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Abstract

Foundations of signal processing are heavily based on Shannon’s sampling theorem for acqui-
sition, representation and reconstruction. This theorem states that signals should not contain
frequency components higher than the Nyquist rate, which is half of the sampling rate. Then,
the signal can be perfectly reconstructed from its samples. Increasing evidence shows that the
requirements imposed by Shannon’s sampling theorem are too conservative for many naturally-
occurring signals, which can be accurately characterized by sparse representations that require
lower sampling rates closer to the signal’s intrinsic information rates. Finite rate of innovation
(FRI) is a new theory that allows to extract underlying sparse signal representations while op-
erating at a reduced sampling rate. The goal of this PhD work is to advance reconstruction
techniques for sparse signal representations from both theoretical and practical points of view.
Specifically, the FRI framework is extended to deal with applications that involve temporal and
spatial localization of events, including inverse source problems from radiating fields.

The concept of finite rate of innovation (FRI) has been introduced for the sampling and
reconstruction of specific classes of continuous-time signals that feature a sparse parametric
signal representation such that they have finite degrees of freedom per unit time. Examples
of such FRI signals are streams of Diracs, stream of short pulses, piecewise polynomials and
piecewise sinusoidal signals. Clearly, these signals are neither bandlimited nor belong to a fixed
subspace, and hence the classical sampling theory does not hold. Several new methods in the
framework of FRI have shown that it is possible to develop exact sampling and reconstruction
schemes to recover the signal innovations. In particular, this is achieved by adequate handling
of the signal acquisition, which remains linear, but at the expense of non-linear reconstruction
methods.

We propose a novel reconstruction method using a model-fitting approach that is based on
minimizing the fitting error subject to an underlying annihilation system given by the Prony’s
method. First, we showed that this is related to the problem known as structured low-rank
matrix approximation as in structured total least squares problem. Then, we proposed to solve
our problem under three different constraints using the iterative quadratic maximum likelihood
algorithm. Our analysis and simulation results indicate that the proposed algorithms improve
the robustness of the results with respect to common FRI reconstruction schemes.

We have further developed the model-fitting approach to analyze spontaneous brain activity
as measured by functional magnetic resonance imaging (fMRI). For this, we considered the noisy
fMRI time course for every voxel as a convolution between an underlying activity inducing signal
(i.e., a stream of Diracs) and the hemodynamic response function (HRF). We then validated this
method using experimental fMRI data acquired during an event-related study. The results
showed for the first time evidence for the practical usage of FRI for fMRI data analysis.

We also addressed the problem of retrieving a sparse source distribution from the boundary
measurements of a radiating field. First, based on Green’s theorem, we proposed a sensing
principle that allows to relate the boundary measurements to the source distribution. We focused
on characterizing these sensing functions with particular attention for those that can be derived
from holomorphic functions as they allow to control spatial decay of the sensing functions. With
this selection, we developed an FRI-inspired non-iterative reconstruction algorithm. Finally,
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we developed an extension to the sensing principle (termed eigensensing) where we choose the
spatial eigenfunctions of the Laplace operator as the sensing functions. With this extension, we
showed that eigensensing principle allows to extract partial Fourier measurements of the source
functions from boundary measurements. We considered photoacoustic tomography as a potential
application of these theoretical developments.

Keywords: signal models, sparsity, finite rate of innovation, regularized reconstruction,
inverse source problems, Helmholtz equation, functional magnetic resonance imaging, photoa-
coustic tomography



Résumé

Les fondements de la théorie du traitement du signal sont fortement basés sur le théorème
d’échantillonnage de Shannon pour l’acquisition, la représentation et la reconstruction. Ce théorè-
me indique que les signaux ne doivent pas contenir des composantes de fréquence supérieure à
la fréquence de Nyquist, qui est la moitié du taux d’échantillonnage. Ainsi, le signal peut être
parfaitement reconstruit à partir de ses échantillons. Il devient de plus en plus évident que les
conditions imposées par le théorème d’échantillonnage de Shannon sont trop conservatives pour
de nombreux signaux naturels, qui peuvent être caractérisés avec précision par des représentations
parcimonieuses qui exigent des taux d’échantillonnage plus faibles et qui sont plus proches du
taux d’information intrinsèque du signal. La théorie des taux fini d’innovation (TFI) est une
nouvelle approche qui permet d’extraire des représentations exactes de signaux sous-jacente tout
en fonctionnant à une fréquence d’échantillonnage réduite. Le but du travail de cette thèse est de
faire progresser les techniques de reconstruction des représentations parcimonieuses de signaux,
de point de vue théorique et pratique. Plus précisément, le cadre TFI est étendu pour traiter des
applications qui impliquent la localisation spatiale et temporelle des événements, y compris les
problèmes inverses de source de champs rayonnants.

Le concept de taux fini d’innovation (TFI) a été introduit pour l’échantillonnage et la re-
construction de catégories spécifiques de signaux continus dans le temps qui disposent d’une
représentation parcimonieuse et paramétrique du signal telle qu’ils aient des degrés de liberté
finis par unité de temps. Quelques exemples de tels signaux TFI sont les flux de Dirac, les flux
d’impulsions courtes, les polynômes par morceaux et les signaux sinusöıdaux. De toute évidence,
ces signaux ne sont ni à bande limitée, ni n’appartiennent à un sous-espace fixe, et donc la théorie
de l’échantillonnage classique ne tient plus. Plusieurs nouvelles méthodes dans le cadre du TFI
ont montré qu’il est possible de développer des systèmes d’échantillonnage et de reconstruction
exacte pour récupérer les innovations du signal. En particulier, ceci est réalisé par une manipu-
lation appropriée de l’acquisition du signal, qui reste linéaire, mais au détriment de méthodes de
reconstruction non linéaires.

Nous proposons une nouvelle méthode de reconstruction en utilisant une approche de modèle
ajusté qui est basée sur la minimisation de l’erreur d’ajustement soumise à un système d’annihi-
lation sous-jacent donné par la méthode de Prony. Tout d’abord, nous avons montré que ceci est
lié au problème connu sous le nom d’approximation structurée de matrices à faible rang comme
structurée dans le problème des moindres carrés totales. Ensuite, nous avons proposé de résoudre
notre problème sous trois contraintes différentes en utilisant l’algorithme itératif du maximum de
vraisemblance quadratique. Nos analyses et simulations indiquent que les algorithmes proposés
améliorent la robustesse des résultats par rapport aux méthodes usuelles de reconstruction à
TFI.

Nous avons développé l’approche du modèle ajusté pour analyser l’activité cérébrale spon-
tanée telle que mesurée par l’imagerie par résonance magnétique fonctionnelle (IRMf). Pour cela,
nous avons considéré le signal bruité de l’IRMf pour chaque voxel comme une convolution entre
un signal induisant d’activité sous-jacente (c.à.d., un flux de Dirac) et la fonction de réponse
hémodynamique (FRH). Nous avons ensuite validé cette méthode en utilisant des données IRMf
expérimentales acquises au cours d’une étude liée à un événement. Les résultats ont montré pour
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la première fois l’évidence de l’utilisation pratique du TFI pour l’analyse des données IRMf.
Nous avons également abordé le problème de la récupération d’une distribution parcimonieuse

de source à partir des mesures aux bords d’un champ rayonnant. Premièrement, on se basant
sur le théorème de Green, nous avons proposé un principe de détection qui permet de relier
les mesures aux bords à la distribution source. Nous nous sommes concentrés sur les fonctions
de détection avec une attention particulière pour celles qui peuvent être dérivées de fonctions
holomorphes car elles permettent de contrôler la décroissance spatiale des fonctions de détection.
Avec cette sélection, nous avons développé un algorithme de reconstruction non-itérative inspiré
par le TFI. Enfin, nous avons développé une extension du principe de détection (appelé détection
propre) où nous choisissons les fonctions spatiales propres de l’opérateur de Laplace comme
fonctions de détection. Grâce à cette extension, nous avons montré que le principe de la détection
propre permet d’extraire des mesures partielles de Fourier des fonctions sources à partir des
mesures aux bords. Nous avons considéré la tomographie photo-acoustique comme application
potentielle des développements théoriques de cette thèse.

Mots-clés : modèles de signaux, parcimonie, taux fini d’innovation, reconstruction régularisée,
problèmes de source inverse, équation de Helmholtz, imagerie par résonance magnétique fonc-
tionnelle, tomographie photo-acoustique.
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Résumé iii

Acknowledgement vii

1 Introduction 1
1.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Contributions of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 The Theory of Finite Rate of Innovation 5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Signals with finite rate of innovation . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 The FRI framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.1 FRI sampling kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.2 Mapping signal samples to FRI samples . . . . . . . . . . . . . . . . . . . 12
2.3.3 FRI reconstruction methods . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Reconstruction of FRI Signals with Model–Fitting Approach 21
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 FRI model fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2.1 Constraints on the filter coefficients . . . . . . . . . . . . . . . . . . . . . 25
3.2.2 FRI with model fitting algorithm . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.3 Model order selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.1 Comparison of FRI algorithms . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.2 Model order selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 Detection of Spontaneous Brain Activity in fMRI Using FRI 37
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Functional magnetic resonance imaging . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.1 From MRI to fMRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2.2 Hemodynamic response function (HRF) . . . . . . . . . . . . . . . . . . . 39
4.2.3 FMRI data analysis and deconvolution frameworks . . . . . . . . . . . . . 41

4.3 Finite rate of innovation for fMRI data . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3.1 FRI framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3.2 FRI with model-fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3.3 HRF model approximation . . . . . . . . . . . . . . . . . . . . . . . . . . 45

ix



x CONTENTS

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.4.1 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.4.2 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 FRI for the Inverse Source Problem of Radiating Fields 55
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.1.1 Forward problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.1.2 Inverse source problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2 Finite rate of innovation for the Helmholtz equation from boundary measurements 58
5.2.1 Innovation signal for radiating field . . . . . . . . . . . . . . . . . . . . . . 58
5.2.2 Sensing kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3 Proof-of-concept validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3.1 Sensing step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3.2 Annihilation step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.3.3 Practical recovery in 3-D . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.3.4 Alternative 3-D recovery method . . . . . . . . . . . . . . . . . . . . . . . 67
5.3.5 Measurement noise and model mismatch . . . . . . . . . . . . . . . . . . . 68

5.4 PAT as a potential application . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.4.1 Problem setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.5 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6 Eigensensing Extension for Sparse Source Recovery 77
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.2 The problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.3 Eigensensing principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.3.1 2D image reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.4 PAT as a potential application . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.4.1 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7 Conclusion 89
7.1 Summary of findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
7.3 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

A Appendices 95
A.1 Derivation of CRLB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
A.2 Training error of the estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Bibliography 97

Curriculum Vitae 108



Chapter 1

Introduction

Sampling and reconstruction are two fundamental operations of signal processing. Implicit and
explicit signal representations are at the heart of these essential steps in the processing pipeline.
During the past two decades, there has been a significant paradigm shift in signal processing
towards the search for efficient sparse signal representations that drastically impact these basic
operations. The foremost reason for this paradigm shift is given by the key observation that many
naturally-occurring signals can be accurately characterized by some kind of sparse representation.
Starting with this discovery, research in signal processing has progressively moved away from its
classical formulation based on the use of Fourier transform as the optimal signal representation to
uncover powerful alternatives well-adapted to the underlying signal representation. The notion of
sparsity, which was initially introduced with the discovery of the wavelet transform, superseded
the classical signal processing and became the key development that is until today reshaping the
field.

These recent developments consequently brought the need for new sampling and reconstruc-
tion strategies that allow for extracting the sparse signal representation while operating at the
signal intrinsic information rate. The emerging theories of compressive sensing (CS) [1, 2, 3] and
finite rate of innovation (FRI) [4, 5, 6] deal with the problem of signal reconstruction from a
minimal number of samples. On one hand, the CS framework states that it is possible to recover
certain types of discrete-time signals from a smaller number of samples compared to the tradi-
tional methods. On the other hand, the recent development of FRI framework demonstrates that
it is possible to design effective sampling and reconstruction schemes for classes of continuous-
time signals with parametric representations. Interestingly, in both CS and FRI, the signal
acquisition remains linear, but at the expense of nonlinear reconstruction algorithms. Hence,
there is an increasing interest towards nonlinear methods over the classical linear algorithms.

The theory of FRI offers interesting results for the sampling and reconstruction of signals with
parametric representation that can accommodate many classes of signals. Even though the FRI
theory has evolved considerably since the initial introduction, its potential remains to be fully
discovered with accompanying challenges. This is likely due to the fact that the reconstruction
of the parameters of an FRI signal is a nonlinear problem and some scenarios are potentially
unstable in the presence of noise. Hence, improvement in the stability of the reconstruction is
the key to the development of the theory for real applications.

1.1 Problem statement

In this thesis, we present a comprehensive study of the theory of finite rate of innovation and its
extension for various applications requiring temporal and spatial localization of sparse events.
Localization of sparse innovations in time is a typical problem frequently encountered in para-
metric signal representation to model streams of Diracs, streams of pulses, piecewise polynomials
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2 Introduction

and piecewise exponential signals. Regardless of the specific signal representation, the retrieval
of the innovation instant is of greatest importance to fully characterize the underlying signal
representation. For the first part of the thesis, we consider the reconstruction of sparse signal
representations in time, specifically a stream of Diracs, in a typical FRI framework in case of
noisy measurements. Within this context, we analyze the reconstruction quality of the spectral
estimation methods known to FRI community and we propose a novel reconstruction for FRI
using a model-fitting approach. Another challenge in FRI parameter estimation is to estimate
the number of innovations from the data. This problem is well-studied in the case when the
amount of noise allows to differentiate the signal subspace from the noise contribution. Here, we
address the problem of reliable estimation of the number of innovations monitoring the quality of
the model-fitting criteria, which is targeted for applications where the measurements are signifi-
cantly degraded. Hence, we validate the contribution of this approach by means of tailoring the
method for the detection of spontaneous brain activity in functional magnetic resonance imaging
(fMRI) data.

In the second part of the thesis, we depart from the temporal localization problem of inno-
vations and we consider spatial localization of sparse source representations for inverse source
problems from boundary measurements of a radiating field. This model is frequently employed
in array signal processing problems where the estimation of the direction of arrival, the local-
ization of the transmitter and the receiver play a key role to sustain a proper communication of
signals among different components of the array elements. Furthermore, this model is also useful
in visualizing the internal volume in a tomographic imaging geometry where the sparse source
distribution is generally used to represent abnormalities in the volume of interest. Despite the
importance of the underlying application, the common feature in all these applications is the
localization of a point-wise spatial abrupt change from an observation of the secondary field that
can be measured at a distance away from the source distribution. Within this context, we extent
the FRI framework by means of introducing the so-called sensing principle which is an applica-
tion of Green’s theorem engineered for the Helmholtz equation. We analyze plausible families of
sensing kernels that create a link between the boundary measurements and the samples of the
source. Then, we develop FRI-inspired parameter retrieval algorithms. Finally, we extend the
problem to cover non-parametric source representations for applications where the generating
source function follows a continuous model instead of a point source distribution.

1.2 Contributions of the thesis

• Model-fitting approach to improve FRI reconstruction at low SNR

We studied the problem of the reconstruction of FRI signal innovations from degraded
signal samples. We proposed a novel reconstruction method using a model-fitting approach
that is based on minimizing the fitting error subject to an underlying annihilation system
given by the Prony’s method. We showed that this method outperforms the state-of-the-art
FRI reconstruction methods in many regards. First, we demonstrated that FRI recovery
with model-fitting reaches the theoretical limit for an unbiased estimator given by the
CRLB at low SNR levels. Second, our method provides acceptable results even if the noise
level does not allow other FRI methods to function properly due to the involved nonlinear
steps. Third, we propose a model order selection framework to determine the number
of innovations to estimate. Therefore, this approach introduces a flexibility towards the
selection of the model order depending on the noise level.

• FRI to analyze spontaneous activity in fMRI data

We have further developed the FRI reconstruction with a model fitting approach to detect
spontaneous brain activity in fMRI data. We specifically considered the fMRI data where
the measurements are corrupted by a significant amount of noise. We modeled the fMRI
time course for every voxel as a convolution between the innovation signal (a stream of



1.3 Organization of the thesis 3

Diracs) and the hemodynamic response function (HRF). We showed that the HRF can be
adapted in the FRI framework to satisfy the approximate exponential reproduction. We
then validated our work using the fMRI data acquired during an event-related experiment
with visual stimuli. The results showed for the first time evidence for the practical usage of
FRI for fMRI; i.e., to correctly detect activity in the cuneus region of the visual cortex of
the brain. Hence, FRI reconstruction with model-fitting proved to be useful in detection of
the activity without prior knowledge of the onsets and the duration of the visual stimuli.

• FRI to retrieve sparse source distribution

We addressed the problem of retrieving the parameters of a sparse source distribution (i.e.,
a 3-D stream of Diracs) from the measurements of the induced radiating field. For this, we
introduced the sensing principle as a tool to map the boundary measurements of the field
to the measurements of the source distribution with the so-called sensing functions. We
proposed several classes of sensing function that allow to extract the information about
the source distribution from the boundary measurements of the field through a closed sur-
face integral. In particular, we focused on sensing kernels that are derived from complex
polynomials which allow to control the concentration of the sensing kernel on the measure-
ment surface. With this selection, we developed an FRI-driven reconstruction algorithm
that allows extractions of the projections of the location of the source function. Then, we
showed that using multiple of these projections, it is possible to recover the parameters of
the source points. Further, we proposed a modified Cadzow algorithm to compensate for
the measurement noise and model mismatch.

• Eigensensing principle and partial Fourier measurements

We developed a novel theoretical framework for the inverse source problem of radiating
field by generalizing the sensing principle. We addressed that spatial eigenfunctions of
the Laplace operator are a subset of the sensing functions developed for the localization
of sparse source distributions. Hence, we showed that using these eigenfunctions as the
new sensing kernels allow the mapping from the boundary measurements to partial Fourier
measurements of the source function. With this extension, we have shown that we com-
putationally obtain several images of the source function, each corresponding to mutually
exclusive Fourier measurements of the unknown source function. Finally, we developed a
joint deconvolutuion framework to reconstruct the source function from these intermediate
images. Hence, the results confirmed that the eigensensing framework achieves the recov-
ery of the source function from the boundary measurements without an explicit forward
model.

1.3 Organization of the thesis

The outline of the thesis is as follows. In Chapter 2, we review the theory of finite rate of inno-
vation displaying the steps of the complete framework from signal acquisition to reconstruction.
We provide various sampling strategies and mainly focus on the reconstruction schemes in the
presence of noise. In Chapter 3, we propose a novel FRI reconstruction based on a model-fitting
approach. In particular, we propose to minimize the error between the computed and the re-
covered samples subject to the annihilation system. We show that it is a particular case of
structured total least squares problem and we develop it for the recovery of the FRI param-
eters. Moreover, we propose a model order selection framework to determine the number of
innovations to estimate using the estimation quality of the data as a measure. In Chapter 4,
we further extend the model fitting approach for the analysis of time series in fMRI data. In
particular, we aim at detecting spontaneous brain activity and further analysis of the fMRI data
without a priori known temporal regressor. Starting from Chapter 5, we move to the extension
of the FRI for the inverse source problems of radiating fields governed by the wave equation. We



4 Introduction

further demonstrated that this framework can be used in a potential tomography application.
In Chapter 6, we provide an extension of the sensing principle to recover continuously defined
source functions in radiating fields. We show that the proposed sensing kernels in this case
allow to extract partial Fourier measurements of the source function. Then, we propose a joint
deconvolution algorithm using these partial Fourier measurements and we use the total variation
as a measure of smoothness to regularize the solution. Finally, in chapter 7, we conclude with a
summary of our findings with some related discussion and outlook.



Chapter 2

The Theory of Finite Rate of
Innovation

2.1 Introduction

Sampling is an essential step in digital signal processing to convert a continuous–time signal into
a discrete–time one. Over the past 60 years, the sampling process is predominantly based on the
well-known Shannon sampling theorem that states uniform samples of a bandlimited (BL) signal
at the Nyquist rate (i.e., at least twice of the bandwidth) are sufficient to perfectly reconstruct
the signal [7, 8]. For any BL-signal, the signal’s Fourier transform is zero above a certain finite
frequency that determines the bandwidth. Consequently, for any signal bandlimited to [−B2 , B2 ],
the reconstruction formula is given as a linear interpolation of the discrete samples with a sinc
function,

x(t) =
∑
n∈Z

xnsinc(Bt− n), (2.1)

where xn = 〈x(t), sinc(Bt− n)〉 = x(n/B). We may also state that the signal x(t) has B degrees
of freedom per second, since x(t) is exactly defined by a sequence of samples {xn}n∈Z, spaced
T = 1/B seconds apart, given that the basis function (i.e., the sinc) is known [6]. Equivalently,
the BL-signal x(t) is said to have a finite rate of innovation, denoted ρ = B.

This idea can be generalized to space of shift-invariant signals by replacing the sinc function
with a known function φ. Specifically, consider the signal of the form

x(t) =
∑
n∈Z

cnφ(
t

T
− n), (2.2)

which is not necessarily bandlimited, yet still has a rate of innovation ρ = 1/T [8]. Note that
now cn is the discrete representation of x(t) in the approximation space defined by the linear
combination of integer-shifted functions φ [8, 9, 10]. There are many examples of such signals,
for example when φ is a scaling function in multiresolution wavelet framework [11, 12] and in
approximation theory [13, 14].

Further generalization of the above case appears when we allow arbitrary shifts in the signal
representation

x(t) =
∑
n∈Z

cnφ(
t

T
− tn), (2.3)

where the only degrees of freedom in (2.3) are the innovation instants tn and the innovation
weights cn; i.e., the innovation rate is now twice the one of the representation in (2.2). Note that
this class of signals no longer belongs to a single subspace, but rather a union of subspaces [15].

5



6 The Theory of Finite Rate of Innovation

Indeed, consider the case where the innovation instants are known and the innovation weights
are unknown, then the signal belongs to a linear subspace spanned by {φ( tT − tn)}n∈Z. Hence,
the set of all possible signals in (2.3) constitutes a union of subspaces, each of which corresponds
to a set of possible shifts {tn}n∈Z.The estimation of this type of signals is clearly a non-linear
problem, and hence classical sampling theory does not hold anymore.

The natural question to raise is the following. Is there any sampling and reconstruction
framework that covers this type of sparse signal representations? As it turns out, the answer
is yes. The theory of finite rate of innovation (FRI), initially introduced by Vetterli et al. in
2002 [4], has shown that it is possible to develop exact sampling and reconstruction schemes for
specific classes of signals that are neither BL nor belong to a fixed subspace, but belong to a
union of subspaces [6, 4, 5, 16]. In this chapter we provide a background on the theory of finite
rate of innovation.

2.2 Signals with finite rate of innovation

The notion of FRI is closely linked with parametric signal representation. In this case, a paramet-
ric signal can be seen as an FRI signal, if the signal model depends on finitely many parameters.
More formally, consider a signal of the form:

x(t) =
∑
n∈Z

R−1∑
r=0

γn,rgr(t− tn), (2.4)

where {gr(t)}r=0,...,R−1 is a set of known functions. In this respect, it is clear that the only
degrees of freedom in the signal are the innovation instants tk, and the innovation weights γn,r.
Hence, the signal x(t) is defined as an FRI signal, if the number of signal innovations is finite
per unit time [4, 5]. More precisely, introducing a counting function Cx(ta, tb) that counts the
number of free parameters in x(t) over the interval [ta, tb], the rate of innovation of the signal
x(t), is defined as [4, 5]:

ρ = lim
τ→∞

1

τ
Cx

(
−τ

2
,
τ

2

)
. (2.5)

We further define a local rate of innovation with respect to a moving window size τ for finite
length or periodic signals. In this case, the local rate of innovation at time t is given by [4, 5]:

ρτ (t) =
1

τ
Cx

(
t− τ

2
, t+

τ

2

)
. (2.6)

which clearly tends to ρ as τ tends to infinity. As it will become clear later, the local rate of
innovation plays a more important role than the global rate of innovation, since the reconstruction
schemes are local in general.

Examples of such FRI signals are streams of Diracs, streams of short pulses (with known
pulse shape) [16, 17], uniform and non–uniform splines, piecewise polynomials and sinusoidal
signals [5, 18], etc. In Figure 2.1, we illustrate some of these FRI signals. All these examples
are uniquely characterized by a set of signal innovations, namely the innovation instants and the
innovations weights. Consequently, a stream of Diracs is generally considered as a prototypical
FRI signal. Hence, we consider a set of signal innovations {tk, ak}K−1

k=0 that generates a signal
characterized by a parametric representation of the form

x(t) =

K−1∑
k=0

akδ(t− tk). (2.7)

The only degrees of freedom in the signal are the number of innovationsK, the innovation instants
tk, and the innovation weights ak. Despite the simple representation as a train of Diracs, it serves
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as a prototypical example of the FRI signal. This representation has 2K degrees of freedom and
indicates the innovative part of an FRI signal that is the foundation for other types of FRI
signals. For example, a stream of pulses can be easily derived from (2.7) simply by replacing the
Dirac shape by a known pulse shape [16].

Another example is the nonuniform spline of degree R with weights {ak}K−1
k=0 and knots

{tk}K−1
k=0 where the (R+ 1)th derivative is a stream of Diracs (2.7). Hence, a nonuniform spline

of order R consists of K+1 segments with K transitions, each of which is a polynomial of degree
R, such that the signal is continuously differentiable R − 1 times. Consequently, the (R + 1)th
derivative converts the signal into a stream of K weighted Diracs, which again has 2K degrees
of freedom [4].

Similar to the nonuniform spline, a piecewise polynomial consists of K segments of maximum
degree R such that (R+1)th derivative converts the signal into a stream of differentiated Diracs,

that is given by xR+1(t) =
∑K−1
k=0

∑R
r=0 ak,rδ

(r)(t − tk).1 In this case, the signal has K(R + 2)
degrees of freedom in total with K from innovation instants and (R + 1)K from the innovation
weights. Note that the difference with the nonuniform spline is that the piecewise polynomial is
not differentiable at the knots.

Finally, it is possible to extend (2.7) to higher dimensions [19]. In this case, a stream of
Diracs can be written as

x(r) =
K−1∑
k=0

akδ(r− rk), (2.8)

where rk ∈ RN are the innovation locations and ak are the innovation weights, hence the signal
has (N + 1)K degrees of freedom. This has been used to model bilevel polygons [19], paramet-
ric curves [20], generating dipoles in electroencephalography (EEG) [21, 22] and sparse source
distribution in radiating waves [23].

2.3 The FRI framework

The FRI acquisition is typically modeled with the standard prefiltering and sampling stages.
Hence, the FRI signal is first filtered before being uniformly sampled. This process can be
written in terms of an inner product of the input signal with the sampling kernel. The signal
samples are then given by

yn =

〈
x(t), ϕ(

t

T
− n)

〉
, (2.9)

where the sampling kernel, ϕ, is the scaled and time–reversed version of the filter’s impulse
response. In fact, the impulse response of the filter accounts for the physical properties of the
acquisition device and cannot be modified. Therefore, it is essential to develop sampling schemes
that do not impose particular filters.

The FRI framework is depicted in Figure 2.2 with its three essential steps. For the acquisition,
various sampling kernels have been proposed such as the infinite–support sinc and Gaussian
kernels [4] as well as compact support sampling kernels that satisfy the generalized Strang-Fix
condition for reproduction of polynomials and exponentials, i.e., the family of B-splines [5].
Recently, FRI sampling has been further extended to include arbitrary sampling kernels that
only satisfy approximate reproduction of exponentials. As a consequence, the limitation on the
choice of the sampling kernel has been successfully alleviated [24]. In the second step, namely
the mapping, the ability of the sampling kernel to reproduce exponentials plays a central role.
For this purpose, the mapping coefficients are first computed imposing the (generalized) Strang-
Fix condition to reproduce a set of exponentials. Then, these coefficients are used to combine
linearly the signal samples to obtain the FRI samples, which are actually the moments of the

1The Dirac function is a distribution function whose rth derivative satisfies
´∞
−∞ f(t)δ(r)(t − t0)dt =

(−1)rf (r)(t0), where f(t) is r times continuously differentiable.
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Figure 2.1: Examples of FRI signals; the only degrees of freedom in these signals are the inno-
vation instants and innovation weights.

FRI signal. Hence, the reconstruction is reduced to recovering the signal innovations from these
FRI samples that typically reverts to a spectral estimation problem that involves a nonlinear
estimation of the innovation instants and a least squares problem for the innovation weights.

2.3.1 FRI sampling kernels

To guarantee exact reconstruction, the FRI sampling kernels are required to satisfy the so-
called generalized Strang-Fix conditions [25]. Here, we review the condition for the exponential
reproducing kernels that heavily relies on the theory of e-splines [26]. An exponential reproducing
kernel is any function ϕ(t) that, together with a linear combination of its shifted versions, can
reproduce exponentials of the form∑

n∈Z
cm,nϕ(t− n) = eαmt, (2.10)

for proper coefficients cm,n, and where αm ∈ C and m = 0, . . . , P . Specifically, (2.10) holds if
and only if the sampling kernel satisfies the generalized Strang–Fix conditions,

ϕ̂(αm) 6= 0 and ϕ̂(αm + 2iπl) = 0 for l ∈ Z\{0} (2.11)
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where ϕ̂(αm) represents the bilateral Laplace transform2 of ϕ(t) evaluated at αm. In this case,
the coefficients are given by

cm,n =
〈
eαmt, ϕ̃(t− n)

〉
= eαmn ̂̃ϕ(−αm), (2.12)

where ϕ̃(t) forms a biorthonormal set with ϕ(t) [5, 9]. One particular case appears when ϕ̃(t) is
chosen as the dual of ϕ(t). Then, the coefficients are given as

cm,n = eαmnϕ̂(αm)(−1), (2.13)

where ϕ̂(αm)(−1) is the Laplace transform of the sampling kernel at αm [24]. Here, we give an
alternative derivation of this result that will pave the way to better understand further extension
of FRI sampling kernels.

The dual basis {ϕ̃(t − k)}k∈Z can be uniquely determined by the biorthogonality condition
[8], i.e., 〈ϕ̃(t− k), ϕ(t− l)〉 = δk−l. Since, ϕ̃(t) must live in the space spanned by ϕ, we may
represent it as

ϕ̃(t) =
∑
kZ

p(k)ϕ(t− k)
Fourier←→ ϕ̂(ω)P̂ (ejω), (2.14)

where p(k) is a suitable sequence to be determined next. Now consider the biorthogonality
condition, and evaluate the inner product

〈ϕ̃(t), ϕ(t− k)〉︸ ︷︷ ︸
δk

=
∑
l∈Z

p(l) 〈ϕ(t− l), ϕ(t− k)〉 (2.15)

= (p ∗ aϕ)(k),

where aϕ(k) is the autocorrelation sequence defined as aϕ(k) = 〈ϕ(t), ϕ(t− k)〉 with the Fourier

transform given as Âϕ(ejω) =
∑
k∈Z |ϕ̂(ω + 2πk)|2 [8]. Finally, by solving (2.15) in the Fourier

domain and using (2.14), we find that

̂̃ϕ(ω) =
ϕ̂(ω)

Âϕ(ejω)
=

ϕ̂(ω)∑
k∈Z |ϕ̂(ω + 2πk)|2 . (2.16)

Note that, for sampling kernels that satisfy (2.11), the last identity simplifies into

̂̃ϕ(ω) =
1

ϕ̂(ω)∗
, (2.17)

which is equivalent to ϕ̃(−αm) = ϕ̂(αm)(−1) in Laplace domain from (2.12) and (2.13). Moreover,
this identity is also particularly important for sampling kernels that do not satisfy (2.11) exactly,
but decays fast enough so that it allows the use of approximate form (2.17) rather than (2.16).

Cardinal Splines

One important example of functions satisfying the generalized Strang-Fix conditions is given by
the family of exponential splines [26, 5]. A function with Fourier transform

β̂α(ω) =
1− eα−jω
jω − α (2.18)

is called an E-spline of first order with α ∈ C. In the time domain, the expression of an E-spline
of first order is given as:

βα(t) =

{
eαt 0 ≤ t < 1
0 otherwise

. (2.19)

2The bilateral Laplace transform is defined as: ϕ̂(s) =
´∞
−∞ e−stϕ(t)dt where s ∈ C.
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Figure 2.3: Examples of cardinal splines (a) B-splines, βn(t), of degree n = 0 to 4, (b) E-splines,
βn~α(t) of degree 0 to 4 with ~α = [−0.2 + 0.3i,−0.2 + 0.1i, 0.3, 0.1− 0.2i, 0.2 + 0.4i]; the solid blue
and dashed red lines show the real and the imaginary parts of the E-splines, respectively.

Therefore, the function βα(t) is of compact support and linear combinations of its shifted versions
reproduce the exponential eαt. Then, an E-spline of order P + 1 is obtained by successive
convolutions of lower-order ones, and given by the following Fourier transform

β̂~α(ω) =

P∏
m=0

1− eαmjω

jω − αm
, (2.20)

where ~α = (α0, α1, . . . , αP ). The resulting E-spline is again of compact support P + 1 and can
reproduce any exponentials in the subspace spanned by {eα0t, eα1t, . . . ,
eαP t} [26]. Moreover, since the exponential reproduction property is preserved through the
convolution, any composite function of the form γ(t) ∗ β~α(t) is also able to reproduce the same
set of exponentials.

Notice that the family of E-splines is a generalization of that of B-splines, in that when αm = 0
for m = 0, . . . , P , the function β~α(t) reduces to a B-spline satisfying the so-called Strang-Fix
conditions [25]. Consequently, they no longer reproduce exponentials but polynomials up to
order P [13]. In particular, the family of B-splines is a subset of plausible FRI sampling kernels
that are known as polynomial reproducing kernels in the FRI framework [5]. Figure 2.3 (a) and
(b) show examples of cardinal B-splines and E-splines of order 1 to 5, respectively.

Approximate reproduction of exponentials

Typically, the impulse response of the filter accounts for the physical properties of the acquisition
device and cannot be modified. Therefore, it is essential to develop sampling schemes that do not
require the use of particular kernels. However, these limitations on the choice of the sampling
kernels can be removed by relaxing the exact exponential reproduction requirement [24, 17].

The generalized Strang-Fix conditions of (2.11) impose restrictive constraints on the choice
of the sampling kernel. In particular, the first part of the conditions, that is ϕ̂(αm) 6= 0 is easy
to achieve, but it is harder to guarantee the second part, i.e., ϕ̂(αm + 2iπl) = 0 for l ∈ Z\{0},
when we do not have control on the acquisition device. In this case, since the sampling kernel
does not satisfy the generalized Strang-Fix condition, the exponential reproduction property in
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(2.10) cannot be satisfied exactly, and it becomes an approximation problem∑
n∈Z

cm,nϕ(t− n) ' eαmt, (2.21)

with the coefficient cm,n to be determined based on a type of approximation. We first note that
the coefficients cm,n are discrete exponentials as in (2.12) such that cm,n = cm,0e

αmn. In general
ϕ(t) can be any function and we can find different sets of coefficients such that ϕ(t) is used
to approximate a given exponential. Initially, consider the least-squares approximation of eαmt

in the subspace spanned by ϕ(t − n). Despite the fact that it is not square-integrable, we can
still obtain the coefficients cm,n by computing the orthogonal projection [10]. In this case, the
coefficients are given by

cm,n =
ϕ̂(−αm)

âϕ(eαm)
eαmn, (2.22)

where âϕ is the same autocorrelation function defined in (2.15). Here, the least-squares approx-
imation requires exact knowledge of ϕ(t). However, if the sampling kernel decays sufficiently
fast, we can assume that the terms ϕ̂(α + i2πl) for l ∈ Z\{0} are small enough so that we can
approximate it with only the first term. Hence, the coefficients for the constant least-squares are
given by [24]

cm,n =
eαmn

ϕ̂(αm)
. (2.23)

Moreover, there are further alternatives to the type of approximation and the selection of the
coefficients for arbitrary sampling kernels in FRI. Hence, with this extension3, the limitations
on the choice of the sampling kernels have been successfully removed.

Finally, we return to the exponential reproduction property of the sampling kernel given by
(2.10) for compact support (or truncated) kernels. Despite the initial examples of FRI sampling
kernels, the infinite support sinc and Gaussian kernels [4], the compact support kernels come
with the advantage that the summation in (2.10) can be truncated and still have a range where
the exponentials are perfectly reproduced in time. In general, the exponentials eαmt are perfectly
reproduced when the summation is computed for all n ∈ Z. However, for a compact support
(or truncated) sampling kernel, this identity holds for a certain range of interest in time. For
example, consider a sampling kernel of compact support L that is ϕ(t) = 0 for t /∈ [t0, t0 + L).
In this case, if the summation in (2.10) is truncated to n = n0, . . . , nf , it follows that the perfect
reproduction of the exponential functions holds for t ∈ [n0 + L + t0 − 1, nf + 1]. In Figure 2.4,
we illustrate exact reproduction of exponentials with an E-spline sampling kernel defined using
pure imaginary exponentials. Here, we can perfectly reproduce 0.2Hz, 0.1Hz and the constant
signal exactly for the region of interest specified on each plot. Instead, Figure 2.5 illustrates
approximate reproduction of exponentials with a Gaussian sampling kernel. In this case, we
note that good approximation of the exponentials in the range of interest is achieved.

2.3.2 Mapping signal samples to FRI samples

Once the signal samples yn are available through a sampling kernel that satisfies (2.10), the
second step in the FRI framework (see Figure 2.2) is to map the signal samples to the FRI
samples. This is achieved using the exponential reproducing map of the previous section, i.e.,
the coefficients cm,n for a set of complex exponentials αm.

We obtain a new sequence of samples that we name as FRI samples hereafter, by linearly
combining the signal samples yn with the coefficients cm,n:

sm =
∑
n

cm,nyn. (2.24)

3We refer the reader to [24] for a rigorous treatment of the topic and to [8, 27] for further analysis on different
types of approximation spaces.
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Then, using (2.9), we have

sm =
∑
n

cm,n

〈
x(t), ϕ(

t

T
− n)

〉
, (2.25)

=

〈
x(t),

∑
n

cm,nϕ(
t

T
− n)

〉
, (2.26)

=
〈
x(t), eαm

t
T

〉
, (2.27)

which states that the FRI samples are indeed the exponential moments of the FRI signal. Here,
we note that any choice of complex exponentials αm is allowed as long as the corresponding
coefficients cm,n are derived from the knowledge of the sampling kernel and the FRI samples will
satisfy the line (2.27). However, in the FRI framework, the choice of the exponents is restricted
to

αm = α0 +mα. (2.28)

With this choice, the reconstruction problem is converted into a spectral estimation problem,
which allows the use of high resolution estimation methods at the reconstruction step.
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Finally, using (2.28) and assuming that x(t) being the prototypical FRI signal, i.e., the stream
of K Diracs in (2.7), the FRI samples will be

sm =

K−1∑
k=0

ake
αm

tk
T , (2.29)

=

K−1∑
k=0

ãku
m
k , (2.30)

where ãk = ake
α0

tk
T and uk = eα

tk
T . Here, we note that the choice αm = α0 + mα allows us

to write the FRI samples sm in a power sum form. Moreover, when choosing αm to be purely
imaginary, there exists an ambiguity in obtaining the locations tk from uk, since tk and tk+ 2πTl

Im(α) ,

for any l ∈ Z, produces the same annihilating filter roots uk = eα
tk
T +i2πl. Hence, it is necessary

that 0 ≤ tk < 2πT
Im(α) in order to determine the locations without ambiguity.

2.3.3 FRI reconstruction methods

The mapping step transforms the reconstruction problem of FRI signal into a parameter esti-
mation problem that is similar to spectral estimation. The final step in the FRI framework (see
Figure 2.2) is then the recovery of the FRI signal innovations from the extracted FRI samples.
In (2.30), we are interested in retrieving ãk and uk given only sm for m = 0, . . . , P and the
knowledge that they are in a power series form. The signal innovations {ak, tk}K−1

k=0 can be re-
trieved subsequently. Equation (2.30) is common to many problems such as spectral estimation
[28, 29] to decompose a signal into a linear mixture of complex exponentials, direction of arrival
estimation in array signal processing [30, 31] and polygonal shape estimation from its complex
moments [32, 33].

Another challenge for the reconstruction is to estimate the number of exponentials K. Often,
this is assumed to be known beforehand. The case with K unknown is a well studied problem
and known as the model order selection in statistical estimation to estimate the dimension of the
problem [28, 29]. Obviously, this is an inherent step of the estimation problem and might affect
the estimation quality. However, for now we assume that K is known unless otherwise stated
and we will return to this point in Chapter 3.

Returning back to our problem (2.30), the first solution to the estimation problem was first
proposed by Prony in 1795 [34, 29] and is also known as annihilating filter method. To explain
Prony’s approach, let us first define a filter h with z-transform given by

H(z) =

K∑
m=0

hmz
−m = h0

K−1∏
k=0

(1− ukz−1), (2.31)

where the roots corresponds to the values uk in (2.30). Then, it follows that the convolution of
the filter coefficients, hm with the FRI samples yields an annihilation system

(h ∗ s)m =

K∑
i=0

hism−i (2.32)

=

K−1∑
k=0

ãk

K∑
i=0

hiu
−i
k︸ ︷︷ ︸

H(uk)=0

= 0. (2.33)

The filter H(z) is called an annihilating filter since it annihilates the FRI samples sm. By
construction, the zeros of the filter h uniquely define the values uk provided that the instants
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tk’s are distinct. To retrieve the coefficients of the filter, (2.32) is written in matrix/vector
representation as

Sh = 0, (2.34)

where S is a rank–deficient Toeplitz matrix with [S]mi = sm−i and h admits a solution in the
nullspace of S, if rank(S) = K for noiseless samples. Explicitly, (2.34) is written in the following
form

S =


sK sK−1 . . . s0

sK+1 sK . . . s1

...
...

. . .
...

sP sP−1 . . . sP−K

 , (2.35)

which indicates that the matrix is rank deficient and of size (P −K + 1)× (K + 1).
Once the filter coefficients are found, uk’s are retrieved as the zeros of the polynomial H(z)

from (2.31). Then, given uk, ãk can be obtained directly from (2.30) by consideringK consecutive
equations 

1 1 . . . 1

u0 u1 . . . uK−1

u2
0 u2

1 . . . u2
K−1

...
...

. . .
...

uK−1
0 uK−1

1 . . . uK−1
K−1




ã0

ã1

...

ãK−1

 =


s0

s1

...

sK−1

 , (2.36)

which is known as a Vandermonde system of equations and leads to a unique solution ãk if the
uk’s are distinct.

Annihilating filter method

In general, the samples in (2.9) are not ideal and degraded by noise,

ỹn = yn + εn, (2.37)

where εn is assumed to be i.i.d. AWGN, with zero mean and variance, σ2. Therefore, the system
in (2.34) cannot be satisfied exactly since the FRI samples (2.24) will be also corrupted by noise,

s̃m = sm + ẽm, (2.38)

where ẽm is the filtered noise given by ẽm =
∑
n cm,nεn. Hence, the matrix S is now perturbed

by noise
S̃ = S + E, (2.39)

where the E is the Toeplitz matrix corresponding to the filtered noise ẽm in (2.38). In [6, 4], the
total least-squares (TLS) approach has been proposed to reduce the effect of noise, by minimizing
the Euclidean norm ‖S̃h‖2 under the constraint that ‖h‖2 = 1. In this case, the solution to h
is the eigenvector that corresponds to the smallest eigenvalue of S̃H S̃, which can be done by
performing the singular-value-decomposition (SVD) [35, 36] of the Toeplitz matrix S̃ = UΣVT

and choosing the column vector of matrix V that corresponds to the smallest singular value.
The steps of the annihilating filter (AF) method are given in Algorithm 1.

Cadzow denoising algorithm

Another approach to control the effect of noise in the measurements is by studying the rank
deficiency property of the matrix S, which is ideally rank(S) = K as stated before. For this
purpose, the classical AF method can be improved by denoising S̃ using the Cadzow denoising
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Algorithm 1 Annihilating Filter (AF) Method

Retrieve the parameters of an FRI signal -a stream of K Diracs in (2.7) from the samples in
(2.9) taken by an FRI kernel

1: Build the system of equations in (2.35) using the FRI samples, sm
2: Retrieve the annihilating filter coefficients hm by performing an SVD on the Toeplitz matrix

S̃ and choosing the singular vector corresponding to the smallest singular value.
3: Compute the roots uk of the zeros of the filter H(z) (4.8), and retrieve the values of tk
4: Calculate the weights ãk solving the system in (2.36) and obtain ak

algorithm before applying TLS [6]. Indeed, by only applying the AF method the solution to the
problem is suboptimal, since using SVD and keeping the singular vector corresponding to the
smallest singular value is equivalent to solve S̃Kh = 0 where S̃K is the rank-K approximation of
S̃. This implies that S̃K does not maintain the Toeplitz structure anymore. In fact, this problem
is known as the structured low-rank matrix approximation problem and is related to structured
total least squares of [37, 38], which we will consider again in Chapter 3 where we propose an
FRI reconstruction method based on model-fitting approach.

The algorithm is based on the fact that the matrix S̃ becomes full rank in the presence of
noise. Hence, it can be denoised by iteratively imposing the two properties until convergence.
Here, we first replace S̃ with another Toeplitz matix Ŝ

Ŝ =


sK̂ sK̂−1 . . . s0

sK̂+1 sK̂ . . . s1

...
...

. . .
...

sP sP−1 . . . sP−K̂

 , (2.40)

assuming that we have K̂ ≥ K Diracs to allow model mismatch. Note that in this case, the
matrix (2.45) is of size (P−K̂+1)×(K̂+1) subject to P+1 ≥ 2K̂ ≥ 2K. Typically, Ŝ is full rank
due to the noise. Now, if you perform an SVD to Ŝ = U∆V T , there are K̂ −K + 1 vectors that
form the noise space of Ŝ. Hence, we first obtain ŜK, the rank-K approximation of Ŝ, by keeping
the largest singular values and replacing the smallest singular values by zero. Then, we compute
the Toeplitz approximation to Ŝ by averaging over the diagonals. Iteratively imposing these
two conditions, the Cadzow algorithm converges to a rank-reduced Toeplitz matrix [39, 4]. The
criterion for the convergence is chosen as the ratio between the Kth and the (K + 1)th singular
values of Ŝ is above a certain threshold. We provide the details of the method in Algorithm 2.

Algorithm 2 AF Method and Cadzow Denoising Algorithm (AF+C)

Retrieve the parameters of an FRI signal -a stream of K Diracs in (2.7) from the samples in
(2.9) taken by an FRI kernel

1: Calculate the mapping coefficients cm,n as in Section 2.3.1
2: Calculate the sequence sm in (2.24)
3: Build the system of equations in (2.45) using the FRI samples, sm
4: Compute the rank-reduced matrix ŜK

5: Compute ST the Toeplitz approximation Ŝ by averaging over the diagonals and update Ŝ
with this and repeat from step 4 until an optimlatily criterion is met.

6: Retrieve the annihilating filter coefficients hm by solving the system STh = 0 with AF
method of Algorithm 1

7: Compute the roots uk of the zeros of the filter H(z) (4.8), and retrieve the values of tk
8: Calculate the weights ãk solving the system in (2.36) and obtain ak
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Matrix pencil method

Another spectral estimation method used in the FRI framework is the matrix pencil approach
[40, 41]. It is based on state space parametrization of a signal subspace [42] that makes use
of Hankel matrices and eigendecomposition of certain well-conditioned matrices [43, 42]. The
matrix pencil method is a subspace estimator that directly estimates uk without the need of
calculating the annihilating filter coefficients hk. In this case, we consider the following Hankel
matrix constructed by the FRI samples

X =


s0 s1 . . . sN−1

s1 s2 . . . sN
...

...
. . .

...

sM−1 sM . . . sM+N−2

 , (2.41)

where X is of size M × N with M,N > K. In the absence of noise, X can be decomposed as
X = UAVH with the following decomposition:

1 1 . . . 1

u0 u1 . . . uK−1

...
. . .

...

uM−1
0 uM−1

1 . . . uM−1
K−1


︸ ︷︷ ︸

U


ã0 0 . . . 0

0 ã1 . . . 0

...
...

. . .
...

0 0 . . . ãK−1


︸ ︷︷ ︸

A


1 1 . . . 1

u0 u1 . . . uK−1

...
. . .

...

uN−1
0 uN−1

1 . . . uN−1
K−1


H

︸ ︷︷ ︸
VH

. (2.42)

Here, we note that this factorization is not unique. For example, if X = UAVH , then X =

UP ·P−1AQ ·Q−1V
H

is another possible factorization for every choice of K ×K nonsingular
matrices P and Q. However, any such factorization can be used in the estimation.

The subspace approach makes use of two properties of the data matrix X. The first property
is that the matrix is rank deficient; i.e., ideally rank(X) = K. Hence, this is used to reduce the
amount of noise by approximating X with a matrix of rank K. The second property is that U
and V satisfy the shift-invariance subspace property [44], such that the following relations are
valid

U = U · Φ and V = V · Φ (2.43)

where Φ is a K×K diagonal matrix of entries uk, and (·), (·) denote the operations of omitting the
first and the last rows of a given matrix (·), respectively. Note that the shift-invariance property is
also satisfied for UP and VQ matrices. Specifically, UP = UPP−1ΦP and UP = VQQ−1ΦQ.

Since, P−1ΦP and Q−1ΦHQ are related to Φ by a similarity transformation, they have the
same eigenvalues as Φ. Therefore, the values uk can be found from the eigenvalues of an operator
that maps U onto U or V onto V defined by

Z = U+U. (2.44)

We have already mentioned that a key feature of the matrix X is that it is of rank K. In practice,
X becomes full rank. Hence, in the presence of noise, the components U and V will not satisfy
the shift-invariance subspace property. Therefore, we find the left and the right singular vector,
UK and VK corresponding to the K largest singular values of X to construct the operator in
(2.44) . The details of the method are given in Algorithm 3.

Kumaresan-Tufts Algorithm

Another method developed for estimating the parameters of exponentials is proposed by Ku-
maresan and Tufts and is based on forward-backward linear prediction (FBLP) filter method
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Algorithm 3 Matrix Pencil Method (MP)

Retrieve the parameters of an FRI signal -a stream of K Diracs in (2.7) from the samples in
(2.9) taken by an FRI kernel

1: Build the system of X in (2.42) using the FRI samples, sm
2: Compute the singular value decomposition of X = UAVH

3: Find the rank reduced forms, UK and VK , corresponding to the K largest singular values
of X

4: Estimate signal poles uk by computing the eigenvalues of a matrix Z = UK
+UK

5: Find the values of tk using the estimated uk
6: Calculate the weights ãk solving the system in (2.36) and obtain ak

[45, 46]. In this case, the prediction filter is defined assuming that we have L exponentials sat-
isfying K ≤ L ≤ P + 1 − K

2 . This way we introduce exactly L − K extraneous zeros of the
prediction filter. The algorithm is based on the fact that these extra zeros of the prediction filter
are placed inside the unit circle. Using this property, we can choose K zeros of the prediction
filter that correspond to the signal subspace. Here, we first construct SL using the FRI samples
sm

SL =


sL sL−1 . . . s0

sL+1 sL . . . s1

...
...

. . .
...

sP sP−1 . . . sP−L̂

 , (2.45)

which is a rank-deficient Toeplitz matrix as before. We define the FBLP filter of order L as

H̃(z) =

L∑
m=0

h̃mz
−m, (2.46)

where h̃0 = 1, and H(z) has L −K extra zeros. Then, we retrieve the FBLP filter coefficients
(2.45) as a solution to the system SLh = 0 by performing an SVD on SL, as in Algorithm 1.
Finally, we estimate K out of L zeros that are outside of the unit circle and correspond to the
signal subspace. We provide the details of the method in Algorithm 4.

Algorithm 4 Kumaresan-Tufts Algorithm (KT)

Retrieve the parameters of an FRI signal -a stream of K Diracs in (2.7) from the samples in
(2.9) taken by an FRI kernel

1: Construct the SL such that K ≤ L ≤ P + 1− K
2

2: Find the rank reduced forms, SLK

3: Retrieve the FBLP filter coefficients h̃m by solving the system SLKh = 0 with AF method
of Algorithm 1

4: Compute the roots ũk filter H̃(z) in(2.46)
5: Assign the uk by picking up K out of L poles outside the unit circle that corresponds to

signal space
6: Find the values of tk using the estimated uk
7: Calculate the weights ãk solving the system in (2.36) and obtain ak

2.4 Conclusion

In this chapter we presented a background on sampling and reconstruction of finite rate of
innovation signals. We described the FRI framework in terms of three essential steps, namely
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the acquisition, the mapping and the reconstruction. In particular, we explained the importance
of the FRI sampling kernels and their exponential reproduction property to map the signal
samples into FRI samples. We also gave an overview of the spectral estimation methods that
are well-known in the FRI framework.
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Chapter 3

Reconstruction of FRI Signals
with Model–Fitting Approach

This chapter is based on a submitted paper: Z. Doğan, T. Blu and D. Van De Ville, ‘Recon-
struction of Finite Rate of Innovation Signals with Model–Fitting Approach’, submitted to IEEE
Transactions on Signal Processing.

3.1 Introduction

In the previous chapter we have reviewed the fundamentals of the FRI framework, namely
the definition of FRI signals, FRI sampling kernels, and existing FRI reconstruction methods.
We have seen that exact recovery of the FRI signal innovations has been demonstrated using
various FRI recovery algorithms in the absence of noise such as using the well-known Prony’s
method [28]. However, in the presence of noise this method becomes unstable and the accuracy
of the reconstruction substantially degrades. Several approaches to improve resilience against
measurement noise and model mismatch have been proposed [44, 47, 18]. Further extensions of
these approaches have been proposed to improve the performance of the reconstruction in the
FRI framework [48, 18, 49, 50]. Yet, the estimation of the signal innovations, which depends
nonlinearly on the measurements, remains a challenge for practical applications.

Another challenge that we have already mentioned is the estimation of the innovation rate
of the FRI signal, i.e., the number of signal innovations per unit of time. In the statistical
estimation framework, this problem is known as the model order selection. In this case, the
optimal model minimizes an information criterion with the principle of parsimony that favors
simple models over complex ones for equal data fitting quality, e.g., the Bayesian information
criterion (BIC), Akaike’s information criterion (AIC), and network information criterion (NIC)
[51]. For the FRI framework, this problem is translated in estimating the innovation rate from a
set of FRI samples together with the signal innovations. Often, the innovation rate is assumed
to be known by the conventional FRI recovery methods and, the standard way to compare the
performance of the algorithms, is to check the estimation accuracy of the signal innovations
against the Cramér-Rao lower bound CRLB [4, 6, 24]. However, this may not be applicable if
the true innovation rate or the true signal innovations are unknown. Hence, there are different
approaches to estimate the innovation rate of the signal based on the observation of the separation
of the singular values of the system matrix in Cadzow denoising [6, 23] and in the subspace-based
methods [18]. However, these methods can only provide a reliable estimation of the innovation
rate if the amount of noise permits to clearly differentiate the signal-related singular values from
the remaining ones. Moreover, it is still necessary to provide adequate reconstruction that best
explains the available data even if the noise level does not allow an accurate estimation of the true
innovation rate. In [17], another practical approach is proposed to perform a consistency analysis

21
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of the retrieved innovation instants using a sliding window approach by building a histogram of
retrieved locations among different windows.

In this chapter, we propose a novel FRI reconstruction method based on a model–fitting
approach. For this purpose, we formulate the nonlinear estimation of the innovation instants
as a constrained optimization problem where we minimize the error between the measured FRI
samples and the estimated FRI samples subject to the annihilation system. Our contributions
are twofold: First, we propose a number of new model-fitting reconstruction methods exploring
different constraints applicable to the annihilation system for the estimation of the innovation
instants. We show that the problem can be reduced to a simplified version of the structured
total least squares (STLS) problem [52]. We then solve a complex least squares problem for
the estimation of the innovation weights. Our second contribution is a model order selection
to determine the innovation rate of the FRI signal that allows reliable estimation of the signal
innovations even at low SNR. The model order selection is based on analyzing the training error
curve that reflects the error between the FRI samples and the estimated FRI samples for different
model orders.

3.2 FRI model fitting

FRI signals carry a finite number of innovations. For example, consider a stream of K Diracs,
which we have already introduced in Chapter 2,

x(t) =

K−1∑
k=0

akδ(t− tk), (3.1)

which is completely determined from 2K parameters being the innovation instants tk and the
innovations weights ak. The performance of the FRI reconstruction methods is measured based
on the estimation quality of these parameters. However, this may not be reliable as it depends on
the model order K that is an internal parameter of the estimation. In particular, the nonlinear
part of the FRI reconstruction, i.e., the localization of these innovations, assumes that the
number of Diracs is known beforehand. Moreover, the case with unknown model order inherently
deteriorates the estimation quality. Instead, we propose a novel FRI reconstruction method using
a model fitting approach based on minimizing the error between the measured FRI samples and
the recovered FRI samples. Consequently, this approach allows to define a criterion to monitor
the reconstruction quality and adopt the model order accordingly.

The goal of FRI reconstruction methods in Chapter 2 was to first denoise the matrix S̃
before looking for a solution to the annihilation system in (2.34). As mentioned before, these
methods are highly sensitive to noise. Moreover, at low SNR, the estimation of the model
order K becomes unreliable. Here, we propose a novel FRI reconstruction to overcome these
problems using a model fitting approach based on the structured–TLS (STLS) problem for
affinely structured matrices as proposed by De Moor [52]. For this purpose, we first revisit the
fundamental concepts of the STLS problem by developing an equivalent formulation for the FRI
framework, and then we propose several new FRI reconstructions based on the STLS framework.

Considering the FRI framework, we assume that we have an FRI signal of (3.1) that is
sampled with an acquisition device that allows to map the signal samples into FRI samples as
in Chapter 2. The following FRI samples are available:

sm =

K−1∑
k=0

ãku
m
k , (3.2)

where ãk = ake
α0

tk
T and uk = eα

tk
T and α0, α ∈ C are known by construction of the mapping.

Moreover, we also know from Chapter 2 and repeat here for convenience the corresponding
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annihilating filter that is necessary to retrieve the innovation locations. The filter h is defined
by

H(z) =

K∑
m=0

hmz
−m = h0

K−1∏
k=0

(1− ukz−1), (3.3)

where the roots corresponds to the values uk in (3.2). Finally, the goal of FRI model fitting is
to find the parameters of (3.1) using only (P + 1) FRI samples sm for m = 0, . . . , P such that
the error between the measured and the recovered FRI samples is minimized. This problem can
be reformulated as

min
s,h
‖s̃− s‖2, subject to S(s)h = 0 and ‖h‖2 = 1, (3.4)

where s̃, s ∈ C(P+1)×1 are the measured and recovered FRI sample vectors, h ∈ RK+1 is the filter
coefficients vector in (2.31) and S(s)

.
=
∑K
i=0 siSi with Si ∈ C(P×(K+1) being fixed indicator

matrices to represent the Toeplitz structure of S. Note that we write the matrix S intentionally
as S(s) to emphasize the linearity of S(s) with regards to s. Hence, it is particularly interesting
to define the left and the right dual matrices L(·) and R(·) of S for further development.

Lemma 1. Given the linearity of S(s) with respect to s, the left and the right dual matrices L(·)
and R(·) are defined respectively by

gHS(s)h = gH (R(h)s)

= (L(g)s)
H

h

}
for all g,h and s,

which yields the following identities

S(s)h = R(h)s, (3.5)

S(s)Hg = L(g)s, (3.6)

L(g)Hh = R(h)Hg. (3.7)

Proof. The first two identities are straightforward. The last one can be obtained from

<{gHS(s)h} = <{sHL(g)h}
= <{gHR(h)s}
= <{sHR(h)Hg},

which is satisfied for all s.

Theorem 1 (FRI model fitting). The equations satisfied by the optimal solutions of the problem
(3.4) are 

R(h)Hu = s̃− s

L(u)s = 0

R(h)s = 0

‖h‖2 = 1

(3.8)

where the unknowns are the (N −K)× 1 vector u, the (K + 1)× 1 vector h and the (P + 1)× 1
vector s.

Proof. We start by replacing the original problem (3.4) with the following unconstrained mini-
mization problem

min
s,h
‖s̃− s‖2 + 2<{uHSh}+ λ{‖h‖2 − 1}︸ ︷︷ ︸

L{s,h,u,λ}

, (3.9)
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where L is the Lagrangian to be minimized, u is a vector Lagrange multiplier for the constraints
S(s)h = 0 and λ is a scalar Lagrange multiplier for the constraint ‖h‖2 = 1.

The solution is then obtained by setting all the partial derivatives of L{s,h,u, λ} with respect
to s,h,u, λ to 0

∂L{s,h,u, λ}
∂s

= 0⇔ R(h)Hu + s− s̃ = 0

∂L{s,h,u, λ}
∂h

= 0⇔ S(s)Hu + λh = 0

∂L{s,h,u, λ}
∂u

= 0⇔ S(s)h = 0

∂L{s,h,u, λ}
∂λ

= 0⇔ ‖h‖2 = 1

Here, the application of the constraints; i.e., the last two lines, shows that λ = 0. Finally, the
use of the duality relations leads to the system of four equations (3.8).

The next step of the STLS framework is the elimination of the unknown s to further reduce
the problem to two unknowns. For that, the unknown s can be readily obtained from the first
equation of (3.8), and subsequently replaced in the second and third equations of (3.8). Using
the identities from Lemma 1, the optimality equations restricted to the two unknowns u and h
are 

L(u)L(u)Hh− S(̃s)Hu = 0

−S(̃s)h + R(h)R(h)Hu = 0

‖h‖2 = 1

, (3.10)

while the third unknown is given by s = s̃−R(h)Hu = 0. Note that it is possible to check that

Du = L(u)L(u)H and Dh = R(h)R(h)H

and that
uHDhu = ‖R(h)Hu‖2 = ‖L(u)Hh‖2 = hHDuh.

Hence, by replacing h with a non-unit vector v according to h = τv, the system (3.10) is
essentially the same as the one in [52] except that, since h is not normalized anymore, one
degree of freedom is left undetermined.

The nonlinear system of equations (3.10) cannot be solved directly for u and h, and it is
necessary to resort to an iterative procedure where both u and h are updated [52]. Here, we
propose a simplified alternative being equipped with the analysis of the STLS. We first note that
the u of the Theorem 1 can be readily obtained from the first and the third equations of (3.8)

u = D−1
h R(h)̃s. (3.11)

Then, using the Lemma 1 and the Theorem 1, we obtain

‖s̃− s‖2 = ‖R(h)Hu‖2

= ‖R(h)HD−1
h R(h)̃s‖2

= s̃HR(h)HD−1
h R(h)R(h)HD−1

h R(h)̃s

= s̃HR(h)HD−1
h R(h)̃s

= hHS(̃s)
H

D−1
h S(̃s)h.

Therefore, rather than minimizing (3.10) with respect to u and h, we propose to minimize the
following quadratic form with respect to h only,

min
h

hHS(̃s)HD−1
h S(̃s)h subject to h ∈ Θ, (3.12)
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where Θ is a constraint set necessary to avoid the trivial solution. However, since the FRI problem
only requires the roots of the polynomial defined by the coefficients h, neither the solution to
this problem is unique nor there exists only one constraint that will lead to the same solution.
We will further discuss about the possible conditions on h and their effect on the solution of the
problem later on.

Next, we need to define the operator R(h) to proceed for the FRI model-fitting framework.
Indeed, the dual of the annihilation equation (2.32) can be written using commutativity of the
convolution as

(s ∗ h)m =

N−1∑
i=0

sihm−i = 0, (3.13)

which can be written in matrix vector form

R(h)s = 0, (3.14)

where R is a rank-deficient Toeplitz matrix with [R]mi = hm−i. Explicitly, (3.14) is written in
the following form

R(h) =


hK hK−1 . . . h0 . . . . . . 0

0 hK . . . h1 h0 . . . 0

...
...

. . .
...

... . . . 0

0 . . . 0 hK . . . . . . h0

 , (3.15)

which indicates that the matrix is rank deficient and of size (P −K + 1)× (P + 1).

3.2.1 Constraints on the filter coefficients

In this section, we consider possible cases for the constraint set Θ defined in (3.12) to avoid the
trivial zero solution for the filter coefficients h.

Quadratic norm constraint (MF-1)

We consider a quadratic norm constraint such as ‖h‖2 = 1 for (3.12). We first note that this is an
appropriate condition since the coefficients of the filter in (2.31); i.e., h0, . . . , hK , can always be
scaled by a constant such as 1/‖h‖ without altering the roots of the filter. With this condition,
we want to minimize

min
h

hHS(̃s)HD−1
h S(̃s)h subject to ‖h‖2 = 1, (3.16)

where the term Dh also depends on h. Hence, the problem cannot be minimized directly and
we propose an iterative scheme, also known as iterative quadratic maximum likelihood (IQML)
algorithm [38, 53, 54, 55], assuming that the term Dh remains constant at each iteration of
the solution and that it is obtained using the previous estimate of the solution h. Hence, the
estimation of the filter coefficients is implemented by iteratively solving

min
h(i)

h(i)S(̃s)H(D−1
h )(i−1)S(̃s)h(i) subject to ‖h(i)‖2 = 1, (3.17)

where (D−1
h )(i−1) = (R(h(i−1))R(h(i−1))H)−1 and h(0) is randomly initialized. Then, the so-

lution h(i) involves finding the eigenvector corresponding to the minimum eigenvalue of X
(i)
h =

S(̃s)HD
(i−1)
h S(̃s) at each iteration. We name this method as model fitting 1 (MF-1) and provide

the details in Algorithm 5.
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Linear constraint (MF-2)

We consider a linear constraint such that one element of h needs to be 1. Specifically, we note
that scaling the coefficients of the filter (2.31); i.e., h0, . . . , hK with respect to hK will not alter
the roots of the filter. With this condition, we want to minimize

min
h

hHS(̃s)HD−1
h S(̃s)h subject to eTK+1h = 1, (3.18)

where eK+1 is a length-(K + 1) discrete impulse vector with “1” in position K + 1 and “0”
elsewhere. Here the problem cannot be minimized directly and the term Dh depends on h.
Hence, we propose to use the IQML algorithm [38, 53, 54, 55] assuming the term Dh remains
constant at each iteration. Hence, the estimation of the filter coefficients is implemented by
iteratively solving

min
h(i)

h(i)S(̃s)H(D−1
h )(i−1)S(̃s)h(i) subject to eTK+1h = 1, (3.19)

where (D−1
h )(i−1) = (R(h(i−1))R(h(i−1))H)−1 and h(0) is randomly initialized. Then, the solu-

tion update is

h(i+1) =
eTK+1(X

(i)
h )−1

eTK+1(X
(i)
h )−1eK+1

, (3.20)

where X
(i)
h = S(̃s)HD

(i−1)
h S(̃s) as before. We name this method as model fitting 2 (MF-2) and

provide the details in Algorithm 5.

Randomized (linear) constraint (MF-3)

We consider a randomized (linear) constraint based on the randomly initialized solution such
that the inner product with h and the initial estimation remains constant; i.e., (h(0))Hh = 1.
Hence, we want to minimize the following problem

min
h

hHS(̃s)HD−1
h S(̃s)h subject to (h(0))Hh = 1, (3.21)

which cannot be minimized directly since the term Dh depends on h. Similarly, we propose to
use IQML algorithm [38, 53, 54, 55] assuming the term Dh remains constant at each iteration.
Consequently, the estimation of the filter coefficients is implemented by iteratively solving

min
h(i)

h(i)S(̃s)H(D−1
h )(i−1)S(̃s)h(i) subject to (h(0))Hh(i) = 1, (3.22)

where (D−1
h )(i−1) = (R(h(i−1))R(h(i−1))H)−1 and h(0) is randomly initialized. Then, the solu-

tion update is given by

(h)(i+1) =
(X

(i)
h )−1h(0)

(h(0))H(X
(i)
h )−1h(0)

, (3.23)

where we note that the effect of the random initialization will remain (only) in this case due to
the imposed constraint. We name this method as model fitting 3 (MF-3) and provide the details
in Algorithm 5.

3.2.2 FRI with model fitting algorithm

We propose a full FRI reconstruction algorithm integrating the model fitting approach. Once we
have the FRI samples s̃, we first construct S(̃s) and Dh using randomly initialized h(0). Then,
choosing any of the FRI model fitting approaches (MF-1), (MF-2) or (MF-3), we iteratively

obtain the filter coefficients h(i) to retrieve u
(i)
k by finding the roots of the filter in (2.31). We
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then obtain the locations t
(i)
k using the solution u

(i)
k , since uk = eα

tk
T from (4.6). By construction,

the zeros of the filter h uniquely define the values uk provided that the instants tk’s are distinct.
In the next step, the amplitudes ak can be determined either by solving first K consecutive

equations of (4.2) or (4.7) with the estimated locations tk. Specifically, given the locations t
(i)
k ,

we determine the amplitudes a
(i)
k by solving K consecutive equations of (2.30). Indeed, we

propose to minimize the following complex-valued least-squares problem constrained to the real
solution

min
a(i)
‖Ba(i) − s‖2 subject to a(i) ∈ RK×1, (3.24)

where B ∈ C(P+1)×K is a complex matrix with entries [B]mk = eαmt
(i)
k /T and s ∈ C(P+1)×1 is

the complex-moment vector. As a convergence test, we compute the recovered FRI samples as

ŝ(i)
m =

K−1∑
k=0

a
(i)
k eαmt

(i)
k /T (3.25)

and check the numerical convergence by
∑P

m=0 ŝ
(i)
m −ŝ(i−1)

m∑P
m=0 ŝ

(i−1)
m

≤ ε where ε is a chosen threshold.

Although we have no proof of convergence of this algorithm, numerical experiments demonstrate
that convergence is typically reached after 10 iterations.

It is important to realize that we look for the convergence in terms of fitting quality in
FRI samples, but not in terms of the values of the filter coefficients. One could have chosen
the convergence criterion based on the filter coefficients which would not require to extract the
parameters of the signal in each iteration. However, we have observed experimentally the first
condition converges earlier than the second one, especially with increasing noise levels.

Algorithm 5 FRI model fitting

Require: Inputs: s̃,K > 0
1: Initialization: Choose h(0) and construct Dh and Xh

2: for i = 0 till convergence do
3: h(i) ← Solution to either (3.16) or (3.18) or (3.21)

4: u
(i)
k ← Find the roots of the filter (2.31)

5: t
(i)
k ← T/α lnu

(i)
k

6: a
(i)
k ← Solution to (3.24)

7: ŝ
(i)
m ← Recovered FRI samples (3.25)

8: If converged stop, else go to 2
9: end for

10: return {tk, ak}

3.2.3 Model order selection

The estimation of the model order K is a challenging part of all FRI frameworks when the
samples are corrupted by noise. Although there exist some methods to estimate the model
order, the performance significantly depends on the amount of noise. In this case, current model
order estimation methods for FRI fail in particular at low SNR. Here, we propose a novel model
order selection procedure that allows us to choose the model number K based on the noise level
of the samples.

We start by noting that the annihilation system (4.10) can be solved if we have (P +1) ≥ 2K
samples of sm to solve for K innovations; i.e., we need at least as many equations as unknowns.

This implies that (P + 1) samples can be used to reconstruct at most (P+1)
2 innovations. Now,

we define the model order selection problem as estimating the optimal model order K, which
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can take the values from a discrete set of k̂ = [1, . . . , (P+1)
2 ], for a given (P + 1) samples of s̃

degraded by noise. For this purpose, we define a training error of the estimator

ET (k̂) = ‖ŝ(k̂)− s̃‖22, (3.26)

where ŝ(k̂) is the recovered FRI sample for model order k̂ in (3.25) with the estimated parameters
{t̂k, âk}k=1...k̂. Notice that the training error curve ET reveals a U–curve pattern in which the
initial drop and final rise regimes represent an under-fitting and over-fitting behavior, respec-
tively, and the flat region in the middle shows the optimal fitting region. We then define the
fitting level as the minimum of the training error

σ̂2 = min
k̂
ET (k̂), (3.27)

which is a good estimator of the input noise level σ2 for small amounts of noise. Finally, the
plausible model order is chosen at the intersection of under-fitting and fitting regions; i.e., it is
the minimum k̂ that yields the sharpest decrease in the training error and achieves the fitting
level in the range (1±0.5) σ̂2. This framework allows to determine the model order based on the
SNR level. We refer the reader to Appendix A.2 for a detailed discussion on the training error.

Algorithm 6 FRI model order selection

Require: s̃ ∈ C(P+1)×1

1: for k̂ = 1 to (P+1)
2 do

2: {t̂k, âk} ← Apply Algorithm 5

3: ET (k̂)← Find the training error (3.26)
4: end for
5: σ̂2 ← Find the fitting level (3.27)
6: k̄ ← Model order selection (see 3.2.3)
7: return {K, tk̄, ak̄}

3.3 Results

We now present various simulation results to validate the proposed approach and demonstrate
its practical feasibility. Specifically, we investigate the performance of the FRI model-fitting
methods and compare them with the state-of-the-art FRI reconstruction algorithms introduced
in Chapter 2. Moreover, we show results for the model order selection framework developed in
Section 3.2.3.

We assume that an FRI signal (2.7) with K signal innovations, {tk, ak}K−1
k=0 , is sampled with

a proper FRI kernel that enables to compute the FRI samples. Here, we specifically focus on
the reconstruction of FRI signal innovations from FRI samples. Hence, we consider (P + 1) FRI
samples of

s̃m =

K∑
k=1

ake
i2πtkm

︸ ︷︷ ︸
sm

+ẽm, m = 0, . . . , P, (3.28)

where ẽm = ẽRm + iẽIm is complex additive white Gaussian noise with variance σ2. The
real and the imaginary parts of ẽm are uncorrelated and each has a variance of σ2/2, i.e.,
ẽRm, ẽIm ∼ N (0, σ2/2), so that the covariance matrix of the noise is R = E{ẽẽH} = σ2I. The
signal–to–noise–ratio (SNR) is defined to be

SNR(dB) = 10 log10

1
(P+1)

∑P
m=0(sm)2

σ2
. (3.29)
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3.3.1 Comparison of FRI algorithms

In the first part, we compare the performance of FRI model–fitting approach combined with one
of the three constraints (MF-1 to MF-3) with the most common methods in FRI reconstruc-
tion. Among these, the annihilating filter (AF) method and its extension with Cadzow (AF+C)
enhancement were the first methods applied to FRI problem [6]. We also added Matrix Pencil
(MP) method [40] and Kumaresan-Tufts (KT) algorithm [45] into our comparison [44, 47]. (See
Chapter 2 for a review of these spectral estimation methods.)

In the absence of noise, every method is able to recover the signal innovations exactly. How-
ever, as noise increases, the accuracy of each method significantly degrades. The FRI signal
innovations are generated randomly such that we have K innovation instants between tk ∈ [0, 1]
with innovation weights ak ∼ N (1, 0.12). Then, we take (P + 1) samples of (3.28) degraded by
noise. The variance is chosen to match the target SNR given by (3.29).
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Figure 3.1: Comparison of FRI algorithms: Parameter estimation of a signal with K=5 frequen-
cies and (P + 1) = 4 ×K + 1 for an average of N = 1′000 independent trials: (a) normalized
localization error (b) normalized fitting error.

The signal is fully characterized by the innovation parameters: the instants t1, . . . , tk and the
weights a1, . . . , aK . For the numerical experiments, we define two metrics to facilitate compar-
isons: a normalized localization error in instant estimation, EL, and a normalized fitting error
in FRI samples ES

EL = 10log10
1

N

N∑
n=1

∑
k(t̂n,k − tk)2∑

k(tk)2
, (3.30)

ES = 10log10
1

N

N∑
n=1

∑
m(ŝn,m − sm)2∑

m(sm)2
, (3.31)

where t̂n,k are the recovered instants, and ŝn,m are the recovered FRI samples (3.25) in trial
n, and N is the total number of independent trials. We further assume that the number of
innovations is known and provided to each method so as to make a fair comparison.

We start with an FRI signal of five Diracs with the parameters given as t = [0.30, 0.44, 0.56,
0.67, 0.88]T and a = [0.914, 0.667, 1.025, 1.058, 0.770]T . In Fig. 3.1, we observe the plot of nor-
malized localization and moments error with respect to the SNR level. Clearly, EL, in Fig. 3.1
(a), exhibits a thresholding effect with respect to SNR level due to the non-linear estimation
step. Furthermore, we observe that three of the methods, namely, AF, AF with Cadzow, and
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Figure 3.2: Comparison of the performance of FRI algorithms based on estimator variance
(Var) and CRLB with respect to each parameter for various SNR levels: Column (a) location
parameters t1, t2 and t3 (b) weights a1, a2 and a3. Parameter estimation of an signal with K=5
frequencies and (P + 1) = 4×K + 1 for an average of N = 1′000 independent trials.
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Figure 3.2: (continued) Comparison of the performance of FRI algorithms based on estimator
variance (Var) and CRLB with respect to each parameter for various SNR levels: Column (a)
location parameters t4 and t5 (b) weights a4 and a5. Parameter estimation of an signal with
K=5 frequencies and (P + 1) = 4×K + 1 for an average of N = 1′000 independent trials.
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the MF-1, differ in their asymptotic behavior for high SNR. They show significantly poor perfor-
mance even for high SNR while Cadzow enhancement helps AF method to attain its asymptotic
behavior at a lower SNR. In contrast, ES , in Fig. 3.1 (b), follows a rather smooth curve due
to the compensation effect by the estimation of the weights as a solution to the complex least
squares problem (3.24).

For the same setting, we now focus on the comparison of the performance of the methods
on individual parameters. In Fig. 3.2, we observe the estimator’s variance and the theoretical
CRLB for each parameter. For the details of the derivation of the CRLB for complex AWGN,
we refer the reader to Appendix A.1. Here, we show the observed standard deviation (over
N = 1′000 independent realizations) compared to CRLB of each parameter. In Fig. 3.2, column
(a), we observe the same thresholding effect for the innovation instants that reveals differences for
different FRI algorithms. Note that MF-3, the model–fitting approach with randomized linear
constraint, performs better for the low SNR and together with MF-2, they achieve the theoretical
limit given by the CRLB around 10 dB despite other methods attain this level around 20 dB.
In contrast, the weights do not follow a general pattern expressing the compensation behavior
of the complex least squares step.

We next provide a different visualization of the innovation instants estimation to better
illustrate the interaction between the SNR level, resolution and variance of the estimation. For
this purpose, we design a visualization such that each trial of estimation for the innovation instant
tk can be mapped to a point on a ring with a phase given by 2πtk and the radius of the ring
determines the SNR level, hence termed an SNR bagel. The continuous instant tk is mapped to
2πtk with 1 degree radial resolution and the colorbar shows an average probability of detection
for each innovation instant value. In Fig. 3.3, we observe the SNR bagel of the AF method
where each ring corresponds to different SNR levels between −10dB to 50dB. For each SNR
level, we compute the average over N = 1′000 independent realizations. Clearly, the uncertainty
of the estimation drops as we move from inside to outside of the SNR bagel. Moreover, we
also observe another interpretation of the CRLB, i.e., the varying thickness of the uncertainty
cloud. We observe that at low SNR level, the estimations are more spread reflecting the larger
variance on the estimation whereas the white narrow regions at high SNR show that the method
achieves the minimum variance given by the CRLB. Moreover, we observe the thickness of the
uncertainty region changes with respect to the spacing of the two instants which is also another
interpretation of the non-diagonal entries the inverse of the Fisher information matrix (A.4) in
Appendix A.1.

With this new visualization, we can now look at the Fig. 3.4 and compare the performance
of the known FRI reconstruction methods with our FRI model-fitting approach combined with
one of the three constraints. We observe that the MF-2, MF-3 and KT methods achieve better
performance in the low SNR regime whereas all the methods perform similarly at high SNR.
However, MF-1 clearly performs worse than the other two constraints of the model–fitting ap-
proach. Hence, we conclude linear constraints for our FRI model-fitting approach perform better
than the quadratic constraint.

Next, we compare the FRI algorithms for different model orders K and SNR levels. For
this experiment, we consider randomly generating K = [3, . . . , 10] innovations with instants in
tk ∈ [0, 1] and random weights a ∼ N (1, 0.12) using (P + 1) = 4×K + 1 samples given by (3.28)
degraded by complex AWGN as before. In Table 3.1, we compare the performance of all FRI
algorithms with respect to normalized localization error in frequency estimation, EL whereas in
Table 3.2 we provide the comparison with respect to normalized FRI sample estimation error ES .
From both tables, we conclude that MF-3 outperforms other algorithms in terms of innovation
parameter estimation.
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Figure 3.3: SNR bagel: Visualization of frequency estimation for annihilating filter method,
where each ring corresponds to a different SNR and the color represents probability of detection
for each frequency averaged over N = 1′000 realizations.

Table 3.1: Comparison of FRI algorithms for normalized localization error EL averaged over
N = 1′000 independent realizations of varying model order K ∈ [3, . . . , 10].

SNR(dB)
0 5 10 15 20

AF -17.24 -21.99 -32.84 -41.69 -48.70
AF+C -14.30 -18.38 -22.37 -26.13 -31.18

MP -15.95 -22.47 -40.84 -48.13 -52.90
KT -13.54 -19.19 -36.76 -48.54 -53.13

MF-1 -11.66 -12.99 -14.25 -14.10 -13.91
MF-2 -14.53 -16.20 -18.84 -25.02 -32.71
MF-3 -17.29 -23.36 -42.44 -48.49 -53.83

3.3.2 Model order selection

Several applications of FRI require a robust model order selection as an integral part of the
framework. In this section, we demonstrate the feasibility of the model order selection proposed
in Section 3.2.3. We first observe the training error curve for the same setting as in the previous
part with K = 5 frequencies. In Fig. 3.5 (a), we observe the corresponding U-curve; i.e., the
training error curve of (3.26), for each SNR level. Using Algorithm 6, we estimate the model
order which is given by a gray square on the U-curve (Fig. 3.5 (a)). Clearly, the model order
selection algorithm successfully determines the true model order above 10 dB. Moreover, it allows
to predict the best model selection for a low SNR-regime, which results in reliable parameter
estimation of the FRI signal.

We further extend and demonstrate this SNR level dependent property of the model order
selection framework in Fig. 3.5 (b). Here, we consider randomly generating K = [5, . . . , 10]
innovations in tk = [0, 1] with random weights a ∼ N(1, 0.12) using (P + 1) = 4×K + 1 samples
as before. We observe the average of the model selection over N = 1′000 independent trials.
From each curve in Fig. 3.5 (b), we clearly observe that the framework chooses a lower model
order for low SNR (up to 10 dB) whereas it converges to the true model order for high SNR on
the average. We conclude that Algorithm 6 of Section 3.2.3 can be used for reliable estimation
of the FRI signal innovations for a range of SNRs.
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Figure 3.4: Comparison of FRI algorithms on frequency estimation performance mapped to SNR
bagel: (a) Annihilating filter + Cadzow (b) Matrix Pencil (c) Kumaresan and Tufts (d) MF-1
(e) MF-2 (f) MF-3.
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Table 3.2: Comparison of FRI algorithms for normalized FRI sample error ES averaged over
N = 1′000 independent realizations of varying model order K ∈ [3, . . . , 10].

SNR(dB)
0 5 10 15 20

AF -0.41 -2.52 -5.77 -10.71 -16.53
AF+C -0.84 -3.26 -5.70 -7.93 -10.40

MP - -0.65 -4.40 -10.11 -15.91 -20.81
KT -1.75 -6.17 -11.37 -16.20 -20.94

MF-1 -1.05 -3.96 -6.47 -7.61 -7.98
MF-2 -1.17 -4.42 -8.63 -14.24 -20.11
MF-3 -1.71 -6.35 -11.51 -16.40 -21.36
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Figure 3.5: FRI model selection: (a) Training error curve at different SNRs for a true model
order of K = 5, the selected order at each SNR level is given by the gray square (b) Model
order selection for different true model order with respect to SNR levels an average of N = 1’000
independent trials.

3.4 Summary

We have considered the FRI reconstruction problem in the presence of noise and proposed a
novel reconstruction algorithm with a model fitting approach and a novel model order selection
framework that allows to estimate innovations even at very low SNR. Numerical results showed
that the proposed algorithm with the (randomized) linear constraint outperforms the other FRI
reconstruction methods. This new method with model fitting approach would have a potential
effect on applications with FRI signal degraded with realistic levels of measurements noise [17,
16, 56].
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Chapter 4

Detection of Spontaneous Brain
Activity in fMRI Using FRI

Functional magnetic resonance imaging (fMRI) data has rich structure and, therefore, methods
that allow better characterization of the brain activity are needed. In particular, resting state
fMRI data only contains spontaneous brain activity that cannot be modeled using conventional
confirmatory approaches based on linear regression. Our motivation is to further develop the
method in Chapter 3 for the detection of spontaneous brain activity in fMRI data using finite rate
of innovation (FRI) framework with the model-fitting approach. For this, we represent the fMRI
time course for each voxel as a convolution between an innovation signal–a stream of Diracs–
and the hemodynamic response function (HRF). First, using an HRF model characterized by a
difference of Gaussians, the fMRI samples are mapped to so-called FRI samples. We apply the
model-fitting method based on minimizing the error between the measured and the recovered
FRI samples. We illustrate the feasibility of our method by showing the detection of the activity
signal in simulated data and in experimental data acquired on three subjects during an event-
related experiment with visual stimulation unknown to our method.

4.1 Introduction

Functional magnetic resonance imaging (fMRI) plays a central role in modern neuroscience by
allowing noninvasive measurement of the brain activity based on the blood oxygenated-level-
dependent (BOLD) signal [57]. In conventional fMRI, the analysis is based on stimulus-driven
paradigms. Typically, prior knowledge about the experimental paradigm is used to construct
temporal regressors, which are then fitted to the time course of every voxel using the general
linear model (GLM) method. The analysis is followed by a statistical hypothesis testing for a
given contrast weights to relate the experimental paradigm to the fMRI data. In Fig. 4.4, we show
a typical fMRI signal model where the BOLD signal of every voxel in fMRI data is represented as
a convolution of an activity signal with the hemodynamic response function (HRF). The precise
shape of HRF may vary between brain regions and between individuals. There exist various
methods accommodating the inter- and intra-subject variability for estimating the shape of the
HRF in the literature, e.g., Fourier basis sets, finite impulse response and gamma functions
[58, 59].

A temporal regressor of the activity signal cannot be modeled in cases when there is a sponta-
neous activity, for example, hallucinations in schizophrenia, or interictal discharges in epilepsy.
Moreover, analysis of spontaneous brain activity in healthy subjects may provide character-
istic patterns of the brain activity referred as resting-state networks [60]. Such spontaneous
activity cannot be deduced by standard GLM approaches. Hence, there is an increasing need

37
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for alternative methodologies that enable analysis of fMRI data without predefined responses.
FMRI deconvolution methods have been proposed to uncover the underlying activity signal at
the fMRI timescale. Within the convolution framework, the linear system assumption is re-
tained while regularization terms are generally used to promote sparsity in the activity signal
[61, 62, 63]. Moreover, exploratory methods are essentially employed in extracting information
from the fMRI data; e.g., subspace decomposition methods such as independent component
analysis (ICA) [64, 65].

In this chapter, we start with an overview of fMRI modality and we propose a novel method to
analyze spontaneous brain activity in fMRI data using finite rate of innovation (FRI) framework
as initially proposed in our preliminary work [56]. We exploit a new HRF model described by a
difference of Gaussians that allows to construct FRI mapping kernels analytically. We propose to
use the reconstruction method of Chapter 3 based on a fitting approach to recover the activity
signal with respect to the desired level of sensitivity and specificity. We consider the fMRI
signal setup as in Fig. 4.4 where the spontaneous activity signal is modeled as an FRI signal
–a stream of Diracs with time instants and amplitudes as the innovations of the signal. The
FRI fitting method allows to choose varying number of spontaneous events that achieves more
flexible analyses of the resting state data.

4.2 Functional magnetic resonance imaging

In this section, we provide an overview of fundamental principles of fMRI data acquisition and
analysis. An in-depth overview of the concepts can be found in [66, 67].

4.2.1 From MRI to fMRI

Quantum theory states that each atomic nucleus has specific spin angular momentum which gives
rise to a magnetic moment. In the absence of an external magnetic field, these moments are
randomly aligned, producing zero net magnetization. However, when placed within a magnetic
field, the spins start to align parallel or anti-parallel with respect to the field direction defining
the lower and the upper energy levels, respectively. At equilibrium, there is a net magnetiza-
tion due to slight abundance in the lower energy state, which precesses at the so-called Larmor
frequency around the external field direction. In order to measure the magnetization, the equi-
librium condition needs to be perturbed by applying polarized magnetic field in the form of RF
pulses. In the resonance condition; i.e., when the frequency of the RF pulse is matched to the
precession frequency, the net magnetization is effectively tipped into the transverse plane where
the magnetization can be measured. This principle is known as nuclear magnetic resonance
(NMR) and used extensively in chemical spectroscopy to understand the composition of the
substances [68, 69]. The concept of MR image (MRI) became possible only after the discovery
that the resonance frequency can be varied as a function of position using additional gradient
filters that allow to extract partial Fourier measurements of the screened volume [70, 71].

MRI provides different contrasts, which underpins the success of MRI in clinical applications
to demonstrate different anatomical structures or pathologies. MRI contrast is defined based
on two intrinsic properties known as the longitudinal and transverse relaxations times of each
tissue, denoted as the T1 and T2, respectively. The former is defined as the rate at which the
net magnetization will tend to grow back to its equilibrium along the longitudinal axis, whereas
the latter is defined as the rate of the decay of the transverse component of the magnetization.
Additionally, inhomogeneities in the magnetic field further reduce the transverse relaxation time
to T2*. Two important parameters of the MR image formation are the repetition time (TR),
which is the elapsed time between successive applications of the RF pulses, and the echo time
(TE), which is the elapsed time between the RF excitation and the measurement of the MR
signal. Hence, the MR image is formed by choosing appropriate TR, TE and pulse sequences
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(a) (b) (c)

Figure 4.1: Different contrast MR images of the brain. (a) Proton density image shows minimum
T1 and T2 effects with long TR and short TE. (b) T1 weighted image shows the white matter
with highest contrast. (c) T2 weighted image shows the cerebrospinal fluid and the white matter
with highest and lowest intensities, respectively.

such that the images provide maximum contrast of the tissue of interest. Figure 4.1 demonstrates
MR images of the brain with three different contrasts.

Functional MRI (fMRI) is a non-invasive modality that measures neural activity based on as-
sociated changes in blood flow. In particular, it is based on monitoring the density of hemoglobin
(Hb) level as an intrinsic contrast agent through the blood-oxygen-level-dependent (BOLD) re-
sponse. More specifically, the relationship between the neural activity and the BOLD signal
is described by a neurovascular coupling model. Consequently, fMRI indirectly reveals neu-
ral activation with hemodynamic changes in the cerebral blood volume (CBV) and blood flow
(CBF). Basically, any neural activity increases the consumption of energy and oxygen result-
ing in an increased demand for nutrients which triggers a vascular response in CBV and CBF.
In particular, the BOLD signal measures the ratio of deoxygenated hemoglobin to oxygenated
hemoglobin dHb/Hb. The decrease in this ratio causes an increase in the fMRI signal, which can
be measured with (T2-T2*)-weighted imaging. Clearly, the vascular effect brings on over com-
pensation of oxygen leading to an increase in the BOLD signal. Figure 4.2 shows the changes in
the dHb/HB ratio, CBF, CBV and the BOLD. Nevertheless, the actual link between the neural
activity and the BOLD signal is not yet completely understood, and is still an active research
field [72, 73].

The FMRI data is acquired using (T2-T2*)-contrasted imaging to maximize the dHB/Hb
concentration. The dataset is composed of time series of individual voxels in the brain. The
temporal resolution is determined by TR (typically around 1-2 sec) and the spatial resolution
depends on the volume of interest (typically the voxel size ranges between 3-10 mm3 for a whole
brain scan that results in 10′000 − 100′000 voxels in total). The duration of an fMRI data
acquisition depends on the type of the experiment (typically 5-20 min), which also imposes a
trade-off between the temporal and spatial resolutions.

4.2.2 Hemodynamic response function (HRF)

Many studies have investigated explicit modeling of the BOLD response following a stimulus
through linear and nonlinear models. Although some nonlinear aspects of the BOLD have been
observed in the literature [74], nonlinear models often limit the fMRI analysis when quantitative
comparisons of fMRI responses are needed. Alternatively, linear models have been extensively
employed in fMRI data analysis due to their simplicity and ease of data interpretation over
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Figure 4.4: Hemodynamic response following neuronal activation (courtesy
of [64, 77, 92]). The concentration of deoxygenated hemoglobin (dHb) in-
creases towards the beginning of the stimulation due to oxygen consump-
tion (a). The cerebral blood volume (CBV) and cerebral blood flow (CBF)
increase with neuronal activity (b), which elevates the oxygen concentration
(overcompensation) and reduces the dHB (a). The ratio of dHb to Hb forms
the BOLD signal change (b).
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Figure 4.2: Hemodynamic response following neuronal activation (courtesy of [66]) (a) Changes in
oxygenated and deoxygenated hemoglobin following neuronal stimulation. (b) Relative changes
in cerebral blood flow and cerebral blood volume following neuronal activity.
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Figure 4.3: HRF and its spectrum: (a) two gamma representation of HRF where g1 is a gamma
function modelling the peak and g2 is a gamma function modelling the undershoot (b) Amplitude
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group studies including different tasks and brain regions [75, 76]. Therefore, the BOLD signal is
represented through a linear convolution model between an activity signal and the hemodynamic
response function (HRF), which is the supposed impulse response that characterizes the BOLD
signal following a short period of brain activity.

There exist various approximation methods addressing the inter- and intra- subject variabil-
ity, e.g, Fourier basis sets, finite impulse response and gamma functions [58, 59]. In the current
work, we only consider simple approximations of the HRF with a difference of Gamma or Gaus-
sian functions. Figure 4.3 shows the canonical HRF approximation using two gamma functions.
Another advanced HRF model uses the linear approximation of the balloon model, which is the
state-space representation of the BOLD response, and uses the first-order Volterra kernels [77].
With this model, the HRF is represented by a linear differential operator with its zeros and
poles that demonstrates the underlying sparse structure of the fMRI signal model and provides
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an operator that inverts the hemodynamic system [62].

The variability of the BOLD signal is not only due to the neural response. In particular,
the measurement of the fMRI signal is corrupted by different types of artifacts including, but
not limited to thermal noise due to the subject and the scanner, which tends to be spatially
and temporally independent [78], physiological noise due to the subject’s cardiac and respiratory
movements [79], other subject specific effects due to the variation of BOLD hemodynamic re-
sponses across subjects and brain regions [80] and the gradual low frequency drifts and baseline
variation in the voxel time series due to magnetic field inhomogeneities characterized by 1/f
power spectrum [81, 82]. Typically, the noise in fMRI data is characterized by autoregressive
models. Furthermore, artifacts due to head motion and low frequency drifts are carefully han-
dled in the preprocessing stage of fMRI data analysis, then the residual errors are modeled with
white noise assumption [59, 79].

4.2.3 FMRI data analysis and deconvolution frameworks

FMRI data is measured sequentially, typically while subjects engage in a task for a paradigm-
based study or just lie in the scanner without any particular task for a resting-state study. The
recorded data is then analyzed in order to understand how the particular task is processed by
the brain. Selecting a suitable analysis method depends highly upon the aim of the study. Two
classes of techniques are distinguished corresponding to the type of the experiments. On the
one hand, confirmatory approaches put forward a hypothesis to be verified with the data from
the experimental paradigm. Specifically, based on the research question, the experimenter first
designs an experimental paradigm, and then exploits a subsequent statistical testing to affirm or
reject the hypothesis. General linear model (GLM) is one of the most acknowledged methods in
task-related fMRI analysis [83]. On the other hand, the purpose of the exploratory approaches,
or data-driven methods, is to discover the underlying structures of the data that are not pre-
dicted a priori. Exploratory methods are essentially employed when the brain activity cannot be
modeled with predefined responses, hence used extensively in the analysis of spontaneous brain
activity. Independent component analysis (ICA) is one of the most commonly used data-driven
method that aims at segregating the data into different compartments based on their statistical
independence [84].

The GLM and the ICA are the common methods in modern fMRI data analysis. Alter-
natively, temporal analysis of the fMRI data is of practical interest to especially elaborate the
unpredicted activations. Since GLM is only applicable when the task is explicit, and ICA does
not incorporate any hemodynamic effect, new methodologies should be developed enabling the
exploration of the hemodynamic brain activity without predefined responses.

FMRI deconvolution methods have been proposed to uncover underlying activity signals in
BOLD response. Activelets framework is designed as an extension to traditional wavelets to
decompose BOLD response that should ideally be represented by sparse activelet coefficients
[85, 62]. Activelets are families of exponential spline wavelets that annihilate the null space of
a general differential operator. More specifically, the activelets are constructed from the shifted
replicates of the inverse of the hemodynamic system in a multiscale formalism. Paradigm-free
mapping is another deconvolution method proposed for fMRI analysis [86, 61]. The method
consists of two steps: temporal deconvolution using the canonical HRF model and consecutive
statistical analysis of the time courses. Total activation (TA) [87, 63] is another alternative for
the deconvolution of fMRI data that is based on spatiotemporal regularization where the tem-
poral regularization is based on generalization of the total variation to the differential operator
chosen as to invert the hemodynamic system and the spatial regularization uses a mixed-norm
regularization to favor coherent activity-inducing signals in brain regions chosen from an anatom-
ical brain atlas. Clearly, all the fMRI deconvolution methods have been proposed to uncover the
underlying activity signal in BOLD at the fMRI timescale, and hence none of them examines
the problem using a continuous-domain formulation.
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4.3 Finite rate of innovation for fMRI data

We consider the BOLD response following a neural activation as a convolution of the activity
signal x(t) with an HRF model f(t). In Figure 4.4, we observe an fMRI signal model for a single
voxel’s response over time. We specifically consider a set of innovation parameters {tk, ak}K−1

k=0

that characterize the activity for that single voxel where ak ∈ R are the amplitudes and tk ∈ R
are the instants. These signals are completely characterized by a finite number of parameters
per unit time and hence, known as FRI signals. We will review the framework for FRI for a
single voxel processing of the fMRI data.

4.3.1 FRI framework

We define the spontaneous activity signal x(t) as a stream of K Diracs

x(t) =

K−1∑
k=0

akδ(t− tk), (4.1)

where {tk, ak}K−1
k=0 are the innovation parameters. The first step of the framework is the signal ac-

quisition, which corresponds to the measurements of the BOLD response to an activity-inducing
signal. The time course of a single voxel is then given by

ỹn =

〈
x(t), ϕ(

t

T
− n)

〉
+ εn, (4.2)

where ϕ is a FRI sampling kernel that is related to the HRF such that f(t) = ϕ(−t/T ) where T
is the sampling period; i.e., the scan repeat-time (TR) of the fMRI data and εn is the additive
white noise.

The second step in the FRI framework (see Figure 4.4) is to compute the exponential repro-
ducing coefficients cm,n that allow to map the fMRI samples to the so-called FRI samples. We
first note that the HRF models do not satisfy the generalized Strang-Fix condition, but we have
seen in Chapter 2 that for sufficiently fast decaying kernels, accurate reproduction of exponen-
tials is possible. Hence, we now show how to obtain these coefficients using the knowledge of the
HRF. We focus on the following approximation problem∑

n∈Z
cm,nϕ(t− n) ' eαmt, (4.3)

where αm ∈ C and m = 0, . . . , P . In Chapter 2, we have seen that the coefficients corresponding
to the constant least-squares approximation are given by (2.23), namely cm,n = cm,0e

αmn where
cm,0 = (ϕ̂(αm))−1. In matrix representation, the mapping matrix C is given as

C =


c0,0 0 · · · 0

0 c1,0
... 0

...
...

. . .
...

0 0 · · · cP,0


︸ ︷︷ ︸

D


1 eα0 · · · eα0(N−1)

1 eα1 · · · eα1(N−1)

...
...

. . .
...

1 eαP · · · eαP (N−1)


︸ ︷︷ ︸

V

, (4.4)

where D is a diagonal matrix, and V is a Vandermonde matrix. Hence, for the FRI-mapping
matrix C to be better conditioned, we want the ratio the absolute values of the diagonal elements

of D to be chosen close to each other so that
max{|cm,0|}
min{|cm,0|} ' 1 and the elements in V to lie on

the unit circle [88]. While choosing αm to be purely imaginary makes the Vandermonde matrix
V better conditioned, the coefficients are now related to the Fourier transform of the sampling



4.3 Finite rate of innovation for fMRI data 43

F
ig

u
re

4.
4:

F
R

I
fr

am
ew

or
k

fo
r

fM
R

I:
T

h
e

or
ig

in
a
l

co
n
ti

n
u

o
u

s-
ti

m
e

a
ct

iv
it

y
si

g
n

a
l
x

(t
)

is
fi

lt
er

ed
w

it
h

a
n

d
a
rb

it
ra

ry
sa

m
p

li
n

g
ke

rn
el

b
ef

o
re

b
ei

n
g

u
n

if
or

m
ly

sa
m

p
le

d
w

it
h

a
sa

m
p

li
n

g
p

er
io

d
T

w
h

er
e

th
e

sa
m

p
le

s
a
re

g
iv

en
b
y
y n

=
〈x

(t
),
ϕ

(t
/
T
−
n

)〉
.

T
h

en
,

u
si

n
g

th
e

in
fo

rm
a
ti

o
n

a
b

o
u

t
th

e
sa

m
p

li
n

g
ke

rn
el

on
e

d
es

ig
n

s
a

w
ei

gh
ti

n
g

m
at

ri
x

C
so

th
a
t

th
e

sa
m

p
le

s
a
re

m
a
p

p
ed

to
F

R
I-

sp
a
ce

,
i.

e.
,

to
re

tr
ie

ve
ex

p
o
n

en
ti

a
l

m
o
m

en
ts

o
f

th
e

si
gn

al
.

F
in

al
ly

,
th

e
re

co
n

st
ru

ct
io

n
of

th
e

p
ar

am
et

er
s

is
a
ch

ie
ve

d
u

si
n

g
th

e
F

R
I

w
it

h
m

o
d

el
-fi

tt
in

g
a
p

p
ro

a
ch



44 Detection of Spontaneous Brain Activity in fMRI Using FRI

kernel, cm,0 = ϕ̂(jωm)−1. Since the HRF signal is a low-pass blurring kernel, the condition on
the diagonal entries of D is satisfied when the set of exponentials are chosen where the spectrum
attenuation is not very strong. This fact leads to a trade-off in the choice of ωm and we choose
to use the frequency range only up to the full width at half maximum (FWHM) of the spectrum
of the HRF. We define the exponentials as

αm = jωm = j
π

L
(2m− P ) m = 0, . . . , P, (4.5)

and then optimize the values P and L, accordingly. Here, the ratio of 2π
L defines the spacing of

the chosen frequencies in the spectrum. Moreover, we would like to emphasize that by choosing
P odd, we can remove the zero frequency component in the set of reproduced exponentials which
can be used to remove gradual low frequency drifts in the fMRI data inherently.

Given a set of frequencies αm and the corresponding coefficients cm,n, the fMRI samples yn
are then mapped to the FRI-space by linearly combining the samples with the coefficients cm,n.
Hence, the FRI samples are given by,

s̃m =
∑
n

cm,nỹn, (4.6)

which we know from Chapter 2 to be equivalent to

s̃m =

K−1∑
k=0

ãku
m
k + ẽm, (4.7)

where ãk = ake
α0

tk
T , uk = eα

tk
T and ẽm is the filtered noise that remains white by construction

of the matrix C.
In standard FRI framework, the annihilating filter (AF) method proceeds by defining the

Prony’s filter h with z-transform

H(z) =

K∑
m=0

hmz
−m = h0

K−1∏
k=0

(1− ukz−1), (4.8)

where the roots correspond to the values uk. Then, it follows that hm annihilates the sequence
sm as:

(h ∗ s)m =
K∑
i=0

hism−i = 0. (4.9)

which can be written in matrix/vector representation as

S(s)h = 0, (4.10)

where S(s) is a rank deficient Toeplitz matrix and h admits a solution in the nullspace of S(s)
if rank(S(s)) = K. Hence, the standard FRI looks for a solution that minimizes ‖S̃h‖ under the
constraint that ‖h‖2 = 1.

4.3.2 FRI with model-fitting

We propose to use the FRI reconstruction method with a model fitting approach using the
(randomized) linear constraint (MF-3) of Chapter 3. The idea is to minimize the error between
the measured FRI samples s̃m and the recovered FRI samples sm subject to the annihilation
system in (4.10) as a constrained optimization problem. Hence, we reformulate the estimation
problem as

min
s,h
‖s̃− s‖2 subject to S(s)h = 0 and (h(0))Hh = 1, (4.11)
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where S(s) is the same Toeplitz matrix in (4.10) with [S]mi = sm−i, h is the vector of the
coefficients of the filter defined in (4.8) and h(0) is random initialization of h. We note that,
using the commutativity of the convolution, the annihilation equation (4.9) can be rewritten as

R(h)s = 0, (4.12)

where R(h) is the Toeplitz matrix with [R(h)]mj = hm−j . We first replace the original problem
(4.11) with the following unconstrained minimization problem

min
s,h
‖s̃− s‖2 + 2{uHS(s)h}+ λ((h(0))Hh− 1)︸ ︷︷ ︸

L{s,h}

, (4.13)

to be minimized with respect to s and h where u is a vector Lagrange multiplier for the constraints
S(s)h = 0 and λ is a scalar Lagrange multiplier for the constraint ((h(0))Hh− 1). Following the
development of Chapter 3, we obtain an equivalent problem. Therefore, rather than minimizing
(4.13) with respect to s and h, we minimize the following problem with respect to h only

min
h

hHS(̃s)HD−1
h S(̃s)h subject to (h(0))Hh = 1, (4.14)

where Dh = R(h)R(h)H . Similarly, we propose to use IQML algorithm assuming the term Dh

remains constant at each iteration.

By solving (4.14), we first obtain the filter coefficients hm to retrieve uk by finding the roots of

the filter in (4.8). We then obtain the locations tk using the solution uk, since uk = eα
tk
T . Finally,

given the locations tk, we determine the amplitudes ak by solving K consecutive equations of
(4.7).

4.3.3 HRF model approximation
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Figure 4.5: Difference of Gaussian representation of HRF where G1 models the peak and G2
models the undershoot

In principle, any HRF model approximation can be used in this framework as long as the
approximation allows us to compute the exponential reproduction coefficients efficiently, which
is related to the Fourier transform of the kernel. We propose to use an HRF model described by
a difference of two Gaussians, since the Gaussian functions are good candidates for this approach
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as the analytic expression of their Fourier transform is known. We choose to use an HRF model
described by:

f(t) =

2∑
i=1

aiGi(t, µi, σ
2
i ), (4.15)

where Gi(t, µi, σ
2
i ) is a Gaussian function with mean µi and variance σ2

i and the parameters are
estimated using the canonical HRF model. Finally, the specific model parameters are chosen as
a = [1,− 1

6 ]T , µ = [6, 16]T and σ = [ 6
2
√

2 log 2
, 8

2
√

2 log 2
]T for the initial peak, and the undershoot,

respectively.
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Figure 4.6: Receiver operating characteristic (ROC) curve for (a) simulated data (b) experi-
mental data taken as the time course of the cuneus region for subject-1. Each point represents
the average true and false positive rates with model order changing from K = 1 to K = 20 in
counterclockwise directions, and the diamond indicates the ground-truth model order.

We simulate a number of voxels that are assumed to have same weighing activation. However,
the instants of the activity may differ up to ±1TR with respect to different voxels. We design
the spontaneous activity pattern with unit amplitudes and different onset times given by tk =
[20, 34, 54, 92, 130, 142, 170, 188]T secs for 150 voxels with TR=2 sec and we focus on the retrieval
of the timing of the activities. In Fig. 4.6, we show the receiver operating characteristic (ROC)
curves for the proposed FRI fitting algorithm for different SNR levels. Each point represents the
average true and false positive rates with the model order changing from K = 1 to K = 20 in
counterclockwise directions. Clearly, we observe high sensitivity and specificity behavior around
the true model order K = 8.
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4.4.2 Experimental results

Data preprocessing

We further tested our method with experimental data acquired from three subjects during a
sparse event-related paradigm where resting-state periods were disrupted by 10 visual stimuli of
8Hz flickering checkerboard of duration 1s with onsets tk = [17, 32, 51, 90, 127, 139, 168, 185, 212,
247]T s [63]. The fMRI data comprised N= 190 (subjects-1) and N=160 (subject-2 and subject-
3) T2∗-weighted gradient echo-planar volumes (TR/TE/flip Angle: 2 s/30 ms/85, voxel size:
3.25 × 25 × 3.5 mm3, matrix= 64 × 64). A T1-weighted MPRAGE anatomical image was also
acquired during the MR session (192 slices, TR/TE/flip Angle: 1.9 s/2.32 ms/9, voxel size:
0.45× 0.45× 0.9 mm3, matrix=512× 512).

Anatomical and functional data were preprocessed using SPM8 [59], and a combination of
in-house MATLAB scripts. The first ten functional volumes were discarded to allow for T1
equilibration effects. The remaining functional volumes were spatially realigned to the mean
image, and then followed by spatial smoothing with a Gaussian filter (FWHM=5 mm). The
anatomical data of each subject were coregistered to the functional images and segmented into
white matter, gray matter and cerebrospinal fluid (new segmentation algorithm of SPM8, an
extension of the unified segmentation algorithm [89]). Nuisance variables (motion parameters,
average cerebrospinal fluid and white matter signal) were regressed out from fMRI time courses
using a GLM. The T1 volume was then parcellated into 90 cortical regions using the automated
anatomical labeling (AAL) atlas (90 regions without the cerebellum) and the IBASPM toolbox
[90]. This structural atlas was then resampled to the functional space resolution and overlapped
with the fMRI volumes to select voxels of specific brain anatomical regions. We also computed
the average time courses of each region and pairwise correlations between all pairs of regions
forming a 90× 90 connectivity matrix for every subject.

FRI recovery results

In the first part, we considered the voxels from the cuneus region in the visual cortex, which
supposedly activates completely during the visual stimuli. After the preprocessing steps, we
have in total 363 voxels for subject-1, 230 voxels for subject-2 and 327 voxels for subject-3.
Moreover, by removing the first ten functional volumes, we omit the initial flickering that occurs
at 17 sec. The flexibility to choose different model order K thanks to the model fitting approach
allows to analyze the fMRI data with respect to desired specificity and sensitivity range, which
is also shown in Fig. 4.6 (b). Here, we observe high sensitivity and specificity behavior around
the true model order K = 9. In Figures 4.7, 4.8 and 4.9, we illustrate the change in the voxel
data and spatial covariance before and after applying the FRI recovery for subject-1, subject-2
and subject-3, respectively. We choose the model order K based on the model order selection
framework of Section 3.2.3. After applying the FRI recovery for the specified model order, we
recover the fMRI time course based on the estimated innovation parameters. We then perform
a k-means clustering using cosine distance measure to arrange the voxels in two groups based
on the spatial covariance of the voxels. Clearly, in all three subjects, model-fitting framework
improves the segregation of the voxels in terms of the assigned silhouette values of the clusters
before and after the FRI recovery (see Figures 4.7 to 4.9).

Interestingly, we observe that the cuneus region of subject-1 (Figure 4.7) responds to all
the stimuli and with K = 10 we can successfully detect all activations in the FRI framework.
Instead, the subject-2 (figure 4.8) and the subject-3 (figure 4.7) are less responsive to some of the
stimuli. In this case the FRI framework recovers the activity signal with a reduced number of
activity, i.e., K = 5 for subject-2 and K = 6 for subject-3. A potential reason is that the visual
stimuli are unanticipated by the subject undergoing the experiment, hence it is likely that some
stimuli were only briefly attended or even missed by the subjects. Further we noticed that not all
the voxels of the cuneus follow the paradigm, and this could be due to the fact that the cuneus
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region is defined by an atlas that has certain limitations such that morphing it to individual’s
brain cause inevitable distortions.

In the second part, we repeat the same analysis to uncover interactions of different regions
using the data acquired from subject-1. For this, we compare the activities in the cuneus with one
region showing positive correlation with the cuneus in the connectivity matrix (superior occipital
cortex), one showing negative correlation (postcentral gyrus) and one showing no correlation
(precentral gyrus). These specific regions are shown in Figure 4.10 (a) and (b) in terms of the
connectivity matrix and T1-registered functional atlas, respectively. To note, the functional
connectivity matrix is based on regionally averaged time series, therefore the correlation are
computed supposing the voxels in the same region behave similarly. In Figures 4.11 and 4.12,
we illustrate the change in the fMRI data before and after applying the FRI recovery with the
specified activity rate K based on the model order selection framework of Section 3.2.3 and
a consecutive performing of k-means clustering to arrange the voxels in two groups using the
spatial covariance of the voxels. Even for these regions, we observed the FRI framework is able
to detect visual and non-visual related activities. For the regions that we expect to be correlated
with the cuneus (superior occipital cortex and postcentral gyrus), we observe only a subset of
voxels showing an activity pattern related to the paradigm. This can again be explained with the
suboptimal approximation given by the atlas in parcellating functional regions. Further, the FRI
framework detects activation events unrelated to the stimulation pattern for the precentral gyrus,
expected to be uncorrelated with the cuneus, preliminarily showing the capability of detecting
spontaneous activity.

4.5 Summary

We have proposed a new framework for the analysis of fMRI data using the novel FRI fitting
framework. Modeling the spontaneous activity signal as an FRI signal (i.e., a stream of Diracs),
we considered the fMRI time course as a filtered version of the activity signal with an HRF model
that was approximated by two Gaussian functions. Using an appropriate FRI space mapping
kernel, we obtained an equivalent FRI space estimation problem that we solved using a fitting
approach that allows stable recovery of the innovation parameters for different innovation rate.
Hence, we achieved a stable FRI reconstruction method for the detection of spontaneous activity
in fMRI data up to the desired level of specificity and sensitivity.

We demonstrated the feasibility of our approach for fMRI analysis by retrieving the activity
signal from simulated and experimental fMRI data. Both results show the potential of this novel
method, however larger datasets should be analyzed to confirm the consistency and eventually
draw conclusions that might be useful from a neuroscientific point-of-view.
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Figure 4.11: Visualization of the change in fMRI data before (left) and after (right) FRI recovery
for the cuneus of subject-1 in red frames for FRI recovery with K = 10 and for the superior
occipital cortex of subject-1 in green frames for FRI recovery with K = 6.



54 Detection of Spontaneous Brain Activity in fMRI Using FRI

Figure 4.12: Visualization of the change in fMRI data before (left) and after (right) FRI recovery
for the postcentral gyrus of subject-1 in blue frames for FRI recovery with K = 10 and for the
precentral gyrus of subject-1 in pink frames for FRI recovery with K = 6.



Chapter 5

FRI for the Inverse Source
Problem of Radiating Fields

This chapter is based on the publication: Z. Doğan, T. Blu and D. Van De Ville, ‘Finite-rate-
of-innovation for the inverse source problem of radiating fields’, Sampling Theory in Signal and
Image Processing, vol. 13 :(3), 2014, pp. 271-294.

5.1 Introduction

The inverse source problem (ISP) is of interest and importance across many branches of physics,
mathematics, engineering and medical imaging. Among these, reconstruction of source distri-
butions from boundary measurements of radiating fields has attracted great attention of many
researchers. In particular, the Helmholtz equation that is the fundamental model for radiation
and wave propagation has been studied extensively for various electromagnetic and scalar fields
[91, 92]. In general, the underlying physical system assumes a well-posed forward model, but,
they usually suffer from having an ill-posed inverse problem in terms of uniqueness, stability, and
existence of a solution. Typically, one needs additional assumptions about the source distribution
to force uniqueness of the solution by either imposing smoothness properties of the distribution
or by assuming a parametric source model. The standard solutions of the ISP rely on iteratively
fitting of a source model using the forward model. In this case, the sparsity assumption of the
source signal plays a key role to regularize the solution [93]. Recently, compressive sensing ap-
proaches have been employed [94] for the detection of sparse objects from the field measurements
in radar imaging.

There exist several approaches for the ISP that assume parametric source models. In par-
ticular, the mathematical uniqueness and local stability of the parametric source distributions
have been proven [95]. Moreover, there are several other parameter estimation frameworks in
which the computational burden of forward model fitting can be dealt with efficient algorithms
[96]. For example, the method known as “reciprocity gap” concept [97] which is essentially an
application of Green’s theorem has been recently applied to ISP from boundary measurements of
a Poisson’s field [95]. The method is based on transforming a scalar product between the source
distribution and a test function into a boundary integral of the measurements and related test
function [95].

Several sampling and reconstruction methods have been proposed for specific classes of signals
[4], as we have seen in Chapter 2. The common feature of these signals is that they have a
parametric representation with finite number of parameters and are, therefore, called the signals
with finite-rate-of-innovation (FRI) [4, 5, 24]. Recently, the theory of FRI has been applied to the
problem of detecting parametric point sources from boundary measurements of a field generated
by the Poisson’s equation [21]. The method proposes analytic sensing functions to map back

55
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Point-sources

Detectors

Wave-field

Figure 5.1: Schematic overview of the measurement model and the simplified view of the radiating
wavefronts.

the boundary measurements to the underlying point distribution and shows that it is possible
to develop non-iterative reconstruction algorithms to retrieve the innovation parameters. The
results have been also extended to a multi–layer head model with potential application to detect
the epileptic foci from electroencephalography (EEG) data [22].

In this chapter, we focus on the ISP from boundary measurements of radiating fields governed
by the Helmholtz equation. A typical measurement setup is shown in Figure 5.1. We exploit
an explicit sparsity prior on the source model being a 3-D stream of Diracs such that the only
innovation parameters are the locations and weights. Then, we develop a new framework that
allows us to identify parametric source models from boundary measurements of a radiating field.
For that, we extend the FRI framework developed for the Poisson’s equation [21, 22] to general
sensing functions derived for radiating fields based on holomorphic functions in the complex
plane. Our contributions are twofold: First, we apply the reciprocity gap concept to the sensing
functions that are solutions to the homogeneous Helmholtz equation and show that these func-
tions can be used to extract 2-D projections of the locations of the source distribution. Second,
we propose families of sensing functions that are holomorphic functions and generate complex
polynomials of N-th degree. We show that these sensing functions have a spatial localization
that can be controlled so that they dominantly sense the influence of nearby pointwise sources.

This approach brings together several attractive features: (1) the 2-D projections of the
locations onto several planes are decoupled; (2) several 2-D projections are combined to retrieve
the 3-D locations with a tomographic approach; (3) the solution to the forward model is not
necessary; (4) the method is locally adaptive thanks to the generalization of the holomorphic
functions to reproduce N-th order polynomials.

5.1.1 Forward problem

The forward problem describes the radiation of waves from a real-valued spatio-temporal source
distribution q(r, t) embedded in an infinite, homogeneous medium. The real-valued radiating
wave field satisfies the inhomogeneous scalar wave equation[

∇2 − 1

c2
∂2

∂t2

]
u(r, t) = q(r, t), (5.1)
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everywhere in space and time, where c is the speed of wave propagation in the medium. The
source term q(r, t) is assumed to be compactly supported in the space-time region S0|r ∈ Ω,
t ∈ [0, T0], where Ω is the spatial volume and [0, T0] is the interval of time over which the
source is present. The solution to (5.1) is not unique. In particular, adding any solution of the
homogeneous wave equation to u(r, t) will be again a solution to (5.1). Therefore, it is necessary
to specify initial conditions under the form of Cauchy conditions.

Primarily, the harmonic solution of the wave equation is of particular interest in various appli-
cations because the wave equation applies only to non-dispersive and non-attenuating medium,
whereas the counterpart Helmholtz equation describes the radiation of waves in a general dis-
persive medium [

∇2 + k2
]
U(r, ω) = Q(r, ω), (5.2)

where k(r) = ω/c(r) is the wavenumber and c(r) is speed of wave propagation in an inhomogenous
medium. Hence, the Helmholtz equation is considered to be the fundamental governing equation
of radiation and wave propagation. As it was the case for (5.1), (5.2) does not possess a unique
solution and, in particular, one needs to determine the boundary conditions that are dictated
by the physics of the problem on the measurement. Then, if the source term, Q(r, ω) is known,
the solution to (5.1) can be written as

U(r, ω) =

ˆ
Ω

d3r′G+(r− r′, ω)Q(r′, ω), (5.3)

where G+(r) is the retarded Green’s function of the Helmholtz equation defined as the solution
to the partial differential equation[

∇2 + k2
]
G+(r− r′, ω) = δ(r− r′). (5.4)

In the case of the radiating fields in free-space, the physically appropriate boundary condition is
that the Green’s function satisfies the Sommerfeld radiation condition that is equivalent to the
requirement of causality in time domain [92]. Hence, the resulting Green’s function is known as
the retarded Green’s function

G+(r− r′, ω) = − 1

4π

eik‖r−r
′‖

‖r− r′‖ (5.5)

representing an outgoing-wave.

5.1.2 Inverse source problem

The inverse source problem (ISP) is about finding the source term Q(r, ω) from the knowledge
of the radiating field U(r, ω). The solution to the ISP becomes trivial, when the field U(r, ω)
is known over S0. Indeed, one can simply apply the D’Alembertian operator W = ∇2 + k2 to
the field to recover the source term according to the Helmholtz equation. However, in practical
situations, the field can only be measured in a restricted region that lies outside the source’s
space-time support S0. In particular, the field U(r, ω) and its normal derivative ∂U(r, ω)/∂n′

are supposed available on a closed surface ∂Ω.
The standard solution of the source term by the boundary data is given by the Porter-Bojarski

(PB) integral equation,

Q(r, ω) = −
ˆ
∂Ω

dS′
[
U(r, ω)

∂G−(r− r′, ω)

∂n′
−G−(r− r′, ω)

∂U(r, ω)

∂n′

]
, r ∈ Ω (5.6)

where G− = G∗+ is known as the retarded Green’s function representing an incoming-wave, hence
(5.6) is referred as the back-propagated-field solution [92].

The classical treatment of the problem based on (5.6) has several limitations that include
the limitation to non-dispersive media and the requirement of having full data set over a closed
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surface surrounding the source. As an alternative, the problem can be cast in a Hilbert space
formulation

TQ = f, (5.7)

where T : HQ → Hf is a linear mapping from a Hilbert space of source functions HQ to Hilbert
space of measurements Hf , f is the data term and Q is the source term. With this formulation,
the ISP will also apply to the cases of incomplete data as well as to dispersive medium. However,
as the two Hilbert spaces HQ and Hf are generally different and the linear operator T is not
generally Hermitian, inverting such mappings for the source in terms of data generally requires
finite element methods that are computationally heavy [92].

5.2 Finite rate of innovation for the Helmholtz equation
from boundary measurements

5.2.1 Innovation signal for radiating field

We consider a 4-D signal model with M point sources inside a region Ω ⊂ R3, enclosed by
a surface ∂Ω where the measurements of the field are taken. Let us assume that the spatial
distribution of the sources is given by a set of points at locations {rm}Mm=1 ∈ Ω and weights
{sm}Mm=1. In particular, these weights represent the signal’s temporal Fourier transform at
the corresponding angular frequency ω. Hence, the total source distribution inside Ω is then
described by

Q(r, ω) =

M∑
m=1

sm(ω)δ(r− rm), (5.8)

where the only free parameters in the signal Q(r, ω) are the locations rm and the Fourier coef-
ficients of the mth source signal for a given frequency ω. The generated wave field according to
(5.1) is observed with some detectors located {rd}Dd=1 ∈ ∂Ω known by the measurement setup.
Finally, the problem can be stated as follows.

Problem 2. Given a set of measurements of a propagating wave field U(r, ω) and its normal
derivative ∂U(r, ω)/∂n′ for a set of points rd on ∂Ω, find the source locations {rm}Mm=1 ∈ Ω and
the weights sm(ω) in (5.8) satisfying (5.2).

5.2.2 Sensing kernels

We start by defining the Sensing Principle as the contribution where the current work differen-
tiates from the classical FRI–sampling problems.

Definition 3 (Sensing Function). Let Ψ be a function that satisfies

∇2Ψ(r, ω) +
ω2

c2
Ψ(r, ω) = 0 in Ω, (5.9)

then we coin the term sensing function for Ψ.

Proposition 4. Assuming the field and the normal derivative of the wave field are available on
the boundary ∂Ω, and one chooses a sensing function Ψ satisfying (5.9), then one can “sense”
the source signal through the surface integral:

〈Ψ, Q〉 =

˛
∂Ω

[
Ψ(r, ω)

∂

∂n
U(r, ω)− U(r, ω)

∂

∂n
Ψ(r, ω)

]
dS, (5.10)

where the partial derivatives ∂
∂n are directed outward (from the interior to exterior) and we call

〈Ψ, Q〉 the generalized samples to differentiate from the field measurements.
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Proof. Let Ψ(r, ω) and U(r, ω) be any two complex functions of position, and ∂Ω be a closed
surface surrounding a volume Ω. If Ψ(r, ω), U(r, ω), and their first and second partial derivatives
are well-defined within Ω and on ∂Ω, respectively, then the second Green’s identity states that

ˆ
Ω

(U∇2Ψ−Ψ∇2U)dV =

˛
∂Ω

(
Ψ
∂

∂n
U − U ∂

∂n
Ψ

)
ds. (5.11)

When the sensing function Ψ is chosen to satisfy (5.9), we obtain

˛
∂Ω

(
Ψ
∂

∂n
U − U ∂

∂n
Ψ

)
· ds =

ˆ
Ω

Ψ(r, ω)Q(r, ω)dr (5.12)

= 〈Ψ, Q〉 . (5.13)

Hence, the sensing principle that follows from the second Green’s identity allows extracting
generalized samples of the source term with the sensing function, which creates a link between
the model parameters and the measurements on the surface.

Many functions that satisfy the Strang–Fix conditions can be extended to multidimen-
sional space by the tensor product [19]. For example, symmetric B-splines, biorthogonal B-
splines and orthogonal Daubechies scaling functions [98]. Moreover, there have been various
attempts to define functions that satisfy generalized Strang–Fix conditions for scattered data
quasi-interpolation [99]. However, the condition that is given by (5.9) prevents straightforward
extension of the FRI–theory to multidimensional sensing problems. For that reason, we pro-
pose various families of sensing functions that split the problem into pieces in which there exist
efficient algorithms to retrieve the innovations of the signal.

Proposition 5 (Sensing functions based on 2D harmonics). Let φ(x, y) be a solution to ∇2φ(x, y) =
0, then any function

Ψ(x, y, z) = e±ikzφ(x, y) (5.14)

would be a solution of the sensing equation given in (5.9).

Proof. Choosing Ψ as in (5.14) and developing (5.9), we have:

[
∇2 + k2

]
Ψ(x, y, z) =

[
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
+ k2

]
e±ikzφ(x, y)

= e±ikz
[
∂2

∂x2
+

∂2

∂y2

]
φ(x, y)︸ ︷︷ ︸

=0

+
[
(±ik)2 + k2

]
e±ikzφ(x, y)

= 0.

The term that appears to be zero in the second line is a harmonic function by definition. If the
harmonic function possesses a singularity, it has to be outside of the domain Ω to satisfy (5.9)
as to remain a valid sensing function.

Now, we consider the sensing function in (5.14) and we ask the question whether the harmonic
part of the sensing function φ(x, y) can satisfy the Strang-Fix conditions to reproduce some
polynomials or exponentials.

(a) Polynomial reproducing kernels: Consider any compactly supported kernel given by the
tensor product of two 1-D functions φ(x) and φ(y) that can reproduce polynomials xα and
yβ , respectively, where α, β ∈ {1, . . . , n} and x, y ∈ R. Assuming unit sampling period along
each direction, this means that the kernel ϕ(x, y) satisfies∑

j

∑
k

Cα,βj,k φ(x− j, y − k) = xαyβ , (5.15)
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where α and β are the degrees of the polynomials that the kernel can reproduce along x-
and y-directions.

Proposition 6. There is no kernel that can reproduce real polynomials of degree more than
2 that will satisfy both the sensing principle (5.9) and the Strang-Fix conditions (5.15).

Proof. Let φ(x, y) be the harmonic function; i.e., ∇2φ(x, y) = 0 in Ω. Hence, (5.15) must
satisfy the same equation

LHS =
∑
j

∑
k

Cα,βj,k ∇2φ(x− j, y − k) = 0

RHS = ∇2xαyβ = α(α− 1)xα−2yβ + β(β − 1)xαyβ−2.

The RHS is zero only for α, β ∈ {0, 1}, which yields a contradiction for polynomials of degree
n ≥ 2.

(b) Exponential reproducing kernels: Consider any compactly supported kernel given by the
tensor product of two 1-D functions φ(x) and φ(y) that can reproduce exponentials eαpx and
eβqy, respectively, where αp = α0 + pλ, βq = β0 + qγ with p, q ∈ {1, . . . , n} and x, y ∈ R.
Assuming unit sampling interval along each direction, this means that the kernel φ(x, y)
satisfies ∑

r

∑
s

Cp,qr,s φ(x− r, y − s) = eαpxeβqy, (5.16)

where α and β are the degrees of the exponentials that the kernel can reproduce along x-
and y-directions.

Proposition 7. There exist kernels that can reproduce exponentials that will satisfy both the
sensing principle (5.9) and the Strang-Fix conditions (5.15) provided that αp = ±iβq for all
p, q.

Proof. Let ϕ(x, y) be the harmonic function; i.e., ∇2φ(x, y) = 0 in Ω. Hence, (5.16) must
satisfy the same equation

LHS =
∑
r

∑
s

Cp,qr,s∇2φ(x− r, y − s) = 0

RHS = ∇2eαpxeβqy = (α2
p + β2

n)eαpxeβqy = 0.

Consider a general harmonic function that has no singularity in Ω and a stream of Diracs
with Q(r, ω) =

∑M
m=1 sm(ω)δ(r− rm) for a given frequency ω, rT = [x, y, z] and rTm =

[xm, ym, zm]. We consider the generalized samples on a uniform grid given by

Mr,s =

〈
Q(r, ω),Ψ

(
x

Tx
− r, y

Ty
− s, z

)〉
(5.17)

=

˚

R3

Q(r, ω)φ

(
x

Tx
− r, y

Ty
− s
)
e±ikzdxdydz

where Tx, Ty ∈ R+ are the sensing intervals along x- and y-directions.

Consider a set of 3-D Dirac distribution Q(r, ω) =
∑M
m=1 sm(ω)δ(r− rm) for a given fre-

quency ω, rT = [x, y, z] and rTm = [xm, ym, zm]. Here, we provide an algorithm in the classical
FRI–fashion and we refer to Chapter 2 for the details of the method.
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1) Retrieve the FRI samples of the signal: We denote, µp,q =
∑
r

∑
s C

p,q
r,sMr,s, the weighted

sum of the generalized samples, where the coefficients Cp,qr,s are computed by imposing

(5.16) that reproduce eαpxeβqy. We have

µp,q =
∑
r

∑
s

Cp,qr,sMr,s

(a)
=
∑
r

∑
s

Cp,qr,s

〈
Q(r, ω),Ψ

(
x

Tx
− r, y

Ty
− s, z

)〉
(b)
=

〈
Q(r, ω), e±ikz

∑
r

∑
s

Cp,qr,s φ

(
x

Tx
− r, y

Ty
− s
)〉

(c)
=

〈
M∑
m=1

sm(ω)δ(r− rm), e±ikzeαpxeβqy

〉
(d)
=

M∑
m=1

sm(ω)e±ikzmeαpxmeβqym (5.18)

where (a) follows from the definition of Mr,s in (5.17), (b) from the definition of Ψ
in (5.14); (c) from the definition of Q(r, ω) and (d) from the exponential reproducing
property in (5.16).

2) Annihilation along x- and y- axis: Note that (5.18) can be written as a power series

µp,. =

M∑
m=1

cmu
p
m (5.19)

with cm = sm(ω)e±ikzmeβqym+α0xm and um = eλxm . Here, the choice αp = α0 +pλ makes
the sum as a power series that can be annihilated with an annihilating filter. Hence the
sequence {xm}Mm=1 can be retrieved from the FRI–samples µp,q using the annihilating
filter method also known as Prony’s method [28]. Let hp with p = 0, . . . , P , be the filter

with z-transform H(z) =
∑M
p=0 hpz

−p =
∏M
m=1(1− umz−1), that is its roots correspond

to the values um to be found. Then, it follows that hp annihilates the observed sequence
µp,.:

hp ∗ µp,. =

M∑
i=0

hiµp−i,. =

M∑
m=1

cmu
p
m

M∑
i=1

hiu
−i
m︸ ︷︷ ︸

H(um)

= 0. (5.20)

Then, the zeros of this filter uniquely defines the values um provided that the xm’s
are distinct. Moreover, the same procedure can be followed to retrieve the innovations
{ym}Mm=1 by defining another annihilating filter hq to annihilate µ.,q with the choice
βq = β0 + qγ.

As a final remark for this section, we note that the origin of the sensing grid and step size
Tx and Ty have to be chosen such that there exist no singularity in the volume Ω so that
(5.9) will be satisfied for every sensing point of the grid in case the function φ possesses a
singularity.

(c) Holomorphic kernels: We now propose to work with holomorphic functions that are a sub-
set of harmonic functions rather than the general harmonic functions. We first note that
this allows to reduce the dimension of the problem, that is, the pairs {xm, ym}Mm=1 will be
represented by complex numbers ξm = xm + iym. Then, we showed that the exponential re-
production constraint of part (b) can be relaxed with a proper design of sensing positions of
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the generalized samples. We propose to take these samples at equidistant angles (using polar
representation) on the complex domain that will allow to construct an annihilation filter a
piori so that the parameters of a characteristic polynomial in which the zeros are defined as
the positions on the complex plane can be retrieved using a non-iterative algorithm.

We start by noting that, if a complex-valued function ϕ(ξ) of a single complex variable
ξ = x+ iy is complex differentiable (i.e., holomorphic), then it is also a harmonic function,
i.e., ∇2ϕ = 0, [100]. Polynomial functions in ξ with complex coefficients, sine, cosine and
the exponential function are some examples of holomorphic functions on C. In this work,
we only consider N-th degree polynomials given by

ϕ(ξ) =

N∑
l=0

χlξ
l =

N∏
l=1

(ξ − sl) with χN = 1, (5.21)

where sl are the zeros of the holomorphic functions that are located on the complex plane
in a region Sϕ with a radius sϕ = max

l
|sl|. Then, we propose to introduce the zeros of the

holomophic function as the poles of the sensing function

Ψ(ξ, z) = eikz (ϕ(ξ))
−1
, (5.22)

such that one can acquire the generalised samples by

µn = 〈Q(r),Ψ(ξ − an, z)〉 , (5.23)

where the sensing positions, (i.e., an = rne
iαn), are not on a uniform grid on the complex

plane, but located at equidistant angles satisfying αn = α0 + λn with arbitrary α0, λ and
rn ≥ sϕ +R with R being the radius of the volume Ω to ensure that no singularity exists in
the volume for different sensing positions.

Proposition 8. Consider a stream of 3-D Diracs

Q(r, ω) =

M∑
m=1

sm(ω)δ(r− rm)

for a given frequency ω, rT = [x, y, z] and rTm = [xm, ym, zm], the 3-D complex sensing
functions in (5.22) that are designed using the holomorphic functions that introduce N-th
order poles allow a non-iterative reconstruction algorithm to retrieve the locations of the
sequence {ξm = xm + iym}Mm=1.

Proof. The sensing samples in (5.23) will satisfy

µn =

〈
Q(r, ω),

eikz

ϕ(ξ − an)

〉
(5.24)

(a)
=

M∑
m=1

sm(ω)eikzm

ϕ(ξm − an)
(5.25)

(b)
=

∑M
m=1 sm(ω)eikzm

∏M
i=1
i 6=m

ϕ(ξi − an)∏M
m=1 ϕ(ξm − an)

(5.26)

(c)
=

∑M
m=1 sm(ω)eikzm

∏M
i=1
i 6=m

∏N
l=1(ξi − sl − an)∏M

m=1

∏N
l=1(ξm − sl − an)

(5.27)

(d)
=

∑(M−1)N
m=0 s′ma

m
n

P (an)
, (5.28)
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where (a) follows from the linearity of the inner product, (b) from combining each terms in
(a), (c) from the definition of the ϕ in (5.21), the numerator of (d) follows from the fact
that the numerator of (c) can be rewritten as a polynomial with respect to an with at most
(M − 1)N zeros where s′m are complex-valued coefficients that do not depend on an and the
denominator of (d) follows from defining a characteristic polynomial

P (x) =

MN∑
m=0

pmx
m =

M∏
i=1

N∏
l=1

(ξm − sl − x) (5.29)

where pm are the coefficients to be found such that pMN = 1. Then, defining a new sequence

un = µnP (an) =

(M−1)N∑
m=1

s′ma
m
n =

(M−1)N∑
m=1

c′mu
n
m, (5.30)

where c′m = s′mrne
iα0m and um = eiλm. Here, the choice αn = α0 +nλ makes un as a power

series that can be annihilated with a known annihilating filter given by its z- transform

H(z) =

M∑
k=0

hkz
−k =

M∏
m=0

(1− eiλmz−1).

Hence, the problem reduces to finding the polynomial coefficients (5.29), from the annihila-
tion system given by {h ∗ u}n = 0 so that the zeros of the polynomial will give the locations
ξm = xm + iym for m = 1, . . . ,M provided that ξm’s are distinct.

It is worth mentioning that the choice of the projection plane that is determined by the holo-
morphic function is arbitrary and it could have been chosen as XZ or YZ planes rather than
XY plane. Indeed, any orientation can be applied to the sensing functions using standard
rotation matrices about x-, y-, and z-axis, which will be further developed in the following
section.

5.3 Proof-of-concept validation

In this chapter, we develop a practical algorithm to retrieve the parameters of a stream of 3-
D Diracs from the samples of induced field on a given measurement boundary. In particular,
we choose to work with a specific holomorphic function that introduces a first-order pole at the
origin; i.e., using the convention from the previous section we choose ϕ(ξ) = ξ where the complex
variable is defined as ξ = x + iy. Moreover, we provide the details of the implementation with
experimental results.

5.3.1 Sensing step

In Section 5.2 we proposed to use novel sensing kernels that are derived from holomorphic
functions in complex domain. Now, we consider a general spherical sampling geometry and
restrict our choice of the sensing function based on the following lemma.

Lemma 2. Let a ∈ C and r = [x, y, z]T , then

ψ(x, y, z) =
eiωz/c

x+ iy − a, a /∈ Ω (5.31)

is a valid sensing function that belongs to the set of functions defined by (5.9).

An instance of the proposed test function is visualized on the measurement surface in Fig.
5.2.
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(a) (b)

Figure 5.2: Visualization for the sensing function on the measurement surface Ω where the dots
around the volume indicate the different sensing positions (i.e., an). The chosen sensing position
is shown in dark. (a) Sensing function. (b) Normal derivative of the sensing function.

5.3.2 Annihilation step

Proposition 9. Let ψn be a set of sensing functions in Lemma 2 for n = 0, · · · , N −1 with an’s
located with equidistant radial angle, θ on the complex plane, then, the set of generalized samples
can be annihilated to find the projections of the source points onto complex plane.

Proof. We choose N points on the complex plane to define the family of sensing functions in the
form an = αne

inθ for some angle θ with αn’s are greater than the radius of the measurement
surface to satisfy the Lemma 2.

Then, defining a polynomial R(an) =
∑M
m=0 rma

m
n =

∏M
m=1(xm + iym − an) with rM = 1

and an FIR filter, h with zeros at eikθ given by H(z) =
∑
k∈Z h[k]z−k =

∏M−1
k=0 (1 − eikθz−1),

then the set of generalized samples can be reinterpreted as

µn = 〈ψn, Q〉 =

M∑
m=1

sm
eikzm

xm + iym − an
, (5.32)

=

∑M−1
m=0 s

′
me

inmθ∏M
m=1(xm + iym − an)

,

=

∑M−1
m=0 s

′
me

inmθ

R(an)
.
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Then, the predefined filter h annihilates the sequence, un = {R(an)µn} for n = M, . . . , N − 1,

0 = {h ∗ u}n =

N−1∑
n′=0

hn−n′R(an′)µn′ (5.33)

=

N−1∑
n′=0

hn−n′
M∑
k=0

rka
k
n′µn′

=

M∑
k=0

rk

N−1∑
n′=0

hn−n′a
k
n′µn′

=

M∑
k=0

An,krk.

In matrix representation, (5.33) can be represented as

Ar = HDVr = 0, (5.34)

where H is an (N−M)×N Toeplitz matrix representing the annihilating filter h, D is an N×N
diagonal matrix of the generalized samples, V is an N×(M+1) Vandermonde matrix of poles of
the sensing function and r is the unknown vector of M + 1 polynomial coefficients with rM = 1.
Explicitly, the system matrix A in (5.34) is decomposed as

hM · · · h0 0 · · · 0
0 hM · · · h0 · · · 0
...

...
. . .

...
...

...
0 · · · 0 hM · · · h0


︸ ︷︷ ︸

H


µ0 0 · · · 0
0 µ1 · · · 0
...

...
. . .

...
0 · · · · · · µN−1


︸ ︷︷ ︸

D


a0

0 a1
0 · · · aM0

a0
1 a1

1 · · · aM1
...

...
. . .

...
a0
N−1 · · · · · · aMN−1


︸ ︷︷ ︸

V

(5.35)

which indicates that A is rank deficient in the ideal case; i.e., rank(A) = M and r admits a
solution in the nullspace of A. Therefore, we can find the solution r by performing an SVD
of the system matrix A and choosing the column vector corresponding to the smallest singular
value. Once the unknown polynomial coefficients satisfying (5.34) are obtained, the projection
of the source point onto complex plane is found as the roots of the polynomial R(an).

Lemma 3. Let the locations of the point sources be distinct, then the system matrix in (5.34) is
of rank M for the noiseless case.

Proof. The system matrix in (5.34) has (N −M) equations with M unknowns of the character-
istic polynomial R(an) defined in Proposition 9 with rM = 1. Then, the minimum number of
generalized samples should be N = 2M . Hence, we conclude that the system matrix A in (5.34)
is rank M for distinct source positions.

5.3.3 Practical recovery in 3-D

We propose a three-step algorithm to locate the 3-D locations of the point sources from the
measured field by means of applying the sensing principle.

Planar Projection

In the first step, we choose a set of sensing functions Ψ as in (5.31) in a general X’Y’Z’ coordinate
system that we obtain by applying general rotation matrices along X and Y-axes [101].
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Ψn(Rr, ω) =
ejωz

′/c

x′ + jy′ − an
, an /∈ Ω, (5.36)

where an’s are the poles of the sensing function on X’Y’-plane located at equidistant angles
an = aejnθ, n ∈ J0, N − 1K, |a| is greater than the radius of Ω excluding the volume and θ is an
arbitrary angle. The matrix R represents the rotation matrix of the coordinate system along
the X and Y axes in a standard right-handed cartesian coordinate system given by

x
′

y′

z′


︸ ︷︷ ︸

r′

=

RX(α)︷ ︸︸ ︷1 0 0

0 cosα sinα

0 − sinα cosα


RY(β)︷ ︸︸ ︷cosβ 0 − sinβ

0 1 0

sinβ 0 cosβ


︸ ︷︷ ︸

R(α,β)

xy
z


︸︷︷︸

r

. (5.37)

Then, by solving the annihilation system in Proposition 9, we find the projections of the point
source positions on the corresponding X’ Y’-plane defined by the rotation matrix.

Pairing of the Projections

In the second step, we propose a greedy approach to build a manifold of projections to keep the
solutions paired between each projection. For each 2-D projection, the locations are found as the
roots of a polynomial as described in Proposition 9. However, the sources of each projection are
not ordered in the same way. In the ideal case, at least 2 orthogonal projections of the distribution
would be sufficient to solve for the 3-D problem. However, to the best of our knowledge there is
no efficient solution for this problem under the effect of noise or measurement error.

We propose a solution for the closest pair problem for two separated sets of points between
consecutive projection planes. Indeed, the main idea is to compute the Euclidean distance in R3

between all the pairs of points in two projection sets and then to group the pairs with respect
to the mutually smallest distance criteria [102, 103].

Consider A × B projection planes defined by R(αi, βj) i ∈ J0, A − 1K j ∈ J0, B − 1K where
each plane has M projected points to be paired. We assume an initial labeling for the points
of the first plane with l1 to lM . Then, to find the pair of closest points p ∈ Pk and q ∈ Pk−1

k ∈ J2, A × BK, we compute the distances between all the M ×M pairs of points and we pick
and label the pair with the smallest distance and exclude it from the set.

In a similar way, the idea can be generalized for a rotation along X− and Y−axis using
a selective projection approach. We propose to selectively project onto planes such that the
incremental change between the planes remains minimal. Hence, the Euclidean distance still
achieves a good measure to pair the projections between two consecutive projections.

We note that in practice, projection angles along X− and Y−axis do not have to be different
due to the fact that the projection is done on a complex plane and only the distance of each
source point to the measurement surface matters in reconstruction quality. Hence, choosing the
rotation matrix R(α, α) achieves sufficiently good results.

We provide a summary of the method in Algorithm 7 and we note that the proposed pairing
method is computed in O(n2) but can be solved in O(n log n) using the recursive divide and
conquer approach [103].

Reconstruction in 3-D

In the third step, we solve for the 3D positions of the point sources by a least-squares regression
of the 2D projections as a special case of tomographic reconstruction. Indeed, once the pairing
of the projections for each rotation matrix is known after the second step of the algorithm, one
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Algorithm 7 Pair of closest Points

Require: p ∈ Pi, for i ∈ [[0, P − 1]]
Require: lp: Labels of p ∈ Pi

1: Initialization: Label l0: 1 to M
2: for i=1 to P-1 do
3: P ∗i = Pi
4: while P ∗i is not empty do
5: p∗ = argmin

p∈P∗i
min
q∈Pi−1

||f(p)− f(q)||2

6: P ∗i =P ∗i \{p∗}
7: end while
8: Label li : Match the labels of p∗ and q
9: end for

can represent each 2D projections with

[
xkm

ykm

]
︸ ︷︷ ︸
ξkm

=

[
1 0 0

0 1 0

]
R(αi, βj)︸ ︷︷ ︸

Pk

xmym
zm


︸ ︷︷ ︸

rm

, (5.38)

k = i×A+ j, i ∈ J0, A− 1K, j ∈ J0, B − 1K

where R(αi, βj) characterizes a set of rotations, k is the index for the selective projection order
and ξkm is the projection of the point source rm on the plane denoted by k. Finally, we solve for
the following least squares problem

r̂m = argmin
rm

P−1∑
k=0

‖ξkm −Pkrm‖22, ∀m ∈ J1,MK. (5.39)

A note on the missing Fourier coefficients

In order to completely describe the source distribution, one still has to determine the temporal
Fourier coefficients sm(ω). The estimation of these parameters can be done with the same set
of generalized samples. Considering the estimated locations, the generalised samples will be a
linear set of equations to be solved for sm(ω)

µn = 〈ψn, Q〉 =

M∑
m=1

sm(ω)
eikzm

xm + iym − an︸ ︷︷ ︸
estimated

, n ∈ J1, NK, (5.40)

where µn are the generalized samples and xm, ym and zm are the estimated 3-D positions of the
source.

In Figure 5.3, we provide a schematic overview of the proposed algorithm for the recovery of
the parameters of a source distribution given as a set of 3-D Diracs.

5.3.4 Alternative 3-D recovery method

The pairing algorithm of the projections relies on a closest pair approach based on the Euclidean
distance. This heuristic algorithm performs well even if the measurements are degraded by
noise. However, we also propose an alternative two-step algorithm based on applying the sensing
principle in two steps with two different sensing functions, consecutively. In particular, in the
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first step, we extract the projected positions on the complex plane using the Proposition 9. Then,
using the projected locations on XY-plane, the same generalized samples as in (5.32) are now
used to solve another linear system of equations to extract the weights of the point sources.
Hence, this system will satisfy

〈
Ψ(1)
n , Q

〉
= µn︸ ︷︷ ︸

known

=

M∑
m=1

pm
xm + iym︸ ︷︷ ︸

projected locs.

−an
, pm = sme

ikzm . (5.41)

where we redefine pm as a complex variable to be solved and we assume sm ∈ R in this case. In
matrix notation, we can express this system as Bp = µ, where B is an N ×M matrix with the
entries Bm,n = 1

xm+iym−an , and p is an M × 1 vector with entries pm = cme
ikzm and µ is an

N ×1 vector with entries µn. Then, we propose to recover the remaining z-locations by means of
applying the sensing principle with a proper set of plane waves (note that these sensing functions
do not have spatial concentration (i.e., the locality)):

Ψ(2)
n (r) = ei(kxx+kyy+kzz)/c, s.t. k2

x + k2
y + k2

z = k2, (5.42)

where kz <
π
Ro

, Ro being the radius of the volume of interest, and (kx, ky) =
√
k2 − k2

z(cosαn, sinαn),

αn = 2π
N n, n ∈ J0, N−1K. With this selection of the proposed family of plane waves, the extracted

samples of the source function become

〈
Ψ(2)
n , Q

〉
=

M∑
m=1

sme
i(kxxm+kyym+kzzm) (5.43)

=

M∑
m=1

sme
i(kxxm+kyym)︸ ︷︷ ︸
C′m,n

Zm, Zm = eikzzm

where we redefine Zm to be unknown. By construction, the phase of the solution is uniquely
determined due to the choice kz, which guarantees a unique solution in the domain, hence

zm =
arg (Zm)

kz
, (5.44)

where Zm is the solution of the sensing equation (5.43).

5.3.5 Measurement noise and model mismatch

The algorithm explained so far assumes perfect data, but in practice the set of measurements
of the propagating wave field U(r, ω) and its normal derivative ∂U(r, ω)/∂n′ are corrupted with
measurement noise. Hence, the generalized samples by the surface integral in (5.10) will be
degraded by noise,

µ̃n = µn + εn, (5.45)

where εn corresponds to the complex noise in the generalized samples. Hence, in the presence of
noise, the system matrix

Ã = HD̃V (5.46)

becomes full rank and will not satisfy (5.34) anymore due to the degradation of the generalized
samples. Moreover, since the system matrix A does not possess any Toeplitz structure, we cannot
directly apply the Cadzow-denoising algorithm from Section 2.3.3, which iteratively imposes the
rank deficiency property and the Toeplitz structure of the concerned matrix. Therefore, we
propose a modified-Cadzow denoising algorithm in order to compensate for the measurement
noise and the model mismatch.
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Figure 5.3: Schematic overview of the proposed algorithm to retrieve the locations of a 3-D
stream of Diracs from the boundary measurements of an induced field: (a) Find the projected
positions on several complex planes by the sensing principle; (b) Pair the projections between
each projection plane with respect to the Euclidean distance; (c) Retrieve the 3-D locations by
solving a least-squares regression problem.

The convolution matrix H is in general not unitary, even if it has maximal rank. When the
generalized samples are not known with high accuracy, this may distort the recovered polynomial
coefficients. Hence, by performing a singular value decomposition of H, we first replace the
convolution matrix with H0 such that H = USH0 to better condition the system matrix. Next,
we observe that the Vandermonde matrix V can be ill-conditioned in case the angular distances
between the singularities of the test pole locations are small. Therefore, we also replace a by a
unitary matrix a0 by performing an SVD on V such that V = V0ΣM∗.

Algorithm 8 Cadzow-like denoising algorithm

Require: Preconditioning of A
1: Replace H by a unitary matrix H0 such that H = USH0

2: Replace V by a unitary matrix V0 such that V = V0ΣM∗

3: for i=1 to till convergence do
4: Compute Ã0 = H0D̃V0

5: Compute low-rank approximation AK of Ã0

6: Obtain new generalized samples D̃ by solving (5.47)
7: end for

The resulting system matrix, Ã0 = H0D̃V0 will be used to denoise the generalized samples.
In Cadzow-like denoising iterations, we exploit the fact that the system matrix has to remain of
rank M at each iteration. Therefore, for any L > M , the last L−M singular values of the Ã0

are forced to zero to get a low rank approximation of the system matrix, Â. Then, in the second
step, we minimize the following objective

D̂ = arg min
D
‖H0DV0 − Ã0‖F , (5.47)

to find a denoised generalized sample by a least squares fit with respect to the Frobenius norm,
‖.‖F . The generalized samples and therefore the system matrix can be denoised by iteratively
imposing these two steps until convergence. We iterate the scheme until the last L−M singular
values of Â are smaller than a given threshold; e.g., 10−6. We provide the details of the Cadzow-
like denoising scheme in Algorithm 8.
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5.4 PAT as a potential application

Photoacoustic tomography (PAT) is a hybrid imaging modality that combines high intrinsic
contrast of optical imaging and high spatial resolution of ultrasonic imaging. It is based on
the generation of acoustic waves due to the tissue dependent absorption of optical energy. The
absorbed energy initially creates a thermally induced pressure jump that leads to an emergence
of the propagating acoustic waves in the tissue [104, 105]. Then the activated field is recorded
with ultrasound sensors placed on the surface of the volume. The problem is to recover the
absorption properties of the tissue from the measured data. Mathematically, this corresponds
to the ISP from the measurements of the induced field and, hence fits into our setting with the
Helmholtz equation [106].

Numerous approaches have been proposed for the inverse problem of PAT. Many of these
algorithms are based on the inversion of the generalized spherical Radon transform and requires
the measured data to be densely sampled [96, 107]. Exact analytical solutions in both time and
frequency domains are provided assuming continuous aperture with infinite bandwidth [108, 109].
A variety of iterative reconstruction algorithms are proposed to solve the problem for lower
sampling density [110, 111], which mostly requires computationally heavy iterations.

5.4.1 Problem setting

In PAT, the optical radiation absorbed by the tissue gives rise to thermal heating. Under the
condition of thermal confinement, the tissue subsequently goes into a thermal expansion. The
generated acoustic field in which the absorbed energy can be modelled as an heating source is
governed by the wave equation

∇2p(r, t)− 1

c2
∂2p(r, t)

∂t2
= − β

Cp

∂

∂t
H(r, t), (5.48)

where H(r, t) is the heating function that gives rise to an acoustic field p(r, t), β is the isobaric
volume expansion coefficient [K −1], Cp is the specific heat [J/(K kg)], and c is the speed of sound.
Under the thermal confinement condition, the heating function can be further decomposed as
the product

H(r, t) = A(r)I(t),

where A(r) is the spatial absorption function and I(t) is the temporal illumination function,
which is known by the excitation protocol.

In particular, we consider a closed volume of Ω in free space where the optical absorption
occurs with a surface ∂Ω and the activated acoustic field and its normal derivative are measured
on the surface of the volume, i.e., p(r, t)|∂Ω and ∇p(r, t)|∂Ω. Then, we parametrize the spatial
absorption function as

A(r) =

M∑
m=1

smδ(r− rm), (5.49)

where sm ∈ R, rm ∈ Ω. With this parametrization, the absorption function is completely
characterized by the positions and intensities of M sources; i.e., with 4M parameters, and the
inverse problem becomes well-posed [112]. The key to the reconstruction problem is to recover the
spatial absorption function A(r); i.e., the parameters of (5.49) from the boundary measurements
of the acoustic field.

5.4.2 Results

We performed numerical experiments to validate our algorithm for a typical PAT setup. Specif-
ically, we considered a spherical geometry of the measurement surface of radius 10 cm that is
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assumed to enclose the source function

Q(r) =

M∑
m=1

smδ(r− rm).

Here, we note that there has been extensive research [113, 114, 115, 116] on the problem that deals
with the analysis and design of spherical sensor arrays to allow aliasing-free spatial sampling of
the data, if possible, or otherwise with minimal spatial aliasing. However, we would like to repeat
(5.10) here to emphasize the fact that the sensing principle relies on the generalized samples of
the source function by the following surface integral that links the sampled measurements to the
model parameters

µn = 〈ψn, Q〉 =

˛
∂Ω

[
ψn(r, ω)

∂

∂n
U(r, ω)− U(r, ω)

∂

∂n
ψn(r, ω)

]
dS, (5.50)

where the partial derivatives ∂
∂n are directed outward from the interior to exterior. For the

current work, we consider that the integral in (5.50) can be taken numerically. In free space, the
radiating field U(r) is given by (5.3) and the retarded Green’s function as in (5.5). Hence, we
compute

U(r) = −
M∑
m=1

sm
4π

eik‖r−rm‖

‖r− rm‖
, (5.51)

which is assumed to be measured by finite sensors located on rd ∈ ∂Ω. We assume that the
measurements are degraded by noise such that Ũ(rd)[n] = U(rd)[n]+ ṽ[n], where v[n] is complex
AWGN with variance σ2 such that the real and the imaginary parts of v[n] are uncorrelated and
the covariance matrix of noise is given by R = E{ṽṽH} = σ2I. In Figure 5.4, we illustrate the
radiating field and its normal derivative on a spherical measurement surface for a case where
the wavenumber is k = 4188m−1, which corresponds to a typical temporal frequency of 1 MHz
observed in PAT in a medium with a constant speed of sound c = 1500m/s and the measurements
are degraded by complex AWGN where the variance is chosen to match the target SNR level.
Then, we compute the generalized samples given through the integral (5.50) which is equivalent
to the inner product of the source term and the test functions.

Once the generalized samples have been acquired with the sensing step, we first apply the
Cadzow-like denoising algorithm to compensate for the measurement noise. Then, the annihila-
tion step follows by constructing the linear system of equations in (5.34) so that the projections
on a plane can be retrieved. As we have seen in Section 5.3.2, we first use the Lemma 3 to
determine the model order M . In Fig. 5.5 (a), we demonstrate that it is possible to estimate
the model order M by observing the decomposition of singular values of the system matrix A in
(5.34). For a 3-D retrieval of the projections, we follow the instructions as in Section 5.3.3. And
in Figure 5.5, we provide an instance where the true model has five point sources.

Finally, we provide a few elements to indicate the limitations of our method with PAT.
Depending on the application, PAT uses various techniques to tune the imaging depth and the
resolution. Then, the generated pressure field is sampled with ultrasound transducers capable of
linear/planar measurements of the wave field. Therefore, the normal derivative of the field needs
to be approximated from the available data using time- and frequency-domain methods [108].
Moreover, the performance of our method depends on the approximation quality of the surface
integral (5.50) which is limited by the current spatial sampling density, the quality of the sensors
and the coverage of the measurements on the surface. When the measurements do not cover the
entire boundary ∂Ω, and is often , the missing data needs to be taken into account carefully.
In order to overcome this shortcoming, the concentration of the sensing functions (locality) can
be controlled with the degree of the complex polynomial representing the holomorphic function
5.21. Moreover, with further advancement in photoacoustic imaging technologies, the proposed
method indicates great potential to improve the reconstruction quality and performance of the
PAT imaging systems [117].
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(a)

(b)

Figure 5.4: Visualization for the measurements of a radiating field in free-space for a spherical
geometry of radius 10 cm and wavenumber k = 4188m−1 at 20dB. (a) Real part of the radiating
wave. (b) Real part of the normal derivative of the radiating wave.
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Figure 5.5: Point source model estimation: (a) Estimation of model order by separation of
singular values. Different Planar views of the true (+) and the estimated (�) locations of the
source in (b) YZ-plane view (c) XY-plane view (d)XZ-plane view where the colors are showing
the estimated and true magnitude of the corresponding point source.
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5.5 Outlook

Another possible extension of the FRI framework for the ISP can be achieved by considering a
generalization of the point source model. In this case, assume that the source function can be
represented

Q̇(r) =

M∑
m=0

smφ(r− rm) such that Q̇(r) ⊂ ∂Ω, (5.52)

where φ(r) is a known compact support spatial distribution function and the only free parameters
in the signal are the innovation locations rm and the innovation weights sm. Hence, this is
a generalization of the sparse point source model Q(r) in (5.8) where (5.52) can be written
equivalently as the convolution of Q(r) with the known spatial function φ(r); i.e., Q̇(r) = (Q ∗
Φ)(r). Furthermore, the counterpart governing equation will be given by[

∇2 + k2
]
U̇(r, ω) = Q̇(r, ω), (5.53)

where k2 = ω2/c2 is the wavenumber with c being the speed of wave propagation in the medium.
Finally, one needs to find the parameters of (5.52) given a set of measurements of the wave field
in (5.53) on a surface ∂Ω enclosing (5.52). We further need to define families of sensing kernels
Ψ̇ that satisfy [

∇2 + k2
]

Ψ̇(r, ω) = 0 in Ω (5.54)

which will allow efficient reconstruction of the parameters of (5.52). Instead of extending the
plausible sensing kernels and the corresponding reconstruction methods, we would like to use
the framework that we already developed using the following proposition.

Proposition 10. Choosing a sensing kernel Ψ̇ such that {φV ∗Ψ̇}(r, ω) = Ψ(r, ω) where φV (r) =
φ(−r) is the reversed version of φ and Ψ(r, ω) is the sensing kernels given by the Proposition 5,
we reduce the problem (5.52) to an equivalent problem〈

Ψ̇, Q̇
〉

=

˛
∂Ω

[
Ψ̇(r, ω)

∂

∂n
U̇(r, ω)− U̇(r, ω)

∂

∂n
Ψ̇(r, ω)

]
dS, (5.55)

= 〈Ψ, Q〉 . (5.56)

Proof. The first line is a direct consequence of the sensing principle in Proposition 4. For the
second line, we refer to the dual extension principle defined on generalized functions [118] which
states that given operators U,U∗ : S → S that form an adjoint pair on S × S, their action to
S ′ → S ′ is extended by defining Uf and U∗f such that

〈ϕ,Uf〉 = 〈U∗ϕ, f〉 , and 〈ϕ,U∗f〉 = 〈Uϕ, f〉 ,

which reveals 〈
Ψ̇, Q̇

〉
=
〈

Ψ̇, φ ∗Q
〉

(5.57)

=
〈
φV ∗ Ψ̇, Q

〉
= 〈Ψ, Q〉 .

The choice of the function φ(r) is in general application dependent. However, a particularly
interesting case is to use radial basis functions in higher dimensions which are related to splines
as well [119]. These functions are radially symmetric that only depends on the distance, i.e.,
φ(‖r‖). Typical examples are the membrane spline and thin plate splines, which have been used
in several other settings [120, 121].
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5.6 Summary

We have proposed a novel FRI-like algorithmic framework for identifying parametric source
models from boundary measurements of a radiating field. We proposed novel sensing functions
that are derived from holomorphic functions and allow 2-D projections of the 3-D locations of
the source function.

By design, the zeros of the holomorphic function that generates an N-th degree complex
polynomial as the poles of the sensing function, we achieved a locally selective sensing function
that is capable to spatially select the influence of the nearby point sources. This property
is important in practice since the full view of the field data is usually not available in real
applications. Therefore, this enables us to have a better approximation of the closed surface
integral of the measurements that is the fundamental equation of the sensing principle but
precise demonstration of this trade-off is lacking for now. We demonstrated the feasibility of the
proposed algorithm by simulation results.
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Chapter 6

Eigensensing Extension for Sparse
Source Recovery

This chapter is based on the publication: Z. Doğan, T. Blu and D. Van De Ville, ‘Eigensensing
and Deconvolution for the Reconstruction of Heat Absorption Profiles from Photoacoustic Tomog-
raphy Data’, Proceedings of the Tenth IEEE International Symposium on Biomedical Imaging:
From Nano to Macro (ISBI’13) pp. 1142-1145, 7-11 April 2013.

6.1 Introduction

In the previous chapter, we have introduced the concept of FRI for the inverse source problem
(ISP) of radiating fields by means of defining a strong prior on the source distribution, i.e.,
a set of point sources. Moreover, we have seen that the introduced sensing principle plays a
fundamental role that allows to map the field measurements to the FRI samples by a closed
surface integral. Consequently, we elaborate the notion of FRI sampling kernels to FRI sensing
kernels that allows to apply the FRI based nonlinear parameter estimation to the ISP of radiating
fields from boundary measurements. However, although the point source assumption is general
and applicable to many problems such as small absorbers in PAT [122, 108, 111], point scatterers
in ultrasound tomography [123, 124] and epileptic foci in electroencephalography (EEG) [21, 22],
some other applications require different modeling of the source distribution.

In this chapter, we focus on the sparse source recovery of radiating fields based on boundary
measurements for a general source function instead of the point source distribution. Here, we
propose a new theoretical framework, for which we coin the term eigensensing, to recover a contin-
uous source function. One of the main features of our method is that there is no explicit forward
model that needs to be used within a (usually) slow iterative scheme. Instead, the eigensensing
principle allows us to computationally obtain several intermediate images that are blurred by
known convolution kernels which are chosen as the eigenfunctions of the spatial Laplace oper-
ator. In particular, these intermediate images correspond to partial Fourier measurements of
the source function. Hence, eigensensing principle establishes a link between FRI and methods
that deal with partial Fourier recovery. The source function can be reconstructed by a joint de-
convolution algorithm that uses the intermediate images as input. Moreover, we consider total
variation regularization to make the inverse problem well-posed and to favor piecewise-smooth
source distributions.

77
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6.2 The problem statement

The radiating fields from a real valued spatiotemporal source function embedded in free space
are described by the scalar wave equation[

∇2 − 1

c2
∂2

∂t2

]
u(r, t) = q(r, t), (6.1)

where q(r, t) is the sparse source distribution that is assumed to be compactly supported by a
measurement surface ∂Ω, u(r, t) is the resulting causal radiating field and c is the speed of wave
propagation in the medium. We further assume that the source function is square integrable,
i.e.,
´∞
−∞
´
∂Ω
|q(r, t)|2d3rdt <∞. In this case, the solution for the field is given

u(r, t) =

ˆ ∞
−∞

ˆ
∂Ω

g+(r− r′, t− t′)q(r′, t′)d3r′dt′, (6.2)

where g+(r, t) is the retarded Green’s function that satisfies[
∇2 − 1

c2
∂2

∂t2

]
g+(r, r′, t, t′) = δ(r− r′)δ(t− t′). (6.3)

In the case of Sommerfield radiation boundary condition, the resulting causal Greens’s function
is given as

g+(r, r′, t, t′) = − 1

4π

δ
(
t′ − (t− ‖r−r

′‖
c )

)
‖r− r′‖ , (6.4)

that represents the radiating field due to an impulsive source located at {r′, t′}. Therefore, the
forward model of the radiation is well defined by (6.2) and (6.4) for a known source function
q(r, t). Instead, we consider the inverse source problem (ISP) to determine the unknown source
function q(r, t) in (6.1) from measurements of the radiating field u(r, t). In general, the applica-
tions that require a solution to such an ISP can be categorized into two groups: First one is for
imaging the interior of a volume source from observations of the radiating field in applications
such as photoacoustic tomography (PAT) [122, 125], ultrasound tomography [123] and biolu-
minescence tomography (BLT) [126]. These applications are a variety of the so called hybrid
methods that have been recently introduced and studied to overcome the individual deficiencies
of conventional imaging methods and to combine the strengths of multiple imaging methods,
hence termed as hybrid imaging methods. The second one is to design a volume of sources that
acts as an antenna to radiate a prescribed field in wave field synthesis [127, 128]. In the first ap-
plication, the field measurements are employed to reconstruct the source function whereas in the
second application the field measurements are used to design a source distribution to replicate
and transfer the field for example by an antenna. Mathematically, both ISP are identical with
different emphasis of the application. However, the difference between these two cases ultimately
reduces to consideration of the impact of non-radiating source function on the ISP. Hence, the
ISP cannot have a unique solution due to the possible presence of non-radiating source func-
tions [92]. Therefore, we consider the reconstruction of the source function that is physically
meaningful; i.e., the one that generates a radiating field outside of its support.

Without loss of generality, we consider the time harmonic solutions of the scalar wave equa-
tion, and write the scalar Helmholtz equation[

∇2 + k2
]
U(r, ω) = Q(r, ω), (6.5)

where k2 = ω2/c2 is the wavenumber and c is the speed of the wave propagation in free-space.
We focus on the recovery of the source function Q(r, ω) enclosed by a measurement surface from
the knowledge of the field U(r, ω) on ∂Ω.
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6.3 Eigensensing principle

Definition 11 (Eigensensing Function). Let Ψ be an eigenfunction of the spatial Laplacian
operator

∇2Ψ(r, ω) + k2Ψ(r, ω) = 0, (6.6)

then we coin the term eigensensor for Ψ.

Note that the sensing functions developed in Chapter 5 are solutions of the homogeneous
Helmholtz equation restricted to the volume of interest. Therefore, the derived holomorphic
sensing functions (5.31) do not satisfy 6.6 outside the volume Ω enclosing the source function.
Instead, the eigensensors constitute a subset of valid sensing functions satisfying (5.9) by con-
struction.

Proposition 12. Assuming that the field and the normal derivative of the wave field are available
on the boundary ∂Ω, and one chooses Ψ satisfying (6.6), then one can “sense” the image of the
source function through the surface integral:

IΨ(r) = (Q ∗Ψ) (r) =

˛
∂Ω

[
U
∂

∂n
Ψ (r− r′)−Ψ (r− r′)

∂

∂n
U

]
dS, (6.7)

where ∗ is the 2-D or 3-D convolution operator, the partial derivatives ∂
∂n are directed outward

(from the interior to exterior) and we call IΨ(r) the image of the source.

Proof. Using the Proposition 4, we can write

〈Ψ, Q〉 =

˛
∂Ω

[
Ψ(r, ω)

∂

∂n
U(r, ω)− U(r, ω)

∂

∂n
Ψ(r, ω)

]
dS. (6.8)

Additionally, since the Laplace operator is shift-invariant, we can sense the source function at
different spatial position and construct the image of the source function

IΨ(r) = (Q ∗Ψ) (r) (6.9)

=

ˆ
Ω

Ψ (r− r′)Q(r′)dr′ (6.10)

=

˛
∂Ω

[
U
∂

∂n
Ψ (r− r′)−Ψ (r− r′)

∂

∂n
U

]
dS, (6.11)

where ∗ is the 2-D or 3-D convolution operator. We can thus compute the source image IΨ
at any r by the surface integral (6.7) using the boundary measurements, which represent the
interaction of the source function with the eigensensor. In sum, the boundary measurements have
been mapped to volumetric information without an explicit forward model as in conventional
methods.

6.3.1 2D image reconstruction

To demonstrate the feasibility of the proposed method, we developed our method for an instruc-
tive 2-D setting. Let us first derive the separable eigenfunction of the 2-D Laplace operator in
polar coordinates (r, φ): [

1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2

∂2

∂φ2

]
Ψ(r, φ) = −k2Ψ(r, φ). (6.12)

Using the method of separation of variables and the non-singularity requirement at the origin,
we get the eigenfunction of the Laplace operator in polar coordinates as the basis function for
the polar Fourier transform on the whole space

Ψk
m(r, φ) =

√
k

2π
Jm(kr)ejmφ, (6.13)
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where Jm are the mth-order Bessel functions (m = 0, 1, . . .). In Figure 6.1, we demonstrate
the first four eigenfunctions in 2D polar coordinates. To better appreciate the meaning of the
eigensensors, we provide the Fourier transform of Ψm

F{Ψk
m}(k′, ϕ′k) = δ(k − k′) (−i)m√

2πk
eimϕ

′
k , (6.14)

where k′ and ϕ′k are the radial and angular parts of the polar Fourier space and which is nonzero
only on a circle of radius k. Alternatively, this states that plane waves of the same wavenumber,
as the basis function for the normal Fourier transform, can be superposed to get a so-called
cylindrical wave [129, 130].

We can then formulate the image reconstruction problem as a joint deconvolution of multiple
sensing functions degraded by known eigensensors by means of their known frequency domain
localization. In particular, given the set of source images IΨkn

m
computed from the measurements

using eigensensors Ψkn
m , m = 1, . . . ,M and at finitely chosen wavenumbers such that 0 < kl ≤

kn ≤ kh, n = 1, . . . , N where kl and kh represent the lower and upper limits of k, we solve for

Q̂ = arg min
Q

N∑
n=1

M∑
m=1

∥∥∥IΨkn
m
−Q ∗Ψkn

m

∥∥∥2

2
+ µJreg(Q) (6.15)

where the first term measures the data fidelity (under the `2-norm) and the second term reg-
ularizes the source function, with the parameter µ ≥ 0 controlling the relative weights of the
two terms. The regularization term is used to favor some solutions by penalizing the other by
measuring the lack of smoothness and sparseness with differential operators.

We note that there exist a tremendous amount of research on the regularization of inverse
problems and corresponding efficient minimization algorithms for the convex optimization prob-
lems [131, 132]. We choose the regularization term as the total variation (TV) semi-norm

JTV(Q) =

ˆ
R2

‖∇Q(r)‖2 dr, (6.16)

which favors sparseness in the gradient of A. The total variation (TV) regularization was in-
troduced by Rudin et al. in 1992 [133] as a noise removal algorithm. Since then it has become
more popular and the application of the same idea has been extended for many other inverse
problems [134]. Recent advances in convex optimization theory have led to efficient algorithms
for such minimization problem.

Minimization algorithm

The main difficulty in solving (6.15) is due to the non-differentiability of the regularization term.
Standard approaches approximate the TV semi-norm with a smooth and differentiable one or
to approximate it with a quadratic penalty technique. Here, we choose to use the alternating
direction method of multipliers (ADMM) for which convergence has been proved [135]. For the
sake of completeness, we briefly review the application of the ADMM method for the current
problem.

Hereafter, we assume a discrete setting and replace (6.15) with the following problem noticing
that eigensensors for the same order m are mutually disjoint in the frequency domain

â = arg min
a

1

2

M∑
m=1

||FIΓm − ΓmFa||22 + µ
∑
i

||Dia||2 (6.17)

where a is an n × n gray-scale image representing the source function, F is a two-dimensional
discrete Fourier transform matrix and Γm =

∑N
n=1 FΨkn

m is the Fourier transform of mth-order
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(a)Ψk
0(r, φ) (b)Ψk

1(r, φ)

(c)Ψk
2(r, φ) (d)Ψk

3(r, φ)

Figure 6.1: Visualization of the first four eigenfunctions of the Laplacian in polar coordinates
with wavenumber k = 4188m−1, which corresponds to 1 MHz in homogeneous medium with
c = 1500m/s.
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joint eigensensor; i.e., it represents a weighted selection matrix in k-space according to (6.14)

and IΓm =
∑N
n=1 IΨkn

m
is the mth-order observation of a. Next,

∑
i ||Dia||2 is a discretization of

the total variation (TV) of a with the common TV-L2 model where Dia = [(D(1)a)i; (D(2)a)i]
denotes the discrete gradient of a at pixel i with D(1) and D(2) representing the two first order
forward finite difference operators under periodic boundary conditions for a.

Algorithm 9 ADMM minimization algorithm

Require: IΓm
; Γm; µ > 0; p > 0

1: Initialization: α0, z0

2: while Not Converged do
3: ak+1 ←− argmin

a
Lp(a, z

k, αk) by solving (6.19)

4: zk+1 ←− argmin
z

Lp(a
k+1, z, αk) by solving (6.20)

5: αk+1 ←− αk +Dak+1 − zk+1

6: end while

Next, we first introduce auxiliary variables zi = ((z1)i; (z2)i)’s which are approximations of
Dia’s and then replace (6.17) with a constrained minimization problem

min
a,zi

1

2

M∑
m=1

||FIΓm − ΓmFa||22 + µ
∑
i

||zi||2 s.t. zi = Dia,∀i.

Relaxing the equality conditions and penalizing their violations by quadratic functions we get
the scaled form [135] of the corresponding augmented Lagrangian

Lp(a, z, α) =
1

2

M∑
m=1

||FIΓm
− ΓmFa||22 + µ

∑
i

||zi||2 (6.18)

+
p

2
||Da− z + α||22,

where α is a scaled dual variable and p is the penalty parameter. Despite more decision param-
eters compared to (6.17), the problem (6.18) is easier to minimize with respect to z and a. First
for a fixed z, the minimization of (6.18) for a becomes the least square problem

min
a

1

2

M∑
m=1

||FIΓm
− ΓmFa||22 +

p

2
||Da− z + α||22. (6.19)

Second, for a fixed a, the second and third terms are separable with respect to zi, so minimizing
(6.18) for z is equivalent to solving

min
zi

(
||zi||2 +

p

2
||Dia− zi + α||22

)
, ∀i, (6.20)

for which the minimizer is given by the two dimensional shrinkage formula [136]. We provide a
summary of the method in Algorithm 9.

6.4 PAT as a potential application

As a potential application, we again consider the reconstruction of heat absorption map in pho-
toacoustic tomogrphy (PAT). Specifically, the optical radiation absorbed by the tissue deposits
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thermal energy. Due to the photoacoustic effect, the subsequent thermal expansion can be mod-
eled as a heat source H(r, t) that gives rise to a pressure field u(r, t) governed by the wave
equation in an acoustically homogeneous medium (under the condition of thermal confinement):

∇2u(r, t)− 1

c2
∂2u(r, t)

∂t2
= − β

Cp

∂

∂t
H(r, t), (6.21)

where β is the isobaric volume expansion coefficient [K −1], Cp is the specific heat [J/(K kg)],
and c is the speed of sound. Human breast is made of soft tissue with speed variations in the
range of 10% and can thus be considered as an homogeneous medium [125]. The heating function
can be further decomposed as the product

H(r, t) = A(r)ge(t),

where A(r) is the spatial absorption function and ge(t) the temporal illumination function, which
is known by the optical excitation protocol. The spatial absorption function is to be recovered
from the boundary measurements of the pressure wave u. We further assume that the region-
of-interest is Ω with boundary ∂Ω. We can then write the time harmonic solutions of the PAT
wave equation as

∇2U(r, ω) +
ω2

c2
U(r, ω) = −(jω)A(r)Ge(ω), (6.22)

which is the inhomogeneous Helmholtz equation. The problem is to recover the spatial absorption
function A(r) from the Cauchy data (U |

∂Ω
,∇U · e∂Ω), which consists of the pressure field and

its normal derivative along e∂Ω being the unit outward normal to the boundary, respectively.
Without loss of generality, we consider a specific frequency ω with corresponding wave-number
k = ω/c and denote α = (jω)Ge(ω). Hence, we can construct the image of the spatial absorption
function

IΨ(r) =
1

α
(A ∗ αΨ) (r) =

1

α

˛
∂Ω

[
Ψ(r, ω)

∂

∂n
U(r, ω)− U(r, ω)

∂

∂n
Ψ(r, ω)

]
dS. (6.23)

Finally, using the method developed in Section 6.3.1, we can reconstruct the spatial absorption
function A(r) from the measurements of the induced field. In Figure 6.2, we provide a flow-chart
of the proposed algorithm.

6.4.1 Simulation results

We consider a typical PAT breast imaging system where the detection geometry is assumed to
have a 8 cm radius and the generated pressure field is sampled with fast ultrasound transducers
capable of linear and planar measurements of the wave field. The surface integral (6.23), which
is the core of the eigensensing framework, is assumed to be well-approximated thanks to the
high sampling densities that are achieved in current devices [125]. For signals in the typical PAT
range of 0.1–3 MHz, the wavenumber k will be between 500-12’500/m assuming constant speed
of sound in soft tissue; i.e., c = 1500m/s which imposes approximately 0.04mm spatial resolution
of the sensing functions to be constructed [137, 138, 139].

We perform numerical experiments to evaluate the performance of our reconstruction algo-
rithm on a numerical phantom of size 4096×4096 for the absorption map of a 16×16cm2 breast
tissue given in Fig. 6.3 (a). We choose only the zeroth order eigenfunction Ψk

0 in (6.13) for dif-
ferent wavenumber, k from the specified PAT range. In our framework, each eigenfunction will
perform a selection of partial Fourier measurements only on a circle of radius k in the k-space.

Due to incapability of most standard ultrasound transducers, detectors miss the low frequency
components–frequencies less than 0.1 MHz–that are necessary for characterization of different
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tissues. Therefore, we propose to compare the reconstruction result and the original absorption
map after a normalization process. We coin the term SNR improvement (iSNR)

iSNR = 10 log10

∑
i ||¯̂a− ā||2∑
i ||¯̂a0 − ā||2

, (6.24)

where a, â and â
0

are the original image, the reconstructed image and the initial back-projected
image, respectively, which are all normalized with respect to the mean and standard deviation
of the data, i.e., ā = (a− η)/σ where η is the mean and σ is the standard deviation of the data.

For the experiments, we use the breast phantom in Fig. 6.3 (a) and the image is scaled to [0, 1]
followed by a degradation with additive white gaussian noise at 20dB. We assume that the surface
integral (6.23), is well-approximated and we solve for (6.17) for a suitably chosen regularization
parameter (i.e., µ = 8 with an oracle) using partial Fourier samples along a number of circles
that correspond to chosen wavenumbers from the range of PAT. In Table 1, we demonstrate the
results of the reconstruction quality with respect to number of evenly chosen frequencies on the
Fourier domain. As it is expected, the quality of the reconstruction increases as the number
of chosen wave numbers increases which allows more coverage of partial Fourier measurements.
The results in Table 1 also indicate that the necessary number of wavenumbers to be used are
limited for images composed of piecewise smooth absorption regions.

Table 6.1: Comparison of reconstruction quality in terms of iSNR with respect to number of
wavenumber used (#k) evenly spaced on the k-space in the range of PAT.

#k iSNR (dB) #k iSNR (dB)
5 3.19 30 6.26
10 4.74 35 6.27
15 5.79 40 6.28
20 5.88 45 6.29
25 6.21 50 6.30

In Fig. 6.3, we show the reconstruction result for a case where we evenly select 15 frequencies
from the k-space. We observe the corresponding joint mask in the Fourier plane in Fig. 6.3 (b)
and the corresponding inverse Fourier of the measured partial frequency data with 0 dB iSNR
by (6.24). Finally, in Fig. 6.3 (d), we provide our solution with 5.79 dB iSNR with respect
to normalized data as explained earlier. The result shows that reconstruction of fine spatial
details while preserving sharp boundaries is achieved with the proposed method thanks to the
TV regularization which is well-suited to the purpose of reconstruction of images composed of
piecewise smooth regions.

6.5 Summary

We presented a novel theoretical framework called eigensensing principle and considered PAT as
an example setting for the simulations to recover the heat absorption profile from the boundary
measurements of induced wavefield. We proposed a family of sensing functions being eigenfunc-
tions of the spatial Laplace operator to relate the boundary measurements of a wave field to the
spatial source function. We also showed that the eigensensing principle allows for partial Fourier
measurements of the source function which can be used in a joint deconvolution framework for
the reconstruction.

The choice of the sensing functions as the eigenfunctions of the spatial Laplace operator
in polar coordinates allowed better Fourier plane coverage rather than choosing a plane wave.
Notice that the Bessel functions, which are the radial part of the eigensensors in 2D, decay like
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(a) (b)

(c) (d)

Figure 6.3: Reconstruction of heat absorption profile of a breast phantom; (a) Original phantom
image (b) Partial frequency sampling along 15 evenly chosen wavenumbers from the range of
PAT using eigensensing principle. (c) Inverse Fourier transform of the measured partial Fourier
data with iSNR 0dB (d) Reconstruction with total variation (TV) regularization iSNR 5.79dB.
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1/
√
r which also yields better spatial localization than a plane wave. Hence, this also improves

the approximation of the surface integration of the measurements with the sensing function.
We applied our method on a numerical phantom representing the heat absorption profile of a

breast tissue for a 2-D proof-of-concept study. We opted for the total variation (TV) semi-norm
as the regularization term that favors sparseness in the gradient of the absorption profile as an a
priori. The preliminary results showed that the eigensensing principle yields promising results on
the detection of fine spatial details with varying absorption characteristics, which is potentially
interesting for applications such as distinguishing malignant breast tissues from the normal ones.

Sparse image models for the reconstruction of the absorption profile the breast tissue in PAT
from overdetermined boundary field measurements remains as a challenging research area of
further research.
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Chapter 7

Conclusion

In this thesis we have presented a new framework for the non-linear recovery of sparse signal
representations. The remarkable aspect of these continuous-domain signal models is that they
are characterized by finite rate parameters representing an innovation in time or in space. For
the temporal case, this type of signals is used to model either a spontaneous change in the signal
or to represent the (exact) timing of a pulse or a package of information in a communication
channel. Regardless of the application, the localization of the instantaneous signal is utmost
important to fully recover the signal content. Moreover, detecting an unexpected change is a
critical feature for many applications based on time series analysis. For the spatial case, this
type of signals are employed to model a sparse distribution of point sources that generate a
radiating field. For example, the detection of the position of the emitter and the receiver is
key to many applications in signal processing bearing an inherent localization problem from an
observed field at a distance. Moreover, in many tomographical imaging systems, visualizing the
internal volume from a set of boundary measurements is central to many applications where the
abrupt changes in the volume of interest are used to elucidate any abnormality that might play
a key role in early medical diagnosis. More specifically, we have developed non-linear recovery
frameworks applicable to localization problems in time and in space. The main findings and
results are summarized in the next section.

7.1 Summary of findings

• Model fitting approach for improved recovery of noisy FRI signals

We addressed the reconstruction of FRI signal parameters from severely degraded signal
samples. We proposed a novel reconstruction method using a model-fitting approach that
is based on minimizing the error between the computed and the recovered FRI samples
subject to the annihilation system given by the Prony’s method. We have seen that this
approach outperforms the other state-of-the-art FRI reconstruction methods in terms of
two aspects. First, we observed that FRI recovery with model-fitting approach reaches to
the Cramer-Rao Lower Bounds at a lower SNR level with respect to the other methods
well-known in the FRI domain. Second, we have seen that our approach could provide
adequate reconstruction that best explains the available data even if the noise level does
not allow for an accurate estimation with the other methods. Additionally, we proposed
a new model order selection framework to determine the number of unknown parameters
(i.e., the innovation rate) by analyzing the interpretation quality of data with respect to
different model order. Thanks to this extension, the method becomes capable to operate
in real applications.

• FRI to study spontaneous brain activity in fMRI data

89
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We have further tailored the method of the FRI reconstruction with model-fitting approach
for fMRI data analysis. More specifically, we considered the problem of spontaneous ac-
tivity detection in fMRI timecourses using the HRF response as an FRI sampling kernel
to adapt our work. We have validated our method using the fMRI data acquired during
an event-related experiment with visual stimuli. The results showed decisively that the
FRI framework can recover the activity signal in the visual cortex without requiring prior
knowledge of the onsets and durations of the events. Hence, the model fitting approach
with this new model order selection framework proved to be useful in detecting spontaneous
activity in fMRI data. Moreover, the use of the FRI framework among non-visual related
regions in the brain uncovered interesting activities unrelated to the stimulus, thereby,
suggest further analysis of resting-state fMRI data for studying non-stationary dynamics.

• FRI to recover sparse source distributions of radiating fields

We developed the FRI framework for the inverse source problem of radiating fields. We
have introduced the sensing principle (as an interpretation of Green’s theorem) that allows
us to define several classes of sensing kernels invoking the link between the boundary
measurements of the radiating field with the generalized samples of the sparse distribution,
i.e., a set of point sources. In particular, we focused on specific sensing kernels that are
derived from holomorphic functions and allow to retrieve projections of the source locations
on a chosen plane. Finally, using several of these projections, we have shown that it is
possible to recover the parameters of an FRI source distribution from its induced field
measurements on an enclosing surface. Additionally, we demonstrated that this framework
can be useful in a typical photoacoustic tomography as a potential application in which
the goal is to localize small energy absorbing regions in the tissue.

• Eigensensing principle to extract partial Fourier measurements

We developed a new theoretical framework for the inverse source problem of radiating
fields by means of generalizing the sensing principle. We proposed to use the spatial eigen-
functions of the Laplace operator as the new sensing kernels which allow to induce the
link between the boundary measurements of the radiating field with partial Fourier mea-
surements of the source function. With this generalization, we have shown that we can
computationally obtain several images of the source function blurred by known sensing
kernels. Finally, we proposed a joint deconvolution framework to reconstruct the source
function from these intermediate images where each corresponds to partial Fourier mea-
surements of the source function. Hence, the results confirmed that the source function
can be reconstructed without an explicit forward model that needs to be used within a
(usually) slow iterative scheme as in standard methods.

7.2 Outlook

The nonlinear recovery of sparse signal representations provides promising outlook that can
potentially lead to new insights into different application of the FRI theory. Here, we discuss
future considerations and some emerging directions concerning the techniques we developed in
this thesis.

• Resting State Dynamics in fMRI using FRI:

Conventional analysis of functional magnetic resonance imaging (fMRI) data heavily relies
on approaches where prior knowledge about the experimental paradigm is known. How-
ever, not all brain activity can be modeled using a priori known temporal regressors such as
spontaneous activity, interictal epileptic discharges, hallucinations in schizophrenia. More-
over, the so-called resting-state is known to produce characteristic patterns of brain activity
referred to as resting-state networks. Therefore, the exploration of brain activity using the
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developed FRI framework is worth elaborating in the future. Furthermore, it is of particu-
lar interest to monitor different regions of the brain with respect to the activity rate using
the new model order selection framework.

• Variability of the HRF:

The FRI framework models the fMRI timecourse for every voxel as a convolution between
the innovation signal -a stream of Diracs- and the hemodynamic response function (HRF)
as a predefined impulse response. There exist several techniques and models to estimate
the HRF components. It is, however, well known that this approach is limited since high
variability of the HRF within and across subjects has been well acknowledged. Therefore,
a fundamental step in terms of fMRI analysis is to be able to account for the variability
of the HRF. In the FRI framework for fMRI, it is possible to incorporate different HRF
models per regions or voxels as long as they are defined a priori to map the fMRI timecourse
samples to FRI samples. Alternatively, a substantial improvement would be to perform
HRF identification from the fMRI data and to simultaneously use it to recover the activity
signal.

• Localized sensing functions:

The sensing principle addresses the link between the boundary measurements of a radiat-
ing field and the inducing source function through a closed surface integral that has to be
computed precisely. However, in practice we only have access to a finite number of mea-
surements degraded by noise. We partially proposed a solution by designing specific sensing
kernels that are extensions of 2D holomorphic functions where we can control the decay
rate of the function with respect to chosen order of the holomorphic functions. Further-
more, the adapted Cadzow-like denoising scheme is used to relief any model mismatch and
noise. However, designing compact support (or spatially most concentrated functions such
as so-called Slepian functions [140, 141]) sensing kernels bears the supreme importance for
adapting the framework for applications where we have access to only local measurements.

• Sensing in heterogeneous media:

We have used the scalar wave equation where we assumed that the medium of propagation
is homogeneous with constant speed of sound c. Unfortunately, many applications can-
not be modeled using only the homogeneous medium and adequate treatment is required
for the inhomogeneous case. This problem is known as the speed map reconstruction in
nonlinear ultrasound tomography. Specifically, the propagation of the wave is nonlinear in
heterogeneous media, and the reconstruction of the speed map c(r) is an active research
topic in nonlinear tomography [142, 143]. However, we note that the sensing principle
will hold as long as we adapt the sensing functions to the nonlinear propagation medium.
Hence, we can show that the families of sensing functions satisfying[

∇2 − ω2

c(r)

]
Ψ(r, t) = 0, in Ω, (7.1)

where c(r) is the known (or estimated) speed map of the propagation medium, will accom-
plish to induce the link between the boundary measurements and the source function.

• Sensing principle for different PDE’s:

In this manuscript we have considered mainly the Helmholtz equation as a reduced scalar
wave equation that represents radiating fields. However, the developed FRI framework and
the sensing principle can be extended to cope with the inverse source problem governed by
the heat equation: [

∇2 − 1

α

∂

∂t

]
u(r, t) = −p(r, t), in Ω, (7.2)
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where α is the thermal diffusivity constant, p(r, t) is the compactly supported heat source
to be determined from the measurements of the field, u(r, t) on ∂Ω. This model is widely
used to represent diffusion processes in many important physical or biological phenomena
such as temperature variations, and photon transportation in tissues. In this case, we need
to define the families of sensing functions that satisfy[

∇2 − 1

α

∂

∂t

]
Ψ(r, t) = 0, in Ω. (7.3)

Using the principle of the extension of 2-D harmonic functions into proper sensing functions
for the wave field in Proposition 5, we propose that Ψ(x, y, z, t) = e±

√
σz+ασtϕ(x, y) is a

valid sensing function that satisfies (7.3) where ϕ(x, y) is a 2-D harmonic function, and
σ is a proportionality constant. Finally, in order to use the developed framework for the
localization of point heat sources, we propose that

Ψ(x, y, z, t) =
e±
√
σz+ασt

x+ iy − an
where an /∈ Ω (7.4)

will be the necessary sensing function that is valid to use in our framework.

7.3 Concluding remarks

Finally, we would like to give some concluding remarks with respect to FRI framework and
concepts of sparsity:

• Sparsity in the new era of signal processing:

The concept of sparsity is at the heart of all recent developments in signal processing
research in continuous or discrete domain. The reason for this tremendous effort is likely
because sparse signals are easy to process, compress, transmit, and denoise and they are
also broad enough to model numerous classes of naturally-occurring signals and facilitate
observation of various physical phenomena. Moreover, this is also well-aligned with the
Occam’s razor principle that states ‘The simplest explanation for some phenomenon is
more likely to be accurate than more complicated explanations’, strengthening the power
of sparse signal representations. Hence, it will probably stay at the heart of modern signal
processing and keep reshaping the field in the future.

• Rise of the non-linear signal reconstruction algorithms:

Starting with the revolution around the concept of sparsity and search for sparse signal
representations, the field is experiencing an increased empirical evidence that non-linear
methods overpass the classical linear algorithms in terms of reconstruction quality and per-
formance at the expense of the usage of more elaborate mathematical techniques. However,
so far endowed attention on non-linear reconstruction algorithms has been demonstrated
great success suggesting further progression in this direction.

• Novel sparse representation of signals:

New representations of signals have emerged during the past decades to better express the
sparsity structure of the underlying signal form. Thanks to the considerable amount of re-
search around this topic, we have now have strong alternatives for the signal representations
including novel transforms and dictionaries, such as wavelets [98, 14, 12, 144], curvelets
[145, 146] and activelets [62, 63] to name a few. Another remarkable observation is that
many classes of signals of practical interest actually live in a union of subspaces which could
potentially pave the way for novel representation of sparse signals [147]. Furthermore, the
families of sparse stochastic processes are introduced by means of extending the classical
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innovation model as a solution of linear stochastic differential equations which flourishingly
uncovers possible interpretations of sparsity beyond the assumptions of Gaussianity and
stationarity of classical signal processing [118, 148, 149].
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Appendix A

Appendices

A.1 Derivation of CRLB

The goal of the reconstruction problem given in (3.28) is to estimate the parameters Θ =
[t1, t2, . . . , tK , a1, a2, . . . , aK ]T from a vector of M noisy samples s̃m = sm + ẽm where ẽm =
ẽRm + iẽIm is complex additive white Gaussian noise with variance σ2. The real and the imag-
inary parts of ẽm are uncorrelated and each has a variance of σ2/2, i.e., ẽRm, ẽIm ∼ N (0, σ2/2)
so that the covariance matrix of the noise is R = E{ẽẽH} = σ2I. Now, assume that the PDF
of p(̃s,Θ) satisfies the regularity condition, i.e.,

E

[
∂ ln p(s̃,Θ)

∂Θ

]
= 0 for all Θ, (A.1)

then, the variance of any unbiased estimator Θ̂ satisfies CΘ̂ − IF
−1(Θ) ≥ 0, where CΘ̂ is the

covariance matrix and IF(Θ) is the Fisher information matrix given by

IFi,j(Θ) = −E

[
∂2 ln p(s̃,Θ)

∂Θi∂Θj

]
. (A.2)

Consider the PDF given by

p(s̃,Θ) =
1

(2πσ2)M/2
exp

(
− 1

2σ2

M∑
m=1

(s̃m − sm(Θ))2

)
, (A.3)

in which case, the covariance matrix is lower bounded by

CΘ̂ ≥ IF
−1(Θ) (A.4)

where the Fisher information matrix is written explicitly by

IF = ΦH
S R−1ΦS (A.5)

where

ΦS =


∂s1
∂Θ1

∂s1
∂Θ2

. . . ∂s1
∂Θ2K

∂s2
∂Θ1

∂s2
∂Θ2

. . . ∂s2
∂Θ2K

...
... . . .

...
∂sM
∂Θ1

∂sM
∂Θ2

. . . ∂sM
∂Θ2K

 . (A.6)

Hence, the variance of the estimator is bounded by

var(Θ̂) ≥ diag(IF
−1). (A.7)

95



96 Appendices

A.2 Training error of the estimator

The goal of the training error is to choose a reliable model order based on the degradation of
the samples. In practical applications, the true model order is not available. Hence, one has to
determine the degrees of freedom from the available data itself. However, as the degradation
of the samples gets worse with increasing noise levels, the model order selection becomes more
challenging.

We will further analyze the training error and the underlying model order selection framework
developed in Sec. 3.2.3. For a given parameter set Θ = [t1, t2, . . . , tK , a1, a2, . . . , aK ]T , we assume
that available samples are degraded versions of the true samples

s̃m = sm + ẽm

where ẽm = ẽRm + iẽIm is complex additive white Gaussian noise with variance σ2. The
real and the imaginary parts of ẽm are uncorrelated and each has a variance of σ2/2, i.e.,
ẽRm, ẽIm ∼ N (0, σ2/2) so that the covariance matrix of the noise is R = E{ẽẽH} = σ2I.

Let us assume Qk̂(s̃) is a nonlinear denoising method that includes a nonlinear estimation
method; e.g., the data fitting framework in our case. Then, the computation of the estimated
complex moment is given by

Qk̂(s̃) =

K̂−1∑
k=0

âke
αm

t̂k
T . (A.8)

where {t̂k, âk}k=1...k̂ are the estimated parameters for a model order K̂. Finally, the training
error curve is defined as

ET (k̂) = ‖Qk̂(s̃)− s̃‖22, (A.9)

where k̂ = [1, . . . , M2 ] and M is the number of samples of s̃. We can than write

E[ET (k̂)] = E[‖Qk̂(s̃)− s̃‖22] (A.10)

= E[‖Qk̂(s̃)− s+ s− s̃‖22]

= E[‖Qk̂(s̃)− s‖22] + E[‖s− s̃‖22] + 2E[‖(Qk̂(s̃)− s)H(s− s̃)‖22]

= E[‖Qk̂(s̃)− s‖22] + E[‖s− s̃‖22]− 2E[‖wH(Qk̂(s̃))‖22]

where the three terms in the last line are known as the true MSE of the estimator, the noise
power, i.e., Mσ2, and the divergence of the estimator for additive gaussian noise case. Although
this is well-known from Stein’s unbiased risk estimate for real valued functions [150, 151], we
develop the case for the complex valued functions for the sake of completeness.

The complex Gaussian random is given in (3.28) with wRm, wIm ∼ N (0, σ2/2) with the
PDF is given by

p(ẽ) =
1

(πσ2)M/2
exp

(
− 1

σ2

M∑
m=1

(ẽm)2

)
. (A.11)

We work on the following expectation E[‖ẽH(Qk̂(s̃))‖22] = E[‖ẽHI (Qk̂(s̃))‖22]−
iE[‖ẽHQ (Qk̂(s̃))‖22] real and the imaginary parts separately. We first assume the mapping Qk̂ :
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CM → CM be weakly differentiable. Then,

E[‖ẽHI (Qk̂(s̃))‖22] (A.12)

=

ˆ
p(ẽI)

M∑
m=1

ẽImQk̂(s+ ẽI + iẽQ)dM ẽI (A.13)

=

M∑
m=1

ˆ
p(ẽI)ẽiQk̂(s+ ẽI + iẽQ)dM ẽI (A.14)

=

M∑
m=1

ˆ −σ2

2

∂

∂ẽIm
p(ẽI)Qk̂(s+ ẽI + iẽQ)dM ẽI (A.15)

= E[
σ2

2
divẽIQk̂(s̃)], (A.16)

where divẽ =
∑M
m=1

∂
∂ẽm

is the divergence with respect to the real and the imaginary parts.
Hence, the second term is written similarly

E[‖ẽHQ (Qk̂(s̃))‖22] = E[
σ2

2
divẽQQk̂(s̃)] (A.17)

which finally yields

E[‖ẽH(Qk̂(s̃))‖22] =
σ2

2
E[(divẽI − idivẽQ)Qk̂(s̃)]. (A.18)

We note that this can be useful since one can define an unbiased MSE estimator using the
training error, the noise variance σ2 and the divergence of the estimator without knowing the
true value of the signal [150, 151]. However, although an approximation of the divergence can be
done using a Monte-Carlo SURE approach, computing the divergence of a nonlinear estimator
is always a challenging problem itself. Hence, we leave this discussion at this point and focus
only on the training error curve.

The model selection requires to choose the number of degrees of freedom in our estimation
problem. We rather proposed a model selection framework in Sec. 3.2.3 following our observation
that the training curve exhibits a U-curve pattern. This can be easily seen from the first two
terms of the analysis in (A.12) while ignoring the last term. Obviously, the second term does not
change with respect to our mapping Qk̂. Hence, the first term, i.e., the MSE of the estimator,

will dominate the training error for the under and the over fitting values of model order k̂ as
there will be a contribution coming from the bias of the estimator. However, for the true model
order, the estimator MSE will be the variance for an unbiased estimator. Therefore, once the
training error hits the fitting region defined by a plato behavior, we choose the minimum of
model order in this plato to favor a parsimonious model.
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