Applying HTM to an OLTP System: No Free Lunch

Danica Porobic
Ecole Polytechnique
Fédérale de Lausanne
danica.porobic@epfl.ch

David Cervini

Ecole Polytechnique
Fédérale de Lausanne
david.cervini@epfl.ch

ABSTRACT

Transactional memory is a promising way for implementing
efficient synchronization mechanisms for multicore proces-
sors. Intel’s introduction of hardware transactional mem-
ory (HTM) into their Haswell line of processors marks an
important step toward mainstream availability of transac-
tional memory. Transaction processing systems require exe-
cution of dozens of critical sections to insure isolation among
threads, which makes them one of the target applications for
exploiting HTM.

In this study, we quantify the opportunities and limita-
tions of directly applying HTM to an existing OLTP sys-
tem that uses fine-grained synchronization. Our target is
Shore-MT, a modern multithreaded transactional storage
manager that uses a variety of fine-grained synchronization
mechanisms to provide scalability on multicore processors.
We find that HTM can improve performance of the TATP
workload by 13-17% when applied judiciously. However, at-
tempting to replace all synchronization reduces performance
compared to the baseline case due to high percentage of
aborts caused by the limitations of the current HTM imple-
mentation.

1. INTRODUCTION

For decades, processor vendors have increased performance
of uniprocessors by increasing their frequency and complex-
ity of a core with instruction-level parallelism, out-of-order
execution, etc. Around 2005, however, they hit the fre-
quency scaling wall due to power and thermal limitations,
and started increasing performance by placing multiple sim-
pler cores on the same chip. These cores share processor
caches and memory controllers. In the past few years, we
have seen a steady increase in the number of cores on a chip,
as well as in the number of chips in a server.

*Work done while author was at EPFL.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions @acm.org.

DaMoN’15, May 31 - June 4, 2015, Melbourne, VIC, Australia

Copyright 2015 ACM 978-1-4503-2971-2/14/06 ...$15.00.
http://dx.doi.org/10.1145/2771937.2771946.

Anastasia Ailamaki
Ecole Polytechnique
Fédérale de Lausanne
anastasia.ailamaki@epfl.ch

*
Pinar Toézln
IBM Almaden
Research Center
ptozun@us.ibm.com

The abundant parallelism that is present in modern servers
poses significant challenges for software systems that require
efficient synchronization in multithreaded programs. Syn-
chronization approaches can be divided into two broad cat-
egories: lock-based and lock-free. Locks are appealing be-
cause they enable the use of the same locking primitive in
a number of situations; many locking primitives have in-
terchangable interfaces. However, they require the execu-
tion of critical sections. On the other hand, lock-free ap-
proaches rely on hardware primitives, e.g., atomic compare-
and-swap, and thus can potentially achieve very good per-
formance and scalability. The downside of lock-free syn-
chronization is the requirement for a new synchronization
algorithm or data structure for each use case. Transactional
memory [4] promises to make lock-free programming eas-
ier using atomic read-modify-write operations over multiple
memory locations. Software implementations have been an
active area of research for years [3], however, they didn’t
reach mainstream popularity.

Online Transaction Processing (OLTP) is one of the most
important and demanding database applications. Tradition-
ally, OLTP workloads run on high end servers with large
number of processor cores. Exploiting such abundant paral-
lelism is of utmost importance. However, scaling up trans-
action processing systems on multicores is very challenging
due to numerous contentious critical sections executed by a
worker thread in the critical path of transaction execution
[8]. State-of-the-art transaction processing systems achieve
scalability by either 1) relying on partitioning, 2) using fine-
grained synchronization that removes unbounded communi-
cation or 3) implementing specialized lock-free data struc-
tures. Many such approaches require radical redesigns of
OLTP systems or are incompatible with one another.

Recently, Intel introduced a new processor microarchitec-
ture, under a code name Haswell, that supports hardware
transactional memory (HTM). It provides two ways of using
HTM: 1) through specialized instructions that offer trans-
actional primitives and 2) by using lock elision [16]. Spe-
cialized instructions allow a programmer to wrap a critical
section inside a transaction, thus providing atomicity, con-
sistency, and isolation. Lock elision is a technique aimed
at improving the performance of existing lock based code.
Threads speculatively execute the critical section inside a
transaction without acquiring the lock. If their executions
don’t interfere with each other, they will commit and make
their changes visible atomically to other threads. Other-
wise, hardware will roll back and try to acquire the lock
using non-transactional code paths.

Numerous critical sections make OLTP applications an
ideal target for applying HTM. In this paper, we quantify
the challenges and opportunities for applying HTM to the
complex transaction manager Shore-MT. Shore-MT uses a
number of techniques to provide scalability on multicores
using various synchronization mechanisms and techniques
that limit contention on shared data structures. We replace
different synchronization mechanisms with their HT'M coun-
terparts and attempt to entirely replace locks with hardware
transactions for common database operations. While HTM
can improve performance in some cases, the limitations of
the current hardware implementation can also cause perfor-
mance drops in case of frequent aborts. Effectively using
HTM in existing complex system requires more drastic re-
design of multiple components to work around the hardware
limitations.

Our main contributions are:

e We replace various synchronization mechanisms with
their HTM implementations in Shore-MT and show
that this can improve throughput by 13-17% when run-
ning the TATP workload.

e We show that excessive use of hardware transactions
can decrease performance due to aborts related to lim-
itations of the current hardware implementation.

e We demonstrate that a straightforward encapsulation
of a transactional operation (e.g., a B-tree probe) us-
ing HTM can severely hurt performance (up to 73%)
due to the excessive length of the hardware transaction
leading to long rollbacks upon aborts.

The rest of this paper is organized as follows: Section 2
presents the main features of Intel’s hardware transactional
memory implementation and related work on utilizing HTM.
Section 3 provides experimental setup and an overview of
our HTM implementation and discusses challenges we faced.
We discuss experimental results in Sections 4 and 5. Finally,
Section 6 concludes the paper and outlines future work.

2. BACKGROUND AND RELATED WORK

This section briefly introduces hardware transactional mem-

ory, discusses Intel’s implementation, and surveys related
work that utilizes hardware transactional memory to im-
prove performance of software systems.

2.1 Hardware Transactional Memory

Transactional memory was introduced by Herlihy and Moss
over 20 years ago [4]. In their seminal paper, they argue that
lock-free data structures avoid common problems locking
techniques exhibit, such as priority inversion, convoying and
deadlocks, and that transactional memory makes lock-free
synchronization as efficient as the lock-based one. They de-
fine a transaction as a sequence of instructions that is atomic
and serializable, and argue that it can be implemented as
a straightforward extension of the cache coherence proto-
col. Interestingly, two early commercial implementations
use completely different implementations of hardware trans-
actional memory compared to the original proposal. Sun’s
prototype Rock processor relies on speculative execution to
implement best-effort HTM [1], while IBM’s BlueGene/Q
processor uses multiversioned last-level cache with unmodi-
fied cores and L1 caches for the same purpose [20].

Intel Transactional Synchronization Extension (TSX) is
the new instruction set that appears in Intel’s Haswell line
of processors and enables transactional memory support in
hardware. It is closer in spirit to the original HTM pro-
posal than the previous commercial implementations. TSX
instructions are implemented as an extension of the cache-
coherency protocol, so they keep track of what memory ad-
dresses are accessed at a cache-line granularity. Current
implementation is limited to the L1 data caches that are
used to store both read and write sets of a transaction. The
associativity of the cache (8 in current processors) as well as
the size of the cache limits the size of these sets. An eviction
of a write address from the cache always causes an abort.
At the same time, a read address may be evicted from the
cache before a transaction ends without causing an abort,
due to limited support in cache coherence protocols for the
private L2 caches.

TSX instructions can be used in two ways, through Hard-
ware Lock Elision (HLE) and Restricted Transactional Mem-
ory (RTM) modes. Hardware Lock Elision is a legacy com-
patible API inspired by speculative lock elision (SLE) tech-
nique that improves performance of lock-based programs
when critical sections could have been executed without
locks [16]. TSX provides two instruction prefixes XAC-
QUIRE and XRELEASE. The write to the lock prefixed
with XACQUIRE is elided and the lock’s address is added
to the read-set. Further threads will see the lock as free
and will be able to enter the critical section concurrently.
On XRELEASE, the processor has to restore the lock to
the value prior to XACQUIRE. If the value is unchanged,
the processor will elide the write and won’t conflict with the
other threads’ read sets. If no other execution has conflicted
with a committing transaction, it will commit. Otherwise,
the processor will roll back and explicitly acquire the lock.

Restricted transactional memory provides Haswell spe-
cific instructions XBEGIN, XEND, and XABORT. XBE-
GIN starts a transaction. Since starting a transaction can
fail, the programmer needs to provide a fallback path. Also,
the transaction’s status code returned by XBEGIN allows a
programmer to use a custom retry policy to address different
reasons for a failure. XABORT aborts the transaction and
will always succeed, while XEND tries to commit the trans-
action and also requires a fallback path. It does not provide
any guarantees that commit will eventually succeed. Finally,
both HLE and RTM have the XTEST instruction to test if
its call is made within a transaction. XTEST is very useful
since calling XRELEASE or XEND outside of a transaction
will result in a very expensive interrupt.

2.2 Related work

Intel’s Haswell processors have been used in a number of
recent studies that aim at analyzing the performance of dif-
ferent types of software systems. Intel’s study shows that
TSX improves performance of high performance computing
workloads by 40% on average and gives 30% performance
improvement in network intensive applications when TSX is
applied to the TCP/IP stack [24]. This improvement mainly
comes from avoiding serialization and reducing the cost of
uncontended critical sections. A recent study of applying
TSX to garbage collectors demonstrates performance im-
provement of 1.5-2x, while achieving similar improvement
with software transactional memory (STM), which suggests
that hardware implementations have a lot of space for im-

provements [17]. Finally, a comparison study of a standard
transaction memory suite as well as a number of other stress
tests concludes that TSX outperforms software approaches
by 3.3x for short critical sections, while both locking and
STM are still better for long critical sections [2].

The roots of the idea of transactional memory can be
traced to the early research on the concepts of database
transactions [14]. More recently, a study has compared
early hardware prototypes and simulation of HTM to con-
clude that HTM is attractive for low contention scenarios
and can be combined with spinlocks to implement an ef-
ficient lock manager in a database system [19]. A num-
ber of projects have investigated the applicability of Intel’s
Haswell for designing high performance database systems.
The HyPer team has proposed a very low overhead concur-
rency control mechanism that combines timestamp ordering
with short hardware transactions [13]. A recent study has
demonstrated that TSX can improve performance of opera-
tions on common tree index structures [10]. Finally, a recent
proposal demonstrates that a design tuned for Intel’s RTM
instructions can offer performance comparable to a state-
of-the-art main memory transaction processing system with
fine-grained locks while having lower code complexity [21].
Our study is complementary to these results, since we use a
complete complex transaction processing system as a start-
ing point and evaluate the applicability of HTM without
redesigning any of the components.

3. SETUP AND METHODOLOGY

Shore-MT is a scalable open source storage manager op-
timized for multicore processors [9]. It uses a number of
different synchronization mechanisms tuned for a particular
communication pattern in each component of the system.
Worker threads in Shore-MT use fine-grained synchroniza-
tion to avoid any scalability bottlenecks. Even though we
don’t observe any obvious scalability bottlenecks when run-
ning Shore-MT with 8 threads, it goes through around 70
critical sections even for a single row update transaction [8].
Minimizing the time spent in critical section has a potential
for performance improvement. In this section, we outline the
experimental setup and methododology and describe how we
augment existing implementations of different locks with the
HTM versions before presenting experimental analysis in the
next two sections.

3.1 Experimental platform

Hardware and OS. In all experiments we use a server
with Intel’s Haswell i7-4770 processor running at 3.4Ghz. It
has 16GB of main memory. We use memory mapped disks
for storing data and logs since we don’t have an I/O subsys-
tem that can sustain the generated load, and we focus on
maximally utilizing CPU while exercising all code paths in
the system. The operating system used in all experiments
is RedHat Enterprise Linux version 6.5 with kernel version
2.6.32 and we compile code using gcc version 4.8 with max-
imum optimizations.

Profiling tools. For performance analysis, we use ver-
sion 2.6 of Intel’s Performance Counter Monitor (PCM) tool
[22]. PCM can track the number of started, committed,
and aborted transactions and distinguish different causes of
aborts such as data conflict, write buffer capacity, and un-
friendly instructions. To access additional information (e.g.,
the location of an abort) we have used the new experimental

800
700
600
500
400
300
200
100

baseline

Throughput (KTps)

- = =pthread elision

1 2 3 4 5 6 7 8
Number of threads

Figure 1: Impact of pthread lock elision on the
throughput for TATP GetSubData.

features of Intel VTune Amplifier XE version 2015 [18].

Software. As a software platform, we use Shore-MT with
enabled Speculative Lock Inheritance (SLI) [7]. SLI lets the
worker threads inherit the locks that are accessed mostly in
read mode from one transaction to another. This reduces the
number of times a thread needs to go to the lock manager to
request a lock because threads can keep these mostly read-
mode locks they acquired in the previous transaction in the
next one. It is especially useful for HTM since it reduces
abort rates of hardware transactions.

‘Workload. We use the TATP benchmark in two flavors:
only the GetSubscribersData (GetSubData) transaction or
the whole TATP mix (Miz) [15]. TATP models operations of
a mobile phone provider and has very short transactions that
particularly stress thread synchronization of a transaction
processing system. GetSubData is a very short transaction
that reads only one row. We run experiments for 30 seconds
and repeat each experiment three times to obtain results
with standard deviation of less than 1%.

Runs. We use a dataset with 80000 subscribers (120MB)
and increase the number of worker threads in the experi-
ments from 1 to 8 to evaluate scalability. For runs with 1 to
4 threads we use one thread per core, while for more threads
we also use hyper-threading.

3.2 HTM synchronization mechanisms

We first illustrate the use of HTM on occ_rwlock that is
a read/write lock used in Shore-MT to protect histograms
and ensure correctness during the checkpoint operation. It
is accessed in read mode in the critical path of transaction
execution. Since it can also be implemented using pthread
mutexes or replaced by using pthread rwlock, we first at-
tempted to use these options. The pthread library provides
experimental support for HLE [23, 11].

Figure 1 shows throughput with and without pthread-
enabled lock elision for TATP’s GetSubData transaction.
We observe that enabling elision in pthread library has neg-
ligible impact on performance. The version we used relies on
conditional variables that are causing transactions to abort.
Additionally, according to Chapter 12 of Intel’s optimiza-
tion guide [6] regarding TSX, HLE implementation is more
constrained than the RTM one. In particular, Haswell’s im-
plementation of HLE supports only single level nesting, com-

pared to seven levels in RTM. Also, certain aborts can only
happen when using HLE, e.g., unaligned or partially over-
lapping accesses to an elided lock variable cause an abort.
Finally, RTM implementations can be much more flexible
as programmers can fine tune the conflict resolution policies
as we describe in the paragraphs below. Due to its higher
flexibility, we use RTM in the rest of this paper.

Since using HTM support in the pthread library did not
work well for this case, we augment our existing implementa-
tion of occ_rwlock using RTM. As any changes should trans-
parently fall back to the old implementation on platforms
that do not support TSX, we use preprocessor directives
to isolate the RTM code. We follow the best practices de-
scribed by Intel’s guidelines [6, 12].

The interface of occ_rwlock consists of two acquire and
two release functions: one of each kind for reads and writes.
We extend implementation of the acquire functions in the
following way:

void occ_rwlock::acquire() {
#ifdef OCC_RWLOCK_RTM_WRAPPER
unsigned int status;
for(int i = 0; i < 2; i++) {
if ((status = _xbegin()) == _XBEGIN_STARTED) {
if (has_reader()) {
_xabort (0xff);
}
return;
} else if ((status & _XABORT_EXPLICIT) &&
_XABORT_CODE(status) == O0xff) {
while (__atomic_load_n(&_active_count,
__ATOMIC_ACQUIRE))
_mm_pause () ;

} else if (status & _XABORT_CONFLICT) {
long int backoff=10*random()/RAND_MAX;
while (backoff--) _mm_pause();

} else if (status & _XABORT_RETRY) {
_mm_pause() ;

} else {
break;

}

}
#endif
/**original acquire code herex*/

}

We follow Intel’s guidelines that suggest using 1-4 at-
tempts to start a transaction before falling back to non-
transactional path. Our experiments show that 2 attempts
are optimal for our scenario. We make sure to avoid the lem-
ming effect, i.e., the case where threads prevent each other
from starting a TSX transaction by always acquiring the
lock [12]. In case of an explicit abort (i.e., when the lock
is held by another thread), the obvious solution is to wait
until the lock is free again and retry the operation (i.e, the
same behaviour as the normal lock).

However, if an abort is caused by other reasons, we can
adapt and tune the fallback path. There may be several
reasons an abort occurs, so we adapt our strategy according
to the status code returned by _xbegin(). In particular, in
case of data conflicts, we pause (_mm_pause()) for a random
amount of time and retry later. If the abort is due to an-
other reason (e.g., overflow of the transactional state buffer)
and the operation might succeed next time, we can retry it

immediately. Otherwise, we acquire the lock. This imple-
mentation gives priority to TSX transactions over acquiring
the lock.

The modifications to the release functions are more straight-
forward:

void occ_rwlock: :release() {
#ifdef OCC_RWLOCK_RTM_WRAPPER
if ('has_reader() & _xtest()) {
_xend () ;
return;
}
#endif
/**original release code here*x/

}

We use the same approach to elide other locks. The two
spinlocks that we elide are tatas (test-and-test-and-set) and
mcslock. Tatas lock is a fast spinlock used by Shore-MT for
its lightly contended critical sections (e.g., latching, logging),
as it does not scale well under heavy contention.

Mecslock is a queue-based spinlock useful for short, con-
tented critical sections. To acquire the lock, a thread has
to atomically override the queue’s tail with its pointer. If
the previous value stored in the tail isn’t NULL, the thread
spins on it until it becomes NULL again. The tail variable
constitutes the lock in itself. In addition to acquire and re-
lease functions common to previously discussed locks, the
mcslock also has an attempt function which only acquires
the lock if it is free. Extending the attempt function is sim-
pler compared to the acquire function and is illustrated in
the listing below:

bool attempt(gnode* me) {
#ifdef MCS_LOCK_RTM_WRAPPER
unsigned int status;
if ((status = _xbegin()) == _XBEGIN_STARTED) {
if (_tail != NULL) {
_xabort (0xff) ;
}
return true;
}
#endif
/**originial code here*x/

}

The final lock that we examine is single reader, multiple
writer srwlock that is used for latching in Shore-MT. Its im-
plementation relies on mcslocks, so we could reuse RTM-
enabled mcslocks with small modifications related to the
complex interface of srwlock. This complexity arises since
srwlock should be able to return the number of readers and
the mode in which it is held.

4. APPLYING HTM TO LOCKS

In this section, we analyze the impact of the modifications
presented in Section 3.2. We identify the cases in which
HTM improves performance and the cases when it harms
performance, and analyze the causes for such effects.

4.1 Beneficial cases

We start with the best case, when eliding locks improves
performance. We use RTM-enabled versions of occ_rwlock,
tatas lock and mcslock, while keeping the vanilla srwlock,

800
700
600
500
400
300
200

Throughput (KTps)

baseline

100 - = =¢lided locks

1 2 3 4 5 6 7 8
Number of threads

Figure 2: Impact of eliding selected locks
(occ_rwlock, tatas lock, mecslock) for TATP GetSub-
Data.

threads | % aborts | % capacity | % conflict
1 3.5 2.7 0.7
2 3.2 1.5 1.7
3 5.2 1.2 4.0
4 7.2 0.6 6.8
5 11.1 2.3 7.3
6 12.3 3.2 6.0
7 14.3 5.2 5.2
8 16.1 6.0 5.0

Table 1: Breakdown of abort rates by root cause
for different number of worker threads when eliding
selected locks (occ_rwlock, tatas lock, mcslock).

100 baseline

Throughput (KTps)

- = =elided locks

1 2 3 4 5 6 7 8
Number of threads

Figure 3: Impact of eliding selected locks
(occ_rwlock, tatas lock, mcslock) for TATP Mix
workload.

and run TATP GetSubData and Mix. Figure 2 and Figure 3
plot the throughput of the baseline and the version that uses
RTM-enabled synchronization primitives.

We get the best improvement when running up to one
thread per core for read-only GetSubData transactions, rang-
ing from 13% to 17%. The improvement is smaller in the
case of TATP Mix workload due to the larger number of
critical sections and the mix of read-only and update trans-
actions. Executing more critical sections causes more aborts
since it increases the potential of collisions and conflicts.

Beyond 4 threads, for GetSubData, we observe that the
increase in throughput decays with elided locks whereas the
baseline throughput keeps increasing at a higher rate. To
shed some light on this behavior, we use the PCM tool. Since
it can measure up to 4 hardware counters per run, we opt
for measuring the number of hardware transactions started
and aborted, as well as the number of hardware transactions
that have aborted via capacity and conflict signal. Capacity
signal is triggered when there are is no available space in
the transactional store buffer which is significantly smaller
than the size of the L1 data cache. Conflict is signaled due
to a data conflict on a transactionally accessed address. All
other aborts are tracked using the miscellaneous hardware
counter. We profile the GetSubData and report the com-
puted total abort rates as well as the capacity and conflict
rates in Table 1. As single abort can trigger multiple signals,
the sum of capacity and conflict rates can be higher than the
overall abort rate [6].

The abort rate is fairly low until 4 threads: around 3%
for 1 and 2 threads and below 10% for 3 and 4 threads. In
all our experiments, we observe that capacity conflicts are
the main cause of aborts for single threaded case whereas
their contribution diminishes with more threads. With 2 to
4 threads, conflicts become the main cause of aborts which
is expected due to the concurrent accesses to the protected
data structures. When using hyper-threading, abort rates
jump over 10% and keep increasing with more threads. Ca-
pacity constraints become a significant contributor to the
abort rates, as well as resource limitations caused by two
threads sharing the same L1 cache. The Mix workload ob-
serves a similar behavior.

4.2 Challenging case

Not all lock elision is beneficial, as we show in this ex-
periment where we use the RTM versions of all four locks.
We run GetSubData that benefits from using RTM-enabled
versions of occ_rwlock, tatas lock and mcslock, and we ad-
ditionally use RTM version of srwlock. Figure 4 plots the
throughput as the number of threads increases while Table 2
contains a breakdown of aborts. The version with elision is
16% slower on average between 2 and 5 threads due to the
abort rates of over 18%. Conflicts are the main contribu-
tor to the high abort rates. In our system these are real
data conflicts on statistic variables accessed in the critical
sections protected by srwlock. Resolving this issue requires
modifications to the system to remove these data conflicts,
for example, by decentralizing statistics collection. The rela-
tive impact of different causes follows the trend we observed
in Table 1. The impact of capacity aborts is high in the
single threaded case, then diminishes for 2-4 threads and
again rises steadily when there are multiple thread per core.
Resource aborts are also more prominent in the presence of
hyper-threading.

800
700
600
500
400
300
200
100 [/

Throughput (KTps)

baseline

- = =srwlock also elided

1 2 3 4 5 6 7 8
Number of threads

Figure 4: Impact of eliding all locks (occ_rwlock,
tatas lock, mcslock, srwlock) for TATP GetSubData.

threads | % aborts | % capacity | % conflict
1 15.2 13.8 1.3
2 18.2 2.2 17.9
3 19.8 1.9 20.8
4 20.4 2.8 22.1
5 20.9 3.0 18.5
6 22.2 4.5 15.8
7 23.1 5.3 13.3
8 25.1 6.1 12.1

Table 2: Breakdown of abort rates by root cause for
different number of worker threads when eliding all
locks (occ_rwlock, tatas lock, mcslock, srwlock).

Discussion. As we demonstrate in this section, it is pos-
sible to achieve performance improvements by using HTM to
implement synchronization mechanisms used in a complex
application with fine-grained locking. While the improve-
ment is possible even when running in single threaded mode,
using HTM can also decrease performance when transac-
tions have high abort rates. Decreasing abort rates requires
more detailed root cause analysis to remove lurking con-
tention on shared data structures and careful padding to
eliminate any aborts due to false sharing.

S. APPLYING HTM TO B-TREE OPERA-
TIONS

In order to evaluate the applicability of HTM on more
complex operations in the database system, we replace fine-
grained latching during B-tree traversal with a single coarse-
grained latch. We modify the tree traversal function by plac-
ing an mcslock (that will be elided) to protect the call to
the lookup function. In this way, threads will just elide one
lock instead of acquiring/releasing latches as they traverse
the B-tree to find the key. This approach exemplifies the
spirit of transactional memory: use a coarse-grained lock on
a data structure to simplify programming and let transac-
tional memory exploit the inner parallelism.

We evaluate the impact of eliding locks in B-tree traversal
code using GetSubData workload and plot the performance
in Figure 5. The results are disappointing: the throughput
is 73% lower than the baseline with 8 threads. Even for a

N
o O
o O

o
o

baseline

o
o

— = =NolatchInBtree

Throughput (KTps)
N w B w1 (o))
o O
o O

[any
o o
o O

\

o

1 2 3 4 5 6 7 8

Number of threads

Figure 5: Impact of lock elision in B-tree traversal
code for TATP GetSubData.

threads | % aborts | % capacity | % conflict
1 6.1 5.1 0.9
2 10.5 1.4 2.3
3 10.8 0.7 6.0
4 10.7 0.7 4.2
5 12.8 1.1 4.3
6 14.3 1.8 4.8
7 15.2 2.0 4.2
8 15.5 2.1 4.3

Table 3: Breakdown of abort rates by their root
cause when eliding a coarse grained lock for different
number of worker threads.

single thread, the throughput is 10% lower. We profile the
runs using the PCM tool [22] and summarize the abort rates
in Table 3 breaking them down into capacity and conflict
categories. The abort rates for 2 to 4 threads average 10%
before steadily climbing when we also use hyper-threading.
While the percentage of capacity related aborts is roughly
similar to the case where using RTM was beneficial, the
percentages of conflict and other resource related aborts rise.
Also, the impact of these aborts is much higher due to very
long transactions that cause contention and waste significant
amount of work done when they’re aborted. Hence, HTM is
much more suitable for short critical sections.

Discussion. At first glance, these results contradict the
conclusion of the study of using HTM to improve perfor-
mance of index structures for main memory databases [10].
However, to achieve good performance, authors of the study
had to modify data structures to overcome limitations of the
current hardware implementation. Also, they are studying
the indexes in isolation whereas we are looking at the whole
system which increases 1) the size of the hardware trans-
actions since we need to ensure isolation and 2) the proba-
bility of aborts due to capacity limitations of the L1 cache.
Achieving comparable results in our system is possible, how-
ever it requires holistic redesign of multiple components of
the system.

6. CONCLUSIONS AND FUTURE WORK
In this paper we present a study of directly applying Intel’s
TSX instructions to Shore-MT transaction manager. We an-

alyze two scenarios: using RTM to optimize implementation
of the synchronization mechanisms and using RTM-enabled
lock to replace multiple locks in a B-tree traversal operation.
The first scenario shows promising results since TSX is very
efficient for short critical sections with low contention. On
the other hand, applying it to complex operations requires
the use of long critical sections that cause expensive aborts
due to the limitations of the current implementation.

In the months after the release of Haswell desktop pro-
cessors like the one we use in this study, Intel has found a
bug in the TSX implementation and disabled TSX support
in affected processors [5]. While this illustrates challenges in
designing hardware transactional memory, we are optimistic
that it shows great potential for improving the performance
of multithreaded software. Shore-MT is an example of a
scalable and complex system whose performance can be im-
proved using TSX on a benchmark that stresses synchro-
nization facilities. However, utilizing the full potential of
transactional memory on current and future hardware plat-
forms requires a substantial redesign of different components
of the system.

Acknowledgements

We would like to thank the members of the DIAS labora-
tory for their support throughout this work. We also thank
the reviewers for their constructive feedback. This work is
partially funded by the Swiss National Science Foundation
(Grant No. 200021-146407/1).

7. REFERENCES

[1] D. Dice, Y. Lev, M. Moir, and D. Nussbaum. Early
Experience with a Commercial Hardware
Transactional Memory Implementation. In ASPLOS,
pages 157-168, 2009.

[2] N. Diegues, P. Romano, and L. Rodrigues. Virtues
and Limitations of Commodity Hardware
Transactional Memory. In PACT, pages 3—14, 2014.

[3] A. Dragojevi¢, P. Felber, V. Gramoli, and
R. Guerraoui. Why STM Can Be More Than a
Research Toy. CACM, 54(4):70-77, 2011.

[4] M. Herlihy and J. E. B. Moss. Transactional memory:
Architectural support for lock-free data structures. In
ISCA, pages 289-300, 1993.

[5] Intel. Erratum HSW136: Software Using Intel TSX
May Result in Unpredictable System Behavior.
http://www.intel.com/content/dam/www /public/us/
en/documents/specification-updates/xeon-e3-1200v3-
spec-update.pdf.

[6] Intel. Intel 64 and IA-32 Architectures Optimization
Reference Manual.
http://www.intel.com/content/www /us/en/
processors/architectures-software-developer-
manuals.html.

[7] R. Johnson, I. Pandis, and A. Ailamaki. Improving
OLTP scalability using speculative lock inheritance.
PVLDB, 2(1):479-489, 2009.

[8] R. Johnson, I. Pandis, and A. Ailamaki. Eliminating

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

(21]

(22]

23]

(24]

unscalable communication in transaction processing.
VLDBJ, 23(1):1-23, 2014.

R. Johnson, I. Pandis, N. Hardavellas, A. Ailamaki,
and B. Falsafi. Shore-MT: a scalable storage manager
for the multicore era. In EDBT, pages 24-35, 2009.
T. Karnagel, R. Dementiev, R. Rajwar, K. Lai,

T. Legler, B. Schlegel, and W. Lehner. Improving
in-memory database index performance with Intel
Transactional Synchronization Extensions. In HPCA,
pages 476-487, 2014.

A. Kleen. https://github.com/andikleen/glibc.

A. Kleen. TSX anti patterns in lock elision code.
https://software.intel.com/en-us/articles/tsx-anti-
patterns-in-lock-elision-code.

V. Leis, A. Kemper, and T. Neumann. Exploiting
hardware transactional memory in main-memory
databases. In ICDE, pages 580-591, 2014.

D. B. Lomet. Process structuring, synchronization,
and recovery using atomic actions. In LDRS, pages
128-137, 1977.

S. Neuvonen, A. Wolski, M. Manner, and V. Raatikka.
Telecom application transaction processing benchmark
(TATP), 2009.
http://tatpbenchmark.sourceforge.net/.

R. Rajwar and J. R. Goodman. Speculative Lock
Elision: Enabling Highly Concurrent Multithreaded
Execution. In MICRO, pages 294-305, 2001.

C. G. Ritson, T. Ugawa, and R. E. Jones. Exploring
Garbage Collection with Haswell Hardware
Transactional Memory. In ISMM, pages 105-115,
2014.

K. Rogozhin. Profiling Intel Transactional
Synchronization Extensions with Intel VTune
Amplifier XE.
https://software.intel.com/en-us/articles/profiling-
intel-transactional-synchronization-extensions
-with-intel-vtune-amplifier-xe.

K. Q. Tran, S. Blanas, and J. F. Naughton. On
transactional memory, spinlocks, and database
transactions. In ADMS, pages 43-50, 2010.

A. Wang, M. Gaudet, P. Wu, J. N. Amaral,

M. Ohmacht, C. Barton, R. Silvera, and M. Michael.
Evaluation of Blue Gene/Q Hardware Support for
Transactional Memories. In PACT, pages 127136,
2012.

Z. Wang, H. Qian, J. Li, and H. Chen. Using restricted
transactional memory to build a scalable in-memory
database. In Furosys, pages 26:1-26:15, 2014.

T. Willhalm, R. Dementiev, and P. Fay. Intel
performance counter monitor 2.6, 2012.
http://www.intel.com/software/pcm.

N. Willis. Merging lock elision into glibc.
https://lwn.net/Articles/557222/.

R. M. Yoo, C. J. Hughes, K. Lai, and R. Rajwar.
Performance evaluation of Intel transactional
synchronization extensions for high-performance
computing. In SC, pages 1-11, 2013.

