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Abstract—Reliable packet delivery within stringent delay
constraints is of primal importance to industrial processes with
hard real-time constraints, such as electrical grid monitoring.
Because retransmission and coding techniques counteract the
delay requirements, reliability is achieved through replication
over multiple fail-independent paths. Existing solutions such as
parallel redundancy protocol (PRP) replicate all packets at the
MAC layer over parallel paths. PRP works best in local area
networks, e.g., sub-station networks. However, it is not viable
for IP layer wide area networks which are a part of emerging
smart grids. Such a limitation on scalability, coupled with lack
of security, and diagnostic inability, renders it unsuitable for
reliable data delivery in smart grids. To address this issue, we
present a transport-layer design: IP parallel redundancy protocol
(iPRP). Designing iPRP poses non-trivial challenges in the form
of selective packet replication, soft-state and multicast support.
Besides unicast, iPRP supports multicast, which is widely using
in smart grid networks. It duplicates only time-critical UDP
traffic. iPRP only requires a simple software installation on the
end-devices. No other modification to the existing monitoring
application, end-device operating system or intermediate network
devices is needed. iPRP has a set of diagnostic tools for network
debugging. With our implementation of iPRP in Linux, we show
that iPRP supports multiple flows with minimal processing and
delay overhead. It is being installed in our campus smart grid
network and is publicly available.

I. INTRODUCTION

Specific time-critical applications (found for example in
electrical networks) have such strict communication-delay con-
straints that retransmissions following packet loss can be both
detrimental and superfluous. In smart grids, critical control ap-
plications require reliable information about the network state
in quasi-real time, within hard delay constraints of the order of
approximately 10 ms. Measurements are streamed periodically
(every 20 ms for 50 Hz systems) by phasor measurement
units (PMUs) to phasor data concentrators (PDCs). In such
settings, retransmissions can introduce delays for successive,
more recent data that in any case supersede older ones. Also,
IP multicast is typically used for delivering the measurements
to several PDCs. Hence, UDP is preferred over TCP, despite its
best-effort delivery approach. Increasing the reliability of such
unidirectional (multicast) UDP flows is a major challenge.

The parallel redundancy protocol (PRP, IEC standard [1])
was proposed as a solution for deployments inside a local area
network (LAN) where there are no routers. Communicating
devices need to be connected to two cloned (disjoint) bridged
networks. The sender tags MAC frames with a sequence
number and replicates it over its two interfaces. The receiver
discards redundant frames based on sequence numbers.

PRP works well in controlled environments, like a substa-
tion LAN, where network setup is entirely up to the substation
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operator, who ensures that the requirements of PRP are met
(e.g., all network devices are duplicated). At a larger scale
(for example, a typical smart grid communication network that
spans an entire distribution network) routers are needed and
PRP can no longer be used. Thus, a new solution is needed
for IP wide area networks (WANs).

In addition to extending PRP functionality to WANs, the
new design should also avoid the drawbacks of PRP. The most
limiting feature of PRP is that the two cloned networks need
to be composed of devices with identical MAC addresses.
This contributes to making network management difficult.
Furthermore, PRP duplicates all the traffic unselectively, which
is acceptable for use in a LAN, but which cannot be done
in a WAN, because links are expensive and unnecessary
traffic should be avoided. Moreover, PRP has no security
mechanisms, and multicasting to a specific group of receivers
is not natively supported.

Concretely, Fig. 1 depicts a smart grid WAN where PRP
cannot be directly deployed. Devices are multi-homed and each
interface is assigned a different IP address. Most devices have
two interfaces connected to a main network cloud made of two
fail-independent network subclouds labeled “A” and “B”, while
some have a third interface connected to a 4G cellular wireless
service (labeled “Swisscom LTE backbone” in the figure). It
is assumed that paths between interfaces connected to the “A”
network subcloud stay within it (and similarly with “B”). The
“A” and “B” network subclouds could be physically separated,
however in practice they are most likely interconnected for
network management reasons.

Fig. 1: A typical iPRP use-case in the context of smart grids. Devices
(PDCs, PMUs) are connected to two overlapping network subclouds
(labeled A and B). Some devices use an additional LTE connection
providing a low latency cellular service. Every PMU streams data to
all PDCs, using UDP and IP multicast.

The new solution should, like PRP, take advantage of
network redundancy to increase the reliability of UDP flows.
Furthermore, it should also work both if the network subclouds
are physically separated, and if they have interconnections.
Supporting such flexibility is essential for real deployments,



but it poses significant challenges in protocol design. In order
for our solution to be easily deployed, we furthermore require
it to be transparent to both the application and network layers:
it should only require installation at end-devices and no mod-
ifications to running application software or to intermediary
network devices (routers or bridges).

In this paper we present the design and implementation
of iPRP (IP parallel redundancy protocol), a transport layer
solution for transparent replication of unidirectional unicast or
multicast UDP flows on multihomed devices. Our iPRP im-
plementation (http://goo.gl/N5wFNt) is for IPv6, as it is being
installed in our IPv6 based smart-grid communication network
(smartgrid.epfl.ch). Adaptation to IPv4 is straightforward.

To reach (multicast) destinations, a transport-layer solution
for packet replication of UDP flows such as iPRP should have
at its disposal two or more parallel paths; ideally, the paths
should be disjoint. However, given the current technology, a
device cannot easily control the path taken by an IP packet,
beyond the choice of an exit interface and a type-of-service
value. Other fields, such as the IPv6 flow label or source
routing header extensions, are either ignored or rejected by
routers. Also, the type-of-service field is used by applications
and should not be tampered with by iPRP. Hence, we assume
a setting where sources and destinations of time-critical UDP
flows have multiple communication interfaces. The job of iPRP
is to transparently replicate packets over the different interfaces
for the UDP flows that need it, match corresponding interfaces,
and remove duplicates at the receiver. The paths between
matching interfaces are calculated by the routing layer: by
routing protocols or by software-defined networking.

iPRP does not require cloned networks. It exploits any
available network redundancy, without imposing special re-
quirements on the network. End-to-end disjoint paths are not
required, though in most cases this is beneficial. Also, not
all traffic requires replication, only certain devices and certain
UDP flows do (time-critical data). Hence, replication needs
to be selective: a failure-proof mechanism, transparent to
applications, is required for detecting and managing packet
replication over the matched interfaces. Finally, iPRP needs to
be secure and also ensure that replication does not compromise
secure UDP streams.

II. RELATED WORK

As mentioned in §I, iPRP overcomes the limitations of
PRP [2]. The authors of [3] are aware of these limitations and
suggest a direction for developing PRP in an IP environment.
Their suggestion is neither fully designed nor implemented.
Also, it requires that the intermediate routers preserve the
PRP trailers at the MAC layer, which in turn requires changes
in all of the routers in the networks. It does not address all
the shortcomings of PRP (absence of diagnostic tools, lack of
multicast support, need of special hardware). In contrast, our
transport layer approach does not have these drawbacks.

Solutions like MPTCP [4], LACP [5], ECMP [6] require
non-negligible amount of time for giving up on a path that
has failed. Similarly, network coding and source coding (e.g.
Fountain codes) introduce coding and decoding delays that are
not suitable for UDP flows with hard-delay constraints.

Multi-topology routing extends existing routing protocols
and can be used to create disjoint paths in a single network. It
does not solve the problem of transparent packet replication,
but serves as a complement to iPRP.

III. OPERATION OF IPRP
A. How to Use iPRP

iPRP is installed on end-devices with multiple interfaces:
on streaming devices (the ones that generate UDP flows with
hard delay constraints) and on receiving devices (the destina-
tions for such flows). Streaming devices (such as PMUs) do
not require any configuration. Streaming applications running
on such devices benefit from the increased reliability of iPRP
without being aware of its existence.

On receiving devices the only thing that needs to be
configured is the set of UDP ports on which duplication is
required. For example, say that an application running on a
PDC is listening on some UDP port for measurement data
coming from PMUs. After iPRP is installed, this port needs
to be added to the list of iPRP monitored ports in order to
inform iPRP that any incoming flows targeting this port require
replication. The application does not need to be stopped and
is not aware of iPRP. Nothing else needs to be done for iPRP
to work. In particular, no special configuration is required for
intermediary network equipment (routers, bridges).

B. General Operation: Requirements for Devices and Network
iPRP provides 1 + n redundancy. It increases, by packet

replication, the reliability of UDP flows. It does not impact
TCP flows. iPRP-enabled receiving devices configure a set of
UDP ports as monitored. When a UDP packet is received on
any of the monitored ports, a one-way soft-state iPRP session
is triggered between the sender and the receiver (or group of
receivers, if multicast is used). Soft-state means that: (i) the
state of the communication participants is refreshed period-
ically, (ii) the entire iPRP design is such that a state-refresh
message received after a cold-start is sufficient to ensure proper
operation. Consequently, the state is automatically restored
after a crash, and devices can join or leave an iPRP session
without impacting the other participants.

Within an iPRP session, each replicated packet is tagged
with an iPRP header (Fig. 2). It contains the same sequence
number in all the copies of the same original packet. At the
receiver, duplicate packets with the same sequence number are
discarded (§IV-C). The original packet is reconstructed from
the first received copy and forwarded to the application.

In multicast, the entire receiver group needs to run iPRP.
If by mishap only part of the receivers support iPRP, these
trigger the start of an iPRP session with the sender and benefit
from iPRP; however, the others stop receiving data correctly.
To ensure disjoint trees the use of source-specific multicast
(SSM) is recommended, see [7]. All iPRP-related information
is encrypted and authenticated. Existing mechanisms for cryp-
tographic key exchange are applied (security reflections in §V).

C. UDP Ports Affected by iPRP
iPRP requires two system UDP ports (transport layer) for

its use: the iPRP control port and the iPRP data port (in
our implementation 1000 and 1001, respectively). The iPRP
control port is used for exchanging messages that are part
of the soft-state maintenance. The iPRP data port receives
data messages of the established iPRP sessions. iPRP-capable
devices always listen for iPRP control and data messages.

The set of monitored UDP ports, over which iPRP repli-
cation is desired are not reserved by iPRP and can be any
UDP ports. UDP ports can be added to/removed from this set
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at any time during the iPRP operation. Reception of a UDP
packet on a monitored port triggers the receiver to initiate an
iPRP session. If the sender is iPRP-capable, an iPRP session
is started (replicated packets are sent to the iPRP Data Port),
else regular communication continues.

D. Matching the Interconnected Interfaces of Different Devices
One of the design challenges of iPRP is determining an

appropriate matching between the interfaces of senders and
receivers, so that replication can occur over fail-independent
paths. To understand the problem, consider Figure 1 where the
PMUs and PDCs have at least two interfaces. The A and B
network subclouds are interconnected. However, the routing is
designed such that, a flow originating at an interface connected
to subcloud A with a destination in A, will stay in subcloud A.
PRP achieves this by requiring two physically separated cloned
networks. iPRP does not impose these restrictions. Hence,
iPRP needs a mechanism to match interfaces connected to the
same network subcloud.

To facilitate appropriate matching, each interface is asso-
ciated with a 4-bit identifier called iPRP network subcloud
discriminator (IND), which qualifies the network subcloud it
is connected to. The iPRP software in end-devices learns the
interfaces’ INDs automatically via simple preconfigured rules.
Network routers have no notion of IND. A rule can use the
interface’s IP address or its DNS name. In our implementation,
we compute an interface’s IND from its fully qualified domain
name . In Figure 1, the rule in the iPRP configuration maps
the regular expression nw-a* to the IND value 0xa, nw-b* to
IND 0xb, and *swisscom.ch to IND 0xf.

The receiver periodically advertises the IP addresses of its
interfaces, along with their INDs to the sender (via iPRP_CAP
messages). The sender compares the received INDs with its
own interface INDs. Only those interfaces with matching
INDs are allowed to communicate in iPRP mode. In our
example, IND matching prevents iPRP to send data from
a PMU A interface to a PDC B interface. Moreover, each
iPRP data packet (Fig. 2) contains the IND of the network
subcloud where the packet is supposed to transit. This eases the
monitoring and debugging of the whole network. It allows us
to detect misconfiguration errors that cause a packet expected
on an A interface to arrive on a B interface.

IV. A GLIMPSE OF IPRP DESIGN
(A comprehensive description can be found in [7].)

A. Control Plane
The control plane establishes an iPRP session. When

triggered by the reception of a UDP packet on one of the ports
configured as monitored, the receiver starts sending iPRP_CAP
messages to the control port of the sender every TCAP seconds.
This informs the sender that the receiver is iPRP enabled and
provides information required for selective replication over
alternative paths (e.g. IP addresses of all receiver interfaces).
This is also used as a keep-alive messages for iPRP session
as an iPRP session is terminated if no iPRP_CAP message is
received for a period of 3TCAP .

On receiving the iPRP_CAP, the sender acknowledges it
with an iPRP_ACK. The iPRP_ACK contains the list of sender
IP addresses which are used by the receiver to subscribe to
alternate network subclouds. In multicast, the receivers send
iPRP_CAP after a back-off period (§IV-D) to avoid flooding.
The iPRP_ACK message also serves as terminating message

for impending iPRP_CAPs thereby preventing a flood. To
complete the iPRP session establishment, the sender performs
IND matching (§III-D) and creates a record that contains all
information needed for replication of data packets.

B. Data Plane: Replication and Duplicate Discard
The replication phase occurs at the sender to send out

data plane messages once the iPRP session is established.
All outgoing packets destined to UDP port p of the receiver
are intercepted. These packets are subsequently replicated and
iPRP headers (Fig. 2) are prepended to each copy of the
payload. iPRP headers are populated with the iPRP version, a
sequence-number-space ID (used to identify an iPRP session),
a sequence number, an original UDP destination port (for the
reconstruction of the original UDP header), and IND. The 32-
bit sequence number is the same for all the copies of the same
packet. The destination port number is set to iPRP data port
for all the copies. An authentication hash is appended and the
whole block is encrypted. The iPRP header is placed after
the inner-most UDP header. So, iPRP works well, even when
tunneling is used (e.g., 6to4). Finally, the copies are transmitted
as iPRP data messages over the different matched interfaces.

Fig. 2: Location and fields of iPRP header.

Upon reception of packets on the iPRP data port the iPRP
header is decrypted at the beginning of the payload using
the symmetric key used in iPRP_CAP message. Based on
the sequence-number-space ID and the sequence number, the
packet is either forwarded to the application or discarded.

C. The Discard Algorithm
The discard algorithm forwards the first copy of a repli-

cated packet to the application and discards all subsequent
packets. The discard algorithm proposed for PRP [8] fails at
the latter when packets are received out of ordered. Packet
reordering cannot be excluded in IP networks. The iPRP
discard algorithm [7] forwards only one copy of the packet
even in cases of packet reordering. Also, it is soft-state, thereby
resilient to crashes and reboots.

D. The Backoff Algorithm
The soft-state in a multicast iPRP session is maintained

by periodic advertisements (iPRP_CAP) sent to the source by
each member in the multicast group of receivers. The iPRP
backoff algorithm prevents “message implosion” at the source,
for groups of receivers ranging from several hosts to millions.
It guarantees that the source receives an iPRP_CAP within
a bounded time D (by defalut D = 10s) after the start of
the iPRP-relevant communication (executed periodically every
TCAP = 30s). To this end, the backoff time is sampled from
the distribution from [9] as described in [7].

V. SECURITY CONSIDERATIONS

iPRP control messages as well as the iPRP header in data
packets are encrypted and authenticated. This guarantees that
the security of replicated UDP flows is not compromised by
iPRP and that it does not interfere with application layer



encryption/authentication. In unicast mode, a DTLS session
is established over the control channel for key exchange; in
multicast mode, we rely on existing multicast key management
infrastructure [10].

VI. IMPLEMENTATION AND THE DIAGNOSTIC TOOLKIT
We implemented iPRP in Linux in user-space; overhead

is kept very small thanks to efficient batching. We use the
libnetfilter_queue (NF QUEUE) framework from the
Linux iptables project. NF QUEUE is a userspace library that
provides a handle to packets queued by the kernel packet
filter. It requires the libnfnetlink library and a kernel that
includes the nfnetlink_queue subsystem (kernel 2.6.14 or
later). It supports all Linux kernel versions above 2.6.14. We
use the the Linux kernel 3.11 with iptables-1.4.12 [7].

As iPRP is network transparent, the standard TCP/IP
diagnostic tools can be used. Further, we developed an iPRP-
specific diagnostic toolkit. It includes iPRPping for verifica-
tion of connectivity between hosts and the evaluation of the
corresponding RTTs, iPRPtracert for the discovery of routes
to a host, iPRPtest to check if there is currently an iPRP
session between between two hosts and establish one if absent,
iPRPsenderStats and iPRPreceiverStats to obtain the
loss rates and one-way network latency.

Imagine a typical scenario where an application on an
iPRP enabled host experiences packet losses. To troubleshoot
this problem, the user at the receiving host would use the
iPRPreceiverStats to check the packet loss statistics on
each network, if an iPRP session is established. If no estab-
lished session is found, the user can establish a test session
using iPRPtest and check the hop-by-hop UDP delivery with
iPRPtracert to pin-point the problem.

VII. PERFORMANCE EVALUATION
iPRP is being deployed on the EPFL smart-grid communi-

cation network (smartgrid.epfl.ch). Also, we setup a lab testbed
to evaluate its performance.

We stress-tested the discard algorithm with heavy losses
and asymmetric delays and compared the performance with
theory. A sender and a receiver (Lenovo ThinkPad T400
laptops) are interconnected with three networks (2 wired, 1
wireless). We generated different scenarios with bursty or
independent losses, small or large link delays to simulate
different possible effects observed in a real network, using
tc-netem. In each scenario, we compared the observed loss
rate at the application when iPRP is used with the theoretical
loss rate (assuming independence of networks). We found
that iPRP performs as expected in significantly reducing the
effective packet losses [7].

As a side benefit, iPRP improves the effective one-way
network latency by delivering the first received packet. We
performed stress tests to verify that the CDF of the network
latency matches the theory (Fig. 3).

We evaluated the delay and processing overhead due to
iPRP. We used GNU gprof to assess the average delay (over
a large number of runs) incurred by an iPRP data packet in
the iPRP sender and receiver daemons. We observed that an
accepted iPRP data packet encounters an average delay of 0.8
µs at the sender daemon and 3.6 µs at the receiver daemon.
We computed the additional % of CPU usage at sender (Us)
and receiver (Ur) due to iPRP and found:
Us = 3.7 + 0.28× (# of iPRP sessions) + 0.01× (packets/s)
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Fig. 3: CDF of delays over two networks (nwA, nwB) with latencies
i.i.d and uniform on [5ms, 15ms] and CDF of latency obtained with
iPRP. The theoretical value diPRP = min(dnwA, dnwB) matches the
measurements.

Ur = 0.9 + 0.08× (# of iPRP sessions) + 0.01× (packets/s)

A more fine-grained delay and CPU usage audit can be
found in [7].

VIII. CONCLUSION
We have designed iPRP, a transport layer solution for

improving reliability of UDP flows with hard-delay constraints,
such as smart grid communication. iPRP is application- and
network-transparent, which makes it plug-and-play with ex-
isting applications and network infrastructure. Furthermore,
our soft-state design makes it resilient to software crashes.
Besides unicast, iPRP supports IP multicast, making it a
suitable solution for low-latency industrial automation appli-
cations requiring reliable data delivery. We have equipped
iPRP with diverse monitoring and debugging tools, which
is quasi impossible with existing MAC layer solutions. With
our implementation, we have shown that iPRP can support
several sessions between hosts without any significant delay
or processing overhead. We have made our implementation
publicly available and are currently installing it in our campus
smart-grid [11].
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