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Abstract— This paper presents an important step forward
towards increasing the independence of people with severe motor
disabilities, by using brain-computer interfaces (BCI) to harness
the power of the Internet of Things. We analyze the stability
of brain signals as end-users with motor disabilities progress
from performing simple standard on-screen training tasks to
interacting with real devices in the real world. Furthermore,
we demonstrate how the concept of shared control —which
interprets the user’s commands in context— empowers users
to perform rather complex tasks without a high workload. We
present the results of nine end-users with motor disabilities who
were able to complete navigation tasks with a telepresence robot
successfully in a remote environment (in some cases in a different
country) that they had never previously visited. Moreover, these
end-users achieved similar levels of performance to a control
group of ten healthy users who were already familiar with the
environment.

Index Terms— Brain-computer interface (BCI), electroen-
cephalogram (EEG), motor imagery, application control, end-
users with motor disabilities, telepresence, shared control, robotic
device

I. INTRODUCTION

In recent years, the capability to directly use brain signals as
a communication and control channel, via a so-called brain-
computer interface (BCI) or brain-machine interface (BMI),
has witnessed rapid progress and is becoming a key component
in the assistive technology field [1]. In this framework, one
of the core areas targeted by BCIs is neuroprosthetics. This
means being able to control robotic and prosthetic devices in
order to perform activities of daily living, using brain signals
as a possible alternative input modality. The eventual aim is
to empower people with severe motor disabilities to (re–)gain
a degree of independence.
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In addition to high accuracy in decoding user intention, one
of the most critical challenges currently faced is to design
fast decision-making algorithms that are robust with respect
to the split of attention between the mental task (the user
must focus to deliver the desired command) and the external
global task to be achieved, such that they allow the user
to control complex robotic and prosthetic devices [2], [3].
Much evidence has demonstrated the feasibility of such brain-
controlled devices, ranging from robotic arms [4], [5], [6] to
hand orthoses [7], [8], [9]; from telepresence robots [10], [11]
to wheelchairs [12], [13], [14]; and from quadcopters [15] to
helicopters [16]. These works predominantly take spontaneous
approaches, where the users learn to voluntarily modulate
their sensorimotor brain activity. Such a paradigm seems to
be an intuitive and natural way of controlling neuroprosthetic
devices, since they free the visual and audio channels to
perform other tasks, e.g., interaction, whilst using signals from
the motor cortex. Nevertheless, BCIs based on exogenous
stimulation, such as an evoked P300 signal, have been used to
control wheelchairs as well. Thereby, the system flashes the
possible predefined target destinations several times in a ran-
dom order [13], [14]. The stimulus that elicits the largest P300
is chosen as the target and, then, the intelligent wheelchair
reaches the selected target autonomously. Once there, it stops
and the user can select another destination. Another possibility
would be to flash a video-overlapped visual grid to select
left/right turns or to move one “step” forward [17].

Generally, the control of neuroprosthetic devices is achieved
by analyzing the electrical activity from the brain, either via
invasive implants in the motor cortex [6] or non-invasively
from electrodes attached to the surface of the scalp. The
electroencephalogram (EEG), being non-invasive, is a conve-
nient, safe, and inexpensive method that promises to bring BCI
technology to a large population of people with severe motor–
impairments. However, the inherent properties of EEG signals
limit the information transfer rate of EEG-based BCIs.

Nevertheless, complex robotic devices have been success-
fully and reliably controlled by such BCIs, by exploiting smart
interaction designs, such as shared control [18], [19], [20].
The cooperation between a human and an intelligent device
allows the user to focus the attention on the high-level route or
final destination and ignore low level problems related to the
navigation task (e.g., obstacle avoidance). Researchers have
explored two general approaches to shared control, namely
autonomous and semi-autonomous. In the former, the user
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interacts with the robot just by indicating the final destination
and the robot decides the best trajectory to reach it. Examples
of such an approach are museum tour-guide robots [21] and
some BCI-controlled wheelchairs [14]. People with disabili-
ties, however, prefer to retain as much as control authority as
possible [22]. Thus, for them, a semi-autonomous approach to
BCI-controlled robots seems generally more suitable, where
the intelligent system helps the human user to cope with
problematic situations such as obstacle detection and avoid-
ance [18], [20], [23].

In the case of neuroprosthetics, our group has pioneered the
use of shared control, by taking the continuous estimation of
the user’s intentions and providing appropriate assistance to
execute tasks safely and reliably [10], [24], even for brain-
controlled wheelchairs [2], [25]. A critical aspect of shared
control for BCI is coherent feedback —the behavior of the
robot should be intuitive to the user and the robot should
unambiguously understand the user’s mental commands. Oth-
erwise, people find it difficult to form mental models of the
neuroprosthetic device. Furthermore, thanks to the mutual
learning approach, where the user and the BCI are coupled
together and adapt to each other, end-users are able to learn to
operate brain–actuated devices relatively quickly (typically in
a matter of hours spread across few days [3], [26]). Although
the whole field of neuroprosthetics target disabled people with
motor impairments as end-users, all successful demonstrations
of brain-controlled robots mentioned above, except [3], [6],
[7], have actually been carried out with either healthy human
subjects or non-human primates. Nevertheless, we want to
point out that the BCI technology has been used by end-
users also in other application fields [27], [28], since the
same techniques, as applied in this paper, can be used also
outside the area of robotic control, e.g. like in spelling appli-
cations [29]. Hence it is possible to transfer the technology
from one application to another, and from healthy participants
to end-users with disabilities [3].

In this paper, we explore a BCI-controlled mobile device for
telepresence. Such a telepresence mobile robot could enable
end-users, who are constrained to remain in bed because of
their severe degree of paralysis, to join relatives and friends
in order to participate in their activities. Here, we report the
results of nine end-users with motor disabilities who mentally
drove a telepresence robot from their clinic more than 100 km
away and compare their performances to a set of ten healthy
users carrying out the same tasks. We hypothesize that with
the help of the shared control approach, end-users will attain
a level of performance as good as the healthy control group.

II. METHODS

In this section, we first describe our BCI system, the
telepresence platform used and the shared control approach
applied. Then we present the healthy participants and the
end-users who tested the system. Finally, we describe the
experimental protocol. In a nutshell, every participant began
with some initial BCI screening upon which the user-specific
BCI parameters were extracted. The resulting decoder was
used to control a simple feedback in the case of the online

test and was eventually used to steer the telepresence robot in
the experiment.

A. Asynchronous BCI System

To drive our telepresence robot, participants use an asyn-
chronous spontaneous BCI where mental commands are de-
livered at any moment without the need for any external
stimulation and/or cue [10], [26]. To do so users have to go
through a number of steps to learn to voluntarily modulate
their EEG oscillatory rhythms by executing two motor imagery
(MI) tasks. Furthermore, the BCI system has to learn what the
user-specific patterns are. In our case, all participants start by
imagining left hand, right hand and feet movements during a
number of calibration recordings. Afterwards, the EEG data
is analyzed and a classifier is then built for each pair of MI
tasks that the user has rehearsed. The pair of tasks which shows
highest separability (e.g., right hand vs. left hand or right hand
vs. feet), is used as the user-specific input for the BCI system
in the online experiments [3]. In this manner, every subject
only uses a sub-set of two motor imagery tasks for the online
BCI control.

Brain activity is acquired via 16 active EEG channels over
the sensorimotor cortex: Fz, FC3, FC1, FCz, FC2, FC4, C3,
C1, Cz, C2, C4, CP3, CP1, CPz, CP2 and CP4 according
to the international 10-20 system with reference on the right
ear and ground on AFz. The EEG is recorded using a 16-
channel g.USBamp (g.tec medical engineering, Schiedelberg,
Austria) system at 512 Hz, band-pass filtered between 0.1 Hz
and 100 Hz and a notch filter is set at the power line fre-
quency of 50 Hz. Each channel is then spatially filtered with
a Laplacian derivation before estimating its power spectral
density (PSD) in the band 4–48 Hz with 2 Hz resolution
over the last second. The PSD is computed every 62.5 ms
(i.e., 16 times per second) using the Welch method with 5
overlapped (25%) Hanning windows of 500 ms. The input
to the classifier embedded in the BCI is a subset of those
features (16 channels x 23 frequencies). We use canonical
variate analysis (CVA) to select the user–specific features that
best reflect the motor–imagery task for each user and use these
to train a Gaussian classifier [26]. Evidence about the task
being executed is accumulated using an exponential smoothing
probability integration framework, as reported in Eq. 1:

p(yt) = α× p(yt|xt) + (1− α)× p(yt−1) (1)

where p(yt|xt) is the probability distribution, p(yt−1) the
previous distribution and α the integration parameter. Thus,
probabilities are integrated until a class reaches a certainty
threshold about the user’s intent to deliver a command in order,
for instance, to change the robot’s direction. At this moment
the mental command is delivered and the probabilities are
reset to a uniform distribution. Such an evidence accumulation
(or integration) framework yields smooth and predictable
feedback, thus helping user training by avoiding confusing
and frustrating fluctuations.

This evidence accumulation framework also plays a crucial
role in preventing users from delivering arbitrary commands
when their attention is shifted temporarily to some other
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task, thanks to the smooth convergence to the user’s true
intention. This property has another benefit, namely supporting
intentional non-control (INC) —i.e., the ability to intentionally
not deliver any mental command if the user does not want to
change the behavior of the neuroprosthesis. For our telepres-
ence robot, this means that if no mental command is delivered,
it will continue moving forward or remain stationary (in the
case that it is stopped in front of a target). Intentional non-
control translates into a third driving command that should not
require any direct cognitive effort for the user.

As part of the BCI screening, all participants (healthy
and end-users) perform several online experiments with the
standard horizontal bar-graph feedback on a screen to train
their BCI performance and to refine the system’s calibration.
During two consecutive sessions it is necessary to achieve an
accuracy of more than 70 % before being able to move the
telepresence robot application test. More details about the used
BCI are given in [3].

Fig. 1. (left) End-user at a clinic while operating the BCI. (right) The
telepresence robot equipped with infrared sensors for obstacle detection and
the SkypeTM connection on top.

B. Telepresence Robot

Our telepresence robot is based upon the RobotinoTM plat-
form by FESTO, a small circular mobile platform (diameter
38 cm, height 23 cm) with three holonomic wheels (Figure 1,
right side). It is equipped with nine infrared sensors capable
of detecting obstacles up to ∼15 cm (depending on light
condition) and a webcam that can also be used for obstacle
detection, although for the experiments reported in this paper
we only use the infrared sensors. For telepresence purposes,
we have added a notebook with an integrated camera: the BCI
user can see the environment through the notebook camera and
can be seen by others in the notebook screen. The video/audio
communication between the telepresence robot and the user’s
PC is achieved by means of commercial VoIP (SkypeTM). This
configuration allows the BCI user to interact remotely with
people.

C. Shared Control

Driving a mobile platform remotely in a natural environment
can be a complex and frustrating task. The driver has to deal
with many difficulties starting from variations in an unknown
remote environment to the reduced situational awareness, due

to the visual field of the control camera. Moreover, with an
uncertain control channel such as a BCI, the user has to keep
a high attention level in order to deliver the correct mental
command at the correct time. In this scenario, the role of
the shared control is two–fold. On the one hand, facilitating
the navigation task, by taking care of the low-level details
(i.e., obstacle detection and avoidance for safety reasons), and
on the other hand, trying to interpret the user’s intentions by
reaching possible targets in the environment.

Furthermore, the concept of obstacles or targets is not
absolute, it changes according to the user’s will. For instance,
a chair in the path has to be considered an obstacle if the user
manifests the intent of avoiding it. Conversely, it might be
the target if the goal is to talk to somebody sitting on it. The
shared control system deals with these kinds of situations by
weighting possible targets or obstacles in the most appropriate
way in the context of the current interaction.

Our implementation of shared control is based on the dy-
namical system concept coming from the fields of robotics and
control theory [30], [31]. Two dynamical systems have been
created which control two independent motion parameters: the
angular and translation velocities of the robot. The systems
can be perturbed by adding attractors or repellors in order to
generate the desired behaviors. In our case the evolution of
the systems is defined by Eqs. 2 and 3 for the angular (ϕ̇) and
translation (v) velocity, respectively.

ϕ̇ego =

N∑
i=1

λiϕie
−
ϕ2
i

2σ2
i (2)

v =
2K

1 + eτV (t)
(3)

In Eq. 2, ϕ̇ego represents the current device angular incre-
ment and ϕi the angular position at which the target-attractors
(λi > 0) and the obstacle-repellors (λi < 0) are located. The
locations of the attractors and repellors are locally defined
with respect to the fixed position of the infrared sensors on
the robot. The strength of λi defines the virtual force, which
determines how fast the system tries to avoid the obstacle-
repellors or reach the target-attractors. The range σi defines the
basin of attraction or repulsion for each entry of the system.

In Eq. 3, K is the maximum velocity the robot can reach,
modulated by the function V (and the time constant τ )
representing the free space near the robot (Eq. 4).

V (t) =

∑N
k=1 γk(t)Γk∑N
i=1 γi(t)

(4)

Γk = e−
ω2
k

2σ2 (5)

In our case, we have N = 9 sensors; γk represents the value
recorded by the k-sensor and ωk is the angular direction of the
k-sensor as shown in Figure 2. Each γk value recorded by the
sensors is normalized with a Gaussian shape, having maximum
value at the front of the robot, in the forward direction.

The two dynamical systems (Eq. 2 and 3) are independent
and their outputs are applied directly to the motor controller
of the robot. Figure 3 shows the force-fields of the instant
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Fig. 2. Schema of the position of the infrared sensors on the robot. The
angular direction of the sensors is always referred to the direction of the
robot.

angular and translation velocity based on these two dynamical
systems for three example obstacles (repellors).

From theory to practice, the dynamical system implements
the following navigation modality. The default device behavior
is to move forward at a constant speed. If repellors or
attractors are added to the system, the motion of the device
changes in order to avoid the obstacles or reach the targets.
At the same time, the velocity is determined according to the
proximity of the repellors that are surrounding the robot.

Fig. 3. Force fields representing the instant angular (vector direction) and
translation (vectors length) velocity for one frontal repellor placed at three
different distances. The x-axis represents the positions (in degrees, with
respect to the frontal direction) of the repellor. The y-axis represents the
current velocity of the robot.

In this framework, if the shared control is disabled, no
repellors (λ < 0) are added to the system that controls the
orientation of the robot (Eq. 2). The robot is changing direction
only according to the user commands (attractors, λ > 0).
Therefore, if an obstacle is detected, the device will stop in
front of it, waiting for the next mental command.

Otherwise, if the shared control is enabled, its role is to
decide what has to be considered an attractor or a repellor
by changing the λ sign. The strength of λ is related to the
value read by the sensors (obstacle-repellors, λ < 0) and to the
commands delivered by the user directly (target-attractors, λ >
0). Then, the robot will move smoothly, in the environment,
continuously seeking the best direction/velocity according to
the location of repellors/attractors.

In the next sections, we are going to use these two behaviors
(with shared control, without shared control) in order to quan-
tify the benefits of shared control in a BCI-based telepresence
application.

D. Participants and end-users

Ten healthy volunteers participated in our experiments (aged
30.9± 5.6, 1 female). Although some of the users were already
trained in BCI, they did not have any prior experience with
the telepresence robot. In addition, users H3, H4, H9 and H10
were BCI beginners.

Nine end-users aged 40.7± 11.8 years (1 female) were
trained at various out-of-the-lab locations (either at clin-
ics, assistive technology support centers or users’ homes in
Switzerland, Germany and Italy), without BCI experts present
and were able to control a MI-based BCI (Figure 1, left side).
They trained once or twice a week (sometimes only every
other week) for up to 3 hours per day, with a maximum
number of 10 sessions (recording days). These nine end-users
are part of a larger study involving 24 volunteers with motor
disabilities who were trained to achieve BCI control before
operating several BCI prototypes (speller, assistive mobility
or telepresence). These requirements imposed end-users to
achieve an online BCI performance better than 70 % for two
consecutive sessions within a maximum number of training
sessions. Details of this training study and lessons learned,
together with a short report of the results with the prototypes,
are discussed in [3]. A thorough description of the speller and
its clinical evaluation has appeared in [29]. In this work we
provide a full description of the telepresence robot experiments
with the end-users and compare their performances to ten
healthy subjects who performed the same task. The end-
users were affected by different levels of myopathy, spinal
cord injury, tetraplegia, amputation, spino-cerebellar ataxia or
multiple sclerosis, but none of the participants had cognitive
deficits. Details for each end-user are given in Table I.

All experiments were conducted according to the declaration
of Helsinki and the study was approved by the corresponding
local ethics review boards of the cantons of Vaud and Valais
in Switzerland, and of the regional government in Bologna
in Italy. All participants were asked to give written informed
consent before participating in the study. Furthermore, they
were explicitly instructed that they could leave the study at
any time without giving any reason.

E. Experimental paradigm

The experimental environment was a natural working space
with different rooms and corridors (shown in Figure 4). This
map was also shown to the end-users before the experiment to
explain the setup, since they never had visited this space, in
contrast to the healthy users who were already familiar with
the environment. The robot started from position R, and there
were four target positions T1, T2, T3, T4, physically marked
with white triangles on the floor. The user’s task was to drive
the robot along one of three possible paths (P1, P2, P3, marked
in different colors in the map), each consisting of two targets
and driving back to the start position. The experimental space
contains natural obstacles (i.e., desks, chairs, furniture) but
also people working in this office space were moving round,
thus replicating a daily life situation where the end-user might
want to drive the mobile robot to different rooms of their
apartment.
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TABLE I
DETAILS OF END-USERS WHO PARTICIPATED IN THE EXPERIMENT, INCLUDING GENDER, MEDICAL CONDITION, TIME SINCE THE INJURY OR DIAGNOSIS

AND THEIR AGE, BOTH IN YEARS. PARTICIPANTS WHOSE TIME SINCE THE INJURY IS MARKED BY “—” ARE CONGENITAL-HEREDITARY. END-USER P2
AND P7 WERE SEVERELY DISABLED AND P1 MODERATELY DISABLED. THE DISTANCE BETWEEN THE PARTICIPANTS AND THE ROBOT IS GIVEN IN

KILOMETERS, EXCEPT WHEN THEY WERE ON THE SAME SITE AND LOCATED ONLY IN A DIFFERENT ROOM (DISTANCE OF 15 M, LIKE ALL THE HEALTHY

PARTICIPANTS). FURTHERMORE, THE MOTOR IMAGERY (MI) PAIR USED BY EACH END-USER IS GIVEN WHEREBY “L” REPRESENTS LEFT HAND, “R”
RIGHT HAND AND “F” FEET MOTOR IMAGERY.

ID Gender Medical condition Time Age Distance MI used
P1 F Myopathy — 36.8 ∼100 km F-R
P2 M Myopathy: spinal amyotrophy-type 2 — 32.2 ∼100 km L-F
P3 M Tetraplegia C4 10.8 33.4 ∼440 km L-F
P4 M Tetraplegia C6 11.8 61.2 ∼100 km L-F
P5 M Tetraplegia C5–C6 24.5 45.8 ∼15 m L-F
P6 M Tetraplegia C6 25.8 43.6 ∼100 km L-R
P7 M Muscular Dystrophy (Duchenne) — 19.9 ∼100 km L-R
P8 M Tetraplegia C3 4.7 43.8 ∼100 km L-F
P9 M Tetraplegia C6 23.9 49.2 ∼100 km F-R

Fig. 4. The experimental environment. The figure shows the four target
positions (T1, T2, T3, T4), the robot start position (R). The three different
paths are marked in blue P1, red P2 and green P3.

During a trial, the user needed to drive the robot along one
of the paths. Users were asked to perform the task as quickly
and efficiently as possible. A trial was considered successful
if the robot traveled to the two target positions and back to
the start position within a limited amount of time (maximum
12 min).

To control the robot, the user asynchronously sent high-
level commands for turning to the left or right with the help
of two mental tasks identified by BCI. When a BCI command
was delivered an attractor was placed in the shared control
framework to initiate a turn towards 30◦. Furthermore, in
the applied shared control paradigm, low-level interaction for
obstacle avoidance was undertaken by the robot, which pro-
actively slowed down and turned to avoid obstacles as it
approached them. Interestingly, if no mental command was
delivered, the robot moved forward, thus implicitly executing
a third driving command.

During the experiment the participants (healthy or end-
users) spoke with the operator via the SkypeTM connection.
The operator informed the participants when they had reached
the target, since the webcam offered only a limited field
of view. Especially when the robot was very close to the

TABLE II
FOUR EXPERIMENTAL CONDITIONS WERE TESTED: WITH OR WITHOUT

SHARED CONTROL IN COMBINATION WITH BCI OR MANUAL CONTROL.

shared control activated
yes no

BCI BCI shared ctrl BCI no shared ctrl
triggered Bsh Bno
turn by manual manual shared ctrl manual no shared ctrl

button Msh Mno

target, the mark on the floor moved out of the view, and
the participants could only guess for how long they had to
continue the current movement of the robot to reach the target.
Nevertheless, we instructed the participants to be quiet during
the active control time, to avoid any artifacts in the EEG.

1) Telepresence experiment 1 – healthy participants: Since
the goal of this work was to evaluate the contribution of shared
control for a BCI telepresence robot, the experiment with
the healthy participants was run under four conditions: BCI
control with shared control Bsh, BCI control without shared
control Bno, manual control with shared control Msh and
manual control without shared control Mno, respectively, (see
Table II). In the case of manual control the user drove the robot
by delivering manual commands through a keyboard (left,
right arrows) and traveled each path once. In the case of BCI
control the users drove the robot along each path twice. Paths
were chosen in a pseudorandom order and BCI control always
preceded manual control to avoid any learning effect. For each
trial we recorded the total time, the number of commands sent
by the user (manual or mental), and the number of commands
delivered by the obstacle avoidance module (in the shared
control condition). Users were instructed to generate paths as
fast and as short as possible. All experimental parameters and
their values are given in Table III.

2) Telepresence experiment 2 – end-users: Since exper-
iments with end-users are much more demanding and the
results with the healthy participants in experiment 1 (see sec-
tion III-B) determined the beneficial role of shared control for
a brain-control telepresence robot, we reduced the conditions
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to the two main ones: (i) BCI with shared control Bsh (ii)
and, as a baseline, the normal manual control without shared
control Mno. Some end-users were able to press buttons on
a modified keyboard and others were using head switches.
Generally, we used whatever residual motion they were capa-
ble of producing. The number of trials, targets, paths and the
extracted parameters were the same as in experiment 1 (see
Table III).

TABLE III
EXPERIMENTAL PARAMETERS FOR THE TELEPRESENCE TESTS.

Number of control commands 2

Number of targets per path 2

Number of paths 3

Number of conditions 4

Number of trials per path under manual control 1

Number of trials per path under BCI control 2

Total number of trials 18

Timeout 12 min

F. Subjective measures

At the end of the conditions Mno and Bsh we asked the
healthy participants to subjectively rate their performance
and workload via the NASA TLX (task load index) ques-
tionnaire [32], in order to evaluate which condition was
preferred. Generally, the NASA-TLX is a multi-dimensional
rating procedure that derives an overall subjective workload
score based on a weighted average of ratings on six subscales,
which include mental demands, physical demands, temporal
demands, performance, effort and frustration Such an eval-
uation was already used and suggested in the literature to
assess the usability and efficiency of several BCI controlled
applications [27], [33].

III. RESULTS

In this section we first present the EEG features identified
for the end-users and their online BCI control during the
training sessions, before presenting the experimental results
for healthy participants and end-users.

A. EEG features and BCI performance

All participants started by imagining left hand, right hand
and feet movements during calibration recordings. The best 2-
class classifier was used to drive the robot in the experiments.
The MI pair mostly used by the healthy group was left versus
right hand (LR, 6 times), followed by feet versus right hand
(FR, 3 times) and left hand versus feet (LF, once). For the
end-users it was left hand versus feet (LF, 5 times), followed
by feet versus right hand (FR, twice) and left versus right hand
(LR, once), see in more detail in Table I.

In general, the selected features were dominantly in the
alpha band (around 10 Hz) and in the beta band (around
22 Hz), which is consistent with the literature [34], [35], [36].
Figure 5 shows the histogram of the selected features and the

corresponding electrode locations for the end-users. Features
were mostly chosen around Cz and C4, which is in line with
the fact that most participants used left hand MI versus feet
MI to control the BCI.

Fig. 5. Histogram of the selected electrode locations (top) and the selected
power spectral density (bottom) for the participating end-users. Most of the
features were chosen from the α or β range, and were located over C4 (left
hand area) and Cz (foot area).

Figure 6 shows the accuracy of all online BCI runs from
the end-users. Each end-user needed a different number of
sessions to learn to control the BCI. A maximum of 9 training
sessions (days) were possible. Two end-users started already
with a very high performance and tested the robot already after
two days and another one after three sessions. End-user P2,
who was one of the early participants, reported that he lost
motivation since the pure BCI training was becoming boring
for him and improved again when he was finally allowed to
test the robot. Participants P1 and P4 had a holiday break in
between the recordings, which yielded a drop of performance.
Although we notice that the fluctuations over the different
training sessions are quite large, a general improving trend
is visible for all participants (see grand average in dashed in
Figure 6).

Fig. 6. Performance values (trial accuracy) of all online training runs
averaged per session for each end-user before they participated in the
telepresence experiment. The mean over all end-users (dashed line) shows
a slowly increasing trend.
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B. Telepresence experiment 1 – healthy participants
The primary result of our experiment is that all users

succeeded in all the trials for all conditions. Regarding the
incorporation of shared control, it boosted the performance
for both manual and BCI control in all trials for all users.

1) Time of the experiment: The first four healthy partici-
pants (H1–H4) tested all four conditions, and the remaining
six tested only the two main conditions (Bsh and Mno, same
as the end-users with motor disabilities). The top part of
Figure 7 shows the time needed for the four users to drive
the robot along the three paths. The average time to finish
the task manually was between 250 and 270 s, but in the
condition BCI without shared control, Bno, more than 465 s
were needed. This implies that this condition was very difficult
and demanding, which could be reduced by the shared control
in Bsh to 310 s. Even in the case of manual control (first two
bars in the graphs, Mno and Msh), shared control reduced
the time to perform the task: user H1, 10.9±8.8%; user H2,
1.5±5.6%; user H3, 12.7±8.6% user H4, -1.8±2.8%. The
benefit of shared control becomes more evident when users
drove the robot mentally (last two bars in Figure 7, Bno and
Bsh): user H1, 39.3±8.1%; user H2, 12.0±9.1%; user H3,
41.2±10.8%; user H4, 28.6±7.7%.

A remarkable result of experiment 1 is that shared control
allowed all the healthy users to mentally drive the telepresence
robot, Bsh, almost as fast as when they did the task manually,
without the support of the shared control, Mno. The average
time ratio for all paths of Bsh vs. Mno and subjects was
115.15±10.32 % (see also the top part of Figure 8). Note
that participant H6 had a larger ratio of 1.38 than all other
participants (average of 1.12), since his brain control degraded
momentarily on the way to target T3 in path 3 in condition
Bsh and he had to make four U-turns to reach the destination.
Without this trial his ratio would drop to 1.25. Nevertheless,
we left the full data in the analysis, as it reflects the actual use
of the brain-controlled robot, and the BCI, as well as the BCI
community, has to learn to deal with exactly these fluctuations
of performance in end-users.

2) Number of commands: Shared control also helped users
to reduce the number of commands (manual or mental) that
they needed to deliver to achieve the task (Figure 7, bottom).
In the case of mental control, shared control led to a strong
decrease (last two bars in Figure 7, Bno and Bsh): user H1,
27.6±11.1%; user H2, 34.6±10.4%; user H3, 51.4±6.3%;
user H4, 32.8±20.8%. It is clearly visible that in the con-
dition without shared control (mental Bno or manual Mno)
more commands were required to reach the targets. This was
expected since every obstacle had to be maneuvered around
and any deviation from the path had to be corrected.

Averaging the data across the four participants, we can see
a high correlation (ρ = 0.49, p < 0.05) between the number
of commands delivered by the users without or with shared
control and the time needed to reach a target. This correlation
was even higher for mental control (ρ = 0.56, p < 0.05) when
all 10 participants were taken into account. For all targets we
observe the same general trend: shared control allowed the
users to deliver significantly fewer commands and reach the
target faster.

Fig. 7. Time (top) and number of commands (bottom) necessary to drive
the robot along the three paths (average over all 3 paths is given) for each
healthy participant. The grand average with standard deviation is given in
the last column. Mno stands for manual control without shared control –our
reference condition for experiment 2–, Msh for manual control with shared
control, Bno for BCI control without shared control, and Bsh for the most
important condition BCI with shared control. Shared control (for manual and
BCI control) reduced the time and the number of commands needed to achieve
the task, which is an indicator of a reduced workload. Most importantly BCI
with shared control Bsh was almost as good as manual control Mno.

C. Telepresence experiment 2 – end-users

As a benchmark of task complexity, the average time for
healthy participants to complete a single path in the manual
condition Mno was 255±36 seconds, whereas for end-users
it was 264±74 seconds (no statistical difference, p > 0.1,
two-sampled t-test). Concerning the number of commands in
this condition, healthy participants used an average 23±11
commands, compared to 24±8 for end-users (no statistical
difference, p > 0.5, two-sampled t-test). These values can be
considered as the reference baseline.

Due to personal reasons, end-user P2 was unable to finish
the experiments and voluntarily left the study. For him, only
the data from the first path was recorded and was used in the
analysis. During the second path of the experiment Bsh, end-
user P1 delivered a number of incorrect mental commands,
believing that the target was elsewhere. Hence it took some
time and additional commands to bring the robot back to
the correct target and path. Therefore, this data point can be
considered an anomaly and was excluded from our analysis.

All end-users succeeded to mentally control the telepres-
ence robot as efficiently as the healthy participants or even
slightly better (see Figure 8). First, the mean ratio of time to
complete the task for the BCI condition compared with the
manual condition was only 109.2±11.1% for the end-users,
as compared to 115.1±10.3% for the healthy participants (no
statistical difference, p > 0.1, two-sampled t-test), see also
Figure 8, top. This indicates a reduced BCI handicap for
end-users. Second, the mean ratio of the number commands
required to complete the task for the BCI condition compared
with manual condition was only 92.8±37.9% for the end-users
as opposed to 106.5±30.8% for the healthy participants (no
statistical difference, p > 0.4, two-sampled t-test), see also
Figure 8, bottom.
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Fig. 8. (top) Ratio between the time required to complete the task when using BCI and when using the manual input device. (bottom) The ratio of the
number of commands required to complete the task between the BCI and the manual condition. (both) Healthy participants are plotted in blue and end-users
in red. On the right hand side the grand average and standard deviation is given for each group population. The most striking result is that end-users succeeded
in controlling the telepresence robot just as well as the healthy participants.

When controlling neuroprosthetic devices it is of interest
to see how much of the BCI performance can be transferred
from the standard on-screen BCI training sessions directly to
the control of applications. Therefore, in Figure 9, we made
a correlation between the online BCI performance during the
training runs (data taken from Figure 6) and the number of
delivered commands during the telepresence experiment (data
taken from Figure 8). A positive correlation of ρ = 0.46
(p < 0.05) can be found between them, indicating that end-
users who have a better BCI performance tend to deliver more
commands in the robot control. A positive trend, although
lower, was also observed for healthy subjects.

Fig. 9. Ability to control applications for healthy participants (H) and end-
users with motor disabilities (P). The averaged online BCI performance (on
the y-axis) for each end-user is plotted over the number of commands (on
the x-axis) delivered in telepresence experiment. A positive linear trend is
visible for both groups, indicating that the higher the BCI performance the
more commands will be issued.

D. Subjective measures

Considering the overall task, there was a significant increase
in the NASA TLX (p < 0.05) when using BCI control
(condition Bsh) compared to manual control (condition Mno).
The subjective data of the healthy participants are given
in Figure 10 (N=9, data of H2 were corrupted). Since the
task did not differ, the same TLX weights were used for
both conditions. Therefore, the main contributing factors to
the change in TLX were the users’ perceived increase in
mental workload (p < 0.01) and effort (p < 0.05), as can
also clearly be seen in Figure 10. Increasing trends, but no
statistical differences, can be observed in the temporal demand,
perceived performance and frustration. A significant decrease
(opposite trend to above) was rated for the physical demand
(p < 0.05).

Fig. 10. The NASA TLX: perception of the overall task for the two main
conditions (manual control without shared control Mno and BCI with shared
control Bsh) in healthy participants. Each bar represents the 25th to 75th
percentiles and the central mark is the median value, the tiny lines extend
to the most extreme data points not considering outliers, which are plotted
individually. Statistical significant differences are marked (* p < 0.05, ** p <
0.01). Note: For all factors (user-perceived performance included) a lower
score is better (i.e., a score of 0 would be the best).
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IV. DISCUSSION

The experimental results reported in this paper demonstrate
that: (i) end-users with motor disabilities can mentally control
a telepresence robot via a BCI. Controlling such a telepresence
robot is a rather complex task as the robot is continuously
moving and the user must control it for a long period of time
(well over 6 minutes without breaks) to move along the whole
path and reach the targets. (ii) The proposed shared control
approach allows users to achieve similar performances with
the BCI as would have been possible under direct manual
control of a robotic device. Our shared control implementation
only deals with low-level obstacle detection and avoidance, but
leaves the high-level decisions to the user. It is important to
note that only with a semi-autonomous approach is the user
able to maintain the final control authority over the device all
the time. (iii) End-users could improve their BCI performance
and modulate their brain patterns better with practice. (iv) Par-
ticipants can transfer the skill of mental control, from the
standard on-screen BCI training sessions directly to the control
of applications, in our case the telepresence robot. Good
BCI performance is an indicator for successful application
control and good BCI users tend to pro-actively deliver more
commands as to keep a more direct control. (v) Finally, the
most striking result is that no performance difference was
found between end-users with motor disabilities and healthy
participants in controlling the telepresence robot. This is even
more so when considering that the healthy participants were
familiar with the environment, while end-users were not.

Interestingly, good BCI users, such as end-user P7 and P8 or
healthy participant H8, deliver many more mental commands
than the other users. This behavior actually reflects a voluntary
will to be in full control of the telepresence robot, which is
permitted by the semiautonomous shared control system [22].
On the other hand, it is obvious that end-users who have
a lower BCI performance and therefore difficulties in fine
control of the robot, trust the shared control system more, to
avoid obstacles or to correct path deviations. Therefore, they
prefer to wait and assess how the system is assisting them and
only then they start interacting via the BCI.

The implemented shared control approach allowed each
participant to complete a rather complex task in shorter times
and with fewer commands independently of mental or manual
control. Given that the number of commands to complete
the task can be considered an indirect measure of workload,
we argue that shared control reduces the users’ cognitive
workload, which is in line with the anecdotal statement of
the participants. Shared control assists them in coping with
low-level navigation issues (such as obstacle avoidance) and
helps BCI users to maintain attention for longer periods of
time, resulting in delivering fast commands.

A reduction in workload for the Bsh, although still higher
than in the Mno condition, is also supported by the subjective
results we acquired with the NASA TLX questionnaire in
healthy participants. These results are in line with the expected
outcome, namely that BCI control is mentally more demanding
(using brain control versus finger activity) and needs a higher
effort (focused activity on the BCI versus automated button

presses) than manual control (which is the only condition with
some physical action, therefore receiving a small but higher
rating in the physical demand). Nevertheless, no difference
was reported in the performance or frustration level.

We also observed that, to drive a brain-controlled robot,
users do not only need to have a rather good BCI performance,
but they also need to be fast in delivering the appropriate men-
tal command at the correct time —otherwise they will miss
key maneuvers to achieve the task efficiently (e.g., turning to
pass a doorway or enter a corridor). In our experience, fast
decision making is critical and it depends on the proficiency
of the users as well as on their attention level. Along the
same lines, another maybe even more critical ability that BCI
users must exhibit is intentional non-control, which allows
them to rest while the neuroprosthesis is in a state they do
not want to change (e.g., moving straight along a corridor).
The evidence accumulation framework applied in our BCI
implicitly supports INC by tackling the uncertainty of the
single-sample classifier output, thus providing a smooth and
informative feedback, while eliminating false positives.

Nevertheless, an explicit start/stop or on/off functionality
would be preferable. Especially, to facilitate the interaction
aspect that underpins the notion of telepresence, users must
be able to voluntarily and reliably stop the robot at any
moment, not just drive from point to point. In the given
example the participants were only able to stop the robot
when the shared control system determined that they wished
to dock to a particular target. Then, to remain stationary,
they had to actively maintain the INC condition, which has
proven to be demanding (high workload). A solution to this
limitation is to adopt the hybrid BCI principle [28], [37], [38].
Thereby, a complementary channel (which can be reliable
but not constantly used) is added to the EEG-based BCI to
enable the user to start/stop the robot. This has been recently
demonstrated in healthy participants [39] exploiting the user’s
residual muscular activity. The same principle was also shown
for a hybrid text-entry system in end-users [29]. This hybrid
approach increases the accuracy, whilst simultaneously reduc-
ing the workload, and was the preferred control paradigm of
all the participants.

The work reported here highlights how critical it is to
include the individual end-users in the whole design process of
a BCI, as it is customary in the field of assistive technologies.
The BCI and the application have to be tailored to every par-
ticipant, to adapt to their performance, needs and preferences.
Therefore, a user-centered design (UCD) approach should be
followed [40], which focuses on the usability for the end-users
–i.e., how well a specific technology suits their purposes, and
meets their needs and requirements. An UCD has been shown
to be of key importance for end-users to actually utilize a BCI
application [27].

In the current paper, shared control only deals with low-
level obstacle avoidance and it relies on very simple infrared
sensors (as opposed to sophisticated and expensive laser range
finders on the wheelchairs). The next implementation of shared
control will incorporate simple vision modules for obstacle
avoidance and, even more important, recognition of natural
targets (such as humans and tables) that will increase the
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operational range of the robot. The applied and tested shared
control protocols and experimental paradigm of this work can
be easily transferred to other BCI controlled neuroprosthetic
devices, such as brain-controlled wheelchairs [12], upper limb
orthoses [9] or lower limb exoskeletons [41]. Shared control
will be also combined with our approach to support idle states
so that users can deliver commands only when they wish to
do so [8], thus enlarging users’ telepresence experience.

In our work we used self-paced induced activity of the
motor cortex to asynchronously control the movements of the
robot. Nevertheless, other BCI paradigms and brain signals
have also been used to control a telepresence robot, or other
robotic devices. Evoked activity like P300 has been used to
either select final targets that the robot reaches autonomously
[14] or to select the next forward or left/right turning [17],
[42]. Another alternative is covert visuospatial attention mea-
sured by fMRI, so that the healthy participants only had to
focus their attention on the spatially distributed commands
around the screen [43]. Nevertheless, the speed of control
is reduced for fMRI-based systems (e.g., every 16 seconds
in [43]). Similarly, a P300-based system needed quite some
time for the target selection (stimulus round time plus inter-
stimulus interval times the number of flashing repetitions), so
that in [17] the robot was waiting half of the time for the
BCI decoding. This resulted in 4 selections per minute, but
of course with a higher number of commands than in our
experiment. In our opinion, depending on the setup, several
options exist: the selection of targets out of a large list, which
can then be autonomously reached is perfect for such a P300
approach, but if the user wants to interact more directly and
have a personalized degree of control, approaches based on
spontaneous activity like MI will be preferred. Since this
paper focused only on brain control for end-users, we will not
discuss any muscle or eye-tracking controlled robotic devices.

Moreover, smart interface designs and hybrid approaches,
which have been shown to help overcome existing shortcom-
ings in BCI [9], [28], [37], will be increasingly used for
robotic control and will push the boundaries of performance.
We are beginning to see examples of robot control with
hybrid systems [39], [44], extensions to multi-class control
of robotic devices via a smaller set of control signals [15],
[45], and even full control in three-dimensional space [16],
which demonstrates the potential of brain-controlled physical
devices for healthy participants.

Compared to all these works above, a major novelty of
our work is the evaluation with a larger number of end-
users and not only with healthy participants. Nevertheless, it is
difficult to compare our work effectively with other end-user
or patient works, since (i) the control tasks were different or
(ii) the paper mentioned only the achieved navigation task, but
neither reported a control condition (like our manual keyboard
control condition) nor the chance level performance, or (iii) did
not compare the performance of their end-users with healthy
participants to see the task complexity. Such comparisons
would be very useful for the future of this research field.

V. CONCLUSIONS

In this work we have discussed and evaluated the role
of shared control in a BCI-based telepresence framework:
driving a mobile robot via a BCI might improve the quality
of life of people suffering from severe physical disabilities.
By means of a bidirectional audio/video connection to a
robot, the BCI user would be able to interact actively with
relatives and friends located in different rooms. However,
direct control of such robots through an uncertain channel
such as a BCI is complicated and exhausting. Shared control
can facilitate the operation of brain-controlled telepresence
robots, as demonstrated by the experimental results reported
here. In fact, it allowed all users (healthy and motor-disabled)
to complete a rather complex task —driving the robot in a
natural environment along a path with several targets and
obstacles— in shorter times and with fewer mental commands,
than without the help of shared control. Thus, we argue
that shared control reduces the user’s cognitive workload.
Yet, as we have seen, the shared control provides enough
flexibility that very good BCI users were able to wield a much
higher level of control authority, by delivering more mental
commands than those who relied more upon the assistance of
the shared control system. Finally, the end-users with motor
disabilities were able to complete the remote navigation tasks
successfully and just as well as healthy participants.
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