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Abstract

In diabetes, pancreatic 8-cells play a key role. These cells are organized within structures
called islets of Langerhans inside the pancreas and produce insulin. Insulin is one of
the main hormones contributing to glucose homeostasis, i.e, a stable regulation of blood
sugar. A decreased secretion of insulin leads to hyperglycemia, which is the hallmark
of diabetes. In vivo imaging of f-cells and their function are required for diagnosis
purposes and assessment of new treatments. However, this task is challenging due to the
localization of the pancreas deep inside the abdominal cavity, the small size of islets of
Langerhans (ranging from 30-500 pmin diameter) and their heterogeneous distribution
throughout the organ. Indeed, islets of Langerhans represent only 1-2% of the pancreas’
total volume.

All state-of-the-art medical imaging techniques such as Magnetic Resonance Imag-
ing (MRI), Single-Photon Emission Computed Tomography (SPECT) or Positron Emis-
sion Tomography (PET) cannot resolve individual islets. Furthermore, they require the
use of tracers to detect the S-cells. Hence, the research for imaging islets of Langerhans,
including the identification of specific S-cell tracers is a highly active field of research.
Indeed, no marker is currently available for clinical studies and diagnosis. For animal
models, optical techniques offer a sufficient spatial resolution to image individual islets
with a high specificity provided by fluorescent markers.

Optical Coherence Microscopy (OCM) is a novel interferometric imaging technique mea-
suring the back-scattered light from a sample to reveal its structure in depth. OCM
provides an intrinsic contrast depending on the spatial variation of the index of refraction.
A Fourier transform of the acquired spectrum extracts the whole depth structure, thereby
requiring only scans in two dimensions to obtain a three-dimensional image with a fast
acquisition time.

In this thesis, we exploited the label-free capabilities and fast acquisition rate of OCM to
study islets of Langerhans. We demonstrated that OCM signal is specific to the §-cell
volume due to the dominant scattering of the zinc-insulin crystalline structures inside
the secretory granules. Besides structural information, OCM reveals the vascularization
of pancreatic islets in situ. These advantages were exploited to image the progression of
autoimmune diabetes and for the characterization of 5-cell tracers. The intrinsic contrast
of OCM does not require genetically modified mice, nor the use of exogenous agents
to image islets and their vascularization. OCM enhanced with a confocal fluorescence
channel can assess (§-cell tracers labeled with a fluorophore in vitro and in vivo in wild



type mice. As a proof of principle, we assessed the specificity of Cyb.5-exendin-3, an
analogue of the glucagon-like peptide-1 receptor (GLP1R) for S-cells. Our results con-
firmed the co-localization of the fluorescence-tagged tracer with the OCM islet signal.
Time-lapse imaging reveals the accumulation of this tracer in the endocrine pancreas a
few minutes after injection and lasting over 4 hours. The high resolution of OCM serves
as a pre-clinical optical platform to facilitate the initial tests aiming to determine the
specificity of S-cell tracers in vivo in mice.

Finally, in order to perform non-invasive longitudinal studies, islets of Langerhans were
transplanted into the anterior chamber of the eye. This transplantation model allowed
us to follow individual islets over time during the autoimmune inflammation progression
in a spontaneous mouse model of type I diabetes. Using this approach, we quantified
the inflammation process together with the vascularization. We demonstrated that
alterations of the islet microvasculature accompany the progression of diabetes with a
strong correlation between the degree of insulitis and the density of the vascular network.

Keywords: Optical coherence Microscopy (OCM), Fourier domain or spectral domain,
extended focus OCM (xfOCM), dark field OCM (dfOCM), islet of Langerhans, vascular-
ization, angiography, blood flow, in vivo imaging, 3-dimensional imaging, fluorescence,
label-free, exendin-3, glucagon-like peptide 1 receptor, quantitative imaging, nonobese
diabetic mouse, longitudinal, anterior chamber of the eye.
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Résumeé

Les cellules § pancréatiques ont un réle majeur dans le diabéte. Elles s’organisent en struc-
tures appelées ilots de Langerhans dans le pancréas et produisent I'insuline. L’insuline est
une des hormones qui contribue a ’homéostasie du glucose, c’est-a-dire une régulation
stable du niveau de sucre dans le sang. Une diminution de la production d’insuline
cause I'hyperglycemie, qui est une caractéristique importante du diabete. L’imagerie in
vivo des cellules 5 et de leur fonction est requise pour le diagnostic et I’évaluation de
nouveaux traitements. Cependant, il s’agit d’une tache ardue en raison de la localisation
des ilots dans le pancréas, un organe situé a l'intérieur de la cavité abdominale, et donc
difficilement accessible. De plus, les ilots dont le diametre varie entre 30-300 pm sont
distribués de maniére non-homogene a travers le pancréas et représentent seulement 1 a
2% du volume total de 'organe.

Toutes les techniques d’imagerie médicales disponibles, telles que 'imagerie par réso-
nance magnétique (MRI), la tomographie d’émission monophotonique (SPECT) ou la
tomoscintigraphie par émission de positons (PET) ne peuvent pas résoudre d’ilots indivi-
duels. En outre, elles nécessitent 'utilisation d’un traceur pour détecter les cellules 3.
Par conséquent, 'imagerie des ilots de Langerhans ainsi que l'identification de traceurs
pour les cellules 3 sont des domaines de recherche tres actifs. En effet, il n’existe pas
encore de traceur disponible pour des études cliniques ou pour le diagnostic. Pour des
modeles animaux, les méthodes optiques possédent un pouvoir de résolution spatial qui
permet l'imagerie d’ilots individuels avec une haute spécificité en utilisant des marqueurs
fluorescents.

La microscopie par cohérence optique (OCM) est une nouvelle technique d’interféromé-
trie qui mesure la lumiere rétrodiffusée par un échantillon, permettant ainsi de révéler
sa structure en profondeur. L’OCM possede un contraste intrinseque qui dépend des
variations spatiales de I'indice de réfraction. Une transformée de Fourier du spectre
extrait 'information sur toute la profondeur, permettant ainsi d’effectuer seulement un
balayage de I’échantillon en deux dimensions pour obtenir un volume complet avec un
temps d’acquisition court.

Dans cette these, nous exploitons I'avantage de la microscopie sans agent de contraste
et la rapidité d’acquisition de ’OCM pour étudier les ilots de Langerhans. Nous dé-
montrons que le signal en OCM des ilots de Langerhans est spécifique aux cellules
grace a la rétrodiffusion dominante des structures crystallines composées d’insuline et de
zinc stockées dans les granules sécrétrices. Outres des informations structurelles, ’'OCM
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révele la vascularisation des ilots dans le pancréas. Ces avantages ont été exploités pour
I'imagerie de la progression du diabete auto-immune et pour caractériser la spécificité de
traceurs pour les cellules 8. La microscopie sans agent de contraste ne requiert ni de souris
modifiées génétiquement pour détecter les ilots, ni I'injection d’un agent de contraste
pour révéler la vascularisation. L’ajout d’un canal de fluorescence a ’OCM permet de
déterminer la spécificité de traceurs marqués avec un fluorophore pour les cellules 3, tant
au niveau cellulaire que dans des souris. Nous illustrons cette fonctionalité en évaluant la
spécificité du traceur Cyb.5-exendine-3, un analogue du récepteur glucagon-like peptide-1
(GLP1R) pour les cellules 8. Nos résultats confirment la co-localisation du traceur marqué
avec un fluorophore avec le signal OCM de I'1lot. Des images dans le temps montrent
I’accumulation du traceur dans la partie endocrine du pancréas quelques minutes apres
I'injection et qui persiste 4 heures apres l'injection. La haute résolution de 'OCM sert de
plateforme pré-clinique facilitant les tests initiaux visant & déterminer la spécificité de
marqueurs pour les cellules 5 chez les souris.

Finalement, afin d’effectuer des études longitudinales, nous avons adopté le modele de
transplantation d’illots dans la chambre antérieure de I'ceil. Ce modele de transplan-
tation a permis d’étudier dans le temps des ilots individuels durant la progression de
I'inflammation autoimmune dans un modele spontané du diabéte de type I chez la souris.
Gréace a cette approche, nous avons quantifié I'inflammation des ilots en méme temps
que la vascularisation. Nous avons ainsi démontré qu’'une altération de la microvaculari-
sation accompagne la progression du diabete avec une forte corrélation entre le degré
d’inflammation et la densité de la vascularisation.

Mots clés : microscopie par cohérence optique (OCM), détection dans le domaine de
Fourier (FDOCM), OCM a profondeur de champ (xfOCM), OCM a champ sombre
(dfOCM), ilots de Langerhans, vascularisation, angiographie, flux sanguin, imagerie dans
un organisme vivant, imagerie en trois dimensions, fluorescence, imagerie sans agent de
contraste, exendin-3, récepteur du glucagon-like peptide 1, imagerie quantitative, souris
diabétique non-obeése, longitudinal, chambre antérieure de 1’ceil.

iv



Contents

Abstract (English/Francais)

1

General concepts
1.1 Pancreas, islets and S-cells . . . . . . . .. ... 0L
1.2 Diabetes mellitus . . . . . . . . . .. .. .. ... e
1.3 Imaging the pancreas . . . . . . . . . . .. ...
1.3.1 Structural imaging of islets of Langerhans . . . . . .. .. .. ...
1.3.2  Vascularization and blood flow in the pancreas and islets of Langer-
hans . . . . . .
1.4 Light: an electromagnetic wave . . . . . . . . ... ... . L.
1.5 Optical Coherence Microscopy . . . . . . . .« oo i v
1.6 Thesis objectives . . . . . . . . L
Label-free structural imaging of the pancreas
2.1 Journal article . . . . ...
2.1.1 Introduction . . . . . .. .. ...
2.1.2 Methods . . . . . . .. e
2.1.3 Results . . .. .. e
2.1.4 Discussion . . . . . ... Lo
2.1.5 Conclusion . . . . .. .. e
Label-free functional imaging of the pancreas
3.1 Introduction. . . . . . . . . . . e
3.2 Research design and methods . . . . . . . ... ... ... ...
3.3 Results. . . . . . e
3.4 Discussion . . . . . .. e e e
OCM and the specificity of -cell tracers
4.1 Specific tracers for S-cells . . . . . .. . ... L o
4.2 Journal article . . . . . .. ...
4.2.1 Introduction . . ... ... .. ... ...
4.2.2 Research design and methods . . . . . . .. .. ... ... .....
4.2.3 Results . . . ... . e

10
14

15
16
16
18
25
30
32

35
35
36
41
46

49
49
52
52
93
o6



Contents

4.2.4 Discussion . . .

5 Label-free longitudinal study of type I diabetes

6

5.1 Journal article . . . .
5.1.1 Introduction .
5.1.2 Results . . ..
5.1.3 Discussion . . .

5.2 Material and Methods
5.2.1 Animals . . . .

5.2.2  Pancreatic islet isolation, culture and ACE transplantation

5.2.3 Immunohistochemistry . . . . . . .. ... ... 0L,

5.2.4 Bz vivo imaging
5.2.5 FOCI imaging
5.2.6 Data processing

with dAfOCM . . . . .. ... oo

5.2.7 TImage post processing . . . . . . . . . ... ...

5.3 ACE long term imaging

Conclusion and Perspective

Acknowledgements

Bibliography

Curriculum Vitae

vi

69
70
71
73
81
86
86
86
87
87
88
89
92
94

97

103

123

123



1} General concepts

1.1 Pancreas, islets and (-cells

The pancreas is a gland located in the abdominal cavity (Fig. 1.1). This organ is attached
to the stomach, the duodenum and the spleen. The pancreas has two distinct functions:
an exocrine function involved in digestion and an endocrine function important for glucose
homeostasis. The major part of the pancreas consists of exocrine tissue composed of
acinar cells producing digestive enzymes and ducts that transport these enzymes into the
duodenum. The endocrine function is assumed by structures called islets of Langerhans,
which are scattered throughout the exocrine tissue, and release hormones into the blood
vessels. The endocrine tissue represents only 1-2% of the total mass of the pancreas. The
islet size (ranging from ~ 30-500 pm) is conserved among different species [1] whereas
the number of islets depends on the species. Indeed, the human pancreas contains ~ 1
million of islets [2, 3] whereas a mouse pancreas contains ~ 4500 islets as demonstrated
using Optical Projection Tomography (OPT) [4]. A human pancreas weighs between
60-100 g (12-15 centimeters long), therefore the S-cell mass represents only around 1-2 g.

In rodents, islets of Langerhans are made of a core of -cells (75%) producing insulin
surrounded by a ring of a-cells (19%), d-cells (6%), PP-cells and e-cells producing
glucagon, somatostatin, pancreatic polypeptide and ghrelin, respectively [5]. Human
islets have a more heterogeneous organisation, with more a-cells (35%) and d-cells (11%)
mixed with the S-cells (54 %) [5-7]. Insulin is stored in secretory granules in a crystalline
form made of hexamers of two zinc ions per six insulin molecules [8, 9]. A S-cell contains
~ 10’000 granules [10], each with a diameter of ~ 240 nm and carrying ~ (3 — 4) - 10°
insulin molecules [11, 12]. Insulin regulates glucose homeostasis mainly through its
action on the liver, muscles and adipose tissues. Additional insulin target cells can
be found in the central nervous system, endocrine cells of the pancreas and the gut.
These target cells participate in glucose clearance from the blood upon insulin signal
transduction. Insulin secretion is a complex process where glucose concentration is one
of the important actors. The autonomic nervous system [13] and incretin hormones from
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Figure 1.1: Overview of the relation between the pancreas, islets of Langerhans, 3-cells
and insulin. Insulin enables peripheral cells to take up glucose from the blood stream.

the intestines such as glucagon-like peptide 1 (GLP1) and gastrointestinal insulinotropic
peptide (GIP) [3] also regulate insulin secretion. Amino acids alone do not trigger insulin
secretion or enhance glucose-stimulated insulin secretion (GSIS) [14, 15]. However, either
an acute administration of individual amino acids or a mixture of specific amino acids at
physiological concentrations can increase GSIS [16]. Indeed, co-injections of carbohydrate
with a mixture of amino acids and protein increase insulin response in type II diabetic
patients [17]. Similarly, fatty acids can be important for GSIS, but in the absence of
glucose they have no effect on GSIS [18]. Undeniably, islets of Langerhans are important
actors in glucose homeostasis. However, recently there have been indications that adipose
tissues contribute to glucose homeostasis by secretion of adipokines such as adiponectin
and leptin [19, 20]. Leptin treatments in a spontaneous autoimmune mouse model or in
chemically induced (alloxan, streptozotocin) diabetic mice restore normoglycemia [21-23],
even in the absence of increased insulin secretion. Similarly, grafts of brown adipose
tissue can revert diabetes [24]. The full mechanisms beyond this glucose regulation are
not yet fully elucidated. Finally, an underestimated player of glucose homeostasis is the
brain. Indeed, there are evidences that the brain can regulate glucose via both insulin
dependent and insulin-independent mechanisms [25]. This suggests a tight link between
the brain and the pancreatic islets in glucose homeostasis.

Although the endocrine part constitutes a small portion of the pancreas, it receives
around 5% to 15% of the total pancreatic blood flow [26-30]. Pancreatic blood vessels
have a particular anatomy both at the organ level and inside islets of Langerhans. In the
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pancreas, larger islets are located centrally near large blood vessels whereas smaller islets
are mainly situated at the periphery of the organ [31, 32]. Inside the islets of Langerhans
capillaries form a glomerular-like network [32], which is ten times more fenestrated than
exocrine capillaries [33].

A correct vascularization of the islets seems required for a proper secretion of the different
hormones [34-36]. Different studies suggest that the specific organisation of the different
cell types inside islets of Langerhans and the vascularization pattern are functionally
linked. Three different blood flow patterns have been proposed: (i) inner-to-outer in
which the center (-cells are perfused before the other endocrine cells, (ii) outer-to-inner
in which the non-g-cells are first perfused and (iii) top-to-bottom where the islet is
perfused from one side to another independently of the cell types [26, 37]. However, by
using line-scanning confocal microsopy, Nyman et al. [38] showed a preferential inner-
to-outer pattern in murine islets although 35% of the islets had a top-to-bottom pattern.
These results are in agreement with studies that indicate an inner-to-outer pattern
in hamster [39], rat and human islets by using corrosion cast [32] or anterograde and
retrograde perfusion experiments [40-42]. Furthermore, blood flow is tightly regulated
by glucose. Indeed, different techniques have shown in rodents an increased blood flow
in the endocrine pancreas during hyperglycemia whereas no blood flow change was
observed in the exocrine part [28, 30, 43]. The studies reported above seem to indicate
that vascularization plays an important role in the functioning of islets of Langerhans.
However, different studies targeting the vascular endothelial growth factor! (VEGF) [35,
45, 46] indicate that a 50% decrease of the islet vasculature does not impair [-cell
survival. Yet, impaired glucose tolerance have been observed with a decrease in the first
phase of insulin secretion but no change in S-cell mass or proliferation. Nevertheless,
there are indications that islet vascularization is remodeled during the pathogenesis of
diabetes [47-49] and that the vascular permeability is decreased [30, 50-52].

1.2 Diabetes mellitus

The hallmark of diabetes is hyperglycemia resulting from insufficient insulin secretion from
pancreatic -cells, insulin resistance of tissues or a combination of both. Other symptoms
of diabetes are ketoacidosis, polyuria, polydipsia, weight loss and blurred vision. Long
term effects of diabetes include retinopathy, renal failure, peripheral neuropathy (foot
ulcers, amputations), increase risk of heart and cerebrovascular diseases [53]. According
to the World Health Organisation (WHO), more than 340 million people worldwide have
diabetes [54, 55].

Diabetes can be separated into type I and type II diabetes mellitus [56]. Type I
diabetes mellitus (T1DM) accounts for 5-10% of diabetic people, but its prevalence

Vascular endothelial growth factor (VEGF) stimulates angiogenesis and has been shown to be involved
in the vascularization of pancreatic islet [44].
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is increasing [57]. The characteristic of T1IDM is an auto-immune destruction of (-
cells, which results in an insufficient insulin production [58-60]. T1DM is a polygenic
disorder [61] with environmental factors [62]. Indeed, the concordance rate between
monozygotic twins is only around 50% [63]. T1DM is usually diagnosed before or during
puberty even if later diagnosis sometimes occurs. Treatment of T1DM includes daily
exogenous insulin injection and multiple blood glucose tests. An alternative, but rare
treatment is the transplantation of islets of Langerhans [64] (Edmonton protocol [65])
or pancreas transplantation [66]. In most cases, transplantation of islets of Langerhans
is performed into the liver through the hepatic portal vein. However, the scarcity of
organ donors and the need of multiple cadaveric pancreases to transplant one patient is
a limiting factor. In addition, transplantation success is limited since only 10% of the
patients are insulin-independent 5 years after transplantation [67-69].

Type II diabetes mellitus (T2DM) accounts for the majority of diabetic people. T2DM is
more heterogeneous than T1DM, involving both defects in insulin secretion and insulin
action (insulin resistance) [70], and is often associated with obesity and older age even if
genetic factors have been discussed [71]. Treatments for T2DM include insulin injection
or other drugs that target [-cell or peripheral tissues. In general, drugs that would
preserve the (-cell mass by promoting proliferation, preventing apoptosis or improving
insulin secretion are potential treatments for both types of diabetes [72].

In most patients, diabetes is a multi-factorial disease with environmental factors and
multiple genetic predispositions. However, maturity onset diabetes of the young (MODY)
are examples of rare monogenic autosomal dominant inherited forms of diabetes. Up
to now, mutations in 6 genes have been reported in MODY [73, 74]. Some syndromic
forms of MODY are associated with defects in other organs. Indeed, mutations in the
hepatocyte nuclear factor (HNF) as in MODY3 (HNF-1a) have been associated with
liver defects [75] and mutations in HNF-15 present in MODY5 are mainly linked to
kidney defects (renal cysts) [76, 77].

There are also rare cases of neonatal diabetes (transient or permanent), with no evidence
of autoimmune markers. This neonatal diabetes are mainly due to mutations in genes
involved in fS-cells function and pancreas development [78]. Finally, gestational diabetes
mellitus is defined as glucose intolerance during the pregnancy. Even if usually glycemia
is restored after delivery, gestational diabetes is associated with a higher risk to develop
diabetes in the future [79].

To mimic diabetes mellitus, rodent models have been extensively used in diabetes research
to study the pathogenesis and its complications [80, 81]. Similarly, new treatments and
preventative strategies are initially tested in animals. Animal models for T1DM can be
chemically induced by using drugs such as alloxan or streptozotocin, which selectively
destroy [-cells. Spontaneous models of TIDM exist both in the Biobreeding (BB) rat [82]
and Nonobese diabetic (NOD) mouse [83]. Nevertheless, the most widely used model
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in the literature is the NOD mice. In the NOD mice, 60-90% of females and 10-30% of
males spontaneously develop T1DM. Some NOD mice show an inflammation of the islets,
a process called insulitis already at 4-5 weeks old and develop diabetes around 10-14
weeks [84-86]. Animal models for T2DM are also available [87]. Mice deficient for leptin
signaling are widely used as a model for T2DM. Leptin is a hormone that regulates food
intake. Rodents that carry mutations either in the leptin (ob/ob mice) or in the leptin
receptor (db/db mice, Zucker Diabetic Fatty rat) become obese and insulin resistant [88,
89]. An alternative and closer model to the reality of T2DM are high fat diet mice [90].

1.3 Imaging the pancreas

1.3.1 Structural imaging of islets of Langerhans

Currently, the progression of diabetes can only be monitored in indirect ways, e.g., blood
glucose, HbAlc levels (glycated haemoglobin indicates the average blood sugar level over
weeks/months), insulin, and C-peptide measurements. A more direct and informative
way of monitoring the progress of the disease would be via direct imaging of the 5-cells,
and especially their mass, to follow diabetes progression. However, this is challenging for
multiple reasons: (1) the localization of the pancreas deep inside the abdominal cavity,
(2) the low density of these islets in the pancreas and (3) their varying shape and small
size, which varies from 30 to 300 pm in diameter. Therefore, an ideal imaging technique
should have a high spatial resolution, a good sensitivity, a sufficient penetration depth, a
large field of view, and be fast. Several methods are available for imaging [5-cells, always
with a trade-off between penetration depth and resolution. A global overview of these
methods is provided in Figure 1.2.

Non-invasive techniques such as Magnetic Resonance Imaging (MRI), Positron Emission
Tomography (PET), and Single-Photon Emission Computed Tomography (SPECT) are
currently the most suitable methods for human pancreas imaging. SPECT and PET have
a higher sensitivity but lower resolution than MRI. In a recent paper, Lamprianou et
al. showed an enhanced contrast of murine islets after manganese infusion based on
MRI. This small animal imaging enabled the localization of big islets (> 50 pm) with
a 14.1 Tesla MRI instrument [91]. Standard equipments used in clinical settings have
a much lower spatial resolution (> 5 mm) and can therefore not resolve individual
islets [92, 93]. Nevertheless, imaging of the pancreas after manganese injection allows
discriminating type II diabetic and normoglycemic patients with 1.5 Tesla MRI [94]
and is sensitive enough to detect a [-cell mass decrease before the clinical onset of
T1DM in mice with a 7 Tesla MRI [95]. In addition, MRI and SPECT/PET require
the use of contrast agents or radioligands to distinguish between the endocrine and
exocrine pancreas. No contrast agent currently has the appropriate specificity for -cell
imaging to be used in clinics [96, 97]. Even though, from a clinical point of view, only
non-invasive techniques are appropriate, invasive or semi-invasive techniques could be
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Figure 1.2: Overview of the different techniques available for $-cell imaging as a function
of their resolution and penetration depth. Except OCM, all these techniques require
labeling. MRI, PET and SPECT are the only non-invasive techniques applied in clinical
settings.

used as a tool for understanding the mechanisms underlying diabetes in animal models.
To date, immunohistochemistry of the pancreas has been the most widely used technique
to quantify the S-cell volume. This method is limited to 2-dimensional view of fixed tissue
lacking spatial and temporal information and it may lead to biases. This approach, while
being technically straightforward, is time consuming, and is not suitable for analyzing
a large cohort of mice. In order to perform quantitative studies on a large number
of animals, new methods capable of visualizing and determining the §-cell volume are
needed. For animal research, bioluminescence imaging of transgenic mice expressing
luciferase in S-cells is very sensitive, and has a better resolution than MRI or PET [98-
101]. However, bioluminescence has a very poor axial resolution that makes it unable
to resolve individual islets. The development of transgenic mice expressing the green
fluorescent protein (GFP) in S-cells [102, 103] allowed the use of optical techniques

6



1.3. Imaging the pancreas

to image the pancreatic islets. Optical techniques like confocal microscopy allow for
very high resolution, but their penetration depth is limited to about 50 pm [38] in the
pancreas. Two-photon microscopy allows for a deeper penetration of about 250 pm in the
pancreas [104]. However, it is limited to small sample sizes due to the time-consuming
three-dimensional scanning required. In contrast, Optical Projection Tomography (OPT),
is ideal to obtain a global and quantitative measurement of the S-cell volume, but is
limited to ex vivo small organ imaging [4, 31, 105, 106]. Still, these methods depend on
fluorescent labels.

Optical Coherence Microscopy (OCM) is the only reported technique to resolve in
vivo and ex vivo individual islets without labeling up to 300-400 pm in depth with a
micrometric resolution [107]. Owing to this label-free property, OCM does not rely on
genetically engineered mice to detect islets [92]. Therefore, it holds great promises to
better understand changes in S-cell volume during diabetes progression.

Furthermore, transplantation of islets into the anterior chamber of the eye [108] is a
new method that allows longitudinal and non-invasive studies of islets. This approach
enables to monitor re-vascularization of the graft [109], the immune response after
transplantation [110], the autoimmune response in TIDM [111, 112], the autonomic
nervous system inervation of islets [13], islet plasticity [113] and the role of S-cell volume
during the onset and remission of TIDM [114]. A study in a baboon model rendered
diabetic with streptozotocin demonstrates that the grafted islets are functional in this
location and control glucose homeostasis over almost a year [115].

1.3.2 Vascularization and blood flow in the pancreas and islets of Langerhans

The deep localization of the pancreas in the abdominal cavity and the distribution of the
islets throughout the pancreas renders imaging their vascular network and blood flow
measurements very challenging. To measure the blood flow in the pancreas, one method
consists in injecting microspheres into the blood stream. During the experiment, reference
blood samples are taken. After dissection, the number of microspheres in the organ is
compared to the average number of microspheres in these reference blood samples. Blood
flow Qor¢ is calculated by counting the number of microspheres in the islet Ny, using
the following equation: Qorg = Qref X Norg/Nyes where Ny.¢ represents the number of
microsphere present in a blood sample and withdrawn at a rate Q.s. This microsphere-
based technique was applied mainly on rats and showed that (1) the endocrine part
received approximatively 10% more blood flow than the exocrine pancreas [29] and
(2) after glucose injection, islets blood flow increases by about 80% [28, 30] whereas
insulin injection has no influence on islets blood flow [116]. In vivo measurements have
been achieved through intravital fluorescent microscopy either in the native pancreas [38,
43, 117] or in grafted islets in striated muscle by using a dorsal window [39, 118-120].
The blood flow is measured by injecting labeled dextran or labeled red blood cells.
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Recently, Nyman et al. [38] showed that there are two predominant blood flow patterns
in murine islets: (1) a perfusion of the (-cell core center before the peripheral part
and (2) a perfusion from one side to the other of the islet regardless of cell type. They
confirmed that glucose infusion increases islet blood flow without change in the exocrine
pancreas [43]. Nevertheless, islets blood flow patterns are still subject to discussion.
Closer to clinical imaging, MRI using paramagnetic contrast agent is applied in animal
models to see difference in vascular permeability [52, 121].

1.4 Light: an electromagnetic wave

The relevant description of light in the context of this thesis is based on wave theory
where light is described as an electromagnetic field, which can be expressed as [122]:

Eg(z,t) = a(z) cos(kz — wt + @) (1.1)

where z is the spatial coordinate along the propagation axis, ¢ the temporal coordinate,
and a(z) is the amplitude of the wave. k is the wavenumber defined as k = 27” where A is
the wavelength. w = 27v is the angular frequency related to the frequency v and ¢ the
phase. The light frequency can also be related to the speed of light in vacuum ¢y and the
refractive index n of the medium: v = 2. The sign of the wavenumber dependency is
related to the forward or backward propagation. Assuming ¢ = 0 and using the Euler’s
formulas?, we can rewrite the real wavefunction Egr(z,t) (Equation 1.1) using complex
notation:

E(z,t) = a(z) e“t e (1.2)
If we look only at the time dependence, we can write:
E(t) =ae™! (1.3)

Figure 1.3a shows a graphical representation of Equation 1.3. Here, the light field is
represented by an arrow rotating with a frequency w.

The frequency of light is in the order of 10'4 Hz, which is too fast to be detected by any
detector. Detectors integrate over a certain time 7" (much longer than an optical period
%) and measure the light intensity instead of the field amplitude:

[ = (EE") = ;/OT E(t) B*(t)dt = |E(t)? (1.4)

where E*(t) is the complex conjugate of E(t). Interferometry compares or correlates
light fields propagating over a certain distance. This distance translates into a phase

2cos(0) = e +25_i9
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Figure 1.3: Representation of a light wave. (a) Representation of the complex wave as a
vector rotating with a pulsation w on the real (Re) and imaginary (Im) axis. (b) Two
waves with a phase delay and (c) intensity resulting of the superpostion of two coherent
waves as a function of the phase difference.

shift ¢ = kAL = 2rAL/X where L represents a distance. The corresponding shifted
wave is described as:

E(t) = a et Wtted) _ , pi(wt+kAL) (1.5)

Figure 1.3b represents two waves with the same frequency but shifted by kAL. If we
denote:

Ei(t) = a1 et and Es(t) = ay Wttd) — g, HWiHkAL) (1.6)

the intensity of Ej(t) alone is [} = (Ey E}) = a1 €™t - ay ™! = a3. Similarly for Fa(t),
the intensity is Iy = a3. However, the intensity detected by the superposition of these
two coherent fields yields:

I = {(E1+ E)(Ey + E2)*) = (|E1|* + | E2|* + E\E5 + E2EY)

+ayas et e—(iwt+kAL)

(kAL)

—iwt (twt+kAL)

iwt‘2 + ‘a2 e(iwt+kAL) ’2 +ajage e

=lare

(—kAL)

2 2
=aj+a;+ajaze +ajaze

=a? + a3 +2ay ag cos(kAL)
If we assume equal field strengths, i.e, a = a1 = a9, we obtain:
I = 2a* + 2a® cos(kAL) = 2a*(1 + cos(kAL)) (1.7)

The intensity in an interferogram depends directly on the value of kAL. If cos(kAL) = 1,
the recorded intensity is I = 4a?, which is higher than the sum of the intensities of
the two beams. On the other hand, if cos(kAL) = —1, the recorded intensity is I = 0.
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Chapter 1. General concepts

Here, we see directly constructive and destructive interferences:

e constructive interference if kAL = 2nm, with n =0, 1,2, ...

o destructive interference if kAL = (2n + 1)7 with n =0,1,2, ...

Figure 1.3c depicts the measured intensity in function of the phase delay kAL.

1.5 Optical Coherence Microscopy

Optical Coherence Microscopy (OCM) enables non-invasive cross-sectional imaging of
biological tissue by detecting the back-reflections of a broadband light source from
a sample. OCM is an interferometric imaging method based on Optical Coherence
Tomography (OCT), but with a lateral resolution increased by optics with higher
numerical aperture (NA). The contrast of OCM depends on the variation of index
of refraction in the sample. In order to assess the sample in depth, the scattered
light is superimposed with a strong reference field resulting in an optical coherent
amplification. This superposition yields an interference pattern containing a spectral
modulation depending on the difference of optical path length between the reference and
the different reflective interfaces of the sample. Optical Coherence Microscopy (OCM) is
based on a Michelson interferometer to split a broadband light source into a reference

and a sample arms (Fig. 1.4).
While two monochromatic waves as in Equation 1.7 will interfere for “ever”, i.e., even for

macroscopic distances, polychromatic can only interfere within a given range called the
coherence length [.:

~ 2In2 \§
onm AN

(1.8)

where \g is the central wavelength, AX the full-width-at-half-maximum (FWHM) of
the light source and n the index of refraction of the medium. The coherence length I,
determines the axial resolution in OCM whereas the lateral resolution depends on
the wavelength and on the numerical aperture of the optical system, like in classical
microscopy.

In OCM, the sample beam FE; is back-scattered by a sample whereas the reference
beam FE, is reflected by a fixed “reference” mirror:

N
Ey(k,t) = S(k) Y oy e’@F=ntel) and B, (k,t) = S(k)r, ¢@Fartet) (1.9)
n=1

where 75, and z,, are the reflectivity and the depth position of the n-th layer in the
sample, 7, the reflectivity of the reference arm, z, the distance to the reference mirror,

10
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Figure 1.4: Scheme of OCM principles. The light source is split into two parts, the
reference and the sample arm. The superposition of the two fields is detected by a
spectrometer and mapped into the k-space. Finally, a Fourier transform (FT) allows
for the reconstruction of the tomograms in the spatial domain, providing a view of the
depth structure.

and S(k) the field amplitude of the source. The two beams are recombined together
and interfere constructively or destructively for the different wavenumbers k of the
source (Equation 1.10). The correlation between the reference and sample field gives
the cross-correlation term (CC). If the optical distance between two different layers
in the sample is smaller than the coherence length (Equation 1.8), the light reflected
from these two layers interferes and gives rise to the so-called autocorrelation (AC)
contribution. This term is independent of the reference field. The DC term is a constant
signal containing the back-reflected intensities of both the sample and the reference arm.

I<k) = <(Er(k7t) + ES(k7t))(Er(k7t) + Es<k7t))*>

N N
- ]S(k)\Z { (r% + Z r§n> + Z TsnTsm COS(2k (25 — 2sm))

n=1 n#Em

N
+ Z rrTsn cos(2k (2, — zs,n))}

n=1

= Ipc + Iac + Icc (1.10)

The expression of Equation 1.10 represents the intensity per k-channel, where the
interference of the light field F(k,t) is averaged during the integration time of the
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Figure 1.5: Decomposition of the OCM signal in the case of a simple sample made of
two layers like in Figure 1.4. (a) The different components of the interference pattern in
the wavenumber detected by a spectrometer. (b) The corresponding Fourier transform of
each modulation. The stars indicate that the distance between the two peaks representing
the two layers of the sample corresponds to the distance between the zero position and

Fourier transform

the autocorrelation peak.
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1.5. Optical Coherence Microscopy

detector according to Equation 1.4. Figure 1.5a shows the different contributions of
a sample with N-reflective layers in the simplified case of N = 2 layers. The depth
structure of the sample can be obtained by applying a Fourier transform along k:

N
F(k)}Hz) = F{S(k)*}(2) * { (T? +> T?,n> 5(z)
n=1

DC
N
+ Z Ts;nTs,m (5(25 - Q(Zs,n - zs,m)) + 5(2 + 2(23,71 - Zs,m)))
n#m
AC

N
+ > reran (02 = 22 — Zo)) + (2 + 220 — 250))) } (1.11)
n=1

cC

where .7 {I(k)}(z) is the Fourier transform of I(k) and 6(z) is the Dirac function®. Since
I(k) is a real function, .#{I(k)}(z) is symmetric and only half of the information in
Equation 1.11 is needed. To prevent an overlaping of these two symmetric parts, the
reference arm has to be shorter than the sample arm. The first part in Equation 1.11 is the
DC contribution centered around z = 0 and does not depend on k. The second term is the
AC contribution caused by the interference between the different layers inside the sample.
Normally, the AC contribution is weak and can be neglected. However for pancreas
imaging, the islet scattering is so strong that this AC contribution appears. Finally, the
CC term contains the sample information. Figure 1.5b shows the corresponding Fourier
transform of the different signal contributions coming from a simple sample.

Classical OCT systems have both a Gaussian illumination and detection. Therefore,
by increasing the lateral resolution (proportional to ﬁ) the depth of field is decreased
(proportional to ﬁ) Leitgeb et al. [123] proposed an extended focus OCM (xfOCM)
by using a Bessel beam illumination to maintain an almost uniform resolution over the
whole depth of field despite a high NA.

OCT is an established technique in ophthalmology [124] which has driven OCT develop-
ment. Other medical fields such as cardiology [125], dentistry [126] and dermatology [127]
appeared with novel applications at a later time. xfOCM has been applied successfully
to image murine islets of Langerhans [107] and to visualize cerebral amyloid-/ plaques, a
major neuropathological hallmark of Alzheimer’s disease [128]. When weakly scattering
tissues such as cells or culture tissues are observed with OCM, the weakly scattered signal
of the sample is overwhelmed by the strong reflection of the sample holder. To overcome

3Using the definitions of the Fourier Transform: F(z) = F{f(k)}(z) = j;o f(k)e™?™#F dk the

Inverse Fourier Transform : f(k) = fj—;o F(2)e*™**dz, and the following properties: . {cos(2ks)}(z) =
1(0(z+s)+6(z—s)) and F{1}(z) = é(2).

13
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this limitation, Villiger et al. [129] implemented a dark field contrast for OCM (dfOCM).
The basic configuration of dfOCM is similar to the xfOCM setup but a disc-shaped
amplitude mask is added in the Fourier detection plane to block specular reflections from
the sample slide.

1.6 Thesis objectives

The aim of this thesis is to establish OCM as a new tool to study pancreatic islets.
In chapters 2 and 3, we implement the tools required to apply OCM to the study of
pancreatic islets. Chapter 2 implements an algorithm for segmenting islets of Langerhans
in OCM tomograms. This algorithm was further used to extract the distribution of
islets of Langerhans and confirmed a similar distribution that the one obtained with
Optical Projection Tomography (OPT). Based on this distribution, we developed in
silico simulations to compare the performance of two metrics to detect deviations from a
regular situation by imaging only a subpart of the pancreas: (1) a metric based on the
integral S-cell volume and (2) a metric based on islet distribution. The statistical analysis
confirmed the islets of Langerhans to be non-homogeneously distributed throughout the
pancreas and the islet distribution to perform better than the integral S-cell volume
criterion.

Structural information on the §-cell volume is an important parameter to measure since
it is significantly reduced upon the clinical declaration of autoimmune diabetes. However,
another important feature of pancreatic islets is their rich and dense vascularization.
Since OCM can detect variations in index of refraction, it is also sensitive to moving
scatters such as red blood cells. Chapter 3 establishes the potential of OCM to reveal
the vascular network within the pancreas as well to assess blood flow velocity.

There is an intensive worldwide research to find specific tracers for §-cell in order to
image the §-cell volume in a non-invasive manner in humans (Section 4.1). Since OCM
allows for the label-free detection of islets of Langerhans, we demonstrate in Chapter 4
that OCM combined to a fluorescence channel can facilitate the initial screening for
potential S-cell markers in animal models.

The label-free imaging of both the S-cell volume and vascularization makes OCM highly
suitable for longitudinal studies in animal models. However, the possibility to perform
longitudinal imaging in the pancreas is limited as it is almost impossible to follow the
same islet at different points in time during the disease progression or treatments, i.e.,
several weeks. In order to study pathological effects at the level of a single islet, we adopt
the anterior chamber of the eye (ACE) transplantation model in Chapter 5. Using this
approach, we were able to follow the destruction of the §-cell volume and the associated
reorganization of the vascularization of individual islets in a spontaneous animal model
of T1IDM. In this chapter, we also investigated the origin of the strong OCM signal for
the pancreatic islet.

14



Label-free structural imaging of the
pancreas

Visualization of pancreatic islets is essential to understand the onset and progression
of diabetes, as well as to monitor putative beneficial treatments for conserving S-cell
function or for promoting their neogenesis. Proof of principle of the structural imaging of
both the pancreas and islets of Langerhans has been demonstrated by Villiger et al. [107].
However, no comparison with other imaging techniques in terms of estimation of the 3-cell
volume or distribution has been performed. In order to gain quantitative information
from OCM measurements, a segmentation of the targeted structure is required. In this
chapter, we describe a method for segmenting pancreatic islets in the pancreas using an
active contours algorithm [130]. In vivo imaging with OCM is limited to a subpart of
the pancreas. Therefore, it is important to determine which kind of information can be
extracted based on a partial imaging of the pancreas. Based on ex vivo imaging data, we
oppose the classical total §-cell volume to the islet-based distribution as a criterion to
detect early deviation from a healthy state. Taking into account several hypotheses for
the islets destruction during the progression of diabetes, we conclude on the performance
and information gain of this alternative distribution-based criterion.
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Chapter 2. Label-free structural imaging of the pancreas

2.1 Journal article
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Diabetes imaging—quantitative assessment of islets
of Langerhans distribution in murine pancreas us-
ing extended-focus Optical Coherence Microscopy
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Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland

Diabetes is characterized by hyperglycemia that can result from the loss of pancreatic

insulin secreting (-cells in the islets of Langerhans. We analyzed ex vivo the entire
gastric and duodenal lobes of a murine pancreas using extended-focus Optical Coher-
ence Microscopy (xfOCM). To identify and quantify the islets of Langerhans observed
in xfOCM tomograms we implemented an active contour algorithm based on the level
set method. We show that xfOCM reveals a three-dimensional islet distribution con-
sistent with Optical Projection Tomography, albeit with a higher resolution that also
enables the detection of the smallest islets (< 8000 pm?). Although this category of
the smallest islets represents only a negligible volume compared to the total 5-cell vol-
ume, a recent study suggests that these islets, located at the periphery, are the first
to be destroyed when type I diabetes develops. Our results underline the capability of
xfOCM to contribute to the understanding of the development of diabetes, especially
when considering islet volume distribution instead of the total 5-cell volume only.

2.1.1 Introduction

Diabetes is a major health problem that results from defective pancreatic §-cells in the
islets of Langerhans, causing hyperglycemia [131]. T1DM is an autoimmune disease in
which T-cells infiltrate the islets, leading to the destruction of the insulin producing
B-cells [58]. T2DM diabetes, on the other hand, results from insulin resistance of the
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peripheral tissues and from insufficient compensation by [-cells [70]. According to the
World Health Organisation (August 2011), 346 million people worldwide suffer from
diabetes. Although many aspects of the disease mechanism are understood, several
open questions about the mechanisms involved in the progression of type I and II
diabetes remain. Indeed, the difficulties faced in observing individual islets in patients
or live mice significantly hinder research, and limit our ability to monitor putative
beneficial treatments that should protect S-cells, improve their function or promote their
proliferation during diabetes.

The main challenges for imaging islets of Langerhans are (1) the localization of the
pancreas deep inside the abdominal cavity, (2) the very low density of these islets in
the pancreas and (3) their diverse shapes and small size, which varies approximately
from 30 to 300 pm in diameter. Current non invasive clinical imaging techniques such
as PET, SPECT or MRI have insufficient resolution to detect individual islets and rely
on a specific marker or contrast agent [132-134]. The development of a specific tracer
for the [-cells is still a matter of research [96]. In order to detect individual islets
optical resolution is needed. However, current in vivo optical techniques able to visualize
B-cells in situ are limited in speed, penetration depth and require labeling [43, 103,
105, 106, 135]. Optical Coherence Tomography (OCT) [136-138] is a well-established
imaging technique that provides cross-sectional views of biological tissue with micrometric
resolution and has successfully been applied to a wide range of in vivo and ex vivo imaging
in both clinical settings and small animal research. OCT has been applied to image
fixed human pancreatic tissue [139] and the main pancreatic duct [140]. It has also been
successfully employed to ex vivo distinguish between benign and malignant pancreatic
cysts [141]. Recently, we have shown that extended-focus Optical Coherence Microscopy
(xfOCM) [123] can image in vivo and ez vivo islets of Langerhans without labeling,
with a spatial resolution close to cellular dimensions [107, 129]. xfOCM is based on
OCT but allows to use higher numerical aperture objectives without reducing the depth
of field. The increased depth of field is obtained by using an axicon in the sample
arm, which generates a Bessel beam illumination. In vivo xfOCM pancreas imaging
is possible by making a small incision through the flank of the anaesthetized mouse
and by gently pulling out the duodenum encircling the pancreas. The anatomy of the
pancreas allows only to access a subpart of the organ. In vivo xfOCM can image the
surface volume of the pancreas down to 300 pm in depth. To compare xfOCM imaging
of islets of Langerhans to other techniques, we dissected the pancreas of a 15-week-old

NOD SCID gamma (Nonobese Diabetic Severe Combined Immunodeficiency) mouse.

NOD SCID gamma mice are a well-known control for NOD mice, which spontaneously
develop T1DM [83]. To have access to the islets of Langerhans located deeper in the
pancreas, we cut the two lobes of the pancreas that are easily accessible in vivo into
slices 250 pm thick. Segmentation and extraction of quantitative data from OCT images
are challenging [142-144] but are required to facilitate and improve diagnosis. In order
to obtain quantitative data, we implemented an automatic segmentation of islets of
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Chapter 2. Label-free structural imaging of the pancreas

Langerhans in xfOCM tomograms based on an active contours algorithm. In this work,
we performed automatic and quantitative islet imaging with xfOCM, revealing the three-
dimensional size distribution of these islets. In addition, we assessed the possibility of
measuring only a portion of the pancreas to extrapolate the total 5-cell volume. Finally,
we evaluated in silico the discrimination of healthy and pre-diabetic or diabetic animals
based on two criteria: the total S-cell volume and the islet volume distribution.

2.1.2 Methods

xfOCM setup

The xfOCM instrument is based on a Mach-Zehnder interferometer (Fig. 2.1) [123]. A
broadband light source (Ti:Sapphire laser, Femtolasers, Vienna, Austria; A. = 800 nm,
AN = 135 nm) is coupled into a polarization maintaining single mode fiber and then
collimated and split by beam splitter BS1 into reference and illumination fields. The
illumination beam passes through an axicon (175° apex angle, Del Mar Photonics) which
generates a Bessel-like field with an extended focus over a length of about 400 pm. The
field behind the axicon is relayed by two telescopes into the intermediate image plane
(IIP), and from there demagnified by the lens combination L, Ls (Zeiss Neofluar, 10x, NA
0.3), resulting in a lateral definition of 1.3 ym. The illumination beam is raster scanned
over the sample, typically scanning a range of 0.5 mm x 1 mm. In order to increase the
field of view, the objective can also be moved by two lateral motorized scanning axes
(Thorlabs, model Z812B). The light backscattered by the sample is superimposed with
the reference field by beamsplitter BS2. The optical signal is analyzed through a custom
spectrometer consisting of a transmission grating (1200 lines/mm) and a line-scan camera
(Atmel Aviva 2048 pixels, Stemmer Imaging, Pféffikon, Switzerland) set to an integration
time of 40 ps and working at an A-line rate of 20 kHz. The depth profile is reconstructed
after background removal, k-mapping and Fourier analysis.

Specimen preparation

Anatomically, the pancreas can be segmented into three lobes [4, 145]: the splenic, gastric
and duodenal lobes (Fig. 2.2a). After cervical dislocation, the duodenal and gastric lobes
of a 15-week-old female NOD SCID gamma mouse (NOD.Cg-Prkdcs®d T12rgt™ Wil /7],
Jackson Laboratory, Bar Harbor, USA) [146] were fixed for 90 min in a 10% (vol./vol.)
paraformaldehyde solution in phosphate buffered saline (PBS) at room temperature,
prior to an overnight incubation in a 30% (wt/vol.) sucrose solution in PBS at 4°C. The
tissue was embedded in gelatin and frozen at —80°C. 34 sections of 250 pm thickness
were prepared for xfOCM imaging.
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Figure 2.1: Schematic layout of the xfOCM setup.
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Figure 2.2: (a) Schematic representation of the three lobes of a pancreas. (b) Illustration
of the experimental procedure.
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Chapter 2. Label-free structural imaging of the pancreas

Three-dimensional image processing

Each of the 34 sections of the gastric and duodenal lobes were imaged individually. Due to
the instrument design a field of view of only 0.5 mm x 1 mm is accessible. Therefore, we
performed mosaics of each slice by a lateral displacement of the objective with motorized
scanning axes (Fig.2.2b). The three-dimensional imaging of the gastric and duodenal lobes
resulted in more than 7 - 10% A-scans and represents approximately 5 Terabytes of data.
The image processing was performed on the log scale, by taking 10 - log(|FFT(I(k))[?),
where FFT is the Fast Fourier Transform and I(k) is the interferogram recorded on the
spectrometer. The processing time was one week on a computational cluster composed
of four 8-core 2.27 GHz nodes with 48 GB of RAM and 20 Gb/s Infiniband interconnect.
Figure 2.3 shows an example of 8 adjacent en face views of a fixed murine pancreas at
different depths. The largest islet in the center extends over more than 50 pm in depth
which illustrates the importance of having a 3D segmentation. In order to assess and
quantify the islet shape and the ratio of islet volume to tissue volume, two segmentation
tasks were performed: first, tissue versus background, defining which fraction of the
volume was filled by tissue; and, second, the islets within the detected tissue volume.
The islet segmentation algorithm relies on active contours [130] with a level set method
implementation [147]. The active contour model iteratively deforms an initial surface
towards the boundary of the object by minimizing a function according to the properties
of the image. The level set method allows tracking of the evolution of this surface using
a surface of higher dimension. The initial conditions required for active contours are
automatically defined from the histogram intensity of the image. The tissue segmentation
relies on a cluster analysis which divides the image into two groups: tissue and background.
A schematic overview of the main principles of these algorithms is illustrated in Figure 2.4.

Segmentation of the islets of Langerhans

Definition of the initial conditions: In xfOCM tomograms, islets of Langerhans are
characterized by a higher scattering signal; as a result, the islets appear as dense clouds
of points of high intensity (Fig. 2.5a). One major difficulty is caused by intensity
variation along the depth of the sample, caused by sample attenuation, the variation of
the focal volume, and the system intrinsic sensitivity roll-off. The signal-to-noise ratio
(SNR) of deep islets is reduced compared to islets near the surface. In order to obtain
an automatic detection procedure, an initialization of the Active Contours algorithm
(AC-algorithm) is essential. The initial conditions algorithm uses an initial adaptive
thresholding step (see flowchart in Fig. 2.5). The adaptive threshold is fixed by using the
pixel intensity distribution of each zy-slice. The pixel intensities appear to be roughly
normally distributed, but an exponential distribution can be fitted to those above a
chosen threshold intensity. We chose a higher threshold at the 0.75 percentile of this
exponential distribution, allowing us to distinguish pixels belonging to islets, and also
some other structures (Fig. 2.5b). Then, we applied the morphological closing operator
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Figure 2.3: Mosaic of 8 en-face views recorded on a pancreatic section. Arrows indicate
islets. In addition to the islets, one can clearly observe ducts (arrowhead) and lobe
structures. Each picture shows the same area but at different depth positions. (a) 11 pm
in depth, (b) 54 pm, (c) 97 pm, (d) 140 pm. Scale bar: 200 pm.
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Chapter 2. Label-free structural imaging of the pancreas
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Figure 2.4: Schematic 2D representation of the detection principles. The segmentation
of the islet is based on an active contours algorithm starting with an initial curve which
evolves towards the boundaries of the islet. The active contours algorithm is implemented
with the level set method. In this example, the intersection of the grey 3D surface with
the plane in blue creates a 2D contour. By moving this plane up (in green) and down (in
red), one can make the contour evolve, and even split or merge. The segmentation of the
tissue is based on a cluster analysis.

to obtain filled structures (Fig. 2.5¢). The Euclidean distance transform (i.e., each pixel
is associated to its distance from the nearest border) of the resulting binary image is
computed (Fig. 2.5d). Finally, each pixel corresponding to a regional maximum is used
as the origin of a sphere of radius equal to the computed Euclidean distance of the pixel
(Fig. 2.5e).

Active Contours and Sparse Field Algorithms: The AC-algorithm has several important
features: (i) generation of smooth and continuous boundaries, (ii) robustness against
intensity variations and speckle, and (iii) detection of objects with various shapes and
sizes. The AC-algorithm searches for the boundary of an object by using a surface that
deforms under external and internal forces (Fig. 2.4). External forces are computed based
on image properties, whereas the internal forces depend only on the curve geometry.
Usually, external forces drive the curve or the surface to the edge of the object, whereas
the internal force tends to keep the curve or the surface smooth. Among the numerous
variations of the AC-algorithm, we used the Chan-Vese algorithm [130] which proved
to be the most efficient for this type of dataset. Each image was normalized according
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Original tomogram (a)

|

Initial condition

. Adaptive threshold (b)

. Closing morphological operator (c)

. Euclidian Distance Transform (EDT) (d)

. On each local maximum add a sphere with
radius proportional to the EDT pixel value (e)

|

Sparse Field Algorithm (Active Contours)

A wWN =

1. Initialisation of the level set function ®(xy) (f)
Contour: O(x,y) =0
Outside: ®(x,y) <0
Inside: ®(x,y) >0
2. Evolving the contour with Chan-Vese energy (g)
3. Update ®(x,y)
4. Go back to step 2 until convergence reached (h)

!

Manual review

Figure 2.5: Flowchart and illustration of the different steps for islet segmentation.

to an adaptive threshold based on the histogram. In addition, saturated pixels or black

pixels were discarded in order not to take artifacts or areas without tissue into account.

One drawback of the AC-algorithm is the requirement for initial conditions. In our study,
these were automatically defined based on the pixel intensity of the image, as explained
above.

The evolving curve is represented using the level set method which captures n-dimensional
surfaces as the intersection of a plane and a (n + 1)-dimensional surface (Fig. 2.4). The
three-dimensional surfaces are internally represented using the Sparse Field algorithm

(SF-algorithm) [148], a particular efficient implementation of the level set method.

Importantly, the level set method allows splitting or merging of the currently detected
blobs as well as detection of several islets in parallel. In order to assess the convergence
of the algorithm, we monitor the evolution of the detected volume. If the discrete
derivative is less than 1075 during 50 iterations, then the algorithm is stopped. The
SF-code was written in Matlab and is partly based on the software package developed by
J.G. Malcolm et al. [149, 150].

Tissue segmentation

Since one of our goal is to calculate the ratio of S-cell volume to pancreas volume, we
need to compute the total volume of tissue. The general idea behind the tissue detection
algorithm (TD-algorithm) presented hereafter is to classify each pixel into one of two
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Chapter 2. Label-free structural imaging of the pancreas

categories: tissue or background. The TD-algorithm has two main steps (Fig. 2.4 and 2.6
provides a more detailed flowchart of the algorithm). First, a large dataset of spatial
features is built by scanning the whole image with overlapping boxes of fixed size. To
each box we associate one two-dimensional data point p = (i, o) where p is the mean
and o is the standard deviation of all pixels within the box, without taking into account
pixels with extreme values (i.e., black or saturated pixels). Boxes with extreme mean
values are removed from the dataset before performing a cluster analysis using the kmeans
function in Matlab. Finally, we use a linear classifier to find the line that separates the
two clusters found by the kmeans function. The second step consists in attributing to
each pixel a score that depends on the boxes the pixel belongs to; i.e., the number of
boxes classified as tissue minus the number of boxes classified as background. Then,
based on its score, each pixel is set as tissue or background.

Select overlapping boxes

v

Compute mean and standard deviation
p = (wo)

v

Cluster analysis on boxes without extreme mean p

v

Linear classifier on all boxes to separate them into
- background
- foreground

v

Score for each pixel i
if background V.=V, +1
if foreground V,=V-1;

v

Pixels with V, >= 0 set to tissue.

Figure 2.6: Flowchart of the TD-algorithm.

Validation

The efficiency of segmentation of the islets was determined using two criteria: the number
of islets detected and the detection accuracy over a set of islets of different shapes and
sizes and with various intensities. The number of islets detected by the algorithm is
validated against the observations of a trained user. The detection accuracy is calculated
by comparing the results with the best detection ever obtained for each islet and defined
as correct by a trained user; this notion of “best detection” is subtle and subjective, as it
is difficult to visually evaluate the quality of detection in three dimensions. Indeed, two
detections of the same islet that are both visually accurate could differ significantly after
quantification in terms of volume. In such cases and for referencing, we systematically
chose the detection with the highest volume defined by a trained user as correct. By
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using these criteria, we obtained 90% of islets detected with a relative mean square error
for the volume of the islets of 30%. The error on the volume of each islet depends on the
size category, with a larger error for the small islets. A major effort was dedicated to
the detection and handling of false positives, i.e., pancreas structures designated by the
algorithm as islets, but rejected by a trained user (Fig. 2.7). Due to the small number of
islets in a pancreas, these “false positives” have been addressed individually in order to
minimize false detection. Although this step is time-consuming, it is much faster and,
most importantly, much less error-prone than a manual search through thousands of
tomograms. In addition, it allows the user to restart the detection with a better manual
initial condition if an islet is missed or not completely detected.

Figure 2.7: The picture in (a) shows two areas with a higher intensity. By using a three
dimensional view, only the area marked by a (*) is defined as an islet by a trained user.
However, the result of the algorithm, shown in (b), finds three blobs. The solid arrow
shows the correct detection of an islet whereas the dashed arrows indicate false positives.
Scale bar: 100 pm.

2.1.3 Results
Assessing [-cell volume

The development of T1DM is closely related to the total 5-cell volume (or calculated S-cell
mass). Assessing the (-cell volume is therefore crucial to understanding and monitoring
diabetes onset. However, in vivo xfOCM can only image a subvolume of the pancreas due
to its anatomy and localization into the abdominal cavity. Therefore, we asked ourselves
whether we can extrapolate the total -cell volume by imaging only a part of the pancreas.
We answered this question by comparing the -cell volume extrapolated from a part of
our data with the total S-cell volume obtained from the complete ex vivo measurements.
Following an approach called bootstrapping in statistics [151], we re-sampled the data
for varying sample sizes. For each sample size, we re-constructed 2500 random samples
and calculated the resulting percentage of 5-cell volume per pancreas volume. Figure 2.8
shows the variability in the error obtained by comparing the percentage of S-cell volume
per pancreas volume extrapolated from the small sample and the true value from the
comprehensive experimental measurement. This procedure shows that we cannot reliably
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Chapter 2. Label-free structural imaging of the pancreas

extrapolate the §-cell volume based on small samples of the pancreas. Indeed, even for
50% of the measured tissue, the relative error is still around 30%. This result outlines
the difficulty in determining, at least on a mouse model, the total S-cell volume.

Realizations
500+ — Mean
§ 4007
S 300}
GJ é.‘l
2 200f!i
s "‘:,
& loo l“‘“‘i.i... | :
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~1008 ; ; ’ ‘
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Sample size (% of total volume)

Figure 2.8: Relative error for the extrapolated percentage of 5-cell volume per pancreas
volume based on different sample sizes. Each red circle represents the results of an
individual trial. The black near-horizental line represents the median and the vertical
black error bars show the 5th and 95th percentile. Even if the median relative error is
below 5% for 5% of the total volume, the spreading error is still of 57% for 25% of the
tissue.

3D islet distribution in the duodenal and gastric lobes

The resolution of xfOCM offers the possibility to determine the whole islet volume
distribution instead of looking at an integral value such as the total §-cell volume.
According to Bock et al., the mean S-cell volume is 1280 pm?, which corresponds roughly
to 150 voxels [152]. Therefore, objects smaller than the volume of a S-cell are considered
below threshold and have been automatically discarded. After a manual review of
the output of the algorithm, we detected 924 islets in the duodenal and gastric lobes
of a 15-week-old NOD SCID gamma mouse. A histogram with logarithmic binning
shows that the smallest islets (< 8000 pm3) are the most common, and account for
20% of the total number of islets (Fig. 2.9b). However, this category contributes only
3% of the total 3-cell volume (Fig. 2.9c), whereas the largest islets (> 4 x 10 pm?)
contribute more than 45% of the S-cell volume and represent 4% of the total islet
number. The important contribution of the small islets can, therefore, only be discovered
by plotting the islet volume distribution and would be undetectable in the integral
B-cell volume. The largest islet found has a volume of 9 x 10% ym3. The total volume
of B-cells corresponds to 0.26 mm?, which yields a percentage of S-cell volume per
pancreas volume of 0.175%. The islet volume distribution seemed to follow a power
law. We verified this hypothesis by fitting different discrete power law distributions
(Yule—Simon, Zeta, Zipf and Zipf-Mandelbrot) to the islet volume data. After goodness
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of fit testing [153], only the Zipf-Mandelbrot distribution appears to fit the data at this
level of discretisation (Fig. 2.9a):

(k+q)~°
k: N =Y k=1, N .
f(k; N, q,s) ¥ it 1,...,N, (2.1)

with N = 600, and estimated parameters ¢ = 0.45 and s = 1.55 (Fig. 2.9a).

The principle of goodness of fit testing is to compare the empirical distance (i.e., the
distance between the experimental data and their fitted distribution) with an artificial
distance (i.e., the distance between artificial data generated according to the hypothesized
distribution and their fitted distribution). When the number of bins is large (> 500), the
discrete chi-square distance becomes computationally intractable. In this case, because
the number of bins is sufficiently large, we used the continuous Kolmogorov—Smirnov
distance. The p-value corresponds to the proportion of trials where the artificial distance
exceeds the empirical one, and in this case is 0.17, estimated from 2500 simulated artificial
datasets, so we conclude that our data are close to following a Zipf~Mandelbrot law, at
least at this discretization.
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Figure 2.9: Histogram of the islet volumes in the gastric and duodenal lobes of a 15-
week-old female NOD SCID gamma mouse. The islet volume distribution follows a
Zipf-Mandelbrot distribution (a). A logarithmic visualization of the size categories
shows that the most common islets are those of volume less than 8000 pm?, followed
by those between 32000 and 64000 pm?(b). The proportion of the islet volume of each
size category to the total B-cell volume is inversely related to their occurrences, with the
smallest categories of 8000 pm? contributing only 3% (c).
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Chapter 2. Label-free structural imaging of the pancreas

Different distributions between the duodenal and the gastric lobe

Interestingly, we noticed that the distribution of islet volumes from the gastric lobe is dif-
ferent from that in the duodenal lobe: we found 315 islets in the gastric lobe and 609 islets
in the duodenal lobe, even though the total 3-cell volumes are comparable (0.129 mm? and
0.132 mm? respectively). The total tissue volumes of the gastric and the duodenal lobes
were 70.79 mm?® and 78.47 mm?>. Both islet distributions follow a Zipf-Mandelbrot law
(Fig. 2.10). Thus the duodenal lobe contains more small islets than the gastric lobe.

D)
—
Q
o r—
+
—
oo
—
fav]
=
=
-
@)
)

I
w
v

= Zipf-Mandelbrot distribution

I
w

o
N
v

o
)

o
4
«

o

0.05

o LA R S e e o
0”2 AV XPPRNPARPRRNDPRE P PP RP PR
size categories [ pm?* x 10%]

b0.3: T T T T T T T T T T T

0.3

Proportion of islet B-cell in each size category

= Zipf-Mandelbrot distribution

0.25

0.2

0.15

0.1

0.05

Proportion of islet B-cell in each size category

0 1 =IPS SN - W
0% 0 9O DANAPA O PO DD RSP AN DD E D P P

size categories [ um?3 x 10%]

Figure 2.10: (a) Histogram distribution of the duodenal lobe and (b) of the gastric lobe.
The Zipf-Mandelbrot parameters are N = 600, ¢ = 0.56 and s = 1.65 for the duodenal
lobe and N = 600, ¢ = 0.38 and s = 1.41 for the gastric lobe, with a p-value of 0.11 and
0.7, respectively.
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In silico discrimination of healthy and sick animals

We cannot extrapolate the total 8-cell volume of an animal by analyzing only a subvolume
of the pancreas. Due to the anatomical configuration around the pancreas, only a small
portion is accessible in vivo. Therefore, extrapolation of the total $-cell volume in a
living animal is almost impossible. However, this might not preclude the possiblity to
discriminate between healthy, pre-diabetic or diabetic mice (hereafter referred as sick
mice). A full study is well beyond the scope of this project, given the variability across
the different animals, which would demand a large cohort of animals. Therefore, we
propose an in silico approach consisting of generating simulated islet datasets of a sick

mouse, and detecting deviation from a healthy situation based only on a subvolume.

To date, not much is known about the dynamics leading to the apoptosis of S-cells in
T1DM. The work of Alanentalo et al. suggests that the smallest islets are the first to
disappear in NOD mice and that the T-cells infiltration does not seem homogenous
throughout the whole organ [31]. One may hypothesize that at first only the smallest
islets disappear or all islets are attacked at the same rate, therefore leading to the earlier
destruction of the smallest islets. However, the reality might involve more randomness
and the islets might be attacked at different rates. Therefore, we propose for our in silico
analysis three scenarios in an attempt to simulate this degenerative process: (A) all islets
smaller than a certain size are removed from the dataset, (B) all islets are shrunk by a
certain percentage in volume, and (C) a stochastic approach in which islets are attacked
with a predetermined probability. The latter approach involves two parameters: (i) the
probability that an islet is attacked, and (ii) the conditional probability that each
individual cell is destroyed given that the islet is attacked. By applying these three
scenarios to the healthy experimental data, we obtain a set of simulated datasets of
sick mice. Further on we asked the question, which percentage of the tissue should be
analyzed to discriminate a deviation from a healthy situation. For this approach, we can
apply to these datasets the same bootstrapping method as described previously. To this
end, we selected small samples of variable volume at random locations within the tissue
until we obtain the desired volume. For this analysis, we can try to use either the $-cell
volume or the islet volume distribution as a criterion to detect a deviation from a healthy
situation. The S-cell volume would indicate an onset of the disease if it is smaller than a
given threshold. Importantly, this threshold must account for the intrinsic variability
of the underlying dataset. In our case, the threshold is fixed to the 0.1 percentile of
the variability of the percentage of S-cell volume per pancreas volume obtained by
bootstrapping in Figure 2.8, thereby leading to a 10% tolerance of false positives. For the
islet volume distribution criterion, we compared re-sampled distributions from the sick
and healthy datasets. To achieve that, we apply the Kolmogorov-Smirnov non-parametric
statistical test. Figure 2.11 and Figure 2.12 show the success rate to detect a deviation,
which is indicated by the colorbar. In all scenarios, the ability to detect a deviation
based on the islet volume distribution performs far better than the integral criterion
based on the total 3-cell volume. In scenario A, if all islets smaller than 20’000 pm?
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Chapter 2. Label-free structural imaging of the pancreas

are destroyed, then the proportion of successful detection is 30% even for small sample
sizes of 1.5% of the total measured volume. If we double this volume to 6% we can
reach 60% of successful detection of diabetes onset. In scenario B, the difference between
the two criteria is less pronounced; yet, the islet volume distribution performs better.
The results become conclusive only for high percentages of reduction. Scenario C exhibits
less favorable results, but it illustrates again the superiority of a diagnostic approach
based on distributions rather than solely the total 5-cell volume. However, it becomes
reliable only for high probabilites of an islet being attacked and that individual S-cell
are destroyed. Overall, this in silico study indicates an alternative way to determine
diabetes onset and evolution. A distribution based criterion in contrast to the integral
[-cell volume criterion seems to be a more sensitive diagnosis for the onset of T1DM.

Beta cell volume Islet volume distribution
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Figure 2.11: Success rate to detect a deviation between the healthy and simulated sick
datasets for scenarios A and B. The colorbar indicates the proportion of successful
detection over 2500 trials.

2.1.4 Discussion

In this study, we described the complete three-dimensional distribution of islets of
Langerhans in the duodenal and gastric lobes of a 15-week-old female NOD SCID gamma
mouse. An alternative estimation of the islet distribution in a pancreas was done ex vivo
using Optical Projection Tomography (OPT) [105]. Although we analyzed only the
duodenal and gastric lobes of the pancreas with xXfOCM, the islet distribution is similar to
the distribution obtained with OPT for an entire pancreas. However, xfOCM is capable
of resolving an islet size category of less than 8000 pm? (~ 6 — 10 cells), which is not
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Beta cell volume Islet volume distribution
pislet attack: 0.1 pislet attack: 0.2 pislet attack: 0.1 pislet attack: 0.2
25 25 25 25 1
12 12 12 12
6 6 6 6
3 3 3 3
15 15 15 15
00.10203040506070809 1 0 0.10203040506070809 1 00.10203040506070809 1 0 0.10203040506070809 1
pislet attack: 0.3 pislet attack: 0.4 pislet attack: 0.3 pislet attack: 0.4
25 25 25 o 25 -
12 12 12 - 12
6 6 6 6
3 3 3 3
15 15 15 15
0010203040506070809 1 0 0.10203040506070809 1 0010203040506070809 1 0 010203040506070809 1 r
pislet attack: 0.5 pislet attack: 0.6 pislet attack: 0.5 pislet attack: 0.6 O 6
25 25 25 25 :
12 12 12
6 6 6 6

3 3 3

1.5

15 1.5! 15
0010203040506070809 1 0 0.102030405060.70809 1 0010203040506070809 1 0 0.10203040506070809 1

Sample size (%)

pislet attack: 0.7 pislet attack: 0.8 pislet attack: 0.7 pislet attack: 0.8 04
25 25 25 25
12 12 12 ‘ 12
6 6 6 6 [
3 3 3 3
15 15 15 15
0010203040506070809 1 0 0.10203040506070809 1 00.10203040506070809 1 0 0.10203040506070809 1
pislet attack: 0.9 pislet attack: 1.0 pislet attack: 0.9 pislet attack: 1.0 02
‘ﬂ 25
12
6
3
15 15 15 15
00.10203040506070809 1 0 0.10203040506070809 1 00.10203040506070809 1 0 0.10203040506070809 1 0

Probability that if an islet attacked individual cell destroyed

Figure 2.12: Success rate for discrimination between the healthy and simulated sick
datasets for scenario C. Each diagram represents a probability (p) of an islet being
attacked. The x-axis shows the probabilities that if an islet is attacked the individual
cell will be destroyed. The y-axis always represents the different sample size used to do
the test. The colorbar indicates the proportion of successful detection over 2500 trials.

yet detectable with OPT [105]. The same authors recently suggested that the smallest
and peripherally located islets are the first to be destroyed during infiltration in T1DM
in NOD mice [31]. Therefore, even if this small size category represents only 3% of
the total B-cell volume, the ability to resolve these islets might be crucial to detecting
the early onset of TIDM. Since in vivo xfOCM is limited by a penetration depth of
about 300 pm and by anatomical constraints to a small portion of the total pancreas, it
would be interesting to determine the islet volume distribution in this accessible region
only. However, due to the location and the morphology of the pancreas and due to
the protocol of our experiment it is difficult to determine the distance of an islet to
the organ’s surface. A potential solution would be to image directly the entire organ
in three dimensions, like in OPT. The S-cell volume per pancreas volume of 0.175%
detected in our analysis is in the same range, but slightly lower than the percentages
reported in the literature [49, 154-157], although some authors report a higher S-cell
volume [4, 158, 159]. It should be noted that there are significant variations between
strains and across species [154]. In addition, the S-cell mass is most often given in mg
and rarely with the corresponding pancreas weight or as a percentage of $-cell area
per pancreas area. Finally, the majority of these imaging techniques relies on partial
measurement of the pancreas and are done in two dimensions. Therefore, this lower
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Chapter 2. Label-free structural imaging of the pancreas

value can be attributed to the difference between the strains and/or the use of different
imaging techniques, in particular the fact that our method is three-dimensional and
applied to the duodenal and gastric lobes only. Our statistical analysis reveals a huge
variability on the extrapolated percentage (-cell volume which confirms the fact that the
islets of Langerhans are non-homogeneously distributed throughout the pancreas [105].
This result shows that measurements based on a small part of the pancreas cannot be
used to extrapolate reliably the total S-cell volume. This outcome does not confirm the
statements of Chintinne et al.. They claim that 1.2% of the adult rat pancreas being
systematically sampled is sufficient to obtain predictions of the S-cell mass with an error
below 10% [160]. Besides the fact that the study is not based on the same species, this
discrepancy might be attributed to a different experimental approach. First, they perform
imaging only in two dimensions (area) whereas we have fully three-dimensional data.
Second, their ground truth is the average $-cell mass measured on 2% of the pancreas
of 6 rats whereas we obtain it from the complete dataset of one mouse. In this work, the
experimental islet volumes follow a Zipf-Mandelbrot distribution. However, more mice
would be required to conclude that a healthy islet volume distribution can be associated
to a Zipf-Mandelbrot distribution. Yet, in this study we used a NOD SCID gamma
mouse, which is a control for NOD mice, a reference strain for T1IDM. Therefore we can
safely assume that our islet volume distribution is indeed a reference distribution for
healthy animals. Finally, the in silico analysis strongly suggests the superiority of islet
volume distribution compared to the g-cell volume as a criterion for disease progression
and detection. The islet distribution criterion performs the best in the case where small
islets are removed from the dataset (scenario A in Fig. 2.11). The success rates become
acceptable upon removal of all islets smaller than 16’000 ym?® (~ 25 pm in diameter).
However, when Analentalo et al. suggests that the small islets are the first to disappear,
they are referring to islet sizes below 1°000°000 pm? (~ 100 pm in diameter). In our
case, if we remove islets smaller than 122’000 pm? (~ 50 pm in diameter) we can reach
a success rate of detection of 56% for only 1.5% of the total tissue imaged. In the two
other scenarios (see Section 2.1.3), the islet volume distribution criterion still performs
better than the total §-cell volume, but it is reliable only for more extreme conditions.
These results underline the importance of imaging techniques that can resolve individual
islets, compared to clinical imaging techniques that detect only a global signal. Although
optical techniques are mainly limited to research, they provide a realm of information for
a deeper understanding of T1DM in well-established mouse models. Nevertheless, even if
diabetic mouse models are well-established, differences in the islet architecture between
humans and mice should not be forgotten [5, 7].

2.1.5 Conclusion

We show that xfOCM coupled with an efficient segmentation algorithm is a label-free
imaging method to quantify islets of Langerhans over their whole size range (< 8000 -
9% 10% pm?). Their sizes follow a Zipf-Mandelbrot distribution, which suggests a different
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way of monitoring T1DM. The conclusions of our statistical analysis are two-fold: first,
it shows that we cannot extrapolate quantitative predictions of the total $-cell volume
based on small, randomly sampled sets of measurements. Second, criterion based on
the islet volume distribution shows better potential than a criterion based on the total
(B-cell volume alone to detect a deviation from a healthy situation. xfOCM results are
consistent with the literature and have sufficient resolution to enable the visualization of
the smallest islets, which is crucial for future optical diagnosis techniques of T1DM as
well as for the development and optimization of future treatments.
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8] Label-free functional imaging of the
pancreas

Extended Optical Coherence Microscopy (xfOCM) was previously applied for the detection
of islet of Langerhans both in vivo and ex vivo [107, 161]. Another general application
of OCT is blood flow imaging, which can be divided in two parts: (1) angiography
and (2) quantitative assessment of the blood flow. Both approaches use the red blood
cells as moving scatterers and analyze successive measurements acquired at the same
spatial position, but at different time points/delays. OCM and OCT have already
been applied to image vascularization in various tissues including the retina [162], the
brain [163] and the skin [164]. Blood flow assessments have been mainly applied to the
retina [165] and to the brain [166, 167]. In this chapter, we apply xfOCM to image and
quantify the rich islet vascularization and to extract blood flow inside the pancreas. The
work described hereafter has been done in collaboration with Daniel Szlag [168].

3.1 Introduction

Previous studies have shown the importance of the vascularization in pancreatic islets.
For instance, there are indications that a modification of the vascularization is associated
with the early onset of both T1IDM and T2DM [47, 121, 169, 170]. In particular, islet
grafting has become an alternative treatment for selected diabetic patients despite the fact
that very few diabetic patient are insulin independent 5 years after transplantation [67].
Nevertheless, even if insulin independence is not achieved, islet grafts allow for a decrease
of the daily insulin dose and the frequency of hypoglycemia episodes. One of the reasons
of graft failures is a poor revascularization and perfusion [27, 171]. Therefore, monitoring
of islet engraftments is important to evaluate islet revascularization in different graft
sites [172-174]. In addition, there are indications that the glucose intolerance observed
in aged mice is not due to S-cell defects, but to a vascular impairment [175]. The deep
localization of islets inside the pancreas in the abdominal cavity and their distribution
throughout the organ render imaging of their vascularization challenging. During the last
decades, visualization with immunohistochemistry on whole mount preparation [176, 177],
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electron microscopy [33] and methacrylate corrosion casting [32, 178] yielded anatomical
information on vascularization, but these ex vivo techniques have been solely restricted
to structural information. Microsphere-based techniques go beyond this limitation by
extracting functional blood flow information in the exocrine and endocrine pancreas [28,
29, 34]. However, they require sacrificing the animals at different points in time and
therefore cannot assess the full blood flow dynamics and alterations during diabetes
progression. In vivo imaging of the vascularization of islets has been achieved through
intravital fluorescent microscopy in the native pancreas [38, 43, 169], in grafted islets in
the anterior chamber of the eye [108, 109, 111, 113, 114], or in striated muscle by using a
dorsal skin-fold window [39, 118, 119, 179]. However, fluorescent microscopy requires
both genetically modified mice expressing a fluorescent protein to detect islets and the
injection of labelled dextran or labelled red blood cells to image the vascularization.
Moreover, three-dimensional islet imaging requires optical depth sectioning, which implies
a trade-off between axial and time resolution and prevents a complete characterization
of functional parameters. Therefore, there is a strong need for an imaging technique
that offers a good spatial resolution, high sensitivity, sufficient penetration depth, and
fast image acquisition rate to study the vascularization and the blood flow of islets of
Langerhans in a longitudinal and non-invasive fashion.

3.2 Research design and methods

A description of the xfOCM instrument used in this chapter can be found in Section 5.2.5.

Animals

Adult ICR female mice were purchased from Harlan. Prior to imaging, they were
anesthetized by an intraperitoneal injection of a 10 pl/g of body weight of a solution
containing 9 mg/ml Ketasol and 1.45 mg/ml Xylasol. For imaging sessions longer than
30 minutes, the anesthesia was prolonged with 1% isoflurane oxygen mixture. In vivo
xfOCM pancreas imaging was performed by making a small incision through the flank
of the anesthetized mouse and by pulling out the duodenum encircling the pancreas
(Fig. 3.1). A small pillar was used for stabilizing the duodenum during imaging acquisition.
Both the pancreas and the duodenum were frequently humidified with 0.9% NaCl. The
mouse was placed on a heating stage during the whole imaging session. All animal
procedures were approved by and performed according to the guidelines of the local
authorities and Swiss animal protection law.

Functional OCM

Visualization of the vascular network is based on motion contrast between static structures
and moving red blood cells whereas, for blood velocity, the phase difference A¢ or the
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Figure 3.1: Schematic representation of in vivo pancreas imaging with xfOCM, including
the laparotomy.

Doppler frequency fp is extracted to compute the velocity v:

o, AAd
V=50 0= i (3.1)

where At is the time delay between successive acquisitions and n is the index of refraction
of the tissue (n = 1.33).

Vascular network

A Doppler shift induces a frequency shift, which corresponds to a rotation of the electric
field vector in the complex plane. Therefore, we need to estimate this variation to assess
the red blood cells velocity. One approach to measure this rotation is to look at the
phase variance by computing the circular variance v [180] !:

_ AlAS
b= Taay)
v=1-|p| (3.2)

such that 0 < v <1, where A; and A represents two A-scans after a Fourier transform
taken at the same position, but separated by a time delay At. This method uses a specific
scanning protocol where each line (B-scan) is scanned several times [166] (Fig. 3.2). The
phase variance method detects all red blood cells moving sufficiently fast, i.e., such that
their position has changed significantly between two successive acquisitions. Therefore,
this variance-based method shows all vessels and capillaries whose blood speed is higher
than a velocity threshold given by the acquisition speed, but it provides no quantitative

!The circular variance measures the angle variation about the mean direction of the vectors in the
complex plane. The circular variance is therefore related to the mean resultant length of these vectors
called p.
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Figure 3.2: Schematic representation of the data processing to extract vascularization.
An A-scan is a depth-profile. By a lateral scanning of several A-scans, a B-scan (also
called tomogram) is created. Taking several B-scans in the other dimension allows the
acquisition of a full volume also called a C-scan. In the z-direction, a moving average
(window) is applied to improve the contrast. When more than two B-scans are taken,
the circular variances obtained at a given pixel are averaged.

information about the actual velocities. To improve the contrast, the circular variance can
be averaged over a moving window in the axial direction. However, the regions where there
is no structure give rise to random circular variance. To remove these undesired values,
the circular variance is multiplied by the structural image. Alternatively, as described
in Section 5.2.6 (§ Temporal Derivative), the weighing can be replaced by the temporal
derivative [166]. For our measurements, each A-scan was computed using an axial window
of 8 pixels and 6-8 B-scans were taken to perform averaging. The acquisition frequency
range spans from 20 to 50 kHz, depending on the pancreas stabilization achieved. The
vascular density can then be computed as:

vascular volume

vascular density = (3.3)

structure volume

To extract the vascular density, the islets are segmented using the algorithm described in
Section 2.1.2. The vascular volume is computed similary as described in Sections 5.2.6
and 5.2.7. The vascular network cannot be extracted as deep as the structural information.
One explanation is the shadow artifact induced below each vessel (Fig. 3.3), which is
likely due to the multiple scattering in the vessels. This artifact can lead to a massive
over-evaluation of the vascular density. To solve this problem, we applied an exponential
step down filter as described in Section 5.2.7. Still, this method can lead to a slight
under-evaluation of the vascular density since portions of vessels that are directly located
under another vessel might be cut and some small capillaries might be removed. Similarly,
the lower part of large vessels may be removed (Fig. 3.3b).
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Figure 3.3: Illustration of the shadow artifact. (a) Artifact shadows are visible below
vessels. (b) Results after application of the exponential step down filter and of the post
processing described in Section 5.2.7. Scale bar: 200 pm.

In addition, the islets scatter more light (Section 5.1.2) than the exocrine tissue, thereby
yielding a stronger attenuation of the vasculature signal in depth in the endocrine tissue.
Except for very small islets, the vascular network cannot be completely observed over the
whole islet depth, as shown in Figure 3.4. Therefore, dividing the vascular volume inside
an islet by the total volume of this islet would yield an underestimation of the vascular
volume as shown in Figure 3.4a. Based on immunohistochemistry, we can assume the
vascularization to be uniform throughout a healthy islet [35]. In order to have unbiased
absolute value, the vascular density was only computed on a subpart of the islet in depth
(Fig. 3.4c) by allowing the user to define a region where the vascular volume was fully
visible (Fig. 3.4Db).

Blood flow

OCM can quantify the blood flow velocity on top of the structure of the vascular network.
To this end, we applied the principle of joint Spectral and Time domain Optical Coherence
Tomography (jSTAOCT) [181] to OCM in order to extract axial velocities, which we
refer to as joint Spectral and Time domain OCM (jSTAOCM). The structure of a sample
is obtained by performing a Fourier transform along the k-space (wavenumber). In the
case of vascularized tissue, the Doppler effect created by the moving red blood cells adds
a supplemental modulation of the spectrum over time. Hence, a Fourier transform along
the temporal dimension allows us to retrieve the Doppler frequencies. The center of
mass of the Fourier Transform over time can then be related to the axial velocity [182].
However, only red blood cells moving towards or away from the scanning beam can
be detected, which means that only the axial component of the velocity is resolved.
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Figure 3.4: Illustration of vessel attenuation in depth. (a) When considering the whole
islet, the vascular density is generally underestimated. (b) By selecting a subregion
in which the vascularization is visible, (c¢) we can estimate more reliably the vascular
density.
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Therefore, parts of the vessels that are perpendicular to the beam (i.e., parallel to the
tissue surface) are not detected. The acquisition rate defines the range of velocities that
can be measured according to the following equation [181]:

Ao

Vzmazx = M (34)

where At = - is related to the sampling frequency fs between two A-scans and n is the
index of refraction of the tissue.

3.3 Results

By performing a laparotomy (Fig. 3.1), we are capable of imaging in three dimensions
islets of Langerhans and their vasculature inside the pancreas of a mouse. Our images
reveal a highly dense and tortuous vascularization inside the islets of Langerhans as
compared to the adjacent exocrine pancreas (Fig. 3.5¢), which we quantified to be four
times less vascularized than the endocrine part. Our result is almost twice as large as the
~ 2.4 ratio between the endocrine and exocrine vascular density reported by Brissova et
al. [35]. We measured an endocrine vascular density of 17%, which is in the range of the
data observed by Dai et al. [169], even though these values are closer to ob/ob or high
fat diet mice. These differences could be attributed to the genotype of the mice and to
the different approaches to quantify the vascular density. Indeed, in OCM, the vascular
network is revealed by moving red blood cells whereas the quantifications of Dai et al.
and Brissova et al. are based on 10 pm cryosections where blood vessels are stained by
intravital injection of lectin labeled with fluorescein. Figure 3.6 shows the diversity in
term of shape and vascularization of different islets. A typical acquisition time for a
three-dimensional stack of 800 x 800 x 300 pm? is between 30 to 40 seconds. Decreasing
the scanned area and signal averaging can further reduce the acquisition time. Stability
of the samples due to motion artifacts (heartbeat, breathing and peristaltic movements
in the duodenum) may occasionally lead to residual vertical lines in the images (Fig. 3.6).

We compared the vascular density computed over the whole islet (Fig. 3.4a) with the
vascular density obtained over a subpart manually defined by the user (Fig. 3.4c). We
found that, without analyzing a subpart, the vascular density is in average under-evaluated
by approximatively 33%. This deviation depends on the volume and the orientation of
the islet. This user-based definition of a subpart can only be done if we have a uniform
structure. During the progression of inflammation like in T1DM, we can compare the
relative vascular density either between affected or not affected regions inside a particular
islet or in islet over time. By doing the relative comparison in islet over time, we assume
that the underestimation bias stays constant over time.

Except for the main vessels visible by eye, blood flow in the pancreas requires a sampling
frequency of 5 to 10 kHz. According to Equation 3.4, these sampling frequencies
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Figure 3.5: Structure and vascularization of islets of Langerhans. Representative (a) large
islet (13.7 x 10% pm?), (b) medium islet (7 x 10° pm?) and (c) small islet (2.7 x 105 pm3).
(d) Quantification of the vascular density, i.e, the vascular (vasc.) volume divided by the
structural (struct.) volume in the exocrine and endocrine part. The p-value computed
using a Mann-Whitney non-parametric U-test is smaller than 107°. 9 mice images and
16 islets analyzed. Colorbar indicates the depth in pm. Scale bar: 200 pm.
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Figure 3.6: Maximum depth projections of the vasculature for different islets. The
number in the top-right corner indicates in which mouse the islets were imaged from.
Colorbars indicate the depth in pm. A-scan acquisition frequency: 20 or 50 kHz depending

on pancreas stabilization. Scale bar: 200 pm.
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Figure 3.7: Schematic representation of the data processing to extract blood flow. For
each pixel in a A-scan, the axial velocity V, is related to the mean u of the Doppler
frequency fp, the refractive index n and the central wave number of the source k.

correspond to maximum axial velocities of 0.75 mm/s and 1.5 mm/s, which represent a
time interval At of 100-200 ps between successive A-scans. For mechanical reasons, the
scanning system cannot acquire several points at the same spatial position. However, by
oversampling in one direction we can obtain a pixel resolution lower that the beam spot
size (Figure 3.7), thereby allowing us to acquire several points (~ 10 times oversampling)
at the same position. Figure 3.8 shows axial velocities computed inside the pancreas at
5 kHz. The acquisition time for this image was 10 minutes, thus requiring an excellent
stabilization of the pancreas. We noticed that the high scattering coming from the islets
impaired the detection of blood flow inside the islets. Even when large islets were at the
surface of the pancreas, only a few vessels inside those islets could be detected whereas
numerous vessels were visible at the same depth in the exocrine tissue.

Nevertheless, when focusing on a given vessel, the time resolution is sufficient to extract
the heart beat. Figure 3.9 shows a large vessel in the exocrine pancreas imaged over
time. The blood flow was analyzed using the jSTdAOCM algorithm to extract the axial
projections of velocity vectors along the vessel. Several pixels in depth were averaged to
extract vessel pulsation over time and one line over time was selected to plot the pulsation
of the signal amplitude (Fig. 3.9¢c). As presented in Figure 3.9d using a frequency analysis,
the heart beat was found to be around 3.4 Hz, which is in agreement with the study of
Janssen et al. in the case of mixed anesthetics [183].
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Figure 3.8: Three-dimensional rendering of the blood flow direction inside the pancreas.
Red and blue color represent opposite axial blood flow direction. (a) Overlay of both the
structural and blood flow information. (b) Corresponding three-dimensional blood flow
imaging. Scale bar: 100 pm.
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Figure 3.9: jSTdOCM-based measurement of heart beat frequency. (a) Blood flow
visible in a pancreatic vessel. (b) Vessel pulse over time of the vessel shown in (a).
(c) Pulse amplitude of the blood flow over time. (d) Frequency analysis of the signal
in (¢). Acquisition rate 50 kHz with 512 pixels in the x-direction. Scale bar: 20 pm.
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3.4 Discussion

We have conceived, developed and established a label-free imaging technique with a
micrometric lateral (~ 1.3 pm) and axial (~ 2.5 pm) resolution, a high sensitivity, and a
penetration depth of ~ 400 pm to image individual islets with their vascularization in
situ. The vascular network was extracted over a sufficient depth to measure significant
differences in vascular density between endocrine and exocrine tissue. Compared to
fluorescent intravital microscopy, OCM label-free imaging of vascularization eliminates
bleaching or toxicity of the fluorescent contrast agent, rendering OCM suitable for
longitudinal studies. Studies on islet vascular density have mainly be done ex wvivo
by staining markers of endothelial cells [35, 45, 48, 184]. Intravital microscopy has
been used to reveal the vascular network in islet [108, 113] and to extract blood flow
velocity [43, 169]. However, these methods can only focus on subpart of vessels lying
in a defined axial plane whereas OCM can simultaneously resolve all the pixels along
the axial dimension, thereby analyzing several vessels in parallel. This fast acquisition is
sufficient to resolve blood flow dynamic as well as to analyze several vessels including a
full volume. In addition, axial velocity indicates whether the red blood cells flow towards
or away from the optical beam. This axial direction can be further used to determine
whether a vessel is entering or exiting an islet. While in vivo xfOCM penetration depth
is around 400 pm for structural information, vascularization cannot be fully extracted
over the same depth. Multiple scattering inside blood vessels create a shadow-artifact
under each vessel producing a blurred and attenuated signal of the vasculature in depth.
Measuring axial blood flow imposes a limitation as vessel segments perpendicular to
the optical axis cannot be resolved, which results in non-continuous vessels (Fig. 3.8b).
In capillaries, the slow blood flow translates into an irregular red blood cells filling,
thereby resulting in weak Doppler shifts comparable to the phase noise. Combined with
movements from the sample, this results in a poor sensitivity to resolve blood flow in
small capillaries. In addition, despite small capillaries being visible in the exocrine tissue,
almost no quantitative blood flow velocity could be extracted in endocrine vessels at the
same acquisition rate. Besides the stronger scattering of the endocrine part that could
hinder the blood flow signal, this might indicate a slower blood flow inside the islets than
in the exocrine tissue. While OCM blood flow is less sensitive to capillaries, fluorescence
microscopy is mainly limited to capillaries [185-187]. Indeed, fluorescence microscopy is
not suitable to resolve the continuous fast blood flow in large vessels.

In this thesis, we use jSTAOCM to obtain real-time previews (B-scans) of the tissue
to assess its vitality. Nevertheless, axial velocity measurements allows extraction of
volumeteric flow and perfusion [163], or dynamic change in hematocrit content [188].
Recently, Bouwens et al. [189] developed a general model allowing quantitative imaging
of the transverse and axial velocity components taking into account the NA and beam
geometry of the xfOCM, enabling the measurements in three-dimensions of total flow in
the brain [167]. These blood flow characteristics require a stabilization of the investigated
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tissue over several minutes, which is challenging in the pancreas. However, the anterior
chamber of the eye (Chapter 5) as a transplantation site for pancreatic islets might
offer an easier stabilization and seems more suitable to investigate blood flow, especially
since non-invasive longitudinal studies could be performed. An additional contrast
enhancement could be achieved by the injection of an intralipid solution [190]. This
intralipid solution contains multiple scatterers increasing the filling rate in the capillaries,
allowing for a better measurements of the Doppler shift. In conclusion, OCM opens the
door to the study of the interactions between islets of Langerhans, their vascular network
and blood flow under both physiological and diabetic conditions.
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21 OCM and the specificity of 5-cell
tracers

Identification of specific tracers for [-cells would have a major impact on diabetes
diagnosis and therapy. However, the specificity of tracers cannot be fully assessed using
MRI, PET or SPECT due to their low spatial resolution. Indeed, they need labeling to
differentiate endocrine from exocrine tissue. So far, only optical imaging has provided
sufficient spatial resolution to image individual islets of Langerhans.

In this chapter, we explore OCM as a new technological platform to facilitate initial
tests and to speed up the general search of -cell tracers. In this study, we demonstrate
the use of OCM both at the cellular and organ level to assess the specificity of a tracer.
We use OCM for an in vivo label-free detection of pancreatic g-cells based on their
intrinsic back-scattering properties as well as to image cells in vitro. In order to follow the
tracer, we enhanced our OCM setup with a fluorescent channel that allows simultaneous
detection of the OCM and fluorescent signal. As a proof-of-concept, we investigate the
specificity of Cy5.5-exendin-3 for S-cells.

4.1 Specific tracers for 3-cells

To be suitable for §-cell imaging, an ideal tracer must be small, specific, have a high
affinity, be cleared from blood stream and non-target tissues in a short period of time,
and of course be non-toxic [96]. Antibodies targeting [-cells have been proposed, but
their large size prevents their optimal diffusion into the endocrine tissue. Anti-diabetic
drugs such as glibenclamide and tolbutamide have been tested, but they are not specific
enough and their signal-to-background ratio is too low [191]. Targeting receptors specific
to pancreatic (-cells is another option. Potential candidates are dopamine receptor,
vesicular monoamine transporter (VMAT?2), glucagon-like peptide-1 receptor (GLP1R)
and sulfonylurea receptor 1 (SURL) [96].

VMAT?2 has been targeted by using the ligand dihydrotetrabenazine (DTBZ) [192] with
a decrease in ligand uptake observed both in a spontaneous model of type I diabetes [133]
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and in streptozotocin-induced diabetes in rats [193]. However, (-cell depletion by
diphtheria toxin injection of mice expressing the diphtheria toxin receptor under the
insulin promoter did not reveal a change in DTBZ-based PET imaging, thus suggesting
that the signal is not (-cell specific. In the same study, no radiotracer retention was
observed in human islets grafted under the kidney capsule [194]. However, in long-
standing type I diabetic patients with a predicted close to complete loss of the S-cell
mass, a decrease of the signal was observed as compared to control even though a
significant uptake of DTBZ was still observed [195]. This finding could be explained
by the expression of VMAT?2 in PP-cells and in nerve fibers, which are both present in
the endocrine tissue [196, 197]. In addition, there are indications that VMAT?2 is not
expressed in rodents, which questions the validity of pre-clinical studies done on rats or
mice [198]. Therefore, there is still an on-going controversy about the potential to target
VMAT?2 as a marker for S-cells.

GLP1 (glucagon-like peptide-1) is derived from proglucagon and is a peptide-hormone
released from intestinal L-cells after food ingestion. GLP1 stimulates insulin secretion,
decreases glucagon secretion, stimulates S-cell proliferation and inhibits apoptosis [199,
200]. Therefore, it plays a major role in glucose homeostasis. GLP1R mRNA expression is
found in human pancreas, but also in lungs, brain, kidneys, stomach and heart [201] with
a similar expression in the rat [202]. In a healthy human pancreas, GLP1R density has
been shown to be twice as large in islets as in acini using autoradiography for GLP1 [203].
However, this density is lost in pancreatitis and becomes similar to the exocrine pan-
creas [203]. In addition to the pancreas, a high GLP1R density is present in the central
nervous system and in the duodenum [203]. Using freshly isolated whole pancreatic
organ, Tornehave et al. [204] showed that GLP1R is expressed in pancreatic (-cells of
mice, rats and humans, but not in other types of islet cells. GLP1R immunoreactivity
was also detected in ducts with strongest expression in most of the large ducts [204].
Recently, Pyke et al. [205] developed a monoclonal antibody against the human GLP1R
extracellular domain for immunohistochemistry. They demonstrated colocalization of
GLP1R and insulin, but not in the other islet cells (glucagon, somatostatin, and pancre-
atic polypeptide cells) in normal pancreases of monkey. A variable and weaker signal
of GLP1R in the acinar cells was present, but no signal of GLP1R was detectable in
ducts. Similarly, normal human pancreases show colocalization of GLP1R and insulin,
weaker and variable signal in acinar cells and no staining in ducts. Colocalization with
insulin is maintained in both human and monkey diabetic pancreas. In addition to
monkey pancreas, they analyzed kidney, lung, heart, gastrointestinal tract, liver, and
thyroid from monkeys for GLP1R expression. Except for the liver and the thyroid, the
other organs have cells expressing GLP1R. Among the analyzed organs that express
GLP1R, the duodenum shows the higher signal expression. The absence of GLP1R in the
a-cells is in contradiction with the findings of Heller et al. [206], who observed GLP1R
immunoreactivity on 20% of a-cells using in vitro islets. These contradictory results
could be explained by the different preparations, i.e., fixed tissue versus in vitro islets.
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However, compared to the other studies, the specificity of the antibody used by Heller et
al. [206] was only assessed on cells transfected with the GLP1R and not on pancreatic
tissue from knock-out mice for the GLP1R.

GLP1 is the endogenous ligand of GLP1R, but its short half-life (1-2 minutes) due
to the inactivation by the enzyme dipeptidyl peptidase-4 (DPP-4) prevents its use
for therapeutic or imaging purposes [200]. Exendin-3 and Exendin-4 are more stable
agonists of the the GLP1R. Exendin-3 is derived from Heloderma horridum, the Beaded
Mexican Lizard (Mexico and southern Guatemala), and Exendin-4 from Heloderma
Suspectum, the Gilamonster (a lizard living in the South West of the United States and
northern Mexico) [96]. Following stimulation with GLP1 or analogues, the GLP1R is
rapidly internalized with a fast rate of recycling even after prolonged treatment [207].
Using these analogues, promising results have been obtained with PET/SPECT [208-
214], MRI [215, 216] and fluorescence microscopy [217, 218]. Intriguingly, a study on
streptozotocin-induced diabetic pigs imaged with PET did not show a difference in
exendin-4 uptake between non-diabetic and diabetic pigs [219] whereas a difference was
detected in streptozotocin treated rats [220]. This discrepancy certainly reflects differences
in GLP1R expression between species. Recently, Brand et al. [221] used near-infrared
fluorescent dye with a radiotracer to label exendin-4 and applied this probe to perform
bimodal imaging of insulinomas and (-cells in mice. Indeed, in addition to detect S-cells,
GLP1R targeting demonstrates good results to detect insulinomas [134, 222-224]. Even if
antagonists of GLP1R such as exendin(9-39) have been less investigated to image [-cells,
some studies have shown their potential [225, 226]. Despite these different attempts and
trials, an ideal in vivo tracer for S-cells is not yet available. Therefore, initial evaluation
of tracer specificity is still required on small animals.
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The identification of a S-cell tracer is a major quest in diabetes research. However,
since MRI, PET and SPECT cannot resolve individual islets, optical techniques are
required to assess the specificity of these tracers. We propose to combine Optical
Coherence Microscopy (OCM) with fluorescence detection in a single optical platform
to facilitate these initial screening steps from cell culture up to living rodents. OCM can
image islets and vascularization without any labeling. Thereby, it alleviates the need of
both genetically modified mice to detect islets and injection of external dye to reveal
vascularization. We characterized Cy5.5-exendin-3, an agonist of glucagon-like peptide
1 receptor (GLP1R), for which other imaging modalities have been used and can serve
as a reference. Cultured cells transfected with GLP1R and incubated with different
concentrations of Cy5.5-exendin-3 show full tracer internalization. We determined that
a dose of 1 pg of Cy5.5-exendin-3 is sufficient to optically detect in vivo the tracer
in islets with a high specificity. In a next step, time-lapse OCM imaging was used to
monitor the rapid and specific tracer accumulation in murine islets and its persistence
over several hours. This optical platform represents a versatile toolbox for selecting
[-cell specific markers for diabetes research and future clinical diagnosis.

4.2.1 Introduction

Islets of Langerhans are structures hosting the insulin-producing $-cells, which play a
central role in glucose homeostasis. For a deeper understanding of the pathogenesis
of diabetes and for developing beneficial treatments protecting S-cells, improving their

52



4.2. Journal article

function or promoting their proliferation/regeneration during diabetes, an accurate
assessment of the B-cell volume is necessary. These ambitious goals motivate the search
for specific 8-cell markers. The utmost goal is to achieve human in vivo imaging of
B-cells, which is an on-going worldwide effort of intensive research [96, 227]. Non-
invasive clinical imaging techniques such as MRI, PET or SPECT rely on contrast agents
or radio-ligand tracers to discriminate between the endocrine and exocrine pancreas.
However, these clinical imaging modalities cannot provide a sufficient resolution to resolve
individual islets, and therefore rely solely on the contrast quality of the used bio-tracer.
Therefore, imaging of smaller individual islets requires the higher spatial resolution of
optical imaging. Although optical imaging has a limited penetration depth of a few
hundred micrometers and therefore would have very limited use in a clinical setting,
it can provide an alternative to assess the specificity of S-cell markers in recognized
animal models. In principle, classical optical techniques such as fluorescence microscopy,
confocal [217] or two-photon microscopy [104] allow identifying fluorescently labelled
B-cell tracers. However, their voxel by voxel scanning results in long imaging acquisition
time, making in vivo imaging of the pancreas in the abdominal cavity and time-lapse
imaging during the tracer accumulation challenging. Line-scanning confocal fluorescence
imaging overcomes this speed limitation [38] but similarly to other classical optical
techniques requires genetically modified mice to visualize pancreatic islets [103]. Optical
Coherence Microscopy (OCM) circumvents all these limitations by providing fast, three-
dimensional label-free imaging of islets of Langerhans [107, 161] along with the islet
vascularization and blood flow [128, 167, 180]. In this paper, we exploit the advantages
of OCM enhanced with a confocal fluorescence channel to assess the specificity and
the dynamics of a (-cell tracer linked to a fluorophore. As a proof of principle, we
demonstrate the high g-cell specificity of a Cyb.5-exendin-3 tracer in vitro and in vivo
for which other imaging modalities have been used and can serve as reference. Exendin-3
is an agonist of the glucagon-like peptide-1 (GLP1) that targets glucagon-like peptide-1
receptor (GLP1R), a promising candidate due to the specificity and the high level of
GLP1R expression on fS-cells [204, 205, 228]. Using GLP1 agonists, promising results
have been obtained with PET and SPECT [208, 210-213, 220], MRI [215, 216] and
fluorescence microscopy [217, 218, 221]. Our study reveals promising specificity and
dynamic features of GLP1 tracers and sets a platform for further characterization of

[-cell tracers.

4.2.2 Research design and methods
Animals and pancreas imaging with xfOCM

The Swiss veterinary authorities approved all procedures and animal protocols for the
described studies. For these investigations, ICR female adult mice were obtained from the
Harlan laboratories and underwent laparotomy procedure as previously described [107].
For imaging longer than 30 minutes, the anesthesia was prolonged with 1% isoflurane
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Chapter 4. OCM and the specificity of 5-cell tracers

mixed with oxygen. During the imaging session the mice are kept on a heating stage.
The animals were imaged using the xfOCM /confocal fluorescence (Fig. 4.1) dual system
to image the islets (OCM-mode) and the Cy5.5 tracer (fluorescence mode).

Cell culture and imaging with dfOCM

Chinese hamster lung (CHL) cells stably transfected with the human GLP1-receptor
(CHL-hGLP1R) [229] are a donation from Martin Béhé (PSI, Switzerland). CHL-
hGLP1R were grown in Dulbecco’s Modified Eagle’s Medium (DMEM) GlutaMax
(Gibco, Invitrogen, catalog 61965) supplemented with 10% heat-inactivated fetal calf
serum (vol/vol), 100 units/ml penicillin and 100 pg/ml streptomycin, 50 mg/ml geneticin
(G418) sulphate solution (PAA laboratories GmbH, GE Healthcare), 1 mM sodium
pyruvate, and 0.1 mM Non-Essential Amino Acids (NEAA), in a humidified 5% COq
atmosphere at 37° C. hGLP1R negative CHL cells were grown in the same medium
but without geneticin. The cells were harvested by trypsinization with trypsin/EDTA.
CHL-hGLP1R and CHL negative cells were seeded on p-Dish 35 mm (Ibidi) and cultured
overnight. The cells were washed three times with Krebs buffer (NaCl 7.795 g/L, KCl1
0.354 g/L, KHyPOy4 0.162 g/L, MgS4H0 0.293g/L, CaCloH,0 0.374 g/L, NaHCO3 0.424
g/L, Hepes 2.39 g/L) and incubated at 37° C or 4° C with Cy5.5-exendin-3 (0-100 nM)
for 90 min in Krebs buffer with 3.9 mM glucose. Following incubation, cells were washed
three times with Krebs buffer and put at 4° C before imaging. Cells were imaged using
the dfOCM/confocal fluorescence dual system (Fig. 4.1) to match the signals originating
from cells and the Cy5.5-exendin-3 tracer.

Conjugation of Exendin-3 with fluorophore and radionuclide and IC50 determination
HIInCl3 was obtained from Covidien (Petten, The Netherlands) and (DTPA-) exendin-3
was purchased from Peptide Specialty Laboratories (PSL, Heidelberg, Germany). Cy5.5
Mono NHS Ester was purchased from Amersham (GE Healthcare, Buckinghamshire, UK)
and conjugated to exendin-3 by PSL. Both DTPA and Cy™5.5 Mono NHS Ester were
conjugated to the e-amino group of the Lysine residue at position 40. DTPA-exendin-
3 was radiolabeled with "1InCl3 as described previously [224]. The 50% inhibitory
concentrations (IC50) of exendin-3 and Cyb5.5-exendin-3 were determined using CHL-
GLPI1R cells, grown to confluence in 6-wells plates. Concentrations of the unlabeled
exendin-3 and Cyb.5-exendin-3 ranging from 0.1 to 300 nmol in DMEM-GlutaMax with
0.5% (w/v) bovine serum albumin (BSA) (n=3) were added to the cells together with
50,000 cpm "In-DTPA-exendin-3. The cells were incubated for 4 hours on ice, washed
twice with DMEM-GlutaMax with 0.5% BSA and harvested using 1 ml 0.1M NaOH.
The radioactivity associated with the cells was measured in a well-type gamma counter
(Wallac 1480-Wizard, Perkin-Elmer, Boston, MA, USA). The IC50 values were calculated
by one-site competition analysis with Graphpad Prism (version 5.03, GraphPad Software,
San Diego California USA). An unpaired t-test was used for significance determination
with a p-value below 0.05 considered as significant.
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In vivo evaluation of different doses, blocking experiments, time-lapse imaging and
image analysis

Mice were injected intravenously in the tail vein with either 0.1 pg (2.6 ng/kg, 0.5 nmol/kg,
n=4 mice, 65 islets analyzed in total), 1 pg (26.3 pg/ke, 5.5 nmol/kg, n=>5 mice, 68 islets
analyzed in total) or 14 pg (391.7 pg/kg, 82.2 nmol/kg, n=4 mice, 34 islets analyzed in
total) of Cy5.5-exendin-3 in 200 pl of PBS and imaged 4 hours after ligand injection.
Control mice (n=5 mice, 24 islets analyzed in total) were injected with PBS only. For
blocking experiments, 1 pg of Cy5.5-exendin-3 and 100 pg of exendin-3 (2.8 mg/kg,
0.6 pmol/kg ) in 200 nl of PBS were injected intravenously in the tail vein and imaged 4
hours later (n=4 mice, 56 islets analyzed in total). For time-lapse imaging, mice were
injected intravenously with 1 ng of Cy5.5-exendin-3 in 200 pl of PBS and imaged for up
to 4 hours (n=4 mice, 9 islets analyzed in total). Quantification of the fluorescence signal
of Cyb.5-exendin-3 was performed on images taken with an open pinhole. The median
fluorescent intensity of the pixels belonging to an islet was quantified in a post processing
step by a semi-automatic segmentation of the fluorescent signal overlapping the OCM
signal of islet. For time-lapse imaging, the time intensity curve was smoothed with an
averaging filter of three, i.e., each point represents the averaging of 3 consecutive points.

OCM instruments for small animal and cell imaging

xfOCM All in vivo imaging was performed with our xfOCM instrument [123, 167] equipped
with a Zeiss Neofluar objective (10x, NA 0.3, Carl Zeiss) with a lateral resolution of 1.3 pm
and a depth of field of 400 pm. The illumination power on the pancreas was around 5 mW
to acquire a full profile over the extended depth. Imaging the pancreas vascularization is
based on a specific scanning protocol [166] and a phase variance algorithm [180]. This
method uses a specific scanning protocol where each line (B-scan) is scanned several
times. For our measurements, 8 B-scans were taken at 50 kHz (18 ps integration time
per depth-profile). The circular variance of temporal phase changes was calculated to
extract the vascularization. To improve the contrast, the circular variance was averaged
over a window of 8 pixels in the axial direction.

dfOCM The dark field OCM (dfOCM) [129] is used for cell imaging. dfOCM suppresses
all specular reflections which originate from the sample slide. For in vitro cell imaging,
the added darkfield mask placed in a conjugated plane to the back focal plane of
the objective, increases the contrast for cell measurements substantially. Our dfOCM
instrument contains a plan apochromat immersion objective (25x, NA=0.8, Carl Zeiss)
resulting in a 900 nm lateral resolution and 3 pm axial resolution over a field depth of
50 pm.

Both instruments have a fluorescence channel using the same scanning unit for a simulta-
neous acquisition of the fluorescence and the OCM signal. For suppressing any crosstalk
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Chapter 4. OCM and the specificity of 5-cell tracers

between the OCM and fluorescence channel detection, a high pass filter (HQ720lp, Chroma
Technology Corp.) is placed in the illumination arm. For the fluorescence excitation,
a tunable supercontinuum laser was used (Koheras SuperK Extreme, NKT Photonics).
A dichroic mirror (720dcxr, Chroma Technology Corp. and a KG1 Schott infrared
absorber) in combination with a complementary excitation filter (HQ680/35m, Chroma
Technology Corp.) rejects the NIR spectrum and enhances the SNR for the fluorescence
detection. Excitation and emission light was separated by a dichroic mirror and excitation
filter (z647RDC, Chroma Technology Corp. and Z635/10x, Chroma Technology Corp.).
The fluorescence signal was detected by an avalanche photodiode (SPCM-AQR-14-FC;
PerkinElmer) and digitized with a NIDAQ card (National instruments).

Immunofluorescence

At the end of the imaging session, mice were intraperitoneally injected with 1 ml/kg
body weight of a solution of pentobarbital (150 mg/ml). The deeply anesthetized
animals were transcardially perfused for 2 minutes with PBS and for 8 minutes with
4% paraformaldehyde (PFA) solution. The pancreas was further fixed for 1 day at 4° C
in 4% PFA, prior to an overnight incubation in a 30% (wt/vol.) sucrose solution in
PBS at 4° C. The pancreas was embedded in Optimal Cutting Temperature compound
and frozen in isopentane cooled with dry ice. 8 pm cryosections were prepared for
staining. The sections were permeabilized 10 minutes with PBS-TritonX100 0.25% and
blocked in 10% fetal bovine serum for 30 minutes at room temperature. Incubation with
primary antibodies (guinea pig insulin 1:50 Dako, rabbit glucagon 1:200 Cell Signaling,
rat e-cadherin 1:100 Takara Bio) was performed at 4° C overnight in a humid chamber.
Secondary antibodies were incubated 45 minutes at room temperature. The sections were
further stained with Dapi (1:10000) for 10 minutes at room temperature and mounted
with DABCO mounting medium. These immunostained samples were inspected with a
Zeiss LSM 710 microscope equipped with a 63x oil Plan-Apochromat objective (NA=1.4).

Statistical analysis

Data are presented as mean with standard deviation.

4.2.3 Results
Exendin-3 coupled to Cy5.5 retains efficient binding to GLP1R

The tracer exendin-3 has already been investigated with different modalities [213, 224].
For an optical monitoring of the exendin-3 binding process to cells expressing GLP1R
in vivo, we coupled Cy5.5 to exendin-3 to the epsilon amino-group of the C-terminal
lysine in analogy to the DTPA conjugated exendin. This strategy allows a straight
comparison between the radiolabeled and fluorescently labeled compound. To investigate
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Figure 4.1: Schematic layout of the dual systems. The dark-field effect is obtained by
adding an annular mask (i) in the illumination and a pupil mask (ii) in the detection
arm.

if this modification alters the pharmacological properties DTPA-exendin-3 was labeled
with " InC3 with a specific activity of 700 GBq/pmol. The radiochemical purity was
95% as determined by ITLC. Radiolabelled exendin-3 and Cy5.5-exendin-3 were used to
determine the IC50 diagrams using Chinese hamster lung (CHL) cells stably expressing
GLP1R. Both compounds showed a high affinity for the GLP1R. The IC50 values of
exendin-3 and Cy5.5-exendin-3 were 2.6 nM and 10.8 nM respectively (Fig. 4.2 with 95%
confidence intervals of 1.9-3.4 and 7.0-16.7 respectively). These values in the nanomolar
range are not significantly different (p=0.68).

Cy5.5-exendin-3 binding and internalization in vitro in cells expressing GLP1R

To assess the specificity of Cyb.5-exendin-3 for GLP1R, stably transfected CHL cells
with the human GLP1R were used and imaged with dark field OCM (dfOCM). The
novel instrument we designed (Fig. 4.1) combines OCM to detect islets or cells based
on their natural scattering [107] with fluorescence to detect the tested tracer. OCM
part works in two configurations: extended focus OCM (xfOCM) [123] and dark field
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Figure 4.2: Competition binding assay (IC50) of exendin-3 and Cy5.5-exendin-3 on
CHL-GLPI1R cells. '""In-DTPA-exendin-3 was used as tracer. The sample with the
highest binding percentage was set at 100%.

OCM (dfOCM) [129]. xfOCM is optimized for small animal imaging whereas dfOCM
possesses dark field contrast enhancement and is designed for cell imaging. dfOCM allows
imaging of the weak scattering signal from cells by suppressing the strong reflection
originating from the microscope slide. We investigated a concentration range of 0-100 nM
of Cy5.5-exendin-3 on CHL cells positive or negative for GLP1R. To discriminate between
internalization and binding, the cells were incubated at either 37° C or 4° C for 90 minutes.
As shown in Figure 4.3, complete internalization is observable down to 1 nM at 37° C
whereas only a membrane staining is seen at 4° C . In both cases, no signal is detectable
in the CHL negative control. As an additional control we used a conventional confocal
fluorescence microscope, which confirmed our findings.

Determination of Cy5.5-exendin-3 dose for a specific islet detection

To determine the minimum dose required for in vivo tracer detection of a fluorescence
labeled tracer, three different doses of Cy5.5-exendin-3 (0.1, 1 and 14 pg per mouse that is
2.6, 26.3 and 391.7 pg/kg) were investigated. No fluorescent signal inside the islets could
be detected 4 hours after the intravenous injection of 0.1 pg of Cy5.5-exendin-3. Only in
rare cases (< 5%) a weak fluorescence appeared at the limit of observation. Conversely
both at 1 pg and 14 pg doses, the tracer accumulates only inside the islet 4 hours after
injection (Fig. 4.4a). Although the fluorescence intensity of islets in mice injected with
14 png was stronger than at 1 pg of Cyb.5-exendin-3 (Fig. 4.4b), the background signal in
the exocrine pancreas was higher at 14 ng than at 1 ng of Cy5.5-exendin-3 (Fig. 4.4c),
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Figure 4.3: Cell imaging with the OCM /fluorescence platform after 90 min of incubation
with different concentrations of Cy5.5-exendin-3 (0-100 nM) with CHL positive or negative
for hGLP1R. Scale bar: 20 pm.

with a dot-like staining in the exocrine pancreas (Fig. 4.4a). In addition while right
after injection of a 14 pg tracer dose, a fluorescent signal appeared in the pancreas
vasculature, at an intermediate dose of 1 ng of Cy5.5-exendin-3, no fluorescent signal
was observed in the vasculature but a strong fluorescent signal appeared inside the islets
right after injection (Fig. 4.5). A dose of 1 ng of Cy5.5-exendin-3 is considered to be
optimal based on our quantitative analysis. Firstly, the ratio (mean endocrine / mean
exocrine fluorescence intensity) was ~ 6 for a 1 ng dose and decreases to 4 for a 14 ng
dose. Secondly, this finding is supported by the fact that the fluorescence signal with
1 ng dose was well observable at 4 hours (Fig. 4.4b) after injection and that the signal
in the exocrine pancreas was as low as in the control animals (Fig. 4.4¢). In addition,
we investigated whether there was a correlation between islets depth localisation or its
volume. However, no correlation could be found (Fig. 4.6). No fluorescent response was
measured 4 hours after injection of a blocking solution of 100 ng of unlabeled exendin-3
(Fig 4.4a,b), confirming the specificity of Cy5.5-exendin-3 for islets of Langerhans.
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Figure 4.4: Evaluation of different doses of Cy5.5-exendin-3 in vivo. (a) Representative
images of the fluorescence signal and the corresponding xfOCM images 4 hours after
injection of different doses of Cy5.5-exendin-3. Scale bar: 200 pm. (b,c) Quantification
of islet fluorescence intensity (b) and exocrine fluorescence intensity (c) 4 hours after
injection of different doses of Cy5.5-exendin-3 (0.1, 1, 14 pg), control (ctrl) and blocking
(block.).*p < 107*, **p < 10~°, Mann-Whitney non-parametric U-test.
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Figure 4.5: Evaluation of different doses of Cy5.5-exendin-3 in vivo. Fluorescence and
corresponding xfOCM image a few minutes after injection of 14 pg or 1 pg of Cy.5.5-
exendin-3. After injection of 14 pg, the tracer is visible in the vasculature of the pancreas.
Arrows indicate islets in the xfOCM image. Scale bar: 200 pm.
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Figure 4.6: Accumulation of Cy5.5-exendin-3. Median fluorescence intensity of the islets
4 hours after injection of 1 pg of Cyb.5-exendin-3 with respect to the islet depth position
in the tissue (a) or to the islet volume (b).
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pancreas |0

kidney

Figure 4.7: Internalization of Cy5.5-exendin-3. (a,b) Representative sections showing
the internalization of the tracer specifically in S-cells and not in a-cells. E-cadherin
staining is shown in green. Scale bar: 20 pm. (c¢) Ez vivo signal of the tracer is found
in pancreatic islet and in the kidneys. The strong fluorescent intensity in the kidney
requires using a pinhole to reject out of focus fluorescence. Scale bar: 200 pm.

Ex vivo organ analysis after in vivo imaging reveals the specificity of Cy5.5-exendin-3
for (-cells

To further investigate the specificity of Cyb.5-exendin-3, the pancreata of mice injected
with 14 ng of Cy5.5-exendin-3 or only with PBS were sectioned and stained for insulin,
glucagon and e-cadherin (Fig. 4.7a,b) and further analyzed by confocal fluorescence
microscopy. This shows that the signal of Cy5.5-exendin-3 is co-localized with the insulin
staining and is clearly internalized in (-cells whereas a-cells did not internalize the tracer.
No Cyb5.5 signal was observed in the control mice injected only with PBS. We performed
an ex vivo study based on fluorescence imaging for establishing the biodistribution in
several organs (heart, lung, duodenum, large intestine, stomach, kidney, spleen and
liver). After dissection, a specific Cy5.5-fluorescent signal in the islets is still observable
(Fig. 4.7c). Among the organs investigated, only the kidneys showed a strong fluorescent
response (Fig. 4.7c) about 2 times higher than the signal observed in the islets (Fig. 4.8),
which might cause difficulties for PET/SPECT imaging. In our OCM-fluorescence
platform the kidneys and the pancreas are clearly distinguishable: no crosstalk was
observed during the in vivo assessment.
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Figure 4.8: Median fluorescent intensity of the islet and kidney ez vivo 4 hours after
injection of 1 ng of Cy5.5-exendin-3. *p < 0.01 with Mann-Whitney non-parametric
U-test.

Cy5.5-exendin-3 targets islets within minutes and is stably detected for hours

We monitored the accumulation of the tracer over time in different islets (Fig. 4.9). No
fluorescent signal was detected in islets prior to the ligand injection. Right after injection
of the ligand, a signal was visible in the islets and remained stable over 4 hours. Moving
red blood cells cause dynamic light scattering, which can be used by OCM for imaging of
the pancreas vasculature [189]. This enables a parallel visualization of the tracer, the islet
structure and its vasculature with a temporal resolution of ~ 20 ps per depth-profile. The
full 3D volume (512 x 512 x 512 voxel) is imaged in less than 10 seconds for structure
and in less than 1 minute for vascularization. The islet vascularization was unaltered
after a 4 hour imaging session, which is crucial for a proper delivery of the ligand in the
islets. Neither the surgical procedure (the pancreas of mice is exteriorized during the
imaging session) nor the imaging is disturbing the blood supply in the islets and in the
pancreas.

4.2.4 Discussion

The identification of S-cells specific tracers and the characterization of the dose and
dynamics of tracer accumulation are mandatory steps on the road towards human
non-invasive f(-cell imaging. In this paper, we developed and validated an imaging
platform well suited for the task of S-cell tracer assessment. As a proof of principle we
addressed the specificity of exendin-3 by in wvitro imaging of cells expressing GLP1R and
by in vivo imaging of pancreatic islets. Using this OCM platform, we demonstrated
that: (1) Cy5.5-exendin-3 is internalized in vitro by CHL cells expressing GLP1R; (2) in
vivo for fluorescence labeled tracer investigations a dose as low as 1 pg of the tracer is
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Figure 4.9: Dynamics of the tracer in vivo. (a) Fluorescence signal detected over time
after injection of 1 pg of Cyb.5-exendin-3. (b) xfOCM (virtual structural section and
maximum projection of vascularization) with fluorescence images at different time points
indicated with a star symbol in (a). Depth is color-coded in micrometers. Stripes in the
vascularization images are due to residual pancreas movements. Scale bar: 200 pm.
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sufficient to be optically detected and quantified inside islets with a sufficient signal ratio
discriminating well endocrine and exocrine tissue; (3) in vivo the tracer is specifically
internalized as confirmed by blocking experiments with an excess of unlabeled exendin-3;
(4) the discrimination of pancreatic islets by the fluorescent tracer is obtained already a
few minutes after injection and is observable for at least 4 hours. Last but not least, we
showed that Cyb.5-exendin-3 is internalized by S-cells but not by a-cells. In contrast
to what was suggested by Reiner et al. [230], we show that exendin-3 conjugated with
Cy5.5 at the C-terminus lysine in position 40 specifically and efficiently accumulates in
CHL cells expressing GLP1R and in the §-cells in vivo.

Compared to classical optical fluorescence microscopy applied to image islets of Langer-
hans, our OCM platform offers several essential advantages: first, 3-dimensional OCM
imaging requires only two lateral scans, resulting in a faster acquisition speed; second, no
genetically modified mice to image islets of Langerhans are needed; and third, no injection
of an external agent is needed to visualize the pancreas vascularization. However, to
access the pancreas, a laparotomy and exteriorization of the pancreas are still required,
as it is the case for any optical imaging method. A high S-cell tracer detection requires
good delivery and therefore demands a well perfused organ. The label-free imaging of
the vascularization during the whole imaging session proved to be an essential asset
for the assessment of tracer dynamics and accumulation. The artifacts visible in some
vascularization images in Fig. 4.9 could be removed by a better stabilization of the
pancreas, which remains an experimentally difficult endeavour for small animal imaging.
A potential alternative could be the acquisition of additional transversal scan lines to
better identify bulk intensity shifts [231] and to discard them.

To assess the specificity of a potential tracer in vivo, optical approaches are needed
to resolve individual islets and compare their intensity to other neighboring tissues.
While islets can be discriminated due their intrinsic higher scattering signal in OCM, a
fluorophore is necessary to detect the tracer. This can sometimes modify the binding
properties of tracers, a limitation of the technique also shared by confocal imaging and
in general by other techniques offering such resolution in space and time. However, the
speed of the technique allows to perform live imaging and quantifications of multiple
islets in parallel. Previous assessments of dynamics by confocal microscopy have focused
on one islet per mouse, which does not enable to assess the variation in signal [217].
We reveal that there is a range of responses, some islets being 3 fold stronger, but all
islets reaching a plateau of signal in less than 15 minutes. This variability is averaged in
PET/SPECT where the signal results from an integrated signal over multiple islets at
different depths. The temporal signal over individual islets is however remarkably stable
at the plateau, similar to confocal imaging [217], with little variations due to breathing,
heartbeat and peristaltic movements.

Since fluorescence detection is less sensitive than radioactivity detection, we expect
differences in the required doses to detect a signal when fluorescence microscopy is
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Chapter 4. OCM and the specificity of 5-cell tracers

used compared to PET/SPECT modalities. Our dose escalation study allows a better
understanding of the differences in dosing between fluorescent tracers [217, 221] and radio-
tracers [213, 224]. We confirmed that a fluorescence signal is detectable both at 14 pg
and 1 pg similarly to other studies based on fluorescence detection of the tracer [217, 221].
Of note, the 1 pg dose is lower than the doses previously used for confocal microscopy
in mouse (2-8 nmol/10-40 pg per animal) but higher than the pharmacologic doses
administered in human (5 pg Exenatid per injection). In human imaging, the greater
sensitivity of PET will enable to use lower doses as PET/SPECT imaging in mouse only
requires around 0.1 pg per animal [211, 213, 220]. At this dose, no signal is detected in
fluorescence, however, similarly to what is observed in PET/SPECT we observed that
increased doses result in a decrease of the relative uptake: a 14 pg dose results in a
lower target to background when compared to a dose of 1 png of Cy5.5-exendin-3. It is
likely that at 14 pg, we increase the background. In agreement with the biodistribution
observed in PET/SPECT a high kidney retention of the tracer was detected.

The presented imaging technology provides a rapid assessment of tracer characteristics
in vivo complementing the tedious classical ex vivo procedures based on elaborate single
time point biodistribution, autoradiography and immunohistochemistry experiments.
Our optical imaging platform provides the basis for an efficient and exact in vivo dynamic
characterization of -cell tracer close to the cellular level. Thereby, it offers the possibility
to simplify the initial screening to determine whether a potential tracer is specific for
[B-cells. Nevertheless, since the tracer detection relies on fluorescence, studies using
PET/SPECT to image radio-labeled tracer injected in small rodents are required to
determine the suitable dose for clinical imaging. Furthermore, the intrinsic contrast of
islets and their vascularization opens the possibility to perform a label-free study during
diabetes progression. In conclusion, this dual-modality imaging allows in vivo monitoring
of islet structure, vascularization and tracer uptake for pancreas imaging. As shown,
our approach is a preclinical and complementary imaging method to MRI/PET/SPECT
to characterize B-cell tracers in mice when the tracer is large enough to be coupled to
fluorescent probes.
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5] Label-free longitudinal study of
type I diabetes

In previous chapters, the feasibility of using OCM to image islets of Langerhans and
their vascularization has been demonstrated. Yet, while imaging islets of Langerhans
is very important, the most prominent advantage of OCM is its potential for studying
the etiology of diabetes. Transversal studies can bring significant information about
the progression of the disease. However, in the case of diabetes, the heterogeneity of
the progression renders such studies difficult to interpret. On top of that, even in the
internalization of tracers, we have seen that there are significant variabilities between
islets of different individuals, but also between different islets from the same pancreas
(Chapter 4). Therefore, longitudinal studies of individual islets are required. Longitudinal
imaging in the pancreas with OCM is in principle feasible, but it is prohibitively difficult
to find the same islet between successive imaging sessions. In addition, the heavy surgery
required by such studies prevents multiple time point imaging. The anterior chamber of
the eye (ACE) transplantation model offers the opportunity to follow individual islets
over time. In this chapter, we developed a platform combining OCM with the ACE
transplantation model. We also identified the Zn?*-insulin crystallines structures as the
main source of the strong back-scattering of the S-cells. In this context, OCM allows
a complete label-free non-invasive imaging of the islets with a molecular specificity for
B-cells.
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5.1 Journal article
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Functional optical coherence imaging (FOCI)—A
novel, label-free approach for longitudinal, 3D vi-
sualization of autoimmune diabetes
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Lisbeth Hansen?, Arno Bouwens', Martin Villiger!, Joan Goulley®, Frans Schuit®, Anne
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Laboratoire d’Optique Biomédicale, Ecole Polytechnique Fédérale de Lausanne, CH1015 Lau-
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Katholieke Universiteit Leuven, Leuven, Belgium; "DanStem, University of Copenhagen, 3B
Blegdamsvej, DK-2200 Copenhagen N, Denmark; * These authors contributed equally to this work.

Longitudinal high-resolution optical imaging in animal models has provided valuable
insight into disease mechanisms. However, many disorders, like type I diabetes, afflict
tissues that are difficult to access by optical imaging in vivo and in situ. We present here
a procedure based on optical coherence microscopy (OCM) for label-free quantitative
detection of autoimmune inflammation and vascular imaging in pancreatic islets trans-
planted into the anterior chamber of the eye (ACE). We demonstrate that this method,
called functional optical coherence imaging (FOCI), can be applied to longitudinal mon-
itoring of progressive autoimmune insulitis, including the 3-dimensional quantification
of $-cell volume, inflammation and vascularization. Applying FOCI to a spontaneous
mouse model for type I diabetes, we observe that modifications of the pancreatic mi-
crovasculature accompany the progression of diabetes with a strong correlation between
increasing insulitis and density of the vascular network of the islet. The label-free na-
ture of FOCI contributes an important asset for transferring this imaging modality to
human applications.
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5.1.1 Introduction

Diabetes mellitus develops as a functional impairment in the insulin production, sometimes
in association with insulin resistance. In both of the major types of diabetes mellitus, the
progressive dysfunction of §-cell causes the disease development. However, the underlying
mechanisms differ significantly. Thus, while T1D is the result of an autoimmune attack
on the f-cells, T2D is considered to be driven by metabolic factors. These factors are
associated with sedentary life style and obesity, albeit with accumulating evidence of
low-grade inflammation. Modifications of the pancreatic microvasculature are likely to
accompany the progression of both T1D and T2D. Alterations in vascular parameters,
such as transient vasoconstriction, vasodilation, increased blood flow, and vascular leakage
are necessary preludes to inflammation by orchestrating the influx of diverse cell types
as well as affecting local homeostasis [52, 169, 232-234]. To fully appreciate how these
events contribute to the pathogenesis, improved methodology allowing longitudinal,
high-resolution monitoring of cells, vascularization and affected tissues during its natural
progression is most warranted.

To date, longitudinal non-invasive, intra-vital imaging of the pancreas has been mainly
restricted to non-optical imaging modalities like magnetic resonance imaging (MRI) and
computed tomography (CT). While the medical potential of these imaging techniques is
indisputable, they are limited by a restricted set of reagents targeting specific tissues
and by a relatively low spatial resolution [52, 170, 235]. On the other hand, although the
development of optical techniques has improved the resolution as well as the range of
targetable tissues, they are mainly based on invasive surgery and with limited possibilities
for longitudinal studies [38, 104, 236]. Optical Projection Tomography (OPT) has been
used to image the adult mouse pancreas and to retrieve the three-dimensional and
undistorted structure of the tissue [105]. While in this case inflammation could be
quantified at different stages of the disease [31, 106], it is limited by being an ez vivo
technique and requiring sample fixation and immunolabeling. In a more recent work, the
anterior chamber of the eye (ACE) has been used as a valuable site to study transplanted
pancreatic islets [108]. Engrafted on the iris, islets could be repeatedly imaged by
using the eye as a natural body window. This minimally invasive approach allows
longitudinal monitoring of individual islets by using two-photon fluorescence microscopy
in combination with appropriate fluorochromes and transgenic mouse models expressing
fluorescent proteins. In addition, it can be used to visualize islet vascularization, 5-cell
function [13] and autoimmune inflammation [111]. Most optical imaging modalities are
based on labeling of specific molecular probes or transgenic expression of tagging molecules.
This has resulted in an improved specificity, imaging depth and versatility, supporting
the development of live and intravital optical imaging. However, the requirement for
administration of labeled reagents or expression of transgenic flagging molecules remains
an important obstacle when considering transferring these techniques to the imaging of
human tissues and to clinical settings. The previously developed extended-focus optical
coherence microscopy (xfOCM) platform [123] (Section 5.2.5 §2fOCM) circumvents many
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Figure 5.1: Schematic layout of the instrument used to image fixed sample. Acquisition
of OCM and confocal fluorescence signal is done simultaneously. A dark-field effect is
obtained by adding an annular mask (i) in the illumination and a pupil mask (ii) in the
detection arm to remove the strong reflection of the coverslip.

of these hurdles, allowing for label-free visualization of pancreatic lobules, ducts, blood
vessels and individual islets of Langerhans ex vivo and in vivo. So far, this technique has
been restricted to visualizing individual islet and snapshots of islet distribution [107, 161].
Here, we introduce a new technique named functional optical coherence imaging (FOCI)
to longitudinally image pancreatic islets transplanted into the ACE. We demonstrate
that this imaging technique can, in a label-free manner, directly and specifically quantify
the functional volume of §-cells. Further, using this approach, we longitudinally quantify
alterations in the structure and vasculature during the progressing autoimmune attack of
the pancreatic islets. We demonstrate how the vessel bed in the islets is remodeled during
the inflammatory process, resulting in a significantly less dense network in infiltrated areas.
We anticipate this technique to be adoptable to other tissues and organs that require
accurate spatial, temporal and quantitative analyses of their structure and vasculature.
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5.1.2 Results
B-cell specificity in OCM

In general, contrast in xfOCM is based on the scattering characteristics of the investigated
tissue. Therefore, these coherent imaging methods do not provide a specific contrast.
However, knowing the morphology of islets of Langerhans and [-cells, the contrast
difference between exocrine and endocrine tissue becomes an intriguing question. We
have previously shown that xfOCM imaging can be used to identify pancreatic islets in
surgically exposed pancreases of live animals and that the strong scattering observed in
the pancreas correlates with insulin producing [-cells [107]. Pancreatic S-cells contain
a high zinc content [237]. Since OCM is sensitive to changes of refractive index, we
hypothesized that the origin of the strong $-cell OCM signal is due to the zinc-insulin
crystals made of hexamers of six insulin molecules with two Zn?* ions stored inside the
secretory vesicles. To test this hypothesis, thick pancreas sections of zinc transporter 8
(ZnT8) knockout mice, which lack zinc-insulin crystals in the secretory granules of
B-cells [238] were subjected to immunohistochemical (IHC) analysis using anti-insulin
antibody and analyzed simultaneously by OCM and confocal fluorescence microscopy.
In order to suppress the specular reflection of the coverslip, we used a dark-field OCM
(dfOCM) configuration extended with a confocal fluorescence channel (Fig. 5.1). Figure 5.2
shows transverse virtual sections at selected depth position of dAfOCM stack and the
corresponding fluorescence images.

While control pancreata showed a good correlation between dfOCM and insulin staining
(Fig. 5.2a), the dAfOCM signal in the ZnT8-KO mouse pancreata was significantly dimin-
ished (Fig. 5.2b,d), indicating that zinc within S-cells contributes to the OCM signal. To
investigate this further, we imaged the pancreas of guinea pigs as they have a divergent
insulin unable to form the hexameric crystals with zinc [239]. Therefore, S-cells in
guinea pigs contain both insulin and zinc, but do not store insulin as zinc-insulin crystals.
Guinea pig’s p-cells did not show a strong scattering in dAfOCM image (Fig. 5.2¢,d).
Together, these data identify the crystal of insulin with zinc to be the dominant scattering
contribution in OCM and demonstrate that this label-free approach provides a high
specific contrast for the functional $-cell volume.
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Figure 5.2: Ex vivo dfOCM imaging of pancreas and [-cell specificity of the OCM
signal. Thick pancreas sections of ZnT8*/* wildtype controls (a,a’) or ZnT8/~ mice
lacking the insulin secretory granule (b,b’) or guinea pig (c,c’) were analyzed by THC for
specific fluorescence labeling of pancreatic islets with anti-insulin (a’,b’) or anti-glucagon
(c’) antibodies. Scale bar: 50 pm. The sections were imaged by dfOCM extended with a
confocal fluorescent channel. Representative images were chosen. (d) Raw data images
were analyzed for signal to noise ratio (SNR) between the islets and the exocrine pancreas
(n=>50-60 islets per group). ***p < 10713 analyzed by a Mann-Whitney non-parametric
U-test.
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Longitudinal quantification of 3-cell volume and islet vascularization using FOCI

Having established that the xfOCM signal specifically reflects the §-cell volume, we
aimed next to apply this technique to longitudinal studies. While longitudinal imaging
of the pancreas is feasible, it requires heavy laparoscopy and it is almost impossible
to locate the same islet at successive imaging sessions. To overcome these caveats, we
combined xfOCM with a longitudinal imaging platform to establish FOCI (Fig. 5.3).

Isolated, syngeneic islets were transplanted into the ACE of healthy mice. The islets were
then repeatedly imaged by FOCI post transplantation. As illustrated in Figure 5.4a-d
and 5.4e, islets were found to grow during the course of the study. Our data extend
previous reports, which have shown that after an initial phase of vascularization, syngeneic
islets transplanted into the ACE are sustained and functional over several months [108,
109]. The FOCI technology allows, unlike other optical techniques, for label-free 3D
imaging of the vasculature network (Sections 5.2.5 to 5.2.7).

Taking advantage of this, we visualized and quantified the microvasculature in the
transplanted islets over a 2 month period. As illustrated in Figure 5.4a-d and 5.4f, we
found that in parallel with islet growth, re-vascularization of the grafted islet occurred
rapidly over the first 2 weeks after transplantation to form a capillary network similar to
that in native islets in situ (Fig. 5.5a).

Foci detects inflammation in pancreatic islets under autoimmune attack

We next applied FOCI to follow the progressive autoimmune destruction of 5-cells in the
NOD mouse model for T1D. NOD mice spontaneously develop insulitis from 3-4 weeks of
age, which progressively increases and eventually leads to the destruction of most of the
[-cell mass and to overt diabetes. We have previously reported that ACE-transplanted
islets in the NOD genetic background are subject to a progressive insulitis and S-cell
destruction mimicking the process seen in the NOD pancreas [111]. To determine if
the inflammatory cells infiltrating the ACE-transplanted islets could be visualized in a
label-free manner using FOCI, we next analyzed 14-week-old nondiabetic NOD mice that
have been ACE-transplanted with syngeneic islets 4 weeks prior analysis.

As reported previously [111] and shown in Figure 5.6, NOD reporter mice can be used

to visualize specific inflammatory cellular populations infiltrating the pancreatic islet.

In order to interpret the OCM signal in vivo during the longitudinal study, we used
NOD.Foxp3-GFP reporter mice to visualize the recruitment and accumulation of Foxp3™
regulatory T-cells to the site of inflammation along with other inflammatory leukocytes
in the islet. The strong GFP signal indicating inflammation in the NOD islets (Fig. 5.6b),
but not in B6.Foxp3-GFP recipient mice (Fig. 5.6h) matches completely the low FOCI
signal in the center of the NOD islet. This supports the notion that this approach could
be used to discriminate the -cell volume from the infiltrated volume (Fig. 5.6¢,e, and
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Figure 5.3: Schematic layout of the instrument and processing used to image the ACE
transplanted islets. (a) Dual system combining fluorescent widefield microscopy and
xfOCM. (b) Overview of the scanning protocol and image analysis.

Fig. 5.7). B6 control mice did not show such alteration in the FOCI signal (Fig. 5.6j).
To confirm this, the mice were sacrificed after imaging and submitted to conventional
immunohistochemical (IHC) analysis of the grafted islet. As illustrated in Figure 5.6f,e
and Figure 5.8, the insulin staining matched the segmented OCM brighter signal, while
the part in OCM with a significantly lower OCM signal corresponds to the area stained
positive with a pan-leukocyte marker. These findings confirm that FOCI can detect
inflammation in addition to the S-cell volume. However, while the high OCM signal
is specific to insulin, the lower OCM signal cannot be solely attributed to infiltration.
Indeed, other non-3 endocrine cells and vessels also give weaker scattering. To estimate
to which extent the other endocrine cells and vessels contribute to the non S-cell volume
in inflamed islets, we quantified the non (-cell volume in non-inflamed healthy wild
type islets. After initial fluctuations shortly after transplantation, the non S-cell volume
remained stable with approximately 3% of the total islet volume (Fig. 5.9), which coincides
with stabilization of islet vascular network after transplantation. To confirm that the
insulitis identified in the ACE transplanted NOD islets could be similarly detected by
FOCIT in the pancreas, we next analyzed images of surgically exposed pancreas from
aged non-diabetic NOD mice. As illustrated in Figure 5.5b-d, we observed alterations
in the refractory pattern of some of the imaged NOD islets, but not in control B6 mice
(Fig. 5.5a). This FOCI signal was lower than the signal detected in -cells and different
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Figure 5.4: Longitudinal imaging of ACE-transplanted islets by FOCI and quantifica-
tion of (-cell volume and islet vascularization in healthy state. Pancreatic islets were
transplanted into the ACE of healthy wild type mice (n=4) and imaged repetitively by
FOCI 1 week (w), 2w, 4w and 8w post transplantation. (a-d) Representative maximum
projection of the vascularization (i) and orthogonal view of the islet structure (ii) at
indicated time points post transplantation. (e) Islet volume over time normalized to
the first time point. (f) Islet vascular density (total vessel volume / total islet volume)
over time normalized to the first time point. (e,f) 5-12 islets were analyzed for each time
point. Scale bar: 100 pm, colorbar indicates depth position in micrometers.

from the signal detected in the exocrine tissue. These images potentially reflect insulitis
spanning from unaffected to peri-islet infiltration and full-blown intra-islet infiltration.
We confirmed that this altered refractory pattern co-localizes with inflammation, by
imaging thick sections of NOD mice stained with a pan-leukocyte marker (Fig. 5.10).

Insulitis correlates with attenuated vascularization density

Using the FOCI technology we next monitored the vascular network of the islets longi-
tudinally during progressive inflammation (Fig. 5.11). For this, 14-week-old recipient
mice with an ongoing autoimmune process were used, expecting that the insulitis in
the ACE-transplanted islets of those mice would progress rather rapidly. As expected,
Foxp3-GFPT-cells along with other inflammatory cells get recruited to the islet graft and
accumulate over time (Fig. 5.11aii), resulting in continuous -cell destruction. This is
clearly distinguishable in the orthogonal FOCI view (Fig. 5.11ai), which was quantified
(Fig. 5.11d) and shown in a 3D representation (Fig. 5.11b).

As expected, we could visualize a gradual increase in the total islet vascular network
shortly after transplantation (Fig. 5.12). Counterintuitively, we noted a decrease in the
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non-infiltrated peri-insulitis

Figure 5.5: OCM imaging of mouse pancreas. Pancreas of B6.Foxp3-GFP control
mice (a) or pre-diabetic NOD.Foxp3-GFP mice (b,d) were surgically exposed and sub-
jected to live xfOCM imaging after laparoscopy. Shown are maximum projection in depth
of the vascularization and the orthogonal view of virtual sections of a three-dimensional
stack of a non-inflamed control islet (a), an islet with peri-insulitis (b) and fully inflamed
islets with insulitis (c-d). Asterisk in (a) indicates a blood vessel, arrows indicate inflam-
mation. Scale bar 100 pm. Colorbars indicate depth position in micrometers. Residual
stripes in the vascularization images are due to residual pancreas movements.

microvasculature density in infiltrated regions of inflamed islets with eventually only
few big vessels remaining (Fig. 5.11aiii and e, Fig. 5.6d). This was not observed in
islets displaying only limited infiltration (Fig. 5.12 and 5.13). This indicates that the
observed attenuation of microvasculature is correlated with the severity of inflammation.
Additionally, an attenuation of the microvascular network was also observed in the
inflamed islets imaged in situ in the surgically exposed pancreas (Fig. 5.5¢-d), but not in
control B6 mice in situ (Fig. 5.5a) or B6 islet grafts in the ACE (Fig. 5.4 and 5.6k).

To rule out that the regression of microvasculature observed by FOCI is caused by a signal
loss due to reduced blood flow speed, we used IHC to analyze sections of pancreatic islets
from aged non-diabetic NOD.Foxp3-GFP mice or ACE-transplanted islets from the same
mice (4 weeks post-transplantation). In this way, we could confirm that vessel density,
as revealed by anti-CD31, was decreased in inflamed areas compared with non-affected
areas of the islets in the pancreas (Fig. 5.14a-c). In contrast, high endothelial venules
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Figure 5.6: FOCI detects in-
flammation in ACE-transplanted
islets affected by insulitis. Pan-
creatic islets have been trans-
planted into the ACE of 10-
week-old NOD.Foxp3-GFP recip-
ients (n=12) with ongoing au-
toimmune inflammation (a-f) or
healthy B6.Foxp3-GFP control
mice (g-k) (n=2) and imaged by
FOCI weekly post transplanta-
tion. Shown is one representa-
tive imaging session at 4 weeks (a-
f) or 5 weeks (g-k) after trans-
plantation. (a,g) Widefield mi-
croscopy images of the recipient
mouse eye engrafted with islets on
the iris. (b,h) Fluorescent wide-
field microscopy showing recruit-
ment of Foxp3-GFPT T-cells in
the islet indicated by an arrow
in NOD recipients (a) but not in
B6 control mice (g). (c,j) FOCI
virtual section of the engrafted
islet. (d,k) FOCI maximum depth
projection of the vascularization.
(e) Virtual FOCI section seg-
mented for S-cell (blue) and in-
flammation (red). (f) Cryosection
of the graft-bearing eye (n=7) at
imaging endpoint stained with an-
tibodies specific for insulin (blue)
and pan-leukocyte marker CD45
(red), GFP signal (Foxp3™ T-cells)
is shown in green. Scale bar:
100 pm; except for (a,g) scale bar:
500 pm. Colorbar indicates depth
position in micrometers in (d) and

(k).
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Figure 5.7: Intensity  plot
through an inflamed islet graft in
the eye. Virtual OCM section of
an ACE-transplanted islet and
plot of the intensity along the
yellow line show the difference
of intensity between the insulin
OCM signal and the infiltrated
OCM signal. Scale bar: 100 pm.

Figure 5.8: Comparison between
OCM signal and IHC. (a,c) Vir-
tual section of the segmented
OCM signal from inflamed islet
grafts in the eye (blue: insulin, red:
infiltration). (b,d) corresponding
IHC after fixation and immuno-
labeling of cryo-sections of the
graft-bearing eye (blue: insulin,
red: pan-leukocyte marker CD45,
cyan: glucagon, green: Foxp3™-
GFP-cells). Scale bar: 50 pm.

Figure 5.9: Percentage of the non
b-cell volume determined with
FOCI in healthy islets grafted
into the ACE. The percentage of
non S—cell volume was determined
in healthy wild type islets trans-
planted into the ACE over an
imaging period of 1-8 weeks post
transplantation. The non [-cell
volume was detected by subtract-
ing the S-cell volume from the to-
tal islet volume.
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Figure 5.10: Ex vivo imaging of NOD pancreas. Thick pancreas sections of NOD.Foxp3-
GFP mice were anlyzed by THC for specific fluorescence labeling of the pan-leukocyte
marker CD45 to identify inflamed areas. The sections were imaged by dfOCM extended
with a confocal fluorescent channel. Representative images show weak, mild or massive
inflammation. Scale bar: 100 pm.

(HEV) [240] expressing the mucosal addressin cell adhesion molecule 1 (MAdCAM-
1), predominated within inflamed islet areas (Fig. 5.14g-i). This supports previous
observations of lymphocyte-HEV recognition in the development of insulitis in NOD
mice [31, 241-243]. Interestingly, a similar distribution of CD317" versus HEVs was also
seen in inflamed ACE transplanted NOD islets (Fig. 5.14d, k). However, MAdCAM-
17 HEVs were absent in B6 pancreas (Fig. 5.14e, 1) and were also not detected in islet
grafts in the ACE of B6 recipient mice (Fig. 5.14f, m).

5.1.3 Discussion

Our label-free 3D-images are based on a next generation Optical Coherence Microscope
(OCM), which we named Functional Optical Coherence Imaging (FOCT) for its substantial
extension to functional diabetes imaging. As demonstrated, FOCI provided label-free
intravital imaging of pancreatic islets with a high specificity for insulin producing 5-cells
due to the zinc-insulin nanocrystals. The longitudinal recording of the autoimmune
induced islets alterations in the ACE provided a detailed monitoring of the decreasing
[B-cell volume and the impact on the islet vasculature during the inflammatory process.
Compared to similar imaging techniques like Optical Coherence Tomography (OCT) [244]
or Optical Frequency Domain Imaging (OFDI) [245], FOCI has an almost isotropic reso-
lution over the extended depth range. In comparison to alternative techniques, FOCI
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Figure 5.11: Longitudinal quantification of insulitis and the impact on vascularization.
Pancreatic islets were transplanted into the ACE of 10 week-old NOD.Foxp3-GFP
reporter mice (n= 12) with ongoing autoimmune inflammation and imaged weekly from
1 week (w) after transplantation. Shown is a longitudinal imaging session of a selected
islet at 1w, 3w and 4w after transplantation. (a) Orthogonal FOCI view of the islet
graft (ai) and maximum projection in depth of the vascularization (aiii) at week 1-4
after transplantation. Live widefield fluorescence imaging (aii) shows the recruitment of
Foxp3-GFPT Treg cells to the islet graft in the eye. (b) Three-dimensional rendering
corresponding to the recording in (a); (bi) showing overlay of vasculature (red) and [-cell
volume (BCV, green); (bii): segmented SCV (green) and inflammation volume (Infl.,
blue) or (biii) inflammation volume alone. (¢) Virtual FOCI section of vasculature and
overlay of islet structure and vasculature. (d) Quantification of Inflammation volume per
islet volume over time (in percent), based on 3D rendering in (b) (n= 5 islets each time
point), (e) Relative density of vascularization (in percent) in inflamed volumes of the
islet (Infl.vol., blue in (b)) compared to non-affected S-cell volume (BCV, green in (b) at
4 weeks after transplantation, based on 3D rendering as shown in (b) (n= 5 islets), see
also Section 5.2.7 § Volumetric quantification. Scale bar: 100 pm, colorbar indicates depth
position micrometers in (a). *p < 0.1, **p < 0.01 were analyzed by a Mann-Whitney
non-parametric U-test.
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Figure 5.12: Longitudinal imaging of NOD mice with low infiltrated islets after trans-
plantation. NOD.Foxp3-GFP™ reporter mice were ACE-transplanted with islets derived
from NOD.Rag2~/~ mice. The mice were then subjected to non-invasive imaging weekly
from day 8 up to 3 months after transplantation. This was done by fluorescent widefield
microscopy and FOCI. Islets selected for analysis of vascularization density over time in
(c) were chosen based on low GFP signal (Foxp3-GFPT T-cells co-infiltrate islets) and
low inflammation in the OCM image post transplantation. (a,b) Maximum projection in
depth of the vascularization, depth is color-coded in micrometers. At week 12, a virtual
section of the structure (i) and the widefield fluorescence image (ii) shows that the islet
was not massively infiltrated and that low GFP signal was detected from the Foxp3-
GFPT T-cells. (c¢) Quantification of the evolution of the islet vessel density (vascular
volume/islet volume) normalized by the first week over a timeframe of 1-12 weeks post
transplantation (>5 islets analyzed per time point). Scale bar: 100 pm.
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Figure 5.13: Three-dimensional rendering of FOCI imaged islet engrafted in the eye of
a NOD.Foxp3-GFP recipient mouse 5 weeks post transplantation, which did not show
massive infiltration. (a) islet structure, (b) vascularization and (c) thresholded structure
to reveal the functional -cell volume together with vascularization. Scale bar: 100 pm.
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Figure 5.14: Confirmation of the attenuation of microvasculature in insulitic areas by
THC and the identification of HEVs. Pancreas and graft-bearing eyes of NOD.Foxp3-GFP
reporter mice (14 week old, 4 weeks post-transplantation, n=7) (a-d, g-k) or healthy
B6.Foxp3-GFP control mice (n=2, e,f, I-m) were cryosectioned at imaging endpoint and
stained with antibodies specific for insulin (Ins; blue) indicated by blue lines, glucagon
(Gluc; cyan in a-f), the vessel marker CD31 (a-f) and MAdCAM-1 (g-m) or the pan-
leukocyte marker CD45 (cyan) to identify inflamed areas (indicated by cyan-colored lines).
GFP signal (Foxp3+ T-cells, first row) is shown in green. Representative images are
shown, including the NOD pancreas with coinciding non-infiltrated (c,i), mild insulitis
(b,h) and full-blown insulitis (a,g). Scale bar: 100 pm.
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circumvents the need for a voxel per voxel scanning like confocal or multi-photon mi-
croscopy, which causes prolonged acquisition times. In addition, the contrast mechanism
of FOCI is based on the intrinsic light scattering of tissue and does not require an extrinsic
biomarker as for example classical confocal microscopy. The image acquisition of FOCI
is based on a broadband NIR light source of around 5 mW on the cornea to acquire a
full profile over the extended depth. It represents a substantially lower power exposure
compared to two-photon fluorescence microscopy, where the full power is focused at each
depth position This allows long imaging periods without any risk of photo-damage of
fragile islet structures and microvasculature. A key obstacle to the early detection of
T1DM as well as to the rapid assessment of the effectiveness of therapeutic intervention
has been the lack of direct, non-invasive technologies to visualize inflammation in the
pancreas. To highlight the usefulness of the FOCI technique applied to the ACE model,
we analyzed and compared islets from T1DM prone mice. The location and organization
of the pancreas makes the study of this disease at the organ level difficult, requiring
compromises on resolution for longitudinal studies in the timescale of disease progression,
or end-point analyses. While direct examination of fixed pancreata has yielded valuable
insight into the disease processes that lead to diabetes, such an approach only provides a
snapshot of the disease. Thus, non-invasive imaging strategies to monitor changes within
the islets associated with the development of diabetes are actively being sought to bridge
this gap. By applying the FOCI technique, we revealed several features of the disease
not previously accounted for. These included the observed diminished vascularization
density in areas affected by insulitis, coinciding with the previously reported promotion
of MAACAM expressing HEVs. While the latter has been linked to a promotion of
the guidance of lymphocyte trafficking and recruitment to the affected area, the overall
reduction in the microvasculature is counterintuitive and remains to be understood in
terms of its effect on the pathogenesis.

Impact and future perspectives

In summary, FOCI combined with the ACE model provides a novel and unique instru-
mentation for investigating functional and structural changes of the pathophysiology in
diabetes. It enables the detection of onset and progression of insulitis in vivo in real-time,
allowing the study of the natural history of the pathological lesions of T1DM in individual
animals. We anticipate that this technique will become a powerful tool for the diabetes
research community, drug discovery and testing. Especially, the label-free detection
of B—cells and infiltration together with vascularization offers unique possibilities to
study ACE human islets. However, we foresee that this should be equally true for other
complex biological structures in other organ systems or tissues and their disease states.
For example, other structures known for important light scattering such as amyloid
plaques can be observed in Alzheimer “s disease [128] and indicate perfectly the potential
of this novel imaging technology.
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5.2 Material and Methods

5.2.1 Animals

B6 Rag2~/~ mice were backcrossed to NOD mice for the generation of NOD Rag2~/~
mice, as previously described [246]. NOD Foxp3-GFP mice were generated by speed-
congenic backcrossing of the B6 Foxp3-GFP (Jax stock number 006772) to NOD mice,
as previously described [111]. BALB/C mice were purchased from Taconic Denmark. All
animals were bred and maintained in a specific pathogen-free environment at the animal
facilities at Lund University. Guinea pigs were purchased from Harlan laboratories.
ZnT8-KO mice and littermate were generated as previously described [238]. The ethics
committee of Lund University and the Swiss cantonal veterinary authorities approved all
experimental animal procedures.

Animal preparation for in vivo imaging with FOCI Mice were anesthetized in an in-
duction box with 3% isoflurane mixed with oxygen (0.8-1 1/min). For imaging the
anesthesia was maintained at 1% isoflurane. Mouse head and eyeball were restrained
as previously described [108]. The mouse was kept on a heating stage during the whole
imaging session. In vivo imaging was done with the xfOCM setup (Fig. 5.3) with a water
immersion N-Achroplan 10x/0.3 Zeiss objective. Viscotears liquid gel (Alcon) was used
as immersion liquid. Mice were subcutaneously injected with buprenorphine during the
imaging session (0.15 mg/kg).

5.2.2 Pancreatic islet isolation, culture and ACE transplantation

Pancreatic islets were isolated according to the protocol previously described [109]. Islets
were manually picked under a stereomicroscope and incubated in 5% COs at 37° C
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overnight. At the time of transplantation, the recipient animal was anesthetized using
inhalation anesthesia (isoflurane; Schering-Plough, Kenilworth, NJ, USA). To obtain post-
operative analgesia, we administered buprenorphine (0.15 mg/kg; RB Pharmaceuticals,
Slough,UK) subcutaneously. Between 10 and 50 cultured islets were transplanted per eye,
as previously described [111]. For experiments including the study of healthy control islet
grafts, 6-8 week-old BALB/C or B6.Foxp3-GFP recipient mice were ACE-transplanted
with islets from BALB/C or B6.Rag2~/~ donors respectively. For experiments including
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the study of inflamed islet grafts mainly 10 week-old NOD.Foxp3-GFP recipient mice
were ACE-transplanted with islets from NOD.Rag2~/~ donors.

5.2.3 Immunohistochemistry

Graft-bearing eyes or pancreas were isolated from mice after perfusion with 4% paraformalde-
hyde/PBS, cryo-protected in 30% sucrose/PBS, embedded in optimal cutting temperature
compound (VWR, Radnor, PA, USA), frozen on dry ice and stored at -80° C. Frozen
eyes and pancreas were cryo-sectioned (section thickness 8-10 pm). The eye sections
have been cut parallel to the iris. Frozen sections were incubated with blocking buffer
(10% Fetal Calf Serum in TRIS buffered saline (TBS) 0.1% Triton X-100) for 1 hour
at room temperature. Incubation with primary antibodies was performed in a blocking
buffer for 1 hour at room temperature. Antibodies used: guinea pig a-Insulin (Dako;
Carpinteria, CA, USA); rat a-CD31 (MEC 13.3) and a-MAdCAM-1 (MECA-89, BD
Biosciences; San Jose, CA, USA), rat biotinylated a-CD45 (30-F11, eBiosciences, San
Diego, CA, USA), rabbit a-Glucagon, (Europroxima, Arnhem, Nederland). After three
washing cycles in TBS-Triton X-100, secondary antibodies and DAPI have been added
for 1 hour at room temperature. Secondary antibodies used: anti-guinea pig Alexab94,
anti-rat Alexa647, anti-rabbit Alexa405 or Alexa 647; Life Technologies, Carlsbad, CA,
USA). After three washes, sections were mounted with fluorescence mounting medium
(Dako, Glostrup, Denmark) and image stacks have been acquired using a LSM700 Zeiss
confocal microscope equipped with an Plan-Apochromatx20/0,8 objective (Carl Zeiss
Jena GmbH, Germany). Post-acquisition enhancement (e.g. contrast enhancement for
viewing purposes) was performed using Adobe Photoshop (Adobe, San Jose, CA, USA).

5.2.4 Ex vivo imaging with dfOCM

The pancreas of ZnT8H/* (n=4), ZnT8 /=~ (n=4) and guinea pigs (n=2) were fixed
in 4% PFA in PBS, cryoprotected in 30% sucrose/PBS embedded in Optimal Cutting
Temperature (Cryomatrix’ ™, Thermo Scientific, Waltham, MA USA) compound and
frozen in isopentane cooled with dry ice. 60 pm thick cryosections were prepared for
staining. The sections were permeabilized 10 minutes with PBS-Triton X-100 0.25%
and blocked in 10% fetal bovine serum for 30 minutes at room temperature. Incubation
with primary antibodies (mouse a-insulin, Sigma-Aldrich, St Louis, MO, USA; rabbit
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a-glucagon, Cell Signaling, Danvers, MA, USA) was performed at 4° C overnight in
a humid chamber. Secondary antibodies (anti-mouse Alexa647, anti-rabbit Alexa647,
Life Technologies, Carlsbad, CA, USA) were incubated 45 minutes at room temperature.
The sections were mounted with DABCO mounting medium and imaged using the dual
system combining dfOCM [129] with confocal fluorescence (Fig. 5.1). All slides were
analyzed blind-folded. Signal to noise ratio (SNR) is given as the mean of the islet
intensity signal divided by the variance of the exocrine signal.

5.2.5 FOCI imaging

FOCIT integrates the xfOCM instrument, with an improved acquisition (customized
spectrometer for OCM) and optimized scanning modality for longitudinal functional
imaging. A fast processing unit allows for real-time monitoring (structure and blood
flow) and the platform is fully equipped for small animal imaging.

xfOCM instrument Our customized xfOCM [123] (extended focus Optical Coherence
Microscopy) instrument, as shown in Figure 5.3, is based on a Mach-Zehnder interferome-
ter. A beam splitter divides the beam of a broadband light source (fs-laser source; central
wavelength A\, = 780 nm; bandwidth A\ = 135 nm, Femtolasers Inc., Austria) into a
reference (green in Fig. 5.3) and an illumination beam (red in Fig. 5.3). The extended
depth of field is due to a cone shaped optical element, called axicon, which provides an
elongated uniform focal field over the whole imaged sample depth. This axicon generates
a Bessel beam resulting in a high uniform lateral resolution (1.3 pm) deep inside the tissue
structures. The axial resolution depends on the light source and on the light collection
efficiency of the spectrometer. The broadband source provides a short coherence length
(the coherence length [. is proportional to the central wavelength A. and to the spectral
width A\ of the light source : [, 2—%\), which results in a “coherence gating” in depth
enabling a high axial resolution of ~ 2 pm in biological tissue. The investigated tissue,
i.e., the transplanted islets, is scanned in the x-y lateral directions. The backscattered
field from the sample interferes with the reference field and the resulting interference
signal, called spectral interferogram, is detected by the spectrometer. The interferograms
result from the different structures in depth in the tissue yielding a spectrum modulation
due to constructive and destructive interference, which are recorded by a linear CMOS
array detector (Basler Sprint spL.4096-km). The Fourier transform of these spectral
interferograms results in the depth profile.

OCM imaging has several unique features:

e OCM allows 3D imaging without depth scanning resulting in a multiplex advantage,
which allows fast imaging of tissue structures with an in vivo penetration depth in
the pancreas of ~ 300 pm and in ACE transplanted islet of ~ 400 pm.

e OCM is a label free imaging modality.
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The intrinsic contrast results from small refractive index changes of the sample structures.
These features make OCM an ideal imaging method for small animal imaging.

Data acquisition Depth scans (A-scans) were acquired at a frequency of 70 kHz and
were recorded by the line scan camera, digitized and stored on a Matrox frame grabber.
The acquired data were processed at real-time for a preview of islet structure and blood
flow. Multi-threading (in C++ programing language) was used to analyze the tomograms
at frame rate of approximately 6 frames/s, which allowed for an interactive search of
selected islet locations and a rapid vitality assessment of islets during the imaging sessions.
The data were stored on high speed solid state drives for post data processing.

Scanning protocols The transverse scanners (x-slow axis, y-fast axis) were synchronized
with the acquisition of spectral interferograms (depth scans). High motion contrast was
achieved by acquiring along the fast axis 8 tomograms (B-scans) at the same location.
These tomograms are averaged for structural imaging or analyzed to extract the Doppler
signal for vascular imaging. Data along x- and y-direction were therefore scanned with
square patterns of 4096x512 points over a range (500x500 pm?2- 800800 pm2) in order
to match the islet size. This provided an isotropic sampling with a transverse pixel size
of 1 pm-1.5 pm. This scanning protocol and acquisition speed were empirically set to
minimize sample movements and simultaneously to match the blood flow speed.

5.2.6 Data processing

The acquired spectra (raw data, Fig. 5.15) are recorded as an intensity over wavelength
(I = I(X)). The average background signal is subtracted from the spectra (BG) and the
spectra are resampled (A — k) in the k-space (k = 2T ). A Fourier transform (FT) allows
calculating and extracting the depth profile (A-scan). For each A-scan and at each depth

position the scattering signal is given as a complex field in amplitude and phase.

Two types of information can be analyzed independently:

o Static The magnitude of the complex field corresponds to the static (no motion) tis-
sue, i.e., the structural information. The obtained three-dimensional microstructure
is shown in logarithmic scale (Log) after histogram equalization (Hist).

o Dynamic Phase shifts induced by moving red blood cells (RBCs) across the sampling
volume constitute the intrinsic contrast for visualization of the microvascular flow.
The phase changes of the scattering signal are measured at different time points
(repeated B-scans) in order to extract the Doppler signal information. All temporal
variations are analyzed pixel by pixel along the oversampled slow axis. The time
delay between adjacent pixels corresponds to the B-scan time interval of 7.4 ms.
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Chapter 5. Label-free longitudinal study of type I diabetes

Processing for extracting the vascularization

Phase variance The microvascularization is determined by extracting the circular phase
variance (02) over 8 tomograms (B-scans) acquired at the same transverse position using
the following equation:

Az, y, z,t + At)A*(z,y, 2,1)
Az, y, 2, t + A2+ |A(z, y, 2, 1) 2

o (z,y,2) =1— (5.1)

where A(z,y, z) represents the position of the A-scan in the C-scan and At the time
difference between the two acquisitions. A schematic representation of the corresponding
scan protocol for the phase variance is shown in Fig. 5.3b. To improve the contrast, an
averaging of the circular phase variance over the axial direction can be applied. The
values for the circular phase variance are limited between 0 and 1. In absence of an
object, the circular phase variance of the noise is close to 1. To suppress this background
contribution, the signal is weighted by the temporal derivative (TD) for a better contrast
enhancement, background removal and minimization of phase decorrelation (explained
below).

Bulk intensity shift (BIS) and global phase fluctuations (GPF) xfOCM is highly sensi-
tive to all dynamic changes along the optical path in general and in particular to sample
movements. Dynamic imaging requires discrimination between RBCs and physiological
motions (cardiac and respiratory motions). Prior to circular phase variance calculations,
we reduced all physiological motions. In analogy to what Lee et al. [231] observed, we
consider two main consequences of motion effects: (1) bulk image shift (BIS) where the
shift is larger than one pixel, and (2) global phase fluctuation (GPF) where the shift is
within the range of one pixel. All BISs are analyzed with a reference tomogram (B-scan)
chosen from the B-scan time-sequence. Bulk shifts are identified by maximizing the
normalized cross-correlation of shifted B-scans:

’ > Bz + Az, x + Az, t) B*(z, x, to)‘

o

where B(z,z,ty) represents the reference B-scan.To limit the computation time, we used

FBjs(AZ,Al',t) = (52)

2
B(z,x,tg)’

2
B(z+ Az,z + A1) \/zm

an efficient subpixel image registration method [247], where the achieved accuracy is well
comparable to the conventional cross-correlation method based on fast Fourier transform.
According to this approach, we developed an algorithm for a fast recognition of the bulk
shifted B-scans. When the B-scan shift is larger than 1 pixel, the phase information is
lost and cannot be used. Therefore, this B-scan was excluded from the phase variance
calculation and the analysis was performed on the remaining tomograms. The GPF
was also analyzed with a selected reference tomogram. GPF is less than 1 pixel and
affects only the phase information. The phase correction is done in the axial and lateral
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Structure Vasculature

Segmentation

I 1
BIN <—<— DN B

Figure 5.15: Data processing flow chart. Raw data: spectra acquired by the xfOCM;
BG: the average background signal subtracted from the spectra; A-k: resampling procedure
from optical wavelength space to optical wavenumber space; FT: Fourier transform;
Log: logarithm to base 10 applied to the magnitude of F'T; Hist: histogram equalization;
AC: active contour; BIS: bulk intensity shift removal; GPF: global phase fluctuation
correction; o?: circular phase variance analysis; TD: temporal derivative used as a
weight for phase variance; SH: step-down exponential filtering of shadows; DN: denoising
algorithm to remove remaining background noise; TH: image thresholding; BIN: image
binarization.

directions. Global phase fluctuations correction factor are determined at each transverse
position for the different time (8 B-scans) by:

GPFa:cial(x7t) = —CLTg(ZB(Z,x,t)B*(Z,J?,to)>

GPFateral(z,t) = —arg( Z B(z,z,t)B*(z,z, to))

The complex signal B is then multiplied by the calculated GPF correction factors. To
significantly remove phase fluctuation this operation is repeated 5 times axially and
laterally. The correction for axial shift is applied as follows:

Bcorrected(xv t) = Z B(Z + AZ, z, t)eiGPFaxial(CE7t)B*(z7 z, t()) (53>
z

Temporal derivative (TD) Phase variance allows to discriminate between static (struc-
ture) and dynamic (motion) phase contributions of the sample. However, the background
signal (phase noise) outside the sample is not eliminated. The temporal derivative was
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Chapter 5. Label-free longitudinal study of type I diabetes

used to reveal vessels structures from OCT data [166]. Weighing the phase variance
with the temporal derivative of xfOCM signal suppresses largely this contribution and
improves significantly the background filtering:

TD = \/‘B(z, x,t + At) — B(z,x,t) (5.4)

‘2
The temporal derivative is taken as the difference between two consecutive tomograms
acquired at the same location. Finally, if more than two B-scans have been acquired at
the same location,the mean is taken.

5.2.7 Image post processing

Phase variance analysis provides an image of the vascularization in all three dimensions.
Here, we implement a quantitative analysis of the vascular network inside the islets of
Langerhans. The algorithms are automated or semi-automated to limit labor-intensive
work and minimize the analysis prone to operator’s error.

Segmentation of three-dimensional structure [-cells are characterized by a high contrast
in the xfOCM tomograms. Based on the intensity information, we segmented the [-
cells volume using an algorithm based on active contours (AC) [130] and sparse field
algorithms [148], which was already applied to quantify -cell volume in ez-vivo pancreatic
sections imaged with xfOCM [161]. In a healthy islet the -cells volume represents the
major part of the islet, which is not the case in an infiltrated islet. The infiltrated volume
was obtained by subtracting the S-cell volume from the islet volume.

Denoising of three-dimensional vascular network Due to the high scattering of RBCs,
the vascular network is easily detectable in all three dimensions by xfOCM. However,
deeper structures show less contrast due to multiple scattering or absorption of the
sample. Additionally Doppler techniques suffer from artifacts caused by forward scattering.
Indeed, in structural tomograms, a shadow (dark stripe) are visible below the vessels
due to absorbed light by RBCs. On the contrary, in phase variance tomograms, these
shadows are converted into signal similar to the one given by the vessels, which yields a
signal extending below each vessel. We remove these artifacts by applying a step-down
exponential filter [180] starting from the top surface of the tissue (SH step in Fig. 5.15).
In order to remove artifacts from the step-down filter, the attenuation coefficients are
smoothed by an additional interpolation (after removal of out of range coefficients). To
remove remaining background noise, we applied a denoising algorithm (DN) suppressing
Gaussian and Poisson noise. This approach uses the minimization of an unbiased estimate
of the mean squared error (MSE) for noise, a linear parametrization of the denoising
process and the preservation of noise statistics across scales within the Haar discret
wavelet transform (DWT). For more information on this algorithm, we refer the reader
to Luisier et al. [248]. Finally, the denoised image is thresholded (TH) and binarized
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(BIN) with ImageJ.

Three-dimensional rendering Three-dimensional rendering is performed using Imaris
software. Specific information is split between different channels (first channel structure,
second channel vascularization, etc.). Additionally, the S-cell volume together with
infiltration volume is segmented using surface topography (S-cells in green and infiltration
volume in blue).

Volumetric quantification To extract vessel density, the vascular network volume part
was divided by the corresponding segmented [-cells (BCV), islet or inflammation (infl.)
volume. For Figure 5.11e, the relative vascular density of f—cells volume (rvdgcy) and
relative vascular density of inflammation volume (rvd;,f;.) was computed like this:

dgcv vascular volume inside SC'V
d =2 .100% d =
rvescy dgcv + dinfi ’ pev pCv
dinf1 vascular volume inside infl. volume
dinfl. = ——— - 100 d; =
rodingl. dgcy + dingi % infl. infl. volume

For Figure 5.4 and Figure 5.12 normalized vascular density is nd;get (i)

dislet,w(i)
istet (i Dot ()
NGjglet w(i) dislet,w(1)

vascular volume inside islet

d; -
islet islet volume

Automatic attenuation compensation and contrast enhancement to match xfOCM image
with THC The xfOCM static signal is attenuated over depth due to multiple scattering
and absorption. To reliably detect signals reflected from deep tissue structures, we applied
a deattenuation algorithm based on the fact that local attenuation is proportional to the
local reflectivity [249]. This deattenuation algorithm is used for figures 5.6e and 5.8 to
compare the segmented OCM data with the IHC.
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5.3 ACE long term imaging

In this thesis, we showed that OCM allows the monitoring of the §-cell volume as well as
the vascularization. This opens the door to the application of OCM as a platform to
test the effects of drugs that are supposed to delay/stop the progression of diabetes. To
obtain a baseline, we followed isograft islets in the ACE of BALB/C mice over a period
of 10 months (Fig. 5.16).

An intriguing point is that the islets kept growing throughout the study (Fig. 5.16a,b
and Fig. 5.17), reaching 11 months post transplantation a volume in average 3.5 times
larger than at the time of the graft. Interestingly, the vascular density initially increased,
but then reached a plateau at around 13% (Fig. 5.18), which indicates an adaptation
of the vascular network to the increasing islet volume. Indeed, only 12 days after
transplantation, the grafted islets have a similar vascularization as islets in situ. However,
the vascular density is still a little bit lower than the plateau reached in the following
weeks (Fig. 5.18). This percentage of vascularization is in the range of what was observed
in islets in situ and is comparable to the vessel density measured by Almaga et al. [175]
in islets grafted in the ACE by tail vein injection of fluorescent labeled dextran. The
grafted islets have a tendency to fuse together, giving rise to large islets over time. This
growth generally did not prevent the longitudinal imaging of islets. However, at the last
point in time, we observed a massive structural change for mouse 1 where islets 5 to 7
fused together (Fig. 5.17). This growth is very surprising since both the grafted islets
and the recipient are adults. Indeed, the rate of pancreatic S-cells replication has been
shown to be restricted and very low in aged mice [250-253]. A deeper analysis of these
phenomena is required. In particular, we need to determine whether the -cell volume
expansion occurs through increased proliferation or by swelling. The mechanisms beyond
this increased (-cell volume are unknown. It could be the absence of contact with the
exocrine tissue that does not restrain the expansion of S-cells.

Between the imaging sessions, the eyeball has not always the same orientation. Part of a
same islet can appear deeper in an imaging session and therefore be more attenuated
and less well segmented. The non f-cell volume is computed by subtracting the §-cell
volume from the islet volume. The islet volume is computed by manually filling the
holes inside the §-cell volume. The origin of these darker areas is non S-cell volume
such as other endocrine cells, ducts and vessels. Therefore, we could infer that the
non S-cell volume should be a least comparable to the vascular volume. However, only
large vessels give a significantly darker signal and, for smaller vessels, their structural
detection depends also on their orientation with respect to the beam. Since the OCM
signal is attenuated in depth, the algorithm may fail to resolve the deeper part of the
islet. However, this attenuated part is manually added to the S-cell volume when it can
be attributed to it upon inspection by eye. This subjective part can lead to variations in
the B-cell volume detection. Nevertheless, the percentage of non §-cell volume measured
in control mice indicates that only an infiltration higher than 3% could be detected in
NOD mice (Fig. 5.16d).
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Figure 5.16: Longitudinal imaging over 10 months on BALB/C mice. (a) Structure and
corresponding maximum depth projection of the vascularization. Colorbar indicates
depth position in micrometers. The zero position corresponds to the beginning of the
tomogram to have the islet in focus. (b) Evolution of the volume of the islet normalized
by the initial volume at week 2. (c) Islet vascular density evolution normalized by the
density at week 2. (d) Percentage of the tissue not detected as [-cell volume in the
segmentation. A minimum of 5 islets per time point were analyzed. Scale bar: 200 pm.
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Figure 5.17: Macro-view of 3 BALB/C mice. Arrows indicate islets that were followed
over time. The growth is visible for all islets.
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Figure 5.18: Islet vascular density in percentage computed on a subvolume.

96



Conclusion and Perspective

This thesis exploited the main advantages of OCM, i.e., its label-free contrast and
fast acquisition, to image islets of Langerhans. We started from ex vivo measurements
and progressed towards a functional study allowing to monitor islet structure and its
vascularization during the development of autoimmune diabetes. In the particular case
of pancreas imaging, the label-free OCM technique has a specific contrast for S-cells.
We demonstrated the origin of the strong scattering of islets in OCM to be dominated
by nanocrystalline aggregates made of insulin and zinc ions. Fx vivo measurements
are important for validation of the technique and to determine the origin of different
contrasts in OCM. Yet, despite a faster acquisition, ex vivo OCM imaging has few
advantages compared to fluorescence microscopy, which offers a higher spatial resolution
and molecular specificity. The advantages of OCM become more evident for in vivo
studies where fast acquisition is required both to decrease the duration of imaging sessions
and to overcome the movement artifacts of the tissue. In the particular case of pancreas
imaging, less invasive imaging can be achieved through a laparotomy and by imaging the
duodenal pancreas encircled by the duodenum. In this way, no splenectomy is required
and longitudinal imaging could be performed, even if it requires a complex procedure and
surgical skills. Despite a stabilization of the pancreas achieved by placing the duodenum
around a small pillar, cardiac, breathing and peristaltic movements cannot be completely
eliminated. In particular, the stabilization achieved is highly dependent on the duodenum
anatomy of each mouse, which limits the repeatability and success of each imaging session.
The multiplex acquisition of OCM limits the impact of these movements, with only some
artifacts between B-scans in the case of a poor stabilization.

The in silico simulations performed in Chapter 2 indicated that the islet distribution-based
criterion has a better prediction accuracy than the integral 5-cell volume criterion and that,
in specific conditions, imaging of a subpart of the pancreas might be sufficient to indicate
a deviation from a healthy situation. However, a more complex infiltration scenario
drives OCM to its limits to detect earlier phase of diabetes progression. Nevertheless,
this does not prevent the detection of structural and functional changes at the islet level.
Besides the opportunity to image wild type mice as opposed to genetically modified mice,
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another in vivo advantage of OCM is the simultaneous label-free angiography, which
avoids the injection of exogenous labels that can accumulate in organs and cause toxicity.

Blood flow assessment As described in Chapter 3, OCM can extract blood velocity
even though the detection of red blood cells in capillaries is difficult. Indeed, red blood
cells are passing through capillaries one at a time, which results in a varying filling of the
vessel over time. Therefore, depending on when the A-scan is taken, one or no red blood
cell is detected, giving rise to a unreliable statistic to extract the Doppler frequency
shift. As a result, some capillaries are not visible in one volume, thereby explaining
why more vessels are detected in angiography than in resolved blood flow. One way to
overcome this issue would be to inject intralipid to fill continuously the capillaries with
scatterers [190]. However, we cannot rule out that the strong scattering of the islet could
still hinder the detection of the endocrine blood flow. Indeed, blood flow could rarely
be detected inside small endocrine capillaries, but it could be resolved mainly in large
vessels in the ACE transplanted islets. An alternative solution to go deeper into the
tissue would be to use a light source in the 1.3 pm wavelength range. However, the S-cell
contrast at these wavelengths has to be determined. Assessment of axial blood flow is
common in the OCT community but imposes severe limitations. Indeed, the axial velocity
component depends on the angle between the vessel and the optical axis. Therefore,
these measurements are really sensitive to movements and impose severe conditions to
compare changes over time or between different animals. Total flow (™) can be deduced
by resolving both axial and lateral flow velocity [189]. However, to resolve the lateral
flow, a larger oversampling is required, thereby leading to larger acquisition times. To
address this problem, the total blood flow could be computed from B-scans only, yielding
i)
, by integrating the axial Doppler frequencies in an en face

the blood flow velocity for a vessel cross-section. An alternative is to use perfusion (

or volumetric flow (—=—)
min mm

view of a cross-section of a vessel [163].

The best way to validate our technique would be to quantify the increase of islet blood
flow after glucose injection, as already shown using fluorescent labeled red blood cells [43]
or injection of microspheres [28, 30]. However, preliminary measurements show that the
level of anesthesia reached with isoflurane can alter the blood flow, which might prevent
the glucose blood flow response. Instead, injectable anesthesia could be investigated.
A monitoring of vital parameters such as heart beat and breathing rate are therefore
required. Depending on the expected time resolution and stability of the tissue, we could
perform B-scans over time on different vessels previously chosen based an angiography
or acquire full 3D volume of the islets.

Multimodal imaging FEnhancement of OCM with a fluorescent channel adds specificity
for structures or molecules not visible with OCM only. A fluorescent channel was used
to determine the specificity of a potential S-cell marker by assessing the co-localization
of the OCM islet signal with the fluorescent signal from the tracer. The multiplex
advantage of OCM allows to rapidly scan the tissue, thereby imaging several islets during
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the imaging session. This advantage allowed us to show that the accumulation of the
tracer was not identical between islets. A widefield fluorescent channel was also added to
correlate the degradation of the OCM signal with infiltration of Foxp3™ T-cells. However,
both confocal and widefield fluorescent channels are limited in penetration depth. The
addition of a two-photon fluorescence channel would allow the correlation of the molecular
signature of particular cells over a similar depth than the OCM signal.

ACE model The combination of OCM with the ACE transplantation model showed
that the destruction of the -cell volume following massive infiltration can be detected
with OCM. However, the infiltration signal is not as specific as the (-cell signal. Indeed,
depending on the orientation, the endothelial vessels can give rise to a weaker signal
and the multiple scattering below vessels decreases the strong OCM signal of S-cells.
The shadow artifacts spanned by vessels has to be removed in a post-processing step,
which has the drawback of removing some of the small capillaries. As a result, OCM
angiography may not be sensitive to minor changes of islet vascular density. Nevertheless,
a reorganisation of the vascular network coinciding with destroyed S-cell volume was
clearly observable. The longitudinal study in Chapter 5 has been done on NOD mice
grafted at 10 weeks of age with already ongoing autoimmune inflammation. As expected
islet grafts were rapidly infiltrated already 1 week post transplantation and a massive
destruction was observed only 3 weeks after transplantation in the ACE. Further studies
of the initial events of early insulitis and progression of inflammation during the natural
course of diabetes of young grafted mice would be interesting, especially looking at
the evolution of the vascularization. To dissociate the revascularization process from
the remodelling of the vascularization due to the inflammation process, an adoptive
transfer of T-cells from diabetic mice to NOD.Rag2~/~ grafted mice could be done. The
OCM platform coupled with the ACE model could be suitable to study the effect of
drugs that aim to block the immune response. Longitudinal studies with drug treatment
could determine whether the vascular network or the S-cell volume is first restored.
Along the same lines, drugs supposed to promote the proliferation of S-cells could be
assessed and monitored. Nevertheless, prior to using this platform in this context, further
investigations into the ACE model, and more particularly into the apparent constant
growth of the islets, needs to be carried out.

In general, longitudinal studies correlate with large amounts of data to segment. There-
fore, two improvements of the current segmentation of p-cell volume could be fore-
seen: (1) elimination of manual operations, especially to detect the deeper part of the
islets and (2) acceleration of the imaging processing, e.g., by implementing the algorithm
on graphics processing unit (GPU) cards.

Another unique property of OCM is both the label-free imaging of the vascular network
together with the extraction of blood flow velocity. We demonstrated that OCM an-
giography can be used to monitor the vascular network in islets of Langerhans during
the inflammation process in a mouse model of TIDM. A future important development
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would be the quantification of blood velocity in a healthy state as well as during the
development of diabetes. Despite some eyeball movements, the ACE imaging offers
a better and more reproducible stability. Therefore, ACE seems a better choice to
monitor blood flow than the pancreas, especially since it offers the possibility to perform
longitudinal studies. For T1DM, the relationship between blood flow, vascularization and
inflammation could be determined. Since the islet vasculature becomes wider in T2DM
models [113, 118, 169], islet blood flow signature in T1IDM and T2DM diabetes could
be compared. We can assume that an increased blood flow following glucose injection
is related to an efficient insulin delivery. It would be therefore interesting to determine
whether this response is altered during the progression of diabetes. Stabilization issues
have to be solved by developing acquisition protocols (including new scanning systems)
adapted to the biological question, i.e., modification of the blood flow at a short interval
following islet stimulation or during longitudinal studies. Besides stability issues, a better
understanding of the anesthesia and its impact on the blood flow have to be carefully
investigated.

Label-free imaging is crucial, especially for the imaging of human tissue. Indeed, exami-
nation of human pancreas biopsies have confirmed that human pancreatic islets can also
be detected with OCM (Fig. 6.1). This finding opens the possibility of imaging human
islets grafted into the ACE of mice. It is well known that there are differences between
the organisation of human and rodent islets [5-7]. Even with limited access to diabetic
human pancreas, there are indications that animal models do not recapitulate exactly
the human insulitis process. Compared to NOD mice, human islets exhibit a weaker
infiltration with a more heterogeneous spatial pattern of inflammation, with some islets
not being attacked [254, 255]. OCM would allow an easy comparison of these differences,
especially in terms of vascularization and inflammation of the islets. In addition, OCM
could be useful for studying xenograft rejections. The most exciting application would
be a longitudinal study of human islets from a diabetic patient grafted into the ACE of a
humanized mouse whose immune system has been reconstituted from the same diabetic
patient.

This thesis investigated selected areas of application for OCM in islets of Langerhans
imaging. We demonstrated applications of OCM to image islets of Langerhans both
ex vivo and in vivo, and we have shown its advantages and limitations. The label-free
imaging property of OCM is both its strength and its weakness due to the lack of
specificity of its signal. However, it offers an unique opportunity to reveal structures
in three dimensions with a fast acquisition. The lack of specificity can be overcome by
enhancing OCM with a second modality such as fluorescence microscopy. Using this
approach, it can facilitate the initial screening of S-cell tracers. Finally, we developed
tools allowing quantification of the [-cell volume, inflammation and vascularization
during the progression of T1DM.

In this work, we have applied OCM as a research tool requiring interdisciplinary skills and
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a team constituted of engineers from different fields. Even if classical OCT instruments
are available, they do not have the required resolution and depth of field to image islets
of Langerhans. Therefore, to establish OCM as a standard tool for biological research on
the pancreas and islets of Langerhans, the technology needs to be routinely available as
a tool in laboratories. This would require an industrialization of the xfOCM platform,
ideally integrating a two-photon microscope to add molecular specificity for structures
undetectable with OCM only (e.g., immune cells, S-cell tracers).

Figure 6.1: Biopsies of human pancreas imaged with xfOCM. Scale bar: 200 pm.
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