Custom in-house designed mold (b) Conductive parts + connector fixed inside
the mold

Fig. 3.11: In-house custom designed mold.

(a) Bottom plate (b) Frame-top view

(c) Frame-side view

Fig. 3.12: 2D sketches of the designed mold: (a) Bottom plate, (b) Frame - top view and (c) Frame - side
view.

One shot sprinkling - It is important that the PDMS is sprinkled at the same time over the

entire mold, thus guaranteeing a uniform distribution of the material through the conductors

and the mold. Consequently, whenever the antenna type allows, all the conductive parts and

the connectors should be soldered and fixed inside the mold before the PDMS is sprinkled,

thus providing a stable and uniform distribution, as shown in Fig. 3.11 (c).
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Parameter Value [mm] Parameter Value [mm]

B 90 FRex 90

bT 10 FRi nt 60

cW 45 FRH 6.7

cL 38 wdth 15

� 8

Tab. 3.3: Values of the designed parameters indicated in Fig 3.12.

PDMS preparation - The used PDMS is the Sylgard RTV 184 produced by Dow Corning, which

is delivered with precise instructions on how it should be prepared [155]. The kit consists

of a base and a curing agent (polymerizer), that need to be mixed in a defined ratio. All the

preparations are performed manually in a standard lab environment. Mixing of the base,

polymerizer and the fillers was done by hand. Unfortunately, hand mixing process introduces

uncontrolled amount of air-bubbles inside the material, that changes the final values of the

permittivity and losses. For that reason, degassing is applied.

Degassing - The captured air-bubbles were removed by a vacuum pump. Five to six degassing

cycles (10 min per cycle) are enough to remove the excessive air. The degassing was applied in

two phases, first after the preparation of the PDMS and then once everything was placed and

the PDMS was sprinkled inside the mold, see Fig. 3.13 (f) and (h), respectively.

Polymerization - Polymerization of the used PDMS can be done either by exposing the mixture

in an oven at temperatures around 80◦C, for 3-4 hours or leaving it at a room temperature for

two or three days. It should be mentioned that when the mold is placed in the oven, due to

the thermal expansion of the PVC, the shape can be slightly changed, resulting in modified

antenna’s shape and dimensions. For the majority of antennas reported in these thesis, room

temperature was used for curing. For the patch antenna presented in this section, oven was

used during the curing process.

Fig. 3.13 shows all the performed steps during the fabrication procedure of a patch antenna

operating at 2.5 GHz.
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(a) Mesh structure with soldered

pin

(b) Foam spacers (c) Custom in-house designed

mold

(d) Conductive parts + connector

fixed inside the mold

(e) Preparation of PDMS (f) Degassing the PDMS

(g) Sprinkling the PDMS (h) Degassing the

trapped air inside

the mold

(i) Final structure, antenna prototype

Fig. 3.13: Fabrication processes, step by step.
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3.5 Realized Patch Antenna

After applying all the indicated fabrication steps, the final antenna prototype was extracted

from the mold and was ready for measurements. The antenna prototype is shown in Fig. 3.14,

from both sides, top and bottom.

(a) Top view (b) Bottom view

Fig. 3.14: Final patch antenna prototype.

Fig. 3.15 shows a comparison between the predictions (simul.) and experiment (meas.) of

|S11(f)| response.
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Fig. 3.15: Comparison of simulated and measured |S11(f)| of the patch antenna.

It can be seen from the graph that there is a discrepancy of 40 MHz between the simulation

and the experiment. Several reasons can be identified as sources of the observed discrepancy:

• Difference between the simulated structure (solid conductors used) and actual mea-

sured structure (copper-mesh structure used).

• Imprecision due to the copper mesh fraying and soldering.
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• Imprecision in the permittivity of the substrate due to the brake of glass micro-spheres.

• Thermal expansion of the mold while curing, resulting in changed final antenna’s di-

mensions.

A second comparison was performed by analyzing the measured and simulated radiation

pattern of the proposed antenna. The radiation patterns are represented in two different

planes, E-plane and H-plane, by showing the co-polar and cross-polar cuts, see for instance

Fig. 3.16. The differences between the prediction and experiment are almost negligible.

(a) E-plane

(b) H-plane

Fig. 3.16: Measured and simulated radiation patterns for the patch antenna: (a) E-plane and (b)
H-plane.
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As the proposed technology is intended for robust antenna for security applications, we

decided to assess the waterproofness and durability of the built prototype by washing it in

a washing machine at 60◦ C for a complete cycle. The antenna placed inside the washing

machine is depicted in Fig. 3.17. The visible red cap at the bottom side of the antenna is a

protection for the SMA connector. The antenna was washed five times and |S11(f)| were mea-

sured after each washing. As can be seen from Fig. 3.18, the deviation between any response

is almost negligible, thus validating the waterproof aspect of the proposed technology.

Fig. 3.17: Patch antenna inside the washing machine.
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Fig. 3.18: Comparison of the measured |S11(f)| responses of the patch antenna after 5 consecutive
washings.

After the fifth washing we observed small abrasions at the antenna’s corners and a crack from

the top side, see for instance Fig. 3.19. The occurred crack happened because of the thin

layer of PDMS above the patch mesh, 1 mm, which was not enough to withstand the fast

centrifugal rotations in the five washings. For all the next prototypes, we increased this layer

to 2 mm, having from both sides, bottom and top, 2 mm layer of PDMS used as shielding. The

abrasions appeared due to the high rotation speed of the washing machine (1200 rpm), thus

damaging the edges of the PDMS and the ground plane mesh structure. In order to prevent
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this malfunctioning for all the future antenna prototypes we also used 2-4 mm shielding of

substrate material around the antenna conductors. In other words, each antenna was at least

2 mm immersed inside the substrate material from any side.

(a) PDMS crack - top side (b) PDMS abrasions

Fig. 3.19: Condition of the patch antenna after five washing cycles.

3.6 Conclusions

A combination of substrate and conductive materials was presented, analyzed and for demon-

stration purposes a simple patch antenna prototype was built. The initial liquid phase of

PDMS was used for adjustment of its EM properties by adding inclusions with permittivity

and losses different from the base substrate. The use of thin, flexible and perforated and/or

mesh conductive sheets reinforced the overall flexibility and stability of the structure. Full

encapsulation of the conductive sheets resulted in a stable waterproof structure.

A simple patch antenna prototype was built using the proposed technology, reporting the

measured |S11(f)| and radiation pattern. Moreover, since the PDMS itself is waterproof, the

final prototype was washed and |S11(f)| were measured and compared after each washing.

No significant discrepancies were observed in the measured responses. Although some

imprecision appeared at certain stages, it should be taken into account that all the performed

steps were done in a standard laboratory environment, using standard laboratory equipment.

In case of an automatized production, under controlled conditions, the proposed technology

can provide sufficiently precise manufacturing, thus making this technology a good candidate

for the design and development of robust wearable antennas.
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After a successful implementation of the proposed technology and the design of a functional

patch antenna, the suggested method was used for further wearable antenna designs. Accord-

ing to the thesis project specifications, the aim was to develop and design robust wearable

antenna, operating in ultra high frequency (UHF) range for voice communication intended

for security applications. The proposed antennas should have a suitable size, a low profile and

be easily integrated into the wearer’s garment. From the radiation point of view, the antennas

should provide hemispherical like radiation pattern (away from the body) and be minimally

coupled to the wearer’s body.

Based on the overview and analysis of different antenna families reported in section 2.2

(Antenna families), a Planar Inverted F Antenna (PIFA) was selected as a suitable antenna

candidate for the specified requirements. PIFAs are relatively small with the respect to their

operating frequency, which make them an appropriate solution for wearable applications.

The presence of the ground plane in their structure decouples the antenna from the human

body, resulting in improved overall radiation characteristics.

In this Chapter three different antenna prototypes are presented. All the prototypes are

intended for voice communication inside the UHF range and they are PIFA based antennas.

The antennas are built with the technology introduced in Chapter 3, with slight variations for

the different prototypes. An inspiration for the initial antenna’s structure was found in [165],

while in [166] some further analysis and enhancements were performed. The first built

prototype operates at 365 MHz and it was built using a copper-mesh structure as a conductor

and PDMS loaded with glass micro-spheres as a substrate. For the second prototype the

copper-mesh conductor was replaced by an etched copper-bronze conductive sheet and as

a substrate pure PDMS was used instead of the loaded one. The operating frequency of this

antenna is 383 MHz. Materials used for fabrication of the third prototype are identical with the

second one, whereas the structure of the PIFA is modified by introducing an air gap between
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the ground plane and the radiation patch. The role of the air gap is mainly to improve the

radiation characteristics of the antenna and by overcoming the near-field effect issues. This

antenna also operates around 380 MHz.

For all the three prototypes, a detailed description is provided. Each of the prototypes is ex-

plained from the modeling and technological point of view, defining the introduced concepts

and providing the dimensions of the modeled and built prototypes. A set of simulations and

measurements are shown and compared under different circumstances like free space, on a

body phantom, on a chunk of pork meat (mimicking real human muscle) and on a wearer.

Additional robustness tests, such as bending of the antennas are performed for the first two

prototypes.

4.1 PIFA (Copper-Mesh) Operating at 365 MHz

4.1.1 Antenna Model and Geometrical Parameters

The first built prototype was a PIFA fabricated using a copper-mesh structure as conductor

and loaded PDMS as a substrate material. The proposed antenna was modeled and designed

in HFSS. For simulation purposes, the ground plane, the radiating patch and the shorting wall

were modeled as solid copper conductive sheets, with a thickness of 300 µm and material

properties as suggested from the HFSS material library for copper, relative permittivity εr =1

and bulk conductivity σ=2·107 S/m. The substrate was additionally defined in the HFSS

material library, using the values obtained from the characterization of the loaded PDMS

reported in section 3.2, relative permittivity εr =2.15 and loss tangent tan δ=0.01. A full 3D

model and detailed 2D sketches of the designed antenna are illustrated in Fig. 4.1 and Fig. 4.2,

respectively, while Table 4.1 reports the values of all the geometrical parameters. Position and

modeling of the coaxial feeding was done as depicted in Fig. 4.2 (a) and (b), where copper

material (HFSS) was used for creating the inner and outer conductor and Teflon having εr =2.1

and tan δ=0.001 as a dielectric in between.

Fig. 4.1: Model of the PIFA modeled in HFSS.
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(a) Top view (b) Side view - feeding

(c) Side view - Shorting wall

Fig. 4.2: 2D sketches of the designed antenna prototype: (a) Top view - PDMS, ground plane, patch and
position of the feeding, (b) Side view - coaxial cable feeding and (c) Side view - Shorting wall.

Parameter Value [mm] Parameter Value [mm]

GPL 149.4 s 5

GPW 80 CT 0.3

RPL 85 ST 2

RPW 70 SB 2

SUBL 157.4 H 4

SUBW 88 coaxi n 0.53

SUBT 9.1 coaxout 0.275

FL 7 tef 1.65

FW 10.5 ShW L 10

d 4 ShW W 65

Tab. 4.1: Values of the designed parameters indicated in Fig 4.2.

4.1.2 Fabrication of the Antenna Prototype

For fabrication purposes, a coarse copper-mesh structure was used as a conductor [162], and

PDMS loaded with glass micro-spheres, εr = 2.15 and tan δ = 0.01, as a substrate material

(already introduced in sections 3.3.1 and 3.2, respectively). The final antenna prototype

was built following the fabrication guideline introduced in Fig. 3.13 in Chapter 3. However,

several fabrication details can be considered as typical for the considered antenna prototype:

soldering of the edges of the selected mesh in order to avoid fraying of the copper strings,

introduction and gluing of foam spacers for ensuring the parallelism between the two plates

and fixation of the coaxial feeding within the mesh structure (before introducing it inside
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Chapter 4. Antenna Prototypes

the mold). The size and position of the spacers were provisionally determined, placing them

mainly on the edges of the radiating patch. All the introduced details are depicted in Fig. 4.3 (a)

and (b), respectively.

(a) (b)

Fig. 4.3: Conductive parts of the copper-mesh PIFA prototype: (a) With introduced spacers and
soldered coaxial cable and (b) Placed inside the mold.

The mold used for this antenna prototype was built from PVC material. Details for the de-

signed and fabricated mold are shown in Fig. 4.4, while Table 4.2 reports the values of all the

geometrical parameters.

(a) Bottom plate (part 1 from Fig. 4.3 b) (b) Frame-top view (part 2 from Fig. 4.3 b)

(c) Frame-side view (part 2 from Fig. 4.3 b)

Fig. 4.4: 2D sketches of the designed mold: (a) Bottom plate, (b) Frame - top view, (c) Frame - side view.

The final antenna prototype, having dimensions 157.4 x 88 x 9.1 mm3, is shown in Fig. 4.5.

Since the antenna was built of copper-mesh structure, in the continuation of this manuscript

it will be referred to as a copper-mesh PIFA. Fig. 4.6 reports a comparison between the predic-

tions (simul.) and experiment (meas.) at the desired frequency. A slight discrepancy (2-3 MHz)

that appears between the simulated and measured |S11(f)| of the HFSS model and fabricated

antenna prototype is mainly due to the non-complete control over the mesh conductor tailor-

ing and soldering processes and the difference between the dielectric properties of simulated

66



4.1. PIFA (Copper-Mesh) Operating at 365 MHz

Parameter Value [mm] Parameter Value [mm]

BL 178 FRi ntW 88

BW 108 FRH 9.1

BT 5.9 wdth 10

FRexW 178 cL 14

FRexL 108 cH 6

FRi ntL 157.4 � 8

Tab. 4.2: Values of the designed parameters indicated in Fig 4.4.

and actually used materials. Nevertheless, these initial results provided a good starting point

for additional measurements and analysis.

Fig. 4.5: Manufactured copper-mesh PIFA prototype.
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Fig. 4.6: Comparison of simulated and measured |S11(f)| of the copper-mesh PIFA.
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4.1.3 Comparison of |S11(f)| Responses for Different Situations

In order to asses the antennas’ performance when brought in the vicinity of the human

body, a simplified single layer muscle phantom was used for simulation purposes, a chunk of

pork meat, mimicking the muscle tissue, for measuring purposes and measurements done

directly on a wearer. The phantom used for the simulation mimics the human muscle electric

properties at 400 MHz, εr = 56 and tan δ = 0.6 [167]. It is a single layer phantom allowing

sufficient precision [29, 168], in estimating the proposed antennas’ behavior at the defined

frequencies. The size of the phantom is 488 x 566 x 80 mm3, large enough to ensure a quarter

wavelength margin between the antenna and the phantom edges. The antenna is simulated

with 1 mm thick textile material, εr = 1 and tan δ= 0, introduced between the phantom and

the antenna. The model of the used phantom with the antenna placed on it is depicted in Fig.

4.7. In the continuation of this manuscript, it will be simply referred only as a phantom. The

same phantom is used for all the reported antenna prototypes.

Fig. 4.7: Simplified single layer phantom model designed in HFSS.

For the measurement purposes, 1 kg of pork meat was cut and prepared as shown in Fig.

4.8 (a). The meat was packed in a nylon bag and then placed in a plastic (PVC) box with the

following dimensions: 195 x 110 x 30 mm3, Fig.4.8 (b). It can be seen that the size of the meat

used for measurement does not correspond to the size of the phantom used for simulation.

This is due to the technical limitations of using a bulky objects inside the anechoic chamber.

(a) (b)

Fig. 4.8: Pork meat used for measurement purposes: (a) Two chunks of pork meat with a layer of fat on
the top and (b) Meat packed in a nylon bag and then in a plastic (PVC) box.
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4.1. PIFA (Copper-Mesh) Operating at 365 MHz

In order to evaluate the wearability aspect of the proposed antenna, two measurements were

performed for two different scenarios. In the first scenario the antenna was measured while

placed on the human arm, whereas in the second scenario the antenna was measured while it

was placed on the wearer’s chest. For both cases, textile (sweater) was separating the antenna

from the human skin. As it can be seen from Fig. 4.9, the antenna remains tuned all the time,

without being dependent on the environment where it operates, in a free space or on the

wearer. This behavior clearly demonstrates the role of the ground plane in decoupling the

antenna from the wearer. Only the matching level changes, which is expected due to the lossy

nature of the human body.
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Measured in free space	
Measured on the arm
Measured on the chest

Fig. 4.9: Comparison of measured |S11(f)| of the copper-mesh PIFA in a free space and when placed on
the human body.

Additional comparison, where simulations (free space & phantom) and measurements (in free

space, on a chunk of pork meat and on-body (Fig. 4.10)) of |S11(f)| is reported in Fig. 4.11. As an

illustration, two measurement scenarios, with the antenna placed on the chunk of pork meat

and on the human arm, are depicted in Fig. 4.10. The aim of this comparison is to present in

the same plot all the possible scenarios that wearable antenna can occur in and to observe

its response under the different circumstances. As it can be seen, all five responses remain

stable within the defined frequency band, confirming one more time the stable behavior of

the tested antenna when exposed in different environments.
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Chapter 4. Antenna Prototypes

(a) (b)

Fig. 4.10: Antenna measured on: (a) A chunk of pork meat and (b) On-body, on a human arm.
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Fig. 4.11: Comparison of simulated and measured |S11(f)| of the copper-mesh PIFA in a free space, on a
simplified single layer muscle phantom, on a chunk of pork meat and when placed on the human body.

Flexibility and Bending Characteristics

Both materials used for fabrication of the reported antenna, coarse copper mesh and loaded

PDMS, have a certain flexibility. In order to test the flexibility of the final antenna prototype,

a set of bending measurements were performed with an in-house designed bending set-up,

shown in Fig. 4.12 (a). The set-up consists of two fixed supports at the ends, the antenna

is introduced in between, while the bending curvature is changed by introducing a foam

spacers with different height in order to achieve different radii. With simple mathematical

manipulations and the model proposed in Fig. 4.12 (b), values for the obtained radii, R, can be

extracted. A comparison of the measured |S11(f)| when the antenna is bended under different

radii is reported in Fig. 4.13. As it can be seen, the maximum frequency deviation is not larger

than 2 MHz. Taking into account the length of the antenna (157.4 mm) we have assumed that

the tested antenna will not be bended more than a curvature defined by R=230 mm.
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4.1. PIFA (Copper-Mesh) Operating at 365 MHz

(a) (b)

Fig. 4.12: Bending of the PIFA: (a) In-house custom designed bending set-up and (b) Bending skim for
determining the radius of the bended curvature.
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Fig. 4.13: Comparison of measured |S11(f)| of the copper-mesh PIFA when bended under different radii.

Washing

Washing tests were repeated and for the copper-mesh PIFA. In the case of the patch antenna,

the antenna was washed four times in a washing machine at 60◦ C for a complete cycle. The

antenna placed inside the washing machine is depicted in Fig. 4.14. The only difference from

the patch antenna was the presence of the coaxial cable, instead of the SMA connector. In

order to protect the cable and thus the connector on its end from the mechanical damages

due to the rotations, the antenna was folded in a tissue and washed like that. The antenna

was washed four times and |S11(f)| were measured after each washing. As can be seen from Fig.

4.15, the deviation between any response is almost negligible, thus validating the waterproof

aspect of the proposed technology.

Since the layer of PDMS around the conductors was increased by 1 mm from the top side

compared to the patch antenna, all the conductive parts were completely immersed inside

the PDMS, 2 mm from top and bottom and 4 mm from all the other sides, thus preventing the

antenna from mechanical damages like breaking and abrasions.
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Fig. 4.14: Copper-mesh PIFA inside the washing machine.
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Fig. 4.15: Comparison of the measured |S11(f)| responses of the copper-mesh PIFA after 4 consecutive
washings.

4.1.4 Radiation Pattern and Gain

This section reports the computed and measured radiation patterns and gain of the copper-

mesh PIFA. Computed radiation patterns are done with HFSS, for two different scenarios,

antenna in free space and antenna placed on the phantom. The measurement of the radiation

patterns was performed in the laboratory’s anechoic chamber, depicted in Fig. 4.16. The

size of the chamber, 4 x 2.5 x 3 m3 is at the lower limits for characterizing antennas around

400 MHz. Also, the used pyramid absorbers (45 cm) inside the chamber are not providing an

optimal attenuation at the considered frequency. Yet, as it can be further seen in this section,

simulated and measured patterns fairly correspond. Measurements of the radiation patterns

were also performed for two different scenarios, the antenna under test (AUT) characterized

in free space and the AUT characterized when placed on a chunk of pork meat placed inside a

plastic box (Fig. 4.8).
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4.1. PIFA (Copper-Mesh) Operating at 365 MHz

Fig. 4.16: Inside the anechoic chamber.

The simulated radiation patterns and the computed gain for an antenna in free space and

antenna placed on a simplified phantom are depicted in Fig. 4.17 (a) and (b), respectively. As

can be seen from the reported patterns, when the antenna is in a free space, the simulated

radiation pattern is similar to the one of a dipole antenna, indicating that certain radiation

appears because of the contribution from the ground plane. For the case when the antenna

is placed on the phantom, the back radiation is significantly suppressed and the antenna

exhibits a hemispherical like radiation pattern. This is a desirable radiation pattern for the

situations when the antenna is placed on the wearer’s chest or back, thus providing wide

radiation coverage away from the wearer. The simulated gain values and radiation efficiencies

(@ 365 MHz), as computed by HFSS, for the antenna placed in free space and placed on

the phantom, are -6.99 dBi and -9.19 dBi for the gain and 15% and 4.7% for the efficiency,

respectively.

The simulated values for the gain are rather low, which is actually due to the used loaded

PDMS as a substrate. The latter has non-negligible losses, tan δ= 0.01 and the losses from the

solid conductor, copper in our case, also contribute to lowering the gain. For the case with the

phantom, additional losses are introduced from the phantom itself, resulting in even lower

gain and efficiency.

Inside the anechoic chamber the AUTs were characterized and measured under two different

scenarios. For the first scenario, the AUT is in a free space, while for the second the AUT is

placed on a chunk of meat. Fig. 4.18 illustrates the described scenarios. For each scenario the

antennas were characterized for two different orientations, orientation marked as a Phi=0◦

and orientation marked as a Phi=90◦, see for instance Fig. 4.19. For each orientation two

different cuts were measured, Phi=0◦ cut (XZ-plane) and Phi=90◦ cut (YZ-plane). Simulated

and measured radiation patterns for the copper-mesh PIFA are reported in Fig. 4.20.
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Chapter 4. Antenna Prototypes

(a) (b)

(c) (d)

Fig. 4.17: Simulated radiation pattern and computed gain of the copper-mesh PIFA (with HFSS @365
MHz): (a) In free space, (b) On a simplified phantom, (c) Antenna orientation and (d) Orientation of

the antenna when placed on the phantom.

(a) (b)

Fig. 4.18: AUT inside the anechoic chamber: (a) In free space and (b) On a chunk of pork meat placed
inside the plastic box.
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4.1. PIFA (Copper-Mesh) Operating at 365 MHz

(a) (b)

Fig. 4.19: Orientation of the AUT while measuring the radiation pattern inside the anechoic chamber:
(a) Orientation of the antenna for the case Phi=0◦ and (b) Orientation of the antenna for the case

Phi=90◦.
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4.1. PIFA (Copper-Mesh) Operating at 365 MHz

After analyzing the simulated and measured radiation pattern cuts, one can notice that the

antenna does not have a pure polarization, as co- and cross-polar components have similar

levels.

Although the measured and simulated radiation patterns fairly match, some discrepancies

still appear. Due to the low directivity of the AUT, the smallest objects inside the anechoic

chamber contribute to the overall radiation pattern. During the performed measurements a

ferrite choke was used in order to prevent the unwanted currents on the connecting cables.

Still, some reflections occurred from the cable and they contributed to the measured radiation

pattern.

For the case where the AUT is measured on a chunk of pork meat placed inside the plastic

box, this phenomena is less emphasized because the antenna is becoming more directive and

small objects do not have such a big influence. Another important remark is that the size of the

simplified phantom used for simulation and the chunk of pork meat used for measurement

are not identical, thus resulting in some differences when comparing the radiation patterns.

Maximum Measured Gain

The analysis performed for the radiation patterns helped us to calculate the measured gain of

the antenna. The obtained gain values for the both scenarios are reported bellow:

• Antenna in free space, Gain=-8.42 dBi

• Antenna placed on a chunk of pork meat, Gain=-12.7 dBi

4.1.5 Conclusions

The copper-mesh PIFA was the first realized antenna prototype, intended for the UHF band.

The antenna was realized by combining flexible copper-mesh conductive sheets and loaded

PDMS as a substrate. All the performed tests and measurements in different environments

and under different circumstances confirmed the robust nature of the proposed antenna. The

robustness of the antenna against the mechanical deformations was tested by bending it and

observing the deviations of the |S11(f)| response. The antenna remained stable, with only 2

MHz of the frequency deviation at the desired band.

Communication robustness of the antenna was tested through the measurements performed

on a chunk of a pork meat and directly on the body. In both cases the |S11(f)| response of the

antenna remained stable in terms of operating frequency, while only the level of the input

matching changed, which was expected due to the lossy nature of the meat and the human
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Chapter 4. Antenna Prototypes

body. A hemispherical radiation pattern validates the suitability of this antenna for wearable

applications, allowing for the antenna to be be mounted either on wearer’s chest and/or back.

Two main drawbacks were identified while dealing with the reported antenna, the impreci-

sion appearing due to the nature of the copper-mesh structures and a rather low antenna’s

efficiency and gain. These are actually the two directions in which the attention was focused

for the next two antenna prototypes.

Table 4.3 summarizes the simulated and measured gain and radiation efficiency of the copper-

mesh PIFA.

Copper-mesh PIFA @ 365 MHz
Free Space Phantom/Meat

Gain [dBi] η [%] Gain [dBi] η [%]

Simulation -6.99 15 -9.19 4.7

Measurementa -8.42 NA -12.7 NA

Tab. 4.3: A summary of the simulated and measured gain and radiation efficiency of the copper-mesh
PIFA (@365 MHz).

aThere are no available measured values for the radiation efficiency.

4.2 PIFA (Hexagon) Operating at 385 MHz

The results reported from the performance of the copper-mesh PIFA provided a good base for

further development and enhancement of the proposed technology and antenna prototypes.

The main focus of the future research was directed towards resolving the issue of the impreci-

sion (copper mesh and substrate permittivity and losses) and improving the overall antenna’s

radiation characteristics. An alternative solution was provided for fabricating the conductive

parts, while the improvement of the radiation characteristics was approached by modifying

the antenna structure and changing some parameters.

Instead of the copper-mesh structures, perforation of conventional conductive sheets was

considered. The perforation process is fast and precise because it can be automatized, both

for laser cut or for a classic photo-lithographic etching process. Still, this automatized process

also increases the price of the product. Details about the shapes used for perforation and how

it was done were already introduced in section 3.3.2. In our case copper-bronze sheet, with a

thickness of 300 µm was used as a base for fabricating the conductive parts.

The choice of the substrate material was also reconsidered. Instead of a PDMS loaded with

glass micro-spheres, pure PDMS was used. There were several reasons for this. Among them

we found that the loaded PDMS resulted in a reduced flexibility and that also introduced some
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4.2. PIFA (Hexagon) Operating at 385 MHz

uncertainties in the final permittivity and loss tangent values (non-controlled standard lab

environment), which was an additional reason to try different alternatives for the substrate

material. Moreover, since the PDMS is fully transparent, it allows one to see the interaction

between the conductive parts and the substrate. The entire structure can be observed from

any side.

In order to improve the overall radiation characteristics, some modifications were applied to

the antenna’s structure. The distance between the ground plane and the radiating patch was

increased by 2 mm, compared to the copper-mesh antenna, thus enlarging the high density

near-field region of the antenna, which on the other side resulted in improved radiation

efficiency and gain.

4.2.1 Antenna Model and Geometrical Parameters

The second built antenna prototype was the PIFA intended to operate around 385 MHz

(Tetrapol band [10]). The proposed antenna was modeled and designed in HFSS. For sim-

ulation purposes, the ground plane, radiating patch and the shorting wall were modeled

from solid copper conductive sheets perforated with hexagons, with a thickness of 300 µm

and material properties as suggested from the HFSS materials library for copper, relative

permittivity εr =1 and bulk conductivity σ=2·107 S/m. The substrate material, intended to be a

pure PDMS, was defined as an external material in HFSS material library with the following

electric properties, relative permittivity εr =2.8 and loss tangent tan δ=0.0061.

A full 3D model and detailed 2D sketches are illustrated in Fig. 4.21 and Fig. 4.22, respectively,

while Table 4.4 reports the values of all the geometrical parameters. Detailed dimensions

of the hexagon shapes used for the perforation are depicted in Fig. 4.22 (d). The size of the

hexagons, 3 mm in diameter, is very small compared to the wavelength (λ0/250), thus not

affecting performance of the antenna from the EM point of view. Positioning and modeling

of the coaxial feeding was done as shown in Fig. 4.22 (a) and (b), where copper was used for

modeling the inner and outer conductor and Teflon, εr =2.1 and tan δ=0.001 as a dielectric in

between.

1The used value for the loss tangent slightly differs from the value measured in Chapter 3, mainly due to the fact
that we were not able to characterize the material at the desired frequencies, but slightly above.
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Chapter 4. Antenna Prototypes

Fig. 4.21: Model of the PIFA modeled in HFSS.

(a) Top view (b) Side view - feeding

(c) Side view - Shorting wall (d) Perforation in shape of

hexagons

Fig. 4.22: 2D sketches of the designed antenna prototype: (a) Top view: PDMS, ground plane, patch
and position of the feeding, (b) Side view - coaxial cable feeding, (c) Side view - Shorting wall and (d)

Perforations applied on the ground plane and radiating patch.
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4.2. PIFA (Hexagon) Operating at 385 MHz

Parameter Value [mm] Parameter Value [mm] Parameter Value [mm]

GPL 126 s 5 Rext1 2.75

GPW 80 CT 0.3 Rext2 2

RPL 62 ST 2 Ri nt1 3.5

RPW 70 SB 2 Ri nt2 3.3

SUBL 134 H 6 D1 5.02

SUBW 88 coaxi n 0.53 D2 2.51

SUBT 10.6 coaxout 0.275 hex 1.5

FL 4.8 tef 1.65 spc 0.3

FW 9.5 ShW L 10

d 4 ShW W 65

Tab. 4.4: Values of the designed parameters indicated in Fig 4.22.

Simulating the Perforated Conductive Sheets

At first glance, the choice of the hexagon shape for perforation might seem complex and time

consuming for the analysis and simulation in HFSS. After comparing the time needed for sim-

ulating an antenna with solid conductors and antenna with hexagon perforated conductors,

the difference was 3-4 hours longer for the hexagon structure 2. As an illustration, the mesh

generated by HFSS for the radiating patch at the frequency of interest, 383 MHz, is depicted in

Fig. 4.23. Three different areas are emphasized, around the feeding (1), in the center of the

patch (2) and at the upper right corner (3). As expected, the regions around the feeding (1)

and at the edges (3) are the most dense ones, while the region (2) shows a rather regular mesh.

2HFSS ver. 14, Windows 64-bit operating system, processor i7 and 16 GB RAM.
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Fig. 4.23: Mesh generated by HFSS on the radiating patch at 383 MHz.

4.2.2 Fabrication of the Antenna Prototype

A copper-bronze sheet with a thickness of 300 µm perforated by a classic photo-lithographic

etching process and a pure PDMS (Sylgard RTV 184 [155]), εr = 2.8 and tan δ = 0.006, as a

substrate material were selected for the fabrication of the antenna prototype. The process of

the production followed the same fabrication guideline introduced in Fig. 3.13 in Chapter 3.

A brief explanation on the classic photo-lithographic etching process follows. Based on the

final antenna model in HFSS, with all the dimensions and characteristics, an etching mask

was created. In order to create the mask, and to make the whole etching process more

straightforward, all the conductive parts of the antenna were "opened", as depicted in Fig.

4.24 (a). Since we have used solid copper-bronze conductive sheet, two almost identical masks

were created, and the sheet was sandwiched between them. With this kind of constellation the

acid corroded the sheet from both sides equally, and reduced the time needed for the etching

at half.

Another advantage of the double sided etching was the possibility of creating the bending

grooves, as shown in Fig. 4.24 (a). For the proposed antenna, the size of the shorting wall and

thus the bending are very sensitive and precise execution was needed. By using the double
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4.2. PIFA (Hexagon) Operating at 385 MHz

(a) (b)

Fig. 4.24: Conductive parts of the wearable PIFA prototype: (a) Conductive parts after the etching
process and (b) Coaxial cable fixed and soldered.

side etching, on one of the masks we left the gaps for the bending grooves, so that during

the etching process (double side exposure), the grooves were etched only until the half of the

copper-bronze sheet thickness, thus allowing easy and precise bending.

The position of the feeding is also very sensitive for the proposed antenna type. In order to fix

the inner coaxial pin at the desired position, in the etching mask we defined the hole for the

pin, so that the fixation and soldering of the pin would not create additional uncertainties.

Fig. 4.24 (b) shows all the conductive parts bended and the semi-flexible coaxial cable fixed

and soldered before introducing the full structure inside the custom prepared mold. Compared

to the copper-mesh antenna, the spacers used for this antenna prototype were produced

using pure PDMS. The spacer have a cylindrical shape, 6 mm in height and 3 mm in diameter,

they were placed and glued mainly on the edges of the antenna and one in the center of the

radiating patch, as depicted in Fig. 4.25 (a).

(a) (b)

Fig. 4.25: Conductive parts of the hexagon PIFA prototype: (a) Conductive parts bended, coaxial
feeding soldered and spacers introduced and (b) Placed inside the mold.
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The mold used for this antenna prototype was also built from the PVC material with all the

detailed sketches and values of the geometrical parameters reported in Fig. 4.26 and in Table

4.5, respectively.

(a) Bottom plate (part 1 from Fig. 4.24 b) (b) Frame-top view (part 2 from Fig. 4.24 b)

(c) Frame-side view (part 2 from Fig. 4.24 b)

Fig. 4.26: 2D sketches of the designed mold: (a) Bottom plate, (b) Frame - top view and (c) Frame - side
view.

Parameter Value [mm] Parameter Value [mm]

BL 154 FRi ntW 88

BW 107 FRH 10.6

BT 6 wdth 10

FRexW 154 cL 9

FRexL 107 cH 5

FRi ntL 134 � 8

Tab. 4.5: Values of the designed parameters indicated in Fig 4.26.

The final antenna prototype, with the size 134.4 x 88 x 10.6 mm3, is depicted in Fig. 4.27 (b).

Since the antenna was built out of conductors perforated by hexagonal shapes, in the con-

tinuation of this manuscript it will be referred to as a hexagon PIFA. A comparison of the

predictions (simul.) and experiment (meas.) of |S11(f)| is reported in Fig. 4.28. One can see that

the discrepancy between the simulated and measured responses is significantly reduced com-

pared to the copper-mesh PIFA and it is within 1 MHz, thus justifying the proposed technology

both in terms of simulation and fabrication precision for the considered antenna design.
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Fig. 4.27: Manufactured hexagon PIFA prototype.
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Fig. 4.28: Comparison of simulated and measured |S11(f)| of the hexagon PIFA.

4.2.3 Comparison of |S11(f)| Responses for Different Situations

All the simulated and measured results for the hexagon PIFA will be presented in a similar

manner to the copper-mesh PIFA. The phantom model and the chunk of pork meat described

in section 4.1.3 were used for the simulation and measurement purposes and for the hexagon

PIFA.

A set of |S11(f)| simulations and measurements were performed when the antenna was in free

space (simul. & meas.), placed on the phantom (simul.), placed on the chunk of pork meat

(meas.), and placed on a wearer (meas.). As an illustration, two measurement scenarios, with

the antenna placed on the chunk of pork meat and on the human arm are depicted in Fig.

4.29.

It can be seen in Fig. 4.30 that the antenna stays tuned all the time, no matter whether it is

in free space or at any part of the body, thus demonstrating again the effect of the ground

plane in decoupling the antenna from the wearer. One should notice that although the

hexagonal perforations are larger compared to the apertures of the coarse mesh structure,
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(a) (b)

Fig. 4.29: Antenna measured on: (a) A chunk of pork meat and (b) On-body, on a human chest.

the stability of the antenna is not affected. Therefore, one can draw the conclusion that, not

the perforation shapes or mesh structure, but the entire antenna structure determines the

stability of the antenna when placed on the wearer, as long as the holes are relatively smaller

than the wavelength.
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Fig. 4.30: Comparison of measured |S11(f)| of the hexagon PIFA in a free space and when placed on the
human body.

A comparison of simulations (free space & phantom) and measurements (Free space, chunk of

pork meat and human body) of |S11(f)| is shown in Fig. 4.31. As can be seen, all the responses

remain stable within the defined frequency band except the measurements on the chunk of

pork meat. This kind of deviation is not present when the antenna is placed on the human

body, because the distance between the antenna and the body is larger compared to the case

with meat placed inside the box. The discrepancy could also come from some surface wave

diffraction at the borders of the meat in the case of the pork phantom. It should be mentioned

that in the case of copper-mesh PIFA, this kind of deviation was not observed.
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Fig. 4.31: Comparison of simulated and measured |S11(f)| of the hexagon PIFA in a free space, on a
simplified single layer muscle phantom, on a chunk of pork meat and when placed on the human body.

Flexibility and Bending Characteristics

The same set-up used for the copper-mesh PIFA was used for testing the flexibility and bending

characteristics of the hexagon PIFA. The principle was the same, just that the set-up was slightly

modified. Namely, the distance between the two fixed support points was shortened from 160

mm to 137 mm, because of the different lengths of the tested antennas. Fig. 4.32 (a) shows the

hexagon PIFA fixed inside the testing set-up. A comparison of measured |S11(f)| when bended

under different radii is reported in Fig. 4.33.

(a) (b)

Fig. 4.32: Bending of the PIFA: (a) In-house custom designed bending set-up and (b) Bending skim for
determining the radius of the bended curvature.

In this case the maximum frequency deviation is slightly larger, 3 MHz in total. Again the

limit bending was performed for a radius of R=230 mm. Compared to the copper-mesh PIFA,

the deviation of the |S11(f)| when bended under same radii, 230 mm, is 1 MHz larger for the

hexagon PIFA. This is expected because the hexagon antenna is shorter and thicker and the

same bending radius affects its performances more.
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Fig. 4.33: Comparison of measured |S11(f)| of the hexagon PIFA when bended under different radii.

4.2.4 Radiation Pattern and Gain

The radiation patterns and gain of the hexagon PIFA are reported in a similar way like for the

copper-mesh antenna, section 4.1.4. Simulations were performed with HFSS, for two different

scenarios, antenna in free space and antenna placed on a phantom. Measurements of the

radiation patterns were performed in the same anechoic chamber as for the previous antenna

(see Fig. 4.16). Please note again that for the frequency of interest, around 383 MHz, the size

of the chamber and the used absorbers is at the lower limits for characterizing the AUT. Still,

the comparison between the simulated and measured patterns matched fairly. The radiation

patterns were also measured for two different scenarios, AUT characterized in free space and

AUT characterized when placed on the chunk of pork meat, see Fig. 4.35.

The simulated radiation patterns and the computed gain, for the antenna in free space and

antenna placed on a simplified phantom are depicted in Fig. 4.34 (a) and (b), respectively.

Compared to the copper-mesh PIFA, no significant differences in the shapes of the simulated

radiation patterns are observed. The only remarkable difference appears in the computed

gain, which is in favor of the hexagon antenna. The computed values for the gain and radiation

efficiency for the antenna placed in free space and placed on the phantom, are -4.43 dBi and

-8.73 dBi (gain) and 24% and 6% (efficiency), respectively. The improvement of the gain mainly

comes from the modification applied in the antenna’s structure. The 2 mm increase in the

separation between the ground plane and the radiating patch, resulted in increased gain and

radiation efficiency of the antenna.

Inside the anechoic chamber the AUTs were characterized and measured under two different

scenarios. For the first scenario, the AUT is in a free space, while for the second the AUT is

placed on a chunk of meat. Fig. 4.35 illustrates the described scenarios. For each scenario the

antennas were characterized for two different orientations, orientation marked as a Phi=0◦

88



4.2. PIFA (Hexagon) Operating at 385 MHz

(a) (b)

(c) (d)

Fig. 4.34: Radiation pattern and simulated gain of the hexagon PIFA in free space and on the phantom
(@383 MHz): (a) In free space, (b) On a simplified phantom, (c) Antenna orientation and (d)

Orientation of the antenna when placed on the phantom.

and orientation marked as a Phi=90◦, see for instance Fig. 4.36. For each orientation two

different cuts were measured, Phi=0◦ cut (XZ-plane) and Phi=90◦ cut (YZ-plane). Simulated

and measured radiation patterns for the hexagon PIFA are reported in Fig. 4.37.

(a) (b)

Fig. 4.35: AUT inside the anechoic chamber: (a) In free space and (b) On the chunk of pork meat.
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(a) (b)

Fig. 4.36: Orientation of the AUT while measuring the radiation pattern inside the anechoic chamber:
(a) Orientation of the antenna for the case Phi=0◦ and (b) Orientation of the antenna for the case

Phi=90◦.

Again, as in the case of copper-mesh PIFA, due to the low directivity of the AUT, the influence

of the connecting cables inside the anechoic chamber and difference in size between the

phantom and used chunk of pork meat contribute to the discrepancies between the measured

and simulated radiation patterns.
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Maximum Measured Gain

The obtained gain values for both the scenarios are reported bellow:

• Antenna in free space, Gain=-1.05 dBi

• Antenna placed on a chunk of pork meat, Gain=-1.86 dBi

4.2.5 Conclusions

A combination of custom perforated conductors and pure PDMS as a substrate resulted in a

successful wearable UHF PIFA design. With the proposed approach the difference between

the experiment and the actually measured responses was reduced to 1 MHz. The introduction

of hexagon shapes in the conductor lead to the miniaturization of the antenna. Indeed,

the hexagon patterns enlarge the current path on the antenna, thus making the antenna

electrically larger. The miniaturization is also caused by the use of a substrate with slightly

higher permittivity compared to the loaded PDMS. On the other side, increased substrate

losses were successfully compensated by enlarging the antenna’s height for 2 mm. This

enlargement also led to improved gain and efficiency of the hexagon antenna prototype.

From the robustness and stability point of view, the hexagon antenna had a behavior similar

to the first antenna prototype. The antenna exhibited stable performance in terms of being

placed on the wearer or being left in free space. Both, simulated and measured radiation

patterns provided hemispherical radiation coverage, which is again desired for placing the

antenna on the wearer’s chest or back.

Nevertheless, we still see a potential for ameliorating the gain and radiation efficiency of the

hexagon antenna and this will be the main goal while designing the next antenna prototype.

In general, the proposed technology of perforating the conductors provides a good starting

point for eventual serial production of such antennas.

Table 4.6 summarizes the simulated and measured gain and radiation efficiency of the AUT.

Hexagon PIFA @ 383 MHz
Free Space Phantom/Meat

Gain [dBi] η [%] Gain [dBi] η [%]

Simulation -4.43 24 -8.73 6

Measurementa -1.05 NA -1.86 NA

Tab. 4.6: A summary of the simulated and measured gain and radiation efficiency of the hexagon PIFA
(@383 MHz).

aThere are no available measured values for the radiation efficiency.
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4.3 PIFA with an Air Gap Operating at 380 MHz

The last reported prototype is a hexagon PIFA, but with an air gap introduced between the

ground plane and the radiating patch. The role of the air gap is to create a lossless medium

(air) in the near-field region of the antenna. The creation of the air-gap was inspired from [56],

where a coating of the conductive parts of PIFA was performed. The presence of the air gap

should enhance the overall radiation performance of the antenna like radiation efficiency and

gain. The structure of this prototype is based on the design of hexagon PIFA, using hexagon

perforated conductive sheets and pure PDMS for fabricating the final structure.

4.3.1 Antenna Model and Geometrical Parameters

The third fabricated PIFA prototype was also intended to operate around 385 MHz (Tetrapol

band [10]). The proposed antenna was modeled and designed in HFSS in similar way to the

hexagon PIFA. Solid copper conductive sheets perforated with hexagons, with a thickness

of 300 µm and material properties as suggested from the HFSS materials library for copper,

relative permittivity εr =1 and bulk conductivity σ=2·107 S/m were used as conductors. We

again opted for a pure PDMS for the substrate material, defined with relative permittivity

εr =2.8 and loss tangent tan δ=0.006. A full 3D model and detailed 2D sketches are illustrated

in Fig. 4.38 and Fig. 4.39, respectively, while Table 4.8 reports the values of all the geometrical

parameters. The overall size of the final prototype is the same as for the hexagon PIFA,

134.4 x 88 x 10.6 mm3. The main difference between the two prototypes is in the presence of

the air gap in the latter. Due to this, the length of the radiating patch in the case of air-gap

PIFA is slightly longer.

Fig. 4.38: Model of the PIFA modeled in HFSS.
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(a) Top view (b) Side view - feeding

(c) Side view - Shorting wall (d) Perforation in shape of
hexagons

(e) Side view - Air gap

Fig. 4.39: 2D sketches of the designed antenna prototype: (a) Top view: PDMS, ground plane, patch
and position of the feeding, (b) Side view - coaxial cable feeding, (c) Side view - Shorting wall, (d)

Perforations applied on the ground plane and radiating patch and (e) Side view - Air gap.

Parameter Value [mm] Parameter Value [mm] Parameter Value [mm]

GPL 126 CT 0.3 Ri nt1 3.5

GPW 80 ST 2 Ri nt2 3.3

RPL 95 SB 2 D1 5.02

RPW 70 H 4 D2 2.51

SUBL 134 coaxi n 0.53 hex 1.5

SUBW 88 coaxout 0.275 spc 0.3

SUBT 10.6 tef 1.65 AGL 80

FL 5 ShW L 10 AGH 4

FW 9.5 ShW W 65 agL 11

d 4 Rext1 2.75 agH 3.3

s 5 Rext2 2 sep 1

Tab. 4.7: Values of the designed parameters indicated in Fig 4.39.
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4.3.2 Fabrication of the Antenna Prototype

From the fabrication point of view, the only novelty compared to the hexagon PIFA is the way

the air gap was created. For that purpose, we used a modified mold, depicted in Fig. 4.40. The

main modification was performed on the frame of the mold (part marked as number 2 in Fig.

4.40 (a)). In order to introduce the plate that creates the air gap between the ground plane and

the patch, a part of the frame was cut from both sides, as illustrated in Fig. 4.41 (c). The entire

procedure was as follows:

1. Part 1 and part 2 were assembled and tightened with the screws.

2. All the conductive parts of the antenna and the soldered coaxial cable were placed and

fixed inside the mold.

3. The coaxial cable was put through the hole drilled on the frame (please see Fig. 4.40 (b)

and Fig. 4.41 (c)).

4. A rubber cap was used as a sealing device from outside, preventing the leakage of the

PDMS.

5. Part 3 (see Fig. 4.40 (b)) was introduced as shown in the figure and tightened with screws.

6. Finally, parts 4 and 5 were put on the both sides of the frame and tightened with screws.

7. Everything was ready for sprinkling the PDMS inside the mold.

(a) (b)

Fig. 4.40: Prototype of the mold used for air-gap PIFA: (a) Bottom plate and frame assembled and (b)
Conductive parts of the antenna placed inside the mold.
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(a) Bottom plate (part 1 from Fig. 4.40 a) (b) Frame-top view (part 2 from Fig. 4.40 a)

(c) Frame-side view (part 2 from Fig. 4.40 a) (d) Insert plate (part 3 from Fig. 4.40 b)

(e) Side bar (part 4 and 5 from Fig.

4.40 b)

Fig. 4.41: 2D sketches of the designed mold: (a) Bottom plate, (b) Frame - top view, (c) Frame - side
view, (d) Plate used for creating the air gap and (e) Side bars, mounted on the top of the plate for the air

gap.

Parameter Value [mm] Parameter Value [mm] Parameter Value [mm]

BL 154 wdth 10 pL 130

BW 107 cL 9 pW 80

BT 6 cH 5 pT 4

FRexW 154 � 8 brL 80

FRexL 107 d 8 brW 10

FRi ntL 134 l1 15 brT 4

FRi ntW 88 l2 80

FRH 10.6 l3 39

Tab. 4.8: Values of the designed parameters indicated in Fig 4.41.

The built antenna prototype is depicted in Fig. 4.42 and it is 134.4 x 88 x 10.6 mm3 large. Since

the antenna was built with an air gap introduced between the ground plane and radiating

patch in the continuation of this manuscript, it will be refereed to as an air-gap PIFA. A

comparison of the predictions (simul.) and experiment (meas.) of |S11(f)| is reported in Fig.

4.43. A disagreement between the simulated and measured response is around 5 MHz. One

of the reasons for such a relatively high discrepancy lies in the increased complexity of the
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overall structure. The resonant frequency is rather sensitive to the size of the air gap. If the

fabrication is done in a controlled and automatized environment (and not manually), these

errors can be significantly reduced.

Fig. 4.42: Manufactured PIFA prototype.

In addition, after the initial measurement, it was noticed that also slight bending of the

antenna changes the shape of the air gap (mainly the distance between the ground plane

and the radiating patch) which changes the resonant frequency of the antenna. In order to

prevent this unwanted effect, spacers similar to those reported for maintaining the parallelism

between the two plates, were used inside the air gap. These spacers have a cylindrical shape, 3

mm in diameter and 4 mm in height and they are built from pure PDMS. Of course, bringing

the spacers inside the air gap and thus the near field of the antenna, affects the response of

the antenna. Anyhow, we have used these spacers to finely tune the resonant frequency of

the antenna, even after the PDMS was polymerized. PDMS spacers, in shape of cylinders, are

introduced inside the air gap of the built air-gap PIFA and they are depicted in Fig. 4.44.
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Fig. 4.43: Comparison of simulated and measured |S11(f)| of the air-gap PIFA.
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Fig. 4.44: Spacers introduced inside the air gap.

Since we needed more than one antenna prototype for conducting different system measure-

ments (as it will be reported in Chapter 5), a second air-gap PIFA prototype was built. The

responses of the two different prototypes are reported in Fig. 4.43. The difference between the

first and the second prototype with introduced spacers is less than 2 MHz. Although there is

some discrepancy between the prediction (simul.) and actual antenna measurement, with the

second prototype it was confirmed that the proposed technology can be easily reproduced

even in a standard laboratory environment.

4.3.3 Comparison of |S11(f)| Responses for Different Situations

A set of |S11(f)| simulations and measurements were performed when the antenna was radiating

in a free space (simul. & meas.), placed on the simplified phantom (simul.), placed on the

chunk of pork meat (meas.), and placed on a wearer (meas.). It can be seen in Fig. 4.45 that

the antenna stays tuned all the time, no matter whether it is in free space or on any part of

the body, thus demonstrating again the effect of the ground plane in decoupling the antenna

from the wearer.
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Fig. 4.45: Comparison of measured |S11(f)| of the air-gap PIFA in a free space and when placed on the
human body.

A comparison of the simulations (free space & phantom) and measurements (Free space,

chunk of pork meat and human body) of |S11(f)| is reported in Fig. 4.46. As can be seen, all

the responses remain stable within the defined frequency band except the measurements

on the chunk of pork meat, which have an identical behavior to the hexagon PIFA. Since the
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air-gap antenna is similar to the hexagon antenna in terms of size and very close in terms of

the operating frequency, the assumptions that were made for the hexagon antenna remained

valid here, either some wave diffraction occurs due to the meat and/or box edges or simply

the antenna is too close to the meat, between 1-2 mm.
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Fig. 4.46: Comparison of simulated and measured |S11(f)| of the air-gap PIFA in a free space, on a
simplified single layer muscle phantom, on a chunk of pork meat and when placed on the human body.

4.3.4 Radiation Pattern and Gain

The radiation patterns and gain of the air-gap PIFA are reported in the same way as for

the hexagon PIFA, section 4.2.4. The comparison between the simulated and measured

patterns again fairly match. As in the previous case, the measured radiation patterns were also

performed for two different scenarios, AUT characterized in free space and AUT characterized

when placed on the chunk of pork meat, see Fig. 4.35.

The simulated radiation patterns and the computed gain, for the antenna in free space and

antenna placed on a simplified phantom are depicted in Fig. 4.47 (a) and (b), respectively.

The computed gain is the highest of all prototypes. The simulated values for the gain for the

antenna placed in a free space and placed on the phantom, are -3.04 dBi and -7.01 dBi, while

the computed values for the radiation efficiency are 37% and 9.2%, respectively.

Measured and simulated radiation patterns for the air-gap PIFA are reported in Fig. 4.50.

The radiation patterns are compared for two different scenarios, antenna in free space and

antenna placed on a phantom/meat (see Fig. 4.48) and for each scenario the antennas were

characterized for two different orientations, Phi=0◦ and Phi=90◦, respectively.
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Chapter 4. Antenna Prototypes

(a) (b)

(c) (d)

Fig. 4.47: Radiation pattern and simulated gain of the air-gap PIFA in free space and on the phantom
(@380 MHz): (a) In free space, (b) On a simplified phantom, (c) Antenna orientation and (d)

Orientation of the antenna when placed on the phantom.

(a) (b)

Fig. 4.48: AUT inside the anechoic chamber: (a) In free space and (b) On the chunk of pork meat.
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4.3. PIFA with an Air Gap Operating at 380 MHz

(a) (b)

Fig. 4.49: Orientation of the AUT while measuring the radiation pattern inside the anechoic chamber:
(a) Orientation of the antenna for the case Phi=0◦ and (b) Orientation of the antenna for the case

Phi=90◦.
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4.3. PIFA with an Air Gap Operating at 380 MHz

Maximum Measured Gain

The obtained gain values for both the scenarios are reported bellow:

• Antenna in free space, Gain=1.09 dBi

• Antenna placed on a chunk of pork meat, Gain=-3.11 dBi

4.3.5 Conclusions

Introducing the air-gap between the ground plane and the radiating patch improved the

radiation performances of the antenna significantly. The introduced air-gap replaced the

lossy substrate material with air in the near-field region of the antenna, which resulted in an

improved gain and radiation efficiency (simul.). Compared to the hexagon PIFA, the radiation

efficiency has been increased by 50%, for the antenna simulated in free space and when placed

on the simplified phantom. Furthermore the gain was improved for both simulated scenarios

for about 1 dB.

Looking at the measured gain values in free space, our assumptions are again confirmed. The

maximum measured gain for the air-gap PIFA was 2 dB higher compared to the hexagon PIFA,

measured under the same conditions. Yet, when we looked at the measured gain for the case

when the antennas were placed on the chunk of pork meat, the obtained result showed an

opposite trend. In this situation, the maximum gain of the air-gap PIFA is 1 dB lower compared

to the hexagon PIFA. One of the explanations for the deterioration of the gain of the air-gap

antenna is the fact that the EM fields, instead of being confined in the near-field region of the

antenna, couple more to the meat. Nevertheless, these results should be taken with caution as

there is some deviation of the resonant frequency measured while the antenna was placed on

the chunk of meat. Unfortunately, we could not measure the gain of the antenna while being

placed on a wearer.

Practically, the presence of the air-gap introduces additional uncertainties during the fabrica-

tion process. As it was seen, the discrepancy between the simulated and measured antenna

responses was around 5 MHz. Still, introducing spacers inside the gap, was seen as a good

solution for this problem. Moreover, the introduction of the spacers brought an additional

level of fine tuning the antenna’s operating frequency, even after the PDMS had polymerized.

The final result is that the size of the antenna, compared to the hexagon PIFA, remained

unchanged while the gain and radiation efficiency have been improved.

Although some imprecision appeared in the modeling vs. experimental process, it was shown

that the proposed technology can be easily reproduced, even in a standard lab environment.

A second air-gap antenna prototype was built with characteristics and responses almost
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Chapter 4. Antenna Prototypes

identical to the first prototype, thus confirming the repeatability of the fabrication process.

The second built prototype was used for additional system measurements that will be reported

in more details in Chapter 5.

Table 4.9 summarizes the simulated and measured gain and radiation efficiency of the AUT.

Air-gap PIFA @ 378 MHz
Free Space Phantom/Meat

Gain [dBi] η [%] Gain [dBi] η [%]

Simulation -3.04 37 -7.01 9.2

Measurementa 1.09 NA -3.11 NA

Tab. 4.9: A summary of the simulated and measured gain and radiation efficiency of the hexagon PIFA
(@378 MHz).

aThere are no available measured values for the radiation efficiency.

4.4 Summary on the Results

In order to summarize and draw some conclusions from the reported antenna prototypes, this

section discusses the different aspects considered in this chapter:

• Technology - Complexity vs. Precision.

• Robustness - Free space vs. On-body.

• Radiation pattern, gain and efficiency.

• Further steps.

At the end of this section, a detailed table, Table 4.10, reports all the relevant simulated and

measured parameters for all the three antenna prototypes.

Technology - Complexity vs. Precision

In general, for the three reported antenna prototypes, a new technology for fabricating robust

wearable antennas was presented. The essence of the proposed technology is a combination of

PDMS as a substrate (silicon based material that is liquid in its initial phase) and copper-mesh

or perforated structures as conductors. Once the PDMS has polymerized, the entire structure

remains encapsulated inside the silicon material, resulting in a robust and flexible antenna

prototype.

However, different variations of the proposed technology raised different questions in terms

of fabrication complexity and precision that can be achieved. Taking into account that all the
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4.4. Summary on the Results

fabrication steps were performed in a standard lab environment, a satisfactory precision was

obtained for all the reported antenna prototypes. For more details, please refer to Table 4.10

where experimental and actual measured responses are compared. If this technology would

be used in serial (automatized) production, conductors perforated with hexagon or any other

shape would provide sufficient precision and better control over the entire antenna’s structure

and thus its performance.

Robustenss - Free space vs. On-body

Measured responses of the antennas, both in free space and when placed on a human body,

showed a good stability in terms of frequency detuning, as no significant frequency shifts

appeared due to the presence of the human body. Only the input matching levels changed,

which was expected due to the increased losses.

In order to confirm this stability analysis, we looked at the Smith charts of two antenna

prototypes, mesh and air-gap PIFA, for the cases when the antennas were simulated in free

space and when placed on a simplified phantom. For both cases, looking at the same frequency

span, we see the same trend, the antenna on a phantom tends to be under-coupled. For the

concrete simulation purposes, the distance between the antenna and the phantom is rather

small (1 mm) which increases the impact of the phantom on the region very close to the feed.

 

 

fc= 366 MHz 
|S11|= −14 dB

fc= 367 MHz 
|S11|= −14 dB

Phantom
Free space

(a)

 

 

fc=382 MHz 
|S11|= −7 dB

fc= 385 MHz 
|S11|= −12 dB

Phantom
Free space

(b)

Fig. 4.51: |S11(f)| responses (Smith chart representation) of the AUTs when simulated in free space and
on a phantom: (a) Copper-mesh PIFA and (b) Air-gap PIFA.

No broadening of the antennas’ bandwidth is observed, meaning that just by wearing the

antennas on everyday clothes will result in a robust antennas’ performance with the respect

to the body presence.
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The proposed antennas have also demonstrated resilience towards different mechanical in-

fluences. Bending of the antennas was one of the conducted tests, where the flexibility and

performance were tested while the antennas being bent under different radii. The obtained re-

sults, where no significant frequency shift occurred, confirmed the robustness of the proposed

antennas when exposed to potential mechanical influences. Moreover, the copper-mesh PIFA

was exposed to washing, showing strong resilience against the water and potential mechanical

damages due to the washing machine rotations. Stability of the antenna in terms of frequency

remained within 1-2 MHz shifts.

Additional robustness tests for the reported antennas, when exposed to different external

environment conditions will be reported in Chapter 5.

Radiation Pattern, Gain and Efficiency

All the reported antennas have a similar behavior in terms of the radiation patterns. When

the antennas are in free space, both simulated and measured patterns are close to a dipole

antenna pattern. However, by placing the antenna on a phantom or on a chunk of meat, the

back radiation is suppressed, while the front part radiates in a hemispherical shape. This is a

desirable radiation pattern as the antennas are intended either for being placed on the back or

chest on wearer, so that such patterns will provide broad coverage.

The gain and efficiency of the antennas were improved with each new built prototype. There

were two approaches used in order to improve the radiation characteristics of the antenna. In

the first approach, although the loaded PDMS was replaced by a pure one (it has higher relative

permittivity and higher losses), the improvement was achieved by modifying the antenna’s

structure. Increasing the height for 2 mm only, hexagon PIFA compared to the copper-mesh

PIFA, yields a significant improvement in the radiation performances: the simulated radiation

efficiency for the hexagon antenna was 75% higher compared to the copper-mesh PIFA. A

similar trend was observed for the measured gain, from -8.4 dBi for a copper-mesh antenna to

-1.05 dBi for a hexagon antenna. For more details please refer to the Table 4.10.

In the second approach, (air-gap PIFA), the modification of the near-field region of the antenna

increased the gain compared to the hexagon PIFA. For the air-gap PIFA, measured gain in free

space was 1.09 dBi, which is 2 dB higher compared to the hexagon antenna.

Future Work

In general, PIFAs offer a lot of freedom in the design process and manipulation with their

structures and overall performances. As already seen from the above stated characteristics and

results, significant progress was achieved from the first antenna prototype, copper-mesh PIFA,
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4.4. Summary on the Results

until the last one, air-gap PIFA. This indicates, that for the specified applications, voice commu-

nication inside the Tetrapol band, PIFAs are promising candidates. Additional improvements

can be done in terms of the antenna size, higher gain and higher efficiency.
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5 System Measurements and

Comparison with the Commercial

Antennas
Zakon konkurencije, ponekad te�ak za
pojedinca, je najboǉi za rasu, jer obezbe�uje
opstanak najboǉih u svakoj oblasti.

And while the law of competition may be sometimes

hard for the individual, it is best for the race, because it

ensures the survival of the fittest in every department.

—Andrew Carnegie

All the performed measurements reported in the previous chapter provided enough informa-

tion about the radiation characteristics of each of the proposed antennas within the standard

laboratory conditions. Yet, since the antennas are intended to be used within the Tetrapol

and Polycom voice communication systems, additional tests of the antennas at the system

level are required. The system level measurements consider the performance of the antennas

in terms of transferred power and quality of the established communication links, in indoor,

outdoor-urban and outdoor-open field environment.

The measurements presented in this chapter can be divided into two main categories. In the

first category the measurements are performed in a controlled environment, inside a large

anechoic chamber, where the |S11(f)| and |S21(f)| levels are measured for the different antenna

pairs. The second category of measurements encompass tests in realistic conditions. With the

support from an industrial partner in this project, a Swiss based company, (RUAG [12]), which

provided us with an operational communication equipment, ("POLYCOM Radio portable

COVERT700" [13]), we were able to perform realistic measurements in different circumstances.

Also, on their recommendation, for the purposes of the system measurements, a set of air-gap

PIFAs is compared with the commercially available wearable antennas that they are using.
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Unfortunately, there is not enough information about the behavior of wearable UHF antennas

while working in realistic conditions, neither in literature nor for commercial antennas. In [83]

the performance of UHF body-worn antennas in an indoor environment is reported for several

realistic situations. However, in this scenario diversity is the main research scope and wearable

antennas are used only on the receiving side, but not on the transmitting. (It is not specified

what type of antenna is used on the transmitting side). A similar approach is reported in [27],

but this time for an outdoor scenario. A communication link between the Geostationary-Orbit

Search and Rescue (GEOSAR) satellite and a wearable antenna integrated into the inflatable

life vest is reported. In both scenarios, the communication between the base station and

the wearer is established. On the other hand, all the reported results in this chapter refer

to a more specific scenario, the communication between two wearers, a wearer-to-wearer

(Body-to-Body) communication link. Moreover, the antennas’ input power is dictated by the

authorities, making this scenario quite challenging.

While doing the introduced measurements, the evaluation of the different antenna pairs is

done in two ways, quantitatively and qualitatively. With the first approach, the communication

performances of the antennas are evaluated while measuring transmitted/received power

levels. In other words, the antenna mounted on one of the wearers is always connected to a

power generator, while the antenna mounted on the second wearer is connected to a portable

spectrum analyzer and received power levels are measured.

The qualitative evaluation is performed with the Polycom communication equipment. Two

communication sets, each for one wearer, are used so that the real voice communication can

be established. For this type of evaluation sound recorded files exist. It should be mentioned

that for the analysis performed in this thesis, the qualitative comparisons are of a subjective

character, where judgments of the wearers are used for evaluating the quality of the established

communication.

This chapter is organized as follows: the measurements conducted inside the anechoic cham-

ber are reported in section 5.1, additional analysis on the antennas stability are reported in

section 5.1.2. Measurements performed in the realistic environment conditions are reported

in section 5.2, where also the used measurement and communication equipment are de-

scribed. The last section of this chapter, 5.2.8 introduces a specific measurement scenario, the

so-called "rotating scenario", where, by specific orientation constellations of the two wearers,

the radiation patterns of the tested antennas are evaluated.
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5.1. Measurements in a Controlled Environment

5.1 Measurements in a Controlled Environment

In continuation of the standard laboratory measurements and the initiated collaboration with

RUAG, it was decided to compare the proposed air-gap PIFAs with commercially available

wearable antennas, also intended for voice communication inside the UHF range. For com-

parison purposes, three types of commercial antennas were used: wearable dipole antennas,

with and without baluns, (produced by Panorama [106]), and a wearable antenna produced

by Pharad [104]. The basic idea of this test was to compare the transmitted/received levels,

|S21(f)|, in a completely anechoic environment, thus testing the communication performances

of the considered antennas without being affected externally.

Two wearers, with the antennas placed on them, were positioned inside an anechoic cham-

ber and transmission/reflection levels were measured and compared. For all the proposed

scenarios, a pair of identical antennas was used. In order to assure the repeatability and

equal treatment of the different antenna pairs, custom tailored vests were prepared and used

during the measurements. Each of the vests had different sleeves/pocket, used for the different

antennas, air-gap PIFA or dipole (Panorama) antennas, respectively. An example of the custom

tailored vest is shown in Fig. 5.1.

Fig. 5.1: Custom tailored vests.

A Vector Network Analyzer (VNA) was used for measuring the |S21(f)| levels. The anechoic

chamber was large enough, 5 x 5 x 2 m3, to ensure that the two wearers were in the far field

region of each other. For all the measurement scenarios, the wearers were standing at a

distance of d=3 m from each other. A scheme of the described anechoic chamber scenario is

depicted in Fig. 5.2.

Four antennas were tested in this scenario: air-gap PIFAs, dipoles without baluns, dipoles

with baluns, and one single wearable antenna from Pharad. Unfortunately, we had only

one available antenna from this supplier (Pharad), thus we were not able to perform equal

comparisons as with the other two commercial antenna pairs.
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Chapter 5. System Measurements and Comparison with the Commercial Antennas

Fig. 5.2: Schematic of the measurement set-up inside the anechoic chamber.

5.1.1 Measured (|S21(f)|) in a Controlled Environment (Anechoic Chamber)

Two different situations were considered while comparing the antennas inside the anechoic

chamber:

• Front-to-front case - The antennas are placed on the wearers’ chest, the wearers and

thus the antennas face each other and the direct |S21(f)| level was measured, (line of

sight (LoS), Fig. 5.3 (a)).

• Front-to-back case - The placement of the antennas on the wearers is identical as in

the previous case, but this time the wearers are oriented in such a way that one wearer

(body) was always in between the antennas (none line of sight (NLoS), Fig. 5.3 (b)).

(a) (b)

Fig. 5.3: Measurement scenario inside the anechoic chamber: (a) Front-to-front (LoS) and (b)
Front-to-back (NLoS).
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As can be seen from Fig. 5.4, the level of |S21(f)| for the air-gap PIFA pair is significantly higher

than for the dipoles (with/without Balun), nearly 20 dB inside the desired frequency band.
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Fig. 5.4: Comparison of the measured |S21(f)| for the three different antenna types, front-to-front (LoS).

The second measured case, front-to-back, indicated the same trend between the compared

antennas. The |S21(f)| level for PIFAs was higher for 10 dB compared to the dipoles.
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Fig. 5.5: Comparison of the measured |S21(f)| for the three different antenna types, front-to-back
(NLoS).

For both measurement cases, the dipole antennas with baluns were exhibiting lower |S21(f)|

levels, and were showing no resonant behavior inside the band of interest. The presence of

the balun prevented the current flow on the feeding cable, thus shortening the actual antenna

length, which results in an unmatched antenna and worse |S21(f)| performances. Therefore,

we have decided for the further measurements to compare only the air-gap PIFAs and dipole

(Panorama) wearable antennas without baluns.
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5.1.2 Stability, Free Space vs. On-body

Because of the specific nature of the security applications, wearable antennas are supposed to

work in a reliable way regardless of being worn by the wearers or left in their vicinity. Stability

plays an important role in all wearable scenarios. In order to test the stability, two different

cases were considered. In the first case the performance of the antennas was compared while

worn on two different wearers, while the second case reports the difference in the antennas’

performance when placed on a wearer or left in a free space.

Since we were using a 2 port VNA for performing the measurements, all scattering parameters

|S11(f)|, |S21(f)| and |S22(f)| were measured simultaneously. Fig. 5.6 shows the measured |S11(f)|

and |S22(f)| on wearer 1 and wearer 2, respectively, for the commercial antenna and the PIFA.

Responses differ when worn by different wearers. The performance of the PIFA however was

not affected by the change of the wearer.

300 350 400 450 500
−45

−30

−20

−10

0

Frequency [MHZ]

|S
11

| [
dB

]

 

 

PHARAD−Wearer 1
PHARAD−Wearer 2
PIFA−Wearer 1
PIFA−Wearer 2
Dipole (Panor.) Wearer 1
Dipole (Panor.) Wearer 2

Fig. 5.6: Comparison of the |S11(f)| for the three different antennas when measured on two different
wearers.

The second scenario compares antenna performance in free space and on a wearer. Ideally,

there should be no difference in order to allow the user to take off his vest. However, most

of the wearable antennas found in the literature and on the market are designed to provide

reliable communication links while being mounted on the wearer [24, 84, 104, 106], but not if

they are in some different situation, leading to a high probability of lost connection when the

antenna is not on the wearer.

In order to test this stability aspect, we compared again the |S11(f)| of the same antennas,

air-gap PIFAs and the commercial dipoles, measured on the wearers and in free space. As can

be seen in Fig. 5.7 commercially available antennas always show a strong detuning tendency

when not placed on the body.
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Fig. 5.7: Comparison of the |S11(f)| for the three different antenna types when measured in a free space
and on the wearer.

These results indicate that the commercial antennas are exclusively designed for operating

on the body. Once they are moved away, they change their behavior by shifting the resonant

frequency and changing the input matching level. Since both commercial antennas are

relatively small (overall dimensions) with the respect to the wavelength, the coaxial feeding

cables contribute to the overall radiation in both cases, which adds additional uncertainties

in the antennas’ performances. Just by sliding the hand over the cables, the frequency can

be shifted by 30-50 MHz, enough to move the antenna response out of the Tetrapol band

frequencies.

For the air-gap PIFA we see that the frequency shifts are in the range of 1-2 MHz, and the

antenna is completely independent from the body presence. The PIFA remains all the time

inside the intended frequency band. Due to the narrow bandwidth of the antenna itself, PIFA

cannot cover the entire Tetrapol bandwidth. However, this is not a problem for the most of

Tetrapol communications, where no full band coverage is required. In other words, the users

are always assigned to a narrower sub-band, dedicated to different services like army, police

or any other rescue service. Table 5.1 summarizes the measured |S21(f)| levels and stability

measurements for the tested antennas, which proves the suitability of the proposed PIFA for

these applications.
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Antenna prototype
max |S21(f)| [dB] Stability (fc ) [MHz]

LoS NLoS Free space Wearer 1 Wearer 2

-44 -60 377 377 378

-56 -69 447 390 395

NA NA 443 376 396

Tab. 5.1: Summary of the transferred power levels and stability of the tested antennas.

5.2 Measurements in a Realistic Environment

In this section a set of measurement scenarios performed in realistic everyday conditions are

reported. The measurements were performed in the following environments:

• Indoor - Laboratory corridor

• Indoor - University campus buildings

• Outdoor - University campus

• Outdoor - Open field area

However, before moving on to the description of the scenarios and reporting the measurement

results, an overview of the used equipment will be presented. Two different sets of equipment

were used, one for quantitative and another one for qualitative measurements.

5.2.1 Equipment Used for Quantitative Measurements

For the quantitative measurements a pair of power generator and hand-held spectrum analyzer

were used. On the transmitting side, a Hewlett Packard power generator was used all the time

in a continuous operating mode with a transmitting power set at +18 dBm (the maximum

available power). Since the generator was always fixed in one determined position, one of the

wearers was always next to it with the antenna connected to the generator’s output. On the

receiving side, a Rohde & Schwarz hand-held spectrum analyzer was used. A mobile spectrum

analyzer was used so that the measurements were not limited to a certain range. Depending

on the measuring mode, direct power measurement (power sensor) or extracting the power

from the spectrum analyzer mode, different sensitivities were achieved. In the direct power
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mode the maximum sensitivity was around -67 dBm, while in the spectrum analyzer mode,

the maximum sensitivity was around -110 dBm of received power. The used measurement

devices, power generator and hand-held spectrum analyzer, are depicted in Fig. 5.8.

Fig. 5.8: Measurement equipment: Hewlett Packard power generator (left) and Rohde & Schwarz
hand-held spectrum analyzer (right).

5.2.2 Equipment Used for Qualitative Measurements

For the qualitative measurements, the Polycom communication equipment provided by RUAG

was used. It consists of a voice communication equipment developed for the purposes of the

Polycom program users, military, police, rescue services etc. [151]. The equipment consists

of a communication module, a battery unit, a microphone/loudspeaker and a standard Sub-

Miniature version A (SMA) connector, so that different antennas can be connected. Different

transmitting power levels can be set on this system, but for the purposes of the performed tests

the transmitting power was set to 33 dBm (2 W), with a Frequency Division Multiple Access

(FDMA) modulation. The full specification of the POLYCOM Radio portable COVERT700 can

be found in [13]. The Polycom communication set with the antenna (air-gap PIFA) attached to

it is shown in Fig. 5.9.

Specially custom tailored vests, with sleeves that allowed a vertical orientation of the dipole

legs (shoulder-hip), were provided by RUAG for measurement purposes. The vests have

special pockets where the complete Polycom set can fit, Fig. 5.10. A vertical orientation of the

dipoles was indicated as the best possible constellation, based on previous measurements

and experiences from RUAG’s customers (Saint Gallen police department).

The position of the dipole (Panorama) antenna, when mounted inside the vest, is indicated

in Fig. 5.11 (a). Due to the specific shape and the materials they are made of, like leather or
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Fig. 5.9: Polycom communication set, provided by RUAG.

Fig. 5.10: Customized vests for Polycom purposes.

cordura, we were also using them while doing measurements with the air-gap PIFAs, in order

to ensure identical conditions, mainly equal separation from the body. The tailored orange

vests (Fig. 5.1) were always put over the Polycom vests, Fig. 5.11 (b).

5.2.3 Measurements Inside the Laboratory (Corridors+Offices)

Laboratory environment was chosen first for testing the antennas performances. The diversity

created by the different offices, corridors and various objects represents a typical indoor

environment. The plan of the laboratory unit corridors and offices is depicted in Fig. 5.12.
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(a) (b)

Fig. 5.11: Wearers in action: (a) Dipole (Panorama) antenna introduced inside the vest’s sleeves and (b)
Custom tailored vests for air-gap PIFAs put over the Polycom vests.

White parts correspond to corridors, while the gray zones are the offices and different rooms

within the laboratory. The whole unit is 50 m in length and 20 m in width. Two different

measurement campaigns were conducted.

Fig. 5.12: Laboratory plan (LEMA).

In the first campaign, the Polycom communication units were used and a quality of the estab-

lished voice communication was evaluated. Two wearers, equipped with the indicated sets,

were going around the laboratory corridors and rooms while trying to establish comprehensive

communication. For all the possible situations, for both antenna pairs, air-gap PIFAs and

dipoles (Panorama), satisfactory coverage was achieved. No differences were observed in the

quality of communication. Still, it should be mentioned that this was a subjective judgment of

the wearers, while the recorded audio files exist as an evidence. There are mainly two reasons

for such an outcome. The transmitting power set at the Polycom devices was +33 dBm (2
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W), fairly large for such a small environment. The second reason was the environment of the

laboratory itself. The metal ceilings and many lining metal cupboards (please refer to Fig.

5.13 (a)), create metallic waveguides that produce many reflections while performing the tests.

For the second measurement campaign, instead of qualitative and subjective evaluation,

quantitative measurements were performed using a power generator on the transmitting side

and a hand-held spectrum analyzer on the receiving side. One of the wearers, the so-called

Tx wearer, had a fixed position at the entrance of the laboratory corridor (red spot in Fig.

5.12), while the second wearer, the so-called Rx wearer, was going around the corridors and

rooms with the spectrum analyzer and measuring the levels of the received power. For all the

reported cases, the antennas are worn on the wearers’ back. The antenna of the Tx wearer

was connected to the output of the power generator (continuous wave mode, transmitting

+18 dBm (63 mW) all the time), while the Rx wearer was going around and stopping at each

of the pre-determined 11 points, (points 1-11 as indicated in Fig. 5.12). For each point two

measurements were done, one while the antennas were facing each other, and the second

while the Rx wearer was randomly turned in some direction, mainly trying to have the body in

the link. One measurement situation is shown in Fig. 5.13 (b), a Tx -Rx1 LoS case.

(a) (b)

Fig. 5.13: Measurements inside the laboratory corridor and offices: (a) Interior of the corridor and (b)
One of the performed measurements.

The measured power levels for all the cases are reported in Table 5.2. Looking at the values

for both antenna pairs, they do not differ significantly, so the only way to compare them

quantitatively was to make a geometrical averaging of all the received power levels for a given

antenna pair for a given orientation (e.g. LoS or NLoS). For both cases, LoS and NLoS, the

average received power for PIFAs was higher by 3 dB and 1 dB, respectively.
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Taking into account the specific environment and conditions under which the measurements

were performed, we have found that the geometric mean provides a realistic picture about the

performance of the antennas in such scenarios. Namely, with this type of averaging, all the

considered values are treated with equal weight. If linear averaging were used, the dominant

contribution would originate from the highest received power level, thus neglecting all the

lower ones, giving a too large importance to the path loss and potential multiple reflections

occurring in the considered environment.

Position of the Rx wearer
Air-gap PIFAs Dipole (Panorama) antennas

Pr cvd [dBm]
(LoS)

Pr cvd [dBm]
(NLoS)

Pr cvd [dBm]
(LoS)

Pr cvd [dBm]
(NLoS)

Rx1 -35 -48 -35 -43

Rx2 -52 -52 -50 -52

Rx3 -65 -67 -62 -55

Rx4 -45 -49 -55 -60

Rx5 -64 -70 -68 -68

Rx6 -80 -90 -78 -78

Rx7 -45 -50 -40 -50

Rx8 -62 -62 -74 -68

Rx9 -73 -73 -78 -88

Rx10 -63 -63 -72 -68

Rx11 -82 -85 -80 -93

Averaged received power -60 -64 -63 -65

Tab. 5.2: Received measured power levels inside the laboratory (LEMA).

5.2.4 Measurements Inside the University Building

For the second measurement campaign, the area of interest was extended to several neighbor-

ing buildings next to the LEMA laboratory. Again, qualitative and quantitative measurements

were performed. Fig. 5.14 (a) depicts the plan of the buildings where the measurements were

performed. The dark parts are the buildings, while the light zones are outdoor space between

them.

In the first part, the evaluation of the established voice communication was performed by using

the Polycom communication sets. Again, no significant differences were observed between

the two antenna pairs in terms of the quality and comprehension of the voice communication.

Recorded audio files exist as an evidence.
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For the second part, the Tx wearer had a fixed position at the entrance of the LEMA laboratory

(Position marked as Tx in Fig. 5.14 (a)), while the Rx wearer was moving around the buildings,

1-4, as marked in the Fig. 5.14 (a). The antenna of the Tx wearer was connected to the output

of the power generator (continuous wave mode with +18 dBm output power). Since, the

measurements were in different buildings, and with many obstacles in between, orientations

of the Tx and the Rx wearers were randomly defined and for each position one measurement

was done.

Fig. 5.14 (b), shows the typical interior of the buildings, where combination of different

structures and materials like metal, concrete, tiles, etc., are present.

(a) (b)

Fig. 5.14: Measurements inside the campus buildings: (a) Building plan and (b) Interior of the
buildings.

Table 5.3 summarizes the measured results, reporting the geometrical averaging of the mea-

sured power levels as a quantitative comparison between the two antenna pairs.

Position of the Rx wearer
Air-gap PIFAs Dipole (Panorama) antennas

Pr cvd [dBm] Pr cvd [dBm]

Rx1 -55 -57

Rx2 -59 -66

Rx3 -68 -70

Rx4 -65 -65

Averaged received power -61.75 -64.5

Tab. 5.3: Received measured power levels inside the department buildings (EL).

The air-gap PIFA on average had for 3 dB higher received power level, results similar to the

laboratory measurements.
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5.2.5 Measurements on the Campus (Outdoor)

In this scenario the measurements were performed in the wider area of the EPFL university

campus, mainly outdoor. Since the sensitivity of the used spectrum analyzer was not sufficient

anymore, the measurements were done only with the Polycom communication sets. The idea

was to check the quality and comprehension of the established voice communication while

the wearers were walking across the campus. As can be seen from the aerial picture in Fig.

5.15, the campus consists of various types of buildings distributed in a different way, thus

mimicking a realistic urban environment. The wearers were moving mainly at level 0 and level

1, in accordance with the terrain configuration.

Fig. 5.15: EPFL Campus. Shaded part is the area where successful coverage was established.

The trajectory of the movement of the two wearers is depicted in Fig. 5.16. Both wearers

started from the same point, marked as "START FINISH" in the figure, and moved in opposite

directions, as indicated with the arrows. The quality of the established voice communication

was comprehensive all the time, apart from the two spots (marked as blind spot 1 and 2 in

Fig. 5.16). At these points, no communication was established because of the underground

passages depicted in Fig. 5.17. Both antenna pairs, PIFAs and dipoles, performed equally in

the given scenario.
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Fig. 5.16: EPFL plan with the trajectories of the two wearers.

(a) (b)

Fig. 5.17: Blind spots marked with the stars in Fig. 5.16: (a) Under the road (1) and (b) Underground
passage (2).

The performed scenario has shown that the proposed antennas are able to provide stable and

comprehensive communication in an urban environment.
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5.2.6 Extended Outdoor Scenario (on the Campus)

A more challenging scenario was considered in order to test the communication limits of the

investigated antennas. Since the previous scenario did not report any particular difficulties

and/or differences in the established communication over the entire campus area, we have

decided to perform a more challenging scenario. The map of the whole EPFL campus is

depicted in Fig. 5.18. This time, one of the wearers (wearer 1) was located at the 0 level (black

spot in Fig. 5.18), inside the office, while the second wearer was going across and along the

campus, going at different levels, 0-3, inside and outside the buildings. A moving trajectory of

the wearer 2 was partially predefined, so that the wearer 1 knew how it should be oriented,

pointing the antenna roughly in a direction where the wearer 2 was at that moment. The same

scenario was repeated for the two antenna pairs, dipoles (Panorama) and air-gap PIFAs.

Fig. 5.19, (a)-(d), shows the coverage per level and per antenna pair. For all the cases, (a)-(d),

the non-shaded areas represent the parts where no access was allowed, red shaded are the

areas where both antennas performed equally well, whereas black shaded areas are the regions

where no coverage was established neither with PIFAs or dipoles. Finally, the blue shaded area

is the difference in favor of PIFAs, where understandable and comprehensive communication

was established by using the air-gap PIFAs but not the commercial dipoles (Panorama).

Analyzing level by level, it can be seen that for each case PIFAs were providing a wider coverage,

sometimes more emphasized sometimes less. The most remarkable difference is for the level 0,

where PIFAs coverage was almost twice as large (in terms of covered area/surface) compared to

the dipoles. Similar trends are observed for levels 2 and 3. Both antenna pairs perform almost

equally only at level 1, with slight advantage for the PIFAs. As the PIFAs have a hemispherical

radiation pattern, they provide better coverage in both azimuthal and elevation plane, thus

resulting in better overall communication links. The coupling to the wearer is also lower in the

case of PIFAs, enabling higher radiation efficiency, resulting in a wider communication area

coverage.

Overall, PIFAs provide better communication links, in the sense that for the same measurement

constellation and the same transmitted power, a comprehensive communication is achieved

for larger area with PIFAs than with dipoles.

In order to have a better insight in the campus environment, several different areas are

depicted in Fig. 5.20. As can be seen from the pictures, in different areas, buildings and floors

different materials are used for construction purposes, thus giving a very diverse environment

with metal, glass, concrete, wooden surfaces etc.
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(a) Level -1 (b) Level 0

(c) Level 0 (d) Level 1

(e) Level 1 (f) Level 2

(g) Level 3 (h) From level 5

Fig. 5.20: Different buildings and levels across the EPFL campus.
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5.2.7 Outdoor, Open-Field Scenario (Aarberg Area)

With the exhaustive extended campus measurement campaign, most of the aspects of per-

formance and communication in urban environment were exploited. Nonetheless, since the

proposed antennas are supposed also to be used in different rural and outdoor conditions,

additional tests were needed to asses the performance of the antennas in such surroundings.

For that reason, we have found an area with rather flat terrain configuration, where for almost

8 km there was no significant change in elevation (max elevation 3 m).

Polycom sets served the purpose for the qualitative measurements. Wearer 1 was fixed in

one point (red spot in Fig. 5.21) while the wearer 2 was moving away and the evaluation

of the established voice communication was tested. Since the distances were in the range

of several kilometers (km), a bicycle was used as a means of transportation,. Some of the

measurements were done in motion (10-15 km/h bicycle speed), while others statically (going

off the bicycle each time the measurement was performed). Same scenario was repeated for

both antenna pairs. The maximum distance between the two wearers and thus antennas,

where still understandable communication was achieved, was around 7.3 km for both antenna

pairs.

Fig. 5.21: Outdoor field measurements in Aarberg-Worben area, Switzerland, (OpenStreetMapa).

ahttp://www.openstreetmap.org/
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Here, one important remark should be pointed out. For the specified measurements, a special

permissions were issued by the Swiss regulatory office, Swiss Federal Office of Communi-

cation [11], strictly defining the frequency band for the outdoor test measurements. The

dedicated frequency was 384.245 MHz. Looking back at the |S11(f)| responses of the air-gap

PIFAs and the dipole (Panorama) commercial antennas when placed on a wearer (shown in

Fig. 5.6), one can see that the PIFAs for the specified frequency range were fairly out of their

matched region, which was not the case with the dipoles. Our assumption was that by having

the PIFAs well-matched (|S11(f)| <-10 dB) the range of the potential communication distance

could have been extended further.

Fig. 5.22 shows the area where the measurements were performed, nearby Aarberg, the

so-called "three lakes region" in the north-western part of Switzerland.

(a) Measurement equipment (b) Terrain config.

(c) Terrain config. (d) Terrain config.

Fig. 5.22: Terrain configuration in Aarberg area.

Yet, since we had the opportunity to be outdoor, we also performed a set of quantitative

measurements, similar to the ones described in the previous sections. The only difference

here was that we could not use the power generator (no convenient electrical supply), but the

Polycom unit was used as a transmitter instead. The transmitting power of the unit (+33 dBm
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(2 W)), although modulated, was sufficiently large to evaluate the performance of the antennas

at larger distances. At the distance of 2.3 km the sensitivity of the hand-held spectrum analyzer

was still enough (around -110 dBm) to measure the received power levels. Table 5.4 reports

the measured received power levels for both antenna pairs.

Tx -Rx wearer distance [m]
Air-gap PIFAs Dipole (Panorama) antennas

Pr cvd [dBm]
(LoS)

Pr cvd [dBm]
(NLoS)

Pr cvd [dBm]
(LoS)

Pr cvd [dBm]
(NLoS)

T x -Rx1=170 -71 -71 -68 -75

T x -Rx2=350 -81 -79 -81 -85

T x -Rx3=550 -88 -99 -88 -90

T x -Rx4=750 -79 -81 -90 -88

T x -Rx5=1400 -96 -101 -100 -100

T x -Rx6=2000 -96 -101 -105 -107

T x -Rx7=2300 -96 -101 -110 -105

Averaged received power -86.7 -90.4 -93.75 -94.75

Tab. 5.4: Received measured power levels in outdoor conditions (Aarberg).

Graphical representation of the received measured power levels is shown in Fig. 5.23.
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Fig. 5.23: Received measured power levels in outdoor conditions (Aarberg).

For both evaluated orientations, LoS and NLoS, air-gap PIFAs received for 7 dB and 4 dB, higher

power compared to the dipole (Panorama) antennas, respectively. This leads to the conclusion

that the air-gap PIFAs are more favorable candidate for a realistic outdoor communication.

In order to further strengthen this statement we introduced an additional rotating scenario,

described in the next section.
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5.2.8 Rotating Scenario (Outdoor)

In the rotating scenario the two tested antenna pairs were measured while being fixed in a

controlled outdoor environment with pre-determined positions and orientations. The Tx

wearer was connected to the power generator (continuous mode with +18 dBm output power),

staying all the time at a fixed position, just rotating by 90◦ in the azimuthal plane. The Rx

wearer is located first at a 30 m then at a 100 m distance from the Tx wearer. For both distances,

the Rx wearer, having the antenna in one fixed position on the body, was also turning by 90◦

steps in the azimuthal plane. In each of the rotating positions and combinations (32 in total

for one antenna pair) received power levels were measured. Fig. 5.24 illustrates the overall

constellation and the measurement set-up.

Fig. 5.24: Rotating scenario.

In order to clarify the described measurements, two measurement constellation will be de-

scribed. For example, Tx1 - Rx1 combination shows the scenario when the wearers, and thus

the antennas, are turned in such a way so that the antennas are facing each other (LoS),

Fig. 5.25 (a). Another example, the Tx1 - Rx3 combination represents the orientation of the

antennas so that always one wearer (body) is in between, while the antennas are oriented in

opposite directions, Fig. 5.25 (b).

Table 5.5 reports the measured received power for all the combinations for both antenna pairs,

at 30 m and 100 m distance, respectively. As in the previous cases, the averaged received power

is used as a quantitative parameter for comparing the performance of the tested antennas. By

analyzing the measured power levels, one can see that the differences between the obtained

values for one antenna pair for a given scenario can significantly differ. Therefore, it was
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(a) LoS (b) NLoS

Fig. 5.25: Graphical representation of the measurement combinations.

decided that an additional parameter will be introduced: the maximum difference between

any two values for a given antenna pair in a given scenario, in order to supplementary compare

the performance of the tested antennas.

Rotating scenario
d [m] 30 m 100 m

[dBm] R
′
x1 R

′
x2 R

′
x3 R

′
x4 R

′′
x1 R

′′
x2 R

′′
x3 R

′′
x4

Air-gap PIFA

T x1 -62 -62 -67 -64 -84 -82 -84 -83

T x2 -70 -65 -70 -63 -84 -85 -88 -85

T x3 -62 -65 -65 -61 -85 -82 -90 -87

T x4 -60 -65 -64 -60 -78 -80 -82 -85

Dipole (Panorama)

T x1 -60 -59 -63 -77 -88 -87 -86 -90

T x2 -78 -71 -73 -82 -88 -87 -90 -91

T x3 -80 -79 -77 -84 -90 -88 -85 -90

T x4 -62 -67 -72 -77 -88 -93 -90 -95

Tab. 5.5: Received measured power levels from the rotating scenario.

Table 5.6 summarizes the measured power levels by reporting the average received power

and maximum power deviation. For both scenarios air-gap PIFAs exhibited higher received

average power and lower received power differences, thus showing a better radiation behavior

in the azimuthal plane.
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Rotating scenario
30 m 100 m

AVG Pr cvd [dBm] Max diff. [dB] AVG Pr cvd [dBm] Max diff. [dB]

Air-gap PIFA -64 10 -84 12

Dipole (Panorama) -72 25 -89 15

Tab. 5.6: Received measured power levels from the rotating scenario.

A summary of all the measurements performed in realistic conditions is reported in Table 5.7.
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5.3 Conclusions

This chapter presented comprehensive measurements conducted at a system level and under

different circumstances. In the first part, the performance of the antennas was tested in a

controlled environment, inside the anechoic chamber, where |S21(f)| levels were measured and

stability of the antennas evaluated. The second part of the chapter reports the operation of the

antennas in realistic everyday conditions. In all situations we have compared the proposed

air-gap PIFAs with the currently available commercial antennas found on the market.

The measurements inside the anechoic chamber reported better performance of the air-gap

PIFAs vs. the dipole (Panorama) commercial antennas. The measured |S21(f)| levels for both

cases, LoS and NLoS, were for 10 dB higher for PIFAs. Moreover, during the |S21(f)| evaluations,

the stability of the wearable antennas when placed on the wearer and/or when left to radiate

in free space was observed. Stability of the antennas was evaluated by comparing the |S11(f)|

responses. Again, air-gap PIFAs remained stable, within 1-2 MHz frequency shift, while

the commercial ones were significantly changing their responses, clearly indicating a high

dependence on the body presence. Furthermore, it was observed that they are exclusively

designed for on-body performance, while in any other circumstances they cannot provide

reliable operation.

The communication equipment provided by RUAG, offered us wide opportunities for testing

the antennas in different urban and rural conditions. A set of quantitative (measuring received

power levels) and qualitative (estimating the comprehensiveness of the established voice

communication) tests were performed in order to assess the behavior of the air-gap PIFAs

and wearable dipoles (Panorama) while being exposed in indoor, dense urban and open field

non-populated environment. On average, air-gap PIFAs were always receiving between 3 and

6 dB more power for the same transmitted power. Moreover, the PIFA proved to have a more

omnidirectional behavior when mounted on a wearer, as it was less sensitive to the rotation of

the wearers.

All these results lead to the conclusion that PIFAs and their intrinsic structure are less depen-

dent on the wearer than the commercially available antennas and they provide more favorable

radiation pattern and better coverage.
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6 Specific Absorption Rate (SAR),

Near-field Effects and Radiation

Efficiency
In Chapters 4 and 5, much of attention was drawn to the antenna-human body interactions.

All the analysis was carried out to determine how the presence of the human body affects the

wearable antenna performance. However, this interaction is actually bi-directional. Therefore,

in this chapter it will be considered how the antenna affects the hosting body. Indeed, the

electromagnetic (EM) fields from the wearable antenna will couple into the tissues and energy

will be absorbed and deposited in a certain region or over the entire body.

Human body exposure to the EM radiation is monitored through several parameters like the

increase of the temperature, the exposure to time-varying electric and magnetic fields or the

commonly established Specific Absorption Rate (SAR). SAR is defined as the ratio between

the transferred power and the mass of the body where the SAR values are evaluated [17].

Depending on the frequency range of interest, different parameters are observed with respect

to the human body exposure to a uniform (plane-wave) electromagnetic field. Our main focus

will be on the frequencies in the range between 300 MHz to several GHz, at which significant

local, non-uniform absorption occurs and is evaluated through the SAR [169].

The wide use of wearable antennas in different applications requires precise regulations for the

human body exposures to the EM radiation. There are mainly two standardization guidelines

regulating this issue, one proposed by the Institute of Electrical and Electronics Engineers

(IEEE) [170], and the International Commission on Non-Ionizing Radiation Protection (IC-

NIRP) [169], and the second one proposed by the US regulatory Federal Communications

Commission (FCC) [171].

The evaluated SAR values depend on several parameters: operating frequency, intensity of

the field, polarization of the field, source-object configuration (whether the object is in the

near or far radiation field), and the characteristics of the exposed body and ground and reflect

effects. In the range between 100 kHz to 10 GHz, restrictions on the SAR are provided in

137



Chapter 6. Specific Absorption Rate (SAR),
Near-field Effects and Radiation Efficiency

order to prevent entire body heat stress and excessive local tissue heating [169]. Two different

exposures have been defined, occupational and general public exposure. The occupational

exposure refers to population groups (adults) who are aware of the EM exposures and potential

risks and trained to take adequate precautions. By contrast, the general public comprises

all the other groups of people of all ages and different health statuses. In many cases, the

wider public is not aware of their exposure to the EM radiation and it is not expected that they

will take precautions to minimize or avoid the exposure. Therefore, stricter regulations are

required for public as compared to occupational exposure [169].

The two different standards, IEEE/ICNIRP and FCC, have different definitions for the occu-

pational and general public exposure. The provided definitions might refer to two different

spatial averaged values, over the entire body, whole-body average SAR and localized SAR, e.g.

head and trunk. Also, when evaluating SAR values, an important aspect is the averaging mass

where the SAR is calculated. According to the ICNIRP/IEEE standard, the averaging mass is

10 g of tissue, while the FCC does the averaging over 1g of tissue. Table 6.1 presents all the

defined values for both standards for different occupations, and different averaging (whole

body or head/trunk) for the frequencies between 100 kHz and 6 GHz.

[W/kg]
Averaging

mass

General exposure Occupational exposure

Whole body head/trunk Whole body head/trunk

IEEE/ICNIRP 10 g 0.08 2 0.4 10

FCC 1 g 0.08 1.6 0.4 8

Tab. 6.1: An overview of the defined SAR values for both standards, IEEE/ICNIRP and FCC for the
frequencies between 100 kHz and 6 GHza.

aIn the case of IEEE/ICNIRP standard, the upper limit is 10 GHz.

For the frequency ranges bellow 100 kHz and above 6 GHz (10 GHz for the IEEE/ICNIRP

standards), different scientific bases are used for the basic exposure restrictions. At lower

frequencies basic restrictions are provided on current density, in order to prevent effects on

nervous system functions, while at the higher frequencies, up to 300 GHz, power density is

taken as a basic restriction, in order to prevent the excessive heating in tissues near the body

surface.

In our case, since the antennas are worn by professionals, occupational localized (trunk)

averaged SAR values are considered. In all the SAR analysis performed for our research

purposes a 10 g averaging mass is used, since the fields used in our simulations are considered

to be with slow variation. Therefore, we will be referring to the IEEE/ICNIRP standard.

SAR limitations are particularly stringent in applications with a relatively high transmitting

power like in the case of security applications. For these applications, the robustness and the
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range of the communication link are important aspects, leading to the choice of a rather low

frequency band to achieve the range and the use of a high transmitting power, leading to a

potentially high SAR.

We will focus in our study on antennas operating between 360-370 MHz, with an intention to

shift towards a transmission link between 380-400 MHz and high transmitted powers. There

are two reasons why 360-370 MHz band has been selected for the SAR analysis: (1) lower

frequencies are more challenging and demanding to remain within the defined SAR regulations

and (2) compared to the hexagon PIFA models, the copper-mesh PIFA (solid conductors in

simul.) is time wise a better option, as the time needed for the simulation is shorter compared

to the hexagon models. Yet, our goal was not to calculate precisely the SAR values for the

specific antenna types, but to analyze the general trends and ideas that have been proposed in

this thesis. A solid conductor PIFA model is sufficiently good for these purposes.

Before presenting the performed analysis, an overview of relevant research work related to SAR

in the frame of wearable antenna will be presented. Reduction of the SAR has been an ongoing

topic for some time and it is of particular interest for implantable and wearable antennas.

A simple SAR investigation is presented in [172], where a dipole antenna at 400 MHz is used

for observation of the induced SAR in a non-homogeneous model of human body. A set

of simulations and measurements where different materials are used in order to asses the

SAR values are presented in [173]. Fractal Planar Inverted F Antennas (F-PIFAs) designed for

dual-band operation (2.45 and 5.2 GHz) are used to assess the influence of different materials

on the SAR levels. The same antenna prototype is built using three different materials as

conductors, copper foil, Shieldt and Plain Copper Polyester Taffeta Fabric (PCPTF) and felt (in

all cases) as a substrate material. No significant differences in the simulated/measured SAR

values are observed between the use of different conductive materials.

Material aspects are also considered in [174] where the SAR is reduced by using polymeric

ferrite sheets as a shielding between the human body and wearable antenna. Reduction of

the SAR can be observed from other perspectives as well. In [175] different insulating layers

are introduced in order to improve the radiating efficiency of implantable antennas intended

for telemetry applications. Although the SAR is not directly mentioned, the presented study

clearly shows that if the antenna is well isolated from the vicinity tissues, the efficiency is

higher. Higher efficiency is due to the reduced coupling to the human tissues, which on the

other hand results in reduced SAR.

Since the human body is all the time in the near-field zone of the wearable UHF antenna,

a special emphasize is put on the importance of the antenna-body interaction. A thorough

study on this topic is presented in [169]. Reactive near-fields produce the majority of the

energy in the lossy dielectric objects, in our case human body. Therefore, the near region of
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wearable antennas should always be considered when SAR evaluations are required. Similar

conclusions have been drawn in [176] for UWB antennas. Despite the fact that UWB antennas

operate at higher frequencies compared to UHF antennas, thus having a smaller near field

region than the latter, the reactive near field is still a significant contributor to the SAR in this

case.

A thorough research of the EM field exposure analysis mainly for low frequencies (up to

100 kHz) has been reported in [177]. In this work, the author has analyzed separately the

interaction of the electric and magnetic fields and their influence on the wearer. Indeed, at

low frequencies where the wavelength is several orders of magnitude longer than the object

(body) itself, the interactions inside the body become more quasi-static, while the electric and

magnetic field components become decoupled [178].

From all the reported research on the topic of SAR, one can conclude that SAR is closely

correlated to the near-field distribution. On the other hand, near-field effects also affect

the overall radiation performances of the wearable antenna, more concretely the radiation

efficiency. The less the wearable antenna is coupled to the body, the higher radiation efficiency

can be achieved. Therefore, the near field region will be one of the pervading topics of this

chapter around which the research hypothesis are built.

This chapter is organized as follows: section 6.1 presents the methods and models used for

SAR and radiation efficiency analysis. In the second section, the role of the ground plane in

the SAR reduction will be investigated. A comparison between the wearable dipole antenna

and proposed PIFA will be used for demonstrating purposes. All the results regarding SAR

reduction for PIFA are shown in section 6.3. The first part of this section presents the SAR

dependence on the near fields triggered by the dense current distribution in the shorting wall

region of the antenna, while the second part shows that the SAR reduction is also achievable if

certain dielectrics are used. For both cases, some solutions have been proposed in order to

overcome this problem. Finally, section 6.4 gives the conclusions and some future steps.

6.1 Models and Methods

All the following studies done regarding the SAR are based on simulations performed by a

3D EM software, HFSS. All simulations are performed in an identical environment for all the

considered antenna models in terms of input matching, feeding structure, phantom size and

structure and position of the observed antennas with respect to the phantom. Considering

the group of applications we are interested in, we will be focusing our efforts on the analysis

and SAR reduction for antennas operating between 360-370 MHz.
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6.1. Models and Methods

Two antennas have been used for the investigation purposes, (a) a proposed copper-mesh

PIFA model and (b) a commercially available wearable dipole (Panorama) antenna [106].

The structure of the PIFA was already explained in section 4.1.1, and is summarized here.

The model used for the simulation is a PIFA, built using solid copper conductive sheets

encapsulated inside PDMS (εr = 2.15 and tan δ= 0.01). The overall dimensions of the PIFA are

157.5 x 88 x 9.1 mm3, Fig. 6.1 (a).

The model used for the dipole wearable antenna was designed in HFSS, based on the data

provided from the datasheet [108]. The dipole has length of 256 mm and a feeding coaxial

cable of 300 mm (in the simulation model), with conductors isolated with a PVC material, see

Fig. 6.1 (b). For both antenna models the feeding structure is a coaxial cable with a wave port

assigned on one end, and the defined input power at the port is 1 W. SAR values are calculated

for a 10 g tissue averaging.

(a) (b)

Fig. 6.1: Considered antenna models: (a) PIFA and (b) Dipole (Panorama) [106].

For simulation purposes, a simplified single layer phantom is used, mimicking the muscle char-

acteristics at 400 MHz, εr = 56 and tan δ= 0.6 [167]. The size of the phantom is 490 x 560 x 80

mm3, large enough to ensure a quarter-wave length margin between the antenna and the

phantom edges. Both antennas are simulated with 1 mm textile material, εr = 1 and tan δ= 0

separating the antennas from the phantom. A SAR observation plane is introduced across the

phantom thickness, below the feed, Fig. 6.2, as this is the hottest region for the SAR.

It should be noted that since the difference of magnitude between the different plots is large,

the figures show different dynamic ranges. Each of the plots are averaged in accordance with

the analyzed case.
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Fig. 6.2: Single layer phantom and the PIFA mounted on the top of it.

6.2 SAR Comparison, PIFA vs. Dipole

A starting point for the analysis was the comparison in performance between the commercial

wearable dipoles and the proposed PIFAs. Indeed, since the dipoles have no ground plane

in their structure, they are expected to have larger SAR, and thus higher peak SAR values

compared to the PIFAs. Nevertheless, this comparison triggered some interesting observation

aspects for the SAR for PIFAs.

The introduced antennas, PIFA and dipole (Panorama), are simulated and compared under the

same conditions (phantom, power, averaging), with both antennas well matched, |S11(f)|= -15

dB. The SAR distribution is presented in Fig. 6.3 (a) and (b), for the PIFA and for dipole antenna,

respectively.

SAR distribution of the PIFAs is confined close to a region of the feeding point, indicating that

the SAR is mainly due to the reactive near-field components. The near-field effects can be

caused from the feeding structure or from some high density current regions. The advantage of

the PIFA is that the structure of the antenna itself offers several degrees of freedom to diminish

the near-field effects. This can be done either by introducing some specific feeding structure

or relaxing the high density current regions. More details will be shown in the section 6.3.

The considered dipole antenna due to its shape and length allows a placement of the antenna

on the wearer only in a way that the dipole’s legs are parallel to the body. This way of placement

will result in increased SAR both from the feeding point and the currents that flow along the

dipole’s legs. The main reason for this observation is that dipole feed produce high current

and magnetic field, and it is closer to the tissue block, thus coupling the field energy more

effectively because of feed orientation (electrical fields vectors parallel to the tissue block).

Unfortunately, the dipole’s structure does not offer many alternatives to overcome this issue,
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Fig. 6.3: SAR evaluation comparison between: (a) PIFA wearable antenna and (b) Dipole wearable
antenna (Panorama) (all the plots are averaged to the maximum value of 3.8 [W/kg])

especially as the SAR originates not only from the near fields but also from the orientation

of the field’s vectors. The feed is set by the dipole’s structure and there is no ground plane

allowing to decouple the antenna from the wearer.

Table 6.2 reports the simulated values for the SAR and radiation efficiency for both antennas,

as computed by HFSS.

AUT
SAR (peak value) Radiation efficiency

[W/kg] [%]

PIFA 2.68 4.7

Dipole 3.8 1.1

Tab. 6.2: Simulated values for the SAR and radiation efficiency as computed by HFSS.

The peak SAR value of the dipole is by 30% higher than the peak value of the PIFA. The

difference in the computed efficiencies is even larger as the radiation efficiency of the dipole

antenna (1.1%) is 80% lower than the efficiency of the PIFA, which is 4.7%. This result matches

the assumption we have done based on the study performed in [175], that the SAR of the

antenna is directly related to the antenna radiation efficiency. The conclusion is that whenever

it is possible and when the application allows for it, antennas with ground planes should be

used.

Both antennas exhibited rather low radiation efficiencies due to the strong coupling to the

phantom. This was partially caused by the small separation between the antenna and the

phantom.

143



Chapter 6. Specific Absorption Rate (SAR),
Near-field Effects and Radiation Efficiency

6.3 Results

6.3.1 Near-fields Triggered by the High Density Current Regions

High density current regions are often present in places where miniaturization is applied on

antennas. The proposed PIFA can be also considered in a similar manner. Since the antenna

has a low profile, strong near-fields appear in the region between the feeding and the shorting

wall, which are 7 mm apart. The shorting wall, 10 x 4 x 0.3 mm3, and the ground plane area

where it is connected generate a concentration of near-fields. In order to asses their effects,

surface currents are observed in XZ plane parallel with the shorting wall, spread along the

x-length (88 mm) of the ground plane, Fig. 6.4. A strong current concentration is detected in

this plane which needs to be reduced to lower the SAR.

The spreading of the current region is achieved by enlarging slightly this part of the ground,

extending it beyond the shorting wall, as shown in Fig. 6.4 (a), thus providing an extended

current path. The surface currents are compared for three different situations: (1) no extension

of the ground plane, (2) 4 mm extension and (3) 8 mm extension, Fig. 6.4 (b).

As can be seen from the field distribution, the extension of the ground plane reduces the fields

in the lower region and redirects them mainly in the upper part. This is a desirable outcome

for wearable antennas because the overall level of coupling is reduced and so is the SAR.

Fig. 6.4: (a) PIFA model with a ground plane extension and (b) Equivalent surface current in the XZ
plane parallel with the shorting wall (all the plots are averaged to the maximum value (red) of 2.92

[A/m]).

The plotted SAR values depicted in Fig. 6.5 clearly show this tendency. The overall SAR

distribution is reduced for the case of 8 mm ground plane extension compared to the case

where no extension is applied. Looking on the concrete numbers, calculated peak SAR values,

a 8 mm ground plane extension results in SAR reduction by 37% compared to the initial case.
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Fig. 6.5: SAR evaluation comparison for the PIFA: (a) With no extension of the ground plane, (b) with
the 4 mm ground plane extension and (c) with the 8 mm ground plane extension (all the plots are

averaged to the maximum value of 2.68 [W/kg]).

Near-field effects can also appear due to the feeding structure of the antenna. For instance, in

our case the antenna is fed by a coaxial cable which introduces an inductance related to the

length of the protruding inner pin of the cable. The higher this inductance is, the higher the

related near fields and SAR will be. In the presented case, this effect is smaller than the effect

of the shorting wall as the pin has been shortened to only 3 mm. Furthermore, the feed of the

PIFA is vertical to the phantom and positioned behind the ground plane, thus additionally

reducing the coupling to the body. Strong near-field effects can cause significant SAR increase,

and deteriorate the overall antenna performances. It is thus very important to control the near

field as much as possible, in order to reduce the SAR values in the wearer’s body.

As expected, due to the changes in the structure of the PIFA, some changes occurred in the

antenna’s performances in the |S11(f)| response, Fig. 6.6, and in the radiation efficiency. There

are no significant changes in the radiation patterns of the three different cases.

Table 6.3 summarizes the calculated values of the SAR, radiation efficiency and shifts of the

|S11(f)| due to the modifications in the ground plane.
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Fig. 6.6: Influence of the ground plane extension on the |S11(f)| response for the PIFA.

AUT
SAR (peak value) Radiation efficiency |S11(f)|

[W/kg] [%] [MHz] [dB]

0 mm g.p. ext. 2.68 4.7 365 -14

4 mm g.p. ext. 2.04 5.6 370 -17

8 mm g.p. ext. 1.71 6 371 -19

Tab. 6.3: Simulated values for the SAR, radiation efficiency and |S11(f)|, while extending the ground
plane, as computed by HFSS.

6.3.2 Role of the Substrate Material in SAR Evaluation

The near-field impact on SAR can be partially diminished if substrates with higher permittivi-

ties are used. Higher permittivity substrates are able to confine the fields inside the material,

thus reducing the near field coupling to the body. On the other hand, substrates with very high

permittivities might lead to extremely low radiation efficiency, resulting in a non-operational

antenna.

In order to check the role of the substrate in reducing the SAR, we simulated the proposed

PIFA model, maintaining the same dimensions for the conductive parts, while changing the

characteristics of the substrate. Three different cases were analyzed: (1) PDMS as defined in

the initial simulation model, εr =2.15 and tan δ=0.01, (2) PDMS without losses, εr =2.15 and tan

δ=0 and (3) no substrate (PDMS) at all. Since the losses of the used PDMS are not negligible,

a part of the SAR reduction occurs due to the dielectric losses, which is unavoidable when

PDMS is used. In order to separate the SAR reduction initiated by the field confinement due

to the dielectric from the SAR reduction caused by the losses of the material, an additional

check has been performed, using an ideal dielectric having the same permittivity as the PDMS

but no losses, case (2). The obtained result presents how much reduction of SAR is due to the

dielectric only. The three cases are presented in Fig. 6.7.

146



6.3. Results

Fig. 6.7: SAR evaluation of the PIFA for the three different cases: (1)-(a) PDMS as defined in the initial
simulation model, εr =2.15 and tan δ=0.01, (2)-(b) PDMS without losses, εr =2.15 and tan δ=0 and (3)-(c)

no substrate (PDMS) at all (all the plots are averaged to the maximum value of 4.745 [W/kg])

Table 6.4 summarizes the calculated values of the SAR, radiation efficiency and shifts of the

|S11(f)| due to the modifications in the ground plane.

AUT Case
SAR (peak value) Radiation efficiency |S11(f)|

[W/kg] [%] [MHz] [dB]

PDMS (εr =2.15, tan δ=0.01) (1) 2.68 4.7 365 -14

PDMS (εr =2.15, tan δ=0) (2) 4.12 7.2 366 -14

WITHOUT PDMS (3) 4.7 17 523 -12

Tab. 6.4: Simulated values for the SAR, radiation efficiency and |S11(f)|, while changing the substrate’s
characteristics, as computed by HFSS.

Dielectric properties of the substrate materials also affect the antenna’s radiation characteris-

tics. The three analyzed cases, (1) PDMS with losses, (2) PDMS without losses and (3) antenna

without PDMS reported interesting results: cases (1) and (2) show similar behavior in terms of

radiation pattern, frequency and matching level, while the efficiency is improved in (2) by 53%.

In case (3), all the radiation parameters have changed significantly : fc=523 MHz, |S11(f)|=-12

dB and the radiation pattern has been modified. This behavior is expected since, by removing

the substrate, the configuration of the antenna is changed.
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Although case (3) shows an improvement in the efficiency by 25%, compared to the case

(1), looking at the SAR we observe an opposite trend, case (1) for 40% lower peak SAR value

compared to the case (3).

The above study shows that the contribution of the dielectric to the SAR reduction is signif-

icant, even if it is masked by the effect of the losses in the case of PDMS. The market of the

elastomers used in electronics, and thus in antennas, is in constant progress and different

flexible materials are appearing [179]. These polymers have similar characteristics to PDMS,

they are transparent and elastic and used in different microfluidic chip production. Substrate

materials with good dielectric properties can still significantly contribute to the SAR reduction

for wearable antennas.

6.4 Conclusions

In this chapter we pointed out to the importance of the near-field effects while assessing the

performance of wearable antennas. A strong correlation between the near-field region and

radiation efficiency and SAR was demonstrated on the observed examples. For the wearable

antennas that operate at lower frequencies, for instance in UHF band, the influence of the

near-field effects is even more emphasized since the hosting body is located in the antenna’s

near field region. A PIFA model was used for the demonstration purposes, while at the same

time modifications in its structure were proposed in order to ameliorate the overall antenna’s

performances.

The PIFA is a good candidate for wearable antennas in security scenarios, where high SAR

values might be an issue, as its structure inherently gives the possibility to diminish the

obtained SAR values by careful design. In particular, the presence of the ground plane is of

paramount importance, as it greatly reduces the coupling of the antenna to the wearer’s body.

This lowers the SAR, and enhances the overall antenna radiation efficiency.

In the particular example of the PIFA used in this case, extending the ground plane gives

additional freedom for spreading high density current regions (shorting wall). Specifically, an

extension of ground plane of only 5% compared to the initial size, reduces the overall SAR by

more than 35%.

The confinement of the near field regions of the wearer is another strategy to reduce the SAR

and enhance the efficiency. This can, for instance, be achieved by using a dielectric substrate to

manufacture the antenna or by carefully designing the feed region. Moreover, a combination of

ground plane extension along with some higher permittivity substrate materials will inherently

lead towards SAR reduction.
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Sunce �e jednom prestati da sija i ǌegova
toplota koja nam �ivot daje povu�i �e se i
naxa vlastita Zemǉa posta�e grumen leda
koji juri kroz veqnu no� ... U me�uvremenu
ohrabruju�a svetlost nauke i umetnosti, uvek
sve jaqa po intenzitetu, osvetǉava nam put
...

The suns bright light will have ceased to shine and its life

giving heat will have ebbed away, and our own earth

will be a lump of ice, hurrying on through the eternal

night. But do not let us despair. . . Meanwhile the

cheering lights of science and art, ever increasing in

intensity, illuminate our path . . .

—Nikola Tesla, in Century 1900

7.1 Conclusions

Wearable applications and, thus, wearable antennas are becoming an unavoidable part of

nowadays wireless communication. Various activities can be accomplished and many of

them can be significantly accelerated with the help of wearable applications. For instance, in

modern health care, data collected from different sensors (e.g. blood pressure, temperature,

etc.) worn by a patient can be transferred to peripheral units (smart phones, tablet) and

sent to a hospital or a medical doctor, who can in turn provide feed-back within a couple of

minutes [180].
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Many wearable antennas have been reported in the literature, covering different applications

and various frequency bands. Nevertheless, there is still no clear overview or guideline on

how to tackle the design of wearable antenna for a particular application. A classification of

wearable antennas according to different categories was actually the starting point of this

thesis and it was addressed in Chapter 2. A detailed overview of the various antenna types

found in different applications, built with different technologies and materials were presented.

The aim of this thesis was to provide an appropriate wearable antenna design suitable for

security applications, more specifically for voice communication inside the commercially

used Tetrapol band. In this context and specified project requirements, we defined two main

challenges addressed in this thesis: (A) Coupling - Antenna ⇔ Human body interactions

and (B) Robustness - communication, mechanical and environmental robustness. Several

sub-challenges were derived from the initial two.

In Chapter 3 a combination of substrate and conductive materials was investigated and pro-

posed for fabricating robust wearable antennas. We proposed substrate materials whose EM

properties can be adjusted (for instance reducing their relative permittivity and/or loss angle)

while the materials preserve their flexible, bio-compatible and waterproof characteristics. For

the purposes of this thesis research, we opted for a silicone based elastomer, PDMS. However,

the proposed solution can be extended to any other material whose dielectric and mechanical

properties satisfy the specified criteria.

A widely present problem with the use of silicon based materials, the adherence to conductive

sheets, was overcome by proposing mesh or perforated conductive structures. Apart from

being flexible, their mesh and/or perforated structure in a combination with the initial liquid

state of PDMS allowed complete immersion of the conductors inside the silicon, resulting in a

robust, flexible and waterproof structure.

In parallel with the exploration of the technology, we analyzed the potential antenna candi-

dates that would respond to the defined requirements. The overview performed in Chapter

2 helped us to select an appropriate antenna type. A Planar Inverted F Antenna (PIFA) was

selected as an adequate candidate. The PIFA’s overall size with respect to the wavelength

allowed an easy integration into the wearer’s uniform, without affecting its daily activities.

The detailed antenna designs and the measured antenna characteristics were reported in

Chapter 4. With the three proposed PIFA prototypes we tackled the defined challenges. With

the first prototype we showed the sustainability of using PDMS as a substrate and copper-mesh

structures as conductor, thus mitigating the problem of adherence. An imprecision issue that

appeared due to the mesh fraying was overcome by introducing perforated conductive sheets,

using hexagon shapes for perforation, which also contributed to the overall miniaturization of

the antenna. Finally, the third prototype, an air-gap PIFA, maintained all the technological
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aspects from the previous prototype, but this time the near-field zone of the antenna was

modified, with an introduced air-gap between the ground plane and the radiating part. The

presence of the air-gap improved the radiation characteristics of the antenna, resulting in

higher gain and higher radiation efficiency.

In the next stage, the PIFA was compared to a commercially available antenna. A communica-

tion equipment (Polycom, developed by RUAG) was used to perform the system measurements

and comparisons. All the comparisons and system level measurements were performed in

realistic everyday situations, thus providing a wide picture for the PIFAs’ behavior in different

practical scenarios. All the performed tests were reported in Chapter 5.

In all the performed test scenarios, the air-gap PIFA exhibited robust and reliable commu-

nication links, at the same time showing better results than the commercial antennas. A

hemispherical radiation pattern and higher gain and radiation efficiency contributed to a

better performance of PIFAs compared to dipoles.

Finally, in Chapter 6, the near field and SAR performances of the PIFA were analyzed. We could

conclude that both SAR and radiation efficiency depend critically on the near-field distribution

around the antenna and its coupling to the wearer. Ways to mitigate this coupling, and thus

enhance the antenna’s performance were suggested, e.g. relaxation of the high current density

regions, by modifying the structure of the antenna or the use of substrate materials whose EM

properties can influence the SAR levels.

In conclusion, with the proposed solutions and strategies we suggest an A-Z guideline for

the design and development of robust wearable antennas. In our case, the antennas were

intended for voice communication inside the existing UHF bands (Polycom), but the proposed

technology can be easily adapted for other wearable applications, where the robustness and

stability of the wearable antenna come in first place.

7.2 Perspectives

In this thesis, several aspects related to wearable antennas were addressed. However, there are

still open issues and improvements that should be investigated. As a constantly growing field,

wearable antennas will remain in the scope of the research for some time. Regardless of the

type of application they are intended for, some requirements will remain present:

• Size reduction - miniaturization

• Improvement of the wearability aspects

• Diversity

• Improvement of the radiation characteristics

• SAR reduction
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Miniaturization of the devices is always welcome, especially when it comes to wearable

antennas, where space for their placement is rather limited (human body) with more and more

devices present. Therefore, size reduction of wearable antennas is one of the desired directions.

Wearable antennas operating at UHF are in particular interesting for miniaturization, as their

initial size is rather large. From the proposed PIFAs we see an open possibility in the overall

size reduction, and notably the thickness of the antenna.

The wearability comes in line with the miniaturization of the antennas. The smaller the

antenna is, the better placement can be obtained, thus providing an optimal performance of

the wearable antenna. Wearable antennas intended for security applications require even a

more discreet approach, especially for undercover applications, where the integration of the

antennas within the wearer’s uniform is highly desirable.

In applications where the robustness of the communication link is an important aspect, the

use of more than one antenna can significantly improve the overall performance. Therefore,

space diversity becomes a logical solution, which in turn requires miniaturization of the

antennas. Small antennas are easier to place around the body. For the UHF bands the use

of two wearable antennas, for instance one on the chest and a second one on the back, can

assure almost omnidirectional communication coverage.

Miniaturization always leads to a trade-off between the antenna’s size and its performances.

One would like a higher radiation efficiency, more favorable radiation pattern or higher gain

while keeping the antenna size constant. These improvements can be achieved either by

modifying the antenna’s structure or by using adequate substrate and conductive materials.

In the case of the proposed PIFAs and materials that have been used, both approaches can be

applied.

A PIFA offers many possibilities, where some slight modifications (e.g. ground plane extension,

shorting wall or feeding position), can improve the radiation characteristics of the antenna.

Moreover, using materials presenting less losses (e.g. new polymers) will also improve the

antenna’s performances.

While considering the perspectives of the proposed PIFAs, an important aspect is also the

potential mass production of these antennas. Therefore, it should be borne in mind that

all the potentially selected materials and technologies should also fulfill some industrial

requirements so that the whole process can be easily conducted in an industrial environment.

Moreover, controlled and automatized environment will improve several aspects that were

found as weak points while fabricating the antennas in standard lab environment.
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