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Multi-task additive models with shared transfer
functions based on dictionary learning

Alhussein Fawzi, Mathieu Sinn, and Pascal Frossard

Abstract—Additive models form a widely popular class of
regression models which represent the relation between covariates
and response variables as the sum of low-dimensional transfer
functions. Besides flexibility and accuracy, a key benefit of these
models is their interpretability: the transfer functions provide
visual means for inspecting the models and identifying domain-
specific relations between inputs and outputs. However, in large-
scale problems involving the prediction of many related tasks,
learning independently additive models results in a loss of model
interpretability, and can cause overfitting when training data
is scarce. We introduce a novel multi-task learning approach
which provides a corpus of accurate and interpretable additive
models for a large number of related forecasting tasks. Our
key idea is to share transfer functions across models in order
to reduce the model complexity and ease the exploration of the
corpus. We establish a connection with sparse dictionary learning
and propose a new efficient fitting algorithm which alternates
between sparse coding and transfer function updates. The former
step is solved via an extension of Orthogonal Matching Pursuit,
whose properties are analyzed using a novel recovery condition
which extends existing results in the literature. The latter step is
addressed using a traditional dictionary update rule. Experiments
on real-world data demonstrate that our approach compares
favorably to baseline methods while yielding an interpretable
corpus of models, revealing structure among the individual
tasks and being more robust when training data is scarce.
Our framework therefore extends the well-known benefits of
additive models to common regression settings possibly involving
thousands of tasks.

Index Terms—Additive models, nonparametric regression, dic-
tionary learning, sparse representations, multi-task learning.

I. INTRODUCTION

Additive models are a widely popular class of nonparamet-
ric regression models which have been extensively studied
theoretically and successfully applied to a wide range of
practical problems in signal processing and machine learning
[1], [2], [3]. The key ingredient of additive models are transfer
functions that explain the effect of covariates on the response
variable in an additive manner. Besides being flexible (e.g.,
allowing for the modeling of nonlinear effects for both contin-
uous and categorical covariates) and yielding good predictive
performance, an important selling point of additive models
is their interpretability. In particular, the transfer functions
provide intuitive visual means for application experts to under-
stand the models and explore the relationship between input
and output signals of the system under study.

In many real-world data modeling settings, one faces the
problem of forecasting a large number (e.g., several thou-
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sands) of related tasks. In this case, learning additive models
independently for each task has several disadvantages. Firstly,
the number of models would be too large for a domain
expert to visually inspect all the transfer functions, hence - in
essence - the corpus of models loses its interpretability from
a human point of view. Secondly, independently learning the
models ignores structure and commonality among the tasks.
Thirdly, when training data is scarce, learning the models
independently is prone to overfitting the data.

To overcome these challenges, we introduce a novel multi-
task learning framework for additive models. Intuitively, the
key idea is to share transfer functions across tasks that exhibit
commonality in their relationships between input and output
variables. More specifically, each individual task is modeled as
a weighted sum of transfer functions chosen from a candidate
set which is common to all tasks, and the cardinality of
which is small relative to the total number of tasks. Our
algorithm for solving the multi-task additive model learning
problem uses an intrinsic connection with sparse dictionary
learning [4], [5], [6]. More specifically, we reformulate the
fitting problem as a special form of dictionary learning with
additional constraints; leveraging recent advances in the field,
we propose a novel fitting approach that alternates between
updates of the transfer functions and the weights that scale
these functions. We introduce a novel algorithm for updating
the coefficients that scale the transfer functions, called Block
Constrained Orthogonal Matching Pursuit (BC-OMP), which
extends conventional Orthogonal Matching Pursuit [7], [8].
Furthermore, we derive novel coherence conditions for the
accurate recovery of the optimal solution which are interesting
in their own right as they extend existing theory. Transfer
functions, which correspond to dictionary elements in our
dictionary learning analogy, are updated using a traditional
dictionary step update [9].

In the experimental part of our paper, we apply the proposed
algorithm to synthetic and real-world electricity demand data.
Synthetic results show that the proposed approach accurately
learns transfer functions from noisy data. In addition, the
proposed method is shown to outperform baseline linear and
non-linear regression methods in terms of prediction accuracy.
In a second experiment, we use a dataset of 4,066 smart meter
time series data from Ireland, and show that our approach
yields predictive performance comparable to baseline methods
while only using a small number of candidate functions;
interestingly, the discovered commonality of tasks corresponds
to classes of residential and different types of enterprise
customers. When using only a small fraction of the training
data, our approach yields more robust results than independent
learning and hence inherits the benefits of traditional multi-
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task learning. In a final experiment, we apply our multi-
task learning algorithm to a single-task problem to improve
the prediction accuracy of traditional additive model learning,
while maintaining the number of learned transfer functions
small.

Over the past decade, many works have shown the benefits
of multi-task learning over independently learning the tasks
[10], [11], [12], and different approaches to multi-task learning
were considered. In [13], the authors impose the linear weight
vectors of different tasks to be close to each other. The work in
[14] constrains the weight vectors to live in a low-dimensional
subspace. Still in the context of linear models, the authors
of [15] assume that the tasks are clustered into groups, and
that tasks within a group have similar weight vectors. In the
context of additive models, [16] proposes new families of
nonparametric models that enforce the selected covariates to be
the same across tasks. This setting is particularly relevant for
regression tasks involving a large number of covariates p, and
the algorithm in [16] extracts a common set of covariates for
the tasks. Our work significantly differs from [16] in several
aspects. While [16] enforces a common set of covariates
across tasks, the transfer functions are different. In other
words, their approach only leverages commonality with respect
to which covariates affect the dependent variable, but not
how they affect it, leading to a number of transfer functions
that is still too large for inspection by human experts. By
imposing a common set of candidate transfer functions across
tasks, we limit the number of transfer functions, and obtain
interpretable models even for problems involving thousands
of tasks. Moreover, unlike [16], we consider a setting where
all covariates are relevant for the task at hand. Hence, in this
paper, we are typically interested in problems involving a small
number of input covariates p, and a very large number of
tasks N . Our approach shows that, by learning a number of
transfer functions that is much smaller than pN , it is possible
to achieve comparable or better performance than models
involving a much larger number of parameters.

The paper is structured as follow: Sec. II introduces notation
and provides a review of additive models. In Sec. III we
formulate the multi-task additive model learning problem and
establish the connection with sparse dictionary learning. The
algorithm for solving the multi-task problem is explained in
Sec. IV, and the theoretical analysis of recovery conditions is
provided in Sec. V. In Sec. VI we describe our experiments
on synthetic and real-world data; conclusions and an outlook
on future research are given in Sec. VII.

II. PRELIMINARIES

A. Notations

We use boldface notation for vectors and matrices. More-
over, we use [n] to refer to the set {1, . . . , n}. Given a
vector z, we denote by ‖z‖0 the `0 “norm”, that counts the
number of nonzero elements in z. Also, we denote by ⊗ the
Kronecker product operation. If Z ∈ Rn1×n2 is a matrix,
vec(Z) ∈ Rn1n2 denotes the vectorization of Z, obtained by
stacking the columns of Z, and Z† denotes the Moore-Penrose
pseudo-inverse. Moreover, we use the notation z ∈ Z to denote
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Fig. 1. Additive model diagram

that z is one of the columns of Z. Finally, Z ≥ 0 denotes the
entry-wise non-negativity constraint.

B. Additive models review

We first briefly review additive models. Let {xij , i ∈
[n], j ∈ [p]} and {yi, i ∈ [n]} denote respectively the observed
covariates and response variable. Here, n is the number of
observations and p the number of covariates. Additive models
have the form:

yi = µ+

p∑
j=1

fj(xij) + εi,

where µ is the intercept and εi is assumed to be a white
noise process. The transfer functions fj represent the effect
of a covariate on the response variable. The additive model
is illustrated in Fig. 1. To ensure unique identification of
the fj’s, we assume that transfer functions are centered:∑n
i=1 fj(xij) = 0 for all j ∈ [p]. Nonlinear transfer functions

of continuous covariates are commonly modeled as smoothing
splines [2], [1], i.e.,

fj(z) =

Tj∑
t=1

βjtφjt(z), (1)

where βjt denotes the spline coefficients, φjt the B-spline
basis functions, and Tj the number of basis splines. Using
this representation, estimating the transfer functions therefore
amounts to the estimation of the spline coefficients βjt and the
intercept µ. We consider the following fitting problem with
centering constraints:

min
µ,{βjt}

n∑
i=1

yi − µ− p∑
j=1

Tj∑
t=1

βjtφjt(xij)

2

subject to
n∑
i=1

Tj∑
t=1

βjtφjt(xij) = 0 for all j ∈ [p].

One can convert the above problem to an unconstrained
optimization problem by centering the response and basis
functions. Specifically, let φ̄jt = 1

n

∑n
i=1 φjt(xij), sj(z) =

[φj1(z)− φ̄j1, . . . , φjTj
(z)− φ̄jTj

]T and

S =

s1(x11)T . . . sp(x1p)
T

...
s1(xn1)T . . . sp(xnp)

T

 . (2)
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We define the vectorized spline coefficients
β =

[
βT1 . . . βTp

]T
with βj =

[
βj1 . . . βjTj

]T
.

The above constrained fitting problem is then equivalent to
the following unconstrained least squares problem:

min
β
‖y − Sβ‖22,

where y denotes the centered response variables y = [y1 −
ȳ, . . . , yn − ȳ]T , with ȳ = 1/n

∑n
i=1 yi. In order to avoid

overfitting, a quadratic penalizer is commonly added, leading
to the problem:

min
β
‖y − Sβ‖22 + βTΣβ,

with a regularization matrix Σ. The penalized minimization
problem has the closed form solution:

β̂ = (STS + Σ)−1STy,

provided that STS + Σ is non-singular.

III. MULTI-TASK ADDITIVE MODEL WITH SHARED
TRANSFER FUNCTIONS

We now introduce our new multi-task additive model with
shared transfer functions. We assume a N -task regression
problem where {x(m)

ij , i ∈ [n], j ∈ [p],m ∈ [N ]} are the
covariates, and {y(m)

i , i ∈ [n],m ∈ [N ]} denotes the response
variables, where the superscript (m) is the task index. We
further assume without loss of generality that the response
variables have zero mean. Our multi-task model is given as
follows:

y
(m)
i =

p∑
j=1

Lj∑
l=1

λ
(m)
jl fjl

(
x
(m)
ij

)
+ ε

(m)
i (3)

with ‖λ(m)
j ‖0 ≤ 1 and λ

(m)
j ≥ 0 for all j ∈ [p],m ∈ [N ].

Note that, in our new model, the response variables are
weighted linear combinations of p transfer functions, each of
which is selected from the set Fj , {fjl, l ∈ [Lj ]} which
contains Lj candidate transfer functions that model the effects
of the covariate j. The `0 norm constraint on the weights λ(m)

j

prevents two transfer functions from the set Fj to be active for
the same task. Hence, only one transfer function captures the
effect of a covariate in a response variable. This constraint is
crucial, as it disallows the creation of “new” transfer functions
from the candidate ones by linearly combining them. While
the transfer functions fjl are common to all the tasks, the non-
negative weights λ(m)

jl are task-specific and permit to scale
the transfer functions specifically for each task. This offers
extra flexibility as a wide range of tasks can be modeled using
the model in Eq. (3) while keeping the number of (standard-
ized) candidate transfer functions small. As we will see in
Sec. VI, the non-negativity constraint in Eq. (3) facilitates the
interpretation of the activation of the same transfer functions
across different tasks as commonality; without this constraint,
the same transfer functions could represent exactly opposite
effects, e.g., higher temperatures leading to higher electricity
demand for one task, and leading to lower demand for another
one. Our multi-task model is illustrated in Fig. 2.

⌃
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Fig. 2. Multi-task additive model diagram. Fj denotes the set of Lj candidate
transfer functions that model the effects of covariate j. The sets Fj , 1 ≤ j ≤
p are common to all tasks. Each task is modeled as a linear combination
of transfer functions chosen from the sets F1, . . . ,Fp. In this diagram, the
symbol denotes an arbitrary index in [Lj ].

Similarly to what is done with single-task additive models
(Sec. II-B), we model transfer functions using smoothing
splines. Specifically, we write:

fjl(z) = sj(z)
Tβjl, (4)

where sj and βjl denote the centered spline basis functions
and coefficients, respectively. Using this representation, we
rewrite the model in Eq. (3) in the following vector form:

∀m ∈ [N ], y(m) =

p∑
j=1

S
(m)
j Bjλ

(m)
j + ε(m),

where S
(m)
j =

[
sj

(
x
(m)
1j

)
. . . sj

(
x
(m)
nj

)]T
, Bj =[

βj1 . . . βjLj

]
, and ε(m) is a Gaussian iid random vector

with zero mean. The model fitting then consists in finding
admissible {Bj}pj=1 and {λ(m)

j }j∈[p],m∈[N ] that minimize
the sum of squared residuals, while avoiding overfitting. We
therefore write the problem as follows:

(P): min
Bj ,λ

(m)
j

N∑
m=1

∥∥∥∥∥∥y(m) −
p∑
j=1

S
(m)
j Bjλ

(m)
j

∥∥∥∥∥∥
2

2

+ Ω({Bj}pj=1),

subject to ‖λ(m)
j ‖0 ≤ 1 and λ

(m)
j ≥ 0 for all j,m,

where Ω is a regularization term that prevents model overfit-
ting. Note that, unlike traditional additive model learning, the
above problem has two types of unknowns, that is, weights
and transfer functions. In this paper, we use the following
regularization function

Ω({Bj}pj=1) = bTΣb, (5)

with the regularization matrix Σ = νI and ν > 0, and b is
the vector formed by concatenating vec(Bj), 1 ≤ j ≤ p. Note
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that this regularizer penalizes large coefficients of smoothing
splines with the strength of this effect tuned by ν.

The fitting problem (P) is inherently related to sparse
dictionary learning [5] where the goal is to find the dictionary
D and sparse codes C that minimize

‖Y −DC‖2F subject to ‖c‖0 ≤ p for all c ∈ C,

with Y = [y(1) . . .y(N)] ∈ Rn×N , and p is the desired
level of sparsity. To simplify the exposition of the analogy,
let us consider the multi-response scenario where covariates
are equal across tasks (x(m)

ij = xij for all m). In this
case, we have S

(m)
j = Sj for all m ∈ [N |. We define

the subdictionaries (or blocks) Dj , SjBj and the global
dictionary D ,

[
D1 . . . Dp

]
. The problem (P) can be

rewritten as follows:

‖Y −DΛ‖2F + Ω({Bj}pj=1)

subject to ‖λ(m)
j ‖0 ≤ 1 for all j,m and Λ ≥ 0,

with

Λ =

λ
(1)
1 . . . λ

(N)
1

...
...

...
λ(1)
p . . . λ(N)

p .


Hence, the difference between sparse dictionary learning and
problem (P) essentially lies in the underlying sparsity con-
straints: while in the former one the only constraint is that
sparse codes have no more than p nonzero entries, in the
latter they are further constrained to have at most one nonzero
entry for each subdictionary1. Based on this analogy, we
introduce in the next section a novel algorithm for efficiently
approximating the solution of problem (P).

IV. LEARNING ALGORITHM

The problem of dictionary learning has proved challenging.
In fact, even if the dictionary is known, it can be NP-hard
to represent a vector as a linear combination of the columns
in the dictionary [17]. Problem (P) inherits the difficulty of
dictionary learning, and we therefore propose an approximate
algorithm that solves successively for the weights {λ(m)

j } and
spline coefficients {Bj}. The proposed algorithm can be seen
as an extension of the popular MOD algorithm [9], which
alternates between sparse coding and dictionary updates.

A. Weights update

We assume that the spline coefficients matrices {Bj}
are given, and we define D

(m)
j = S

(m)
j Bj ∈ Rn×Lj .

We define the columns of each subdictionary D
(m)
j =[

d
(m)
j,1 . . . d

(m)
j,Lj

]
to be the atoms of D

(m)
j . Hence, an

atom d
(m)
j,l is obtained by applying the transfer function

fjl to all the observations of the jth covariate: d
(m)
j,l =

1Note that there are a few other differences. For example, in dictionary
learning, atoms are usually unconstrained unit-norm vectors, while in our
model they are constrained to be linear combinations of B-splines. Moreover,
our problem involves an additional regularization function.

[
fjl(x

(m)
1j ) . . . fjl(x

(m)
nj )

]T
. The weight estimation prob-

lem is given by

min
{λ(m)

j }j,m

N∑
m=1

∥∥∥∥∥∥y(m) −
p∑
j=1

D
(m)
j λ

(m)
j

∥∥∥∥∥∥
2

2

subject to ‖λ(m)
j ‖0 ≤ 1 and λ

(m)
j ≥ 0 for all j,m.

The above problem can be seen as computing the best non-
negative p-sparse approximations of the signals y(m) in the
dictionary D(m) = [D

(m)
1 | . . . |D(m)

p ], provided that no two
active dictionary atoms belong to the same subdictionary. We
first note that this problem is separable and therefore can
be solved independently for each task. Next, we simplify
the problem and drop the non-negativity constraints on λ

(m)
j .

Following the approach used in [18], [19], non-negative co-
efficients can then be obtained in a post-processing step by
including the negative of each atom in the dictionary2, as we
have:
p∑
j=1

D
(m)
j λ

(m)
j =

p∑
j=1

[
D

(m)
j −D

(m)
j

] [ max(0,λ
(m)
j )

max(0,−λ(m)
j )

]
.

For a single task, our weight estimation problem is written:

min
{λj}pj=1

∥∥∥∥∥∥y −
p∑
j=1

Djλj

∥∥∥∥∥∥
2

2

subject to ‖λj‖0 ≤ 1 for all j ∈ [p].

To solve this problem, we propose the iterative algorithm
Block Constrained Orthogonal Matching Pursuit (BC-OMP).
It is an extension of the popular Orthogonal Matching Pur-
suit algorithm [7], [8] which is an efficient greedy method
for solving sparse coding problems. At each iteration of
the algorithm, we select the dictionary atom which has the
strongest correlation with the residual, provided it belongs to
an available subdictionary whose index is listed in Aj−1. The
residual is then updated using an orthogonal projection onto
the selected atoms. The availability set Aj is in turn updated
to prevent selecting two atoms from the same subdictionary.
Details of our approach are presented in Algorithm 1.

B. Spline coefficients update
We now solve the problem of learning the spline coefficients

Bj given the fixed weights λ
(m)
j . We note that:

p∑
j=1

S
(m)
j Bjλ

(m)
j =

p∑
j=1

((λ
(m)
j )T ⊗ S

(m)
j )vec(Bj)

=
[
(λ

(m)
1 )T ⊗ S

(m)
1 . . . (λ(m)

p )T ⊗ S
(m)
p

]vec(B1)
...

vec(Bp)


, Z(m)b.

2This post-processing step results in doubling the number of candidate
transfer functions. That is, for covariate j, we have 2Lj candidate transfer
functions, as we consider the positive and negative versions of every (original)
transfer function. Note also that this post-processing approach is an approxi-
mation and is therefore not guaranteed to give the exact solution to the original
(constrained) problem, with 2Lj transfer functions for each covariate j.
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Algorithm 1 BC-OMP
Input: Subdictionaries D1, . . . ,Dp, signal y.
Output: Weight vectors λ1, . . . ,λp.

Initialization:
Available covariates: A0 ← {1, . . . , p}, residual: r0 ←
y, selected atoms: U0 ← ∅, weight vectors: λj ←
0 for all j ∈ [p].
for all j = 1, . . . , p do

Selection step:

{kj , lj} ← argmax
k∈Aj−1

argmax
l∈{1,...,Lk}

|〈rj−1,dk,l〉|
‖dk,l‖2

.

Update step:

Aj ← Aj−1\{kj},Uj ←
[
Uj−1 {dkj ,lj}

]
cj ← U†jy, rj ← y −Ujcj .

end for
for all j = 1, . . . , p do

Set λkj [lj ]← cp[j].
end for

Thus, the objective function becomes:
N∑
m=1

‖y(m) − Z(m)b‖22 + bTΣb = ‖vec(Y)− Zb‖22 + bTΣb,

with vec(Y) =

y(1)

...
y(N)

 and Z =

Z(1)

...
Z(N)

. The minimum of

the above least-squares program with respect to b is given by:

b̂ = (ZTZ + Σ)−1ZTvec(Y). (6)

Given the spline basis coefficients Bj , the transfer functions
can then be obtained by multiplying the obtained coefficients
with the spline basis vectors (Eq. (4)).

C. Complete learning algorithm

The complete algorithm is shown in Algorithm 2. Using
a random initialization of the spline coefficients, we iterate
through the weights update and spline coefficients update
steps, until a termination criterion is met. In this paper, we
terminate the algorithm after a fixed number of iterations. In a
final step, the matrices Bj and λ

(m)
j are modified to ensure the

non-negativity of the weights, as discussed in Section IV-A.
We briefly analyze the computational complexity of Algo-

rithm 2. We assume for simplicity that Lj = L for all j ∈ [p].
The BC-OMP algorithm involves a selection and an update
step whose complexity are O(Lpn) and O(pn + p2) respec-
tively. Assuming that p < n, the selection step dominates and
the overall complexity of BC-OMP is O(Lp2n). Doing this
operation for each task results in a complexity of O(nNLp2).
The spline coefficients update involves the computation in
Eq. (6). To compute the complexity of this operation, note
that Z has nN rows and LTp columns (where T is the
number of spline basis functions, or equivalently the number

Algorithm 2 Multi-task additive model algorithm

Input: Covariates {x(m)
ij }i,j,m, response variables {y(m)

i }i,m,
parameters L1, . . . , Lp and ν.
Output: Spline coefficients {Bj}j , scaling weights
{λ(m)

j }j,m.

Initialize B1, . . . ,Bp with random entries from N (0, 1).
while not converged do

Weights update: Use BC-OMP for each response vari-
able y(m) to estimate {λ(m)

j }j∈[p],m∈[N ].
Spline coefficients update: Use Eq. (6) to update the
spline coefficients.

end while
Ensure the non-negativity of the weights:

Bj ←
[
Bj −Bj

]
,

λ
(m)
j ←

[
max(0,λ

(m)
j )

max(0,−λ(m)
j )

]
,

for all j,m.

of columns of S
(m)
j , assumed to be equal for all covariates

j for simplicity). For typical problems, this matrix is tall and
the complexity is driven by the computation of ZTZ, which is
of complexity O(nN(LTp)2). Hence, assuming that we run
Algorithm 2 for a fixed number of iterations, the complexity
of our overall algorithm is O(nN(LTp)2).

Our algorithm is therefore linear in the number of tasks
N , and dimension n, while being quadratic with respect to
the number of candidate transfer functions per task L. In
comparison, learning an additive model independently for
each task has complexity O(nN(Tp)2). Compared to the
independent additive model approach, the price to pay of
our algorithm is therefore L2, which remains small in most
problems of interest.

V. RECOVERY CONDITION FOR BC-OMP

We analyze in this section the weights update algorithm BC-
OMP. While BC-OMP represents one building block of the
global algorithm (Algorithm 2), an analysis of the recovery
conditions of BC-OMP is important as it provides insights
onto the success of our algorithm. In addition, our recovery
condition also applies to OMP and is interesting in its own
right.

We suppose that y is a superposition of p elements in D =
[D1| . . . |Dp] such that no two active elements belong to the
same subdictionary Dj , i.e., y =

∑p
j=1 γjdj,lj . For simplicity,

we further assume that the atoms dj,lj are linearly independent
and the γj are all nonzero3. We develop a sufficient condition
for the recovery of the correct atoms using BC-OMP.

We first note that the difference between OMP and BC-
OMP algorithms lies in their search space: while OMP selects
atoms from the dictionary D having maximal inner product
with the residual, BC-OMP further imposes a constraint that

3Otherwise, the signal has a representation with fewer atoms and one can
remove the unused covariates j ∈ [p].
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the selected atom belong to an available subdictionary where
no atoms have been previously selected. It follows that if OMP
succeeds in the recovery of the correct atoms of y, the same
holds for BC-OMP. Therefore, any condition that guarantees
the recovery of OMP is a fortiori a recovery condition for BC-
OMP. Many OMP recovery conditions have been proposed in
the literature (see e.g., [20], [21]). The following theorem in
[20] gives a popular and practical recovery condition of OMP
for the global dictionary D:

Theorem 1 ([20]). Let

µ , max
d,d′∈D
d6=d′

| 〈d,d′〉 |.

OMP recovers every superposition of p atoms from D when-
ever the following condition is satisfied:

p <
1

2

(
µ−1 + 1

)
. (7)

The quantity µ, called coherence, measures the similarity
between dictionary atoms. The values of µ that are close to
1 may violate the recovery condition in Eq. (7), thus leaving
us without any guarantee that OMP or BC-OMP will recover
the correct atoms. Unfortunately enough, in our multi-task
learning framework, µ is typically close to 1. To see this, note
that the inner product between two atoms of the same sub-
dictionary is equal to 〈dj,l,dj,l′〉 =

∑n
i=1 fjl(xij)fjl′(xij).

In practice, transfer functions in the same subdictionary often
bear strong resemblance, e.g., similar monotic behavior (see
Sec. VI for examples). Thus, fjl ≈ fjl′ and | 〈dj,l,dj,l′〉 | ≈ 1,
which leads to a large coherence value. On the other hand,
the inner product of atoms from different subdictionaries
| 〈dj,l,dj′,l′〉 | =

∑n
i=1 fjl(xij)fj′l′(xij′) is close to zero

when the covariates j and j′ are “sufficiently independent”.4

To circumvent the above violation of the recovery condition in
Theorem 1 due to the large global coherence of the dictionary,
we first define coherence within and across subdictionaries:

Definition 1.

µintra , max
j∈[p]

max
(l,l′)∈[Lj ]

l 6=l′

|〈dj,l,dj,l′〉| ,

µinter , max
(j,j′)∈[p]
j 6=j′

max
(l,l′)∈[Lj ]×[Lj′ ]

|〈dj,l,dj′,l′〉| .

Using these definitions, we derive the following recovery
condition for BC-OMP:

Theorem 2 (Recovery condition). If the following condition
holds:

µintra + 2(p− 1)µinter < 1,

then BC-OMP recovers the correct atoms and their coeffi-
cients.

4More precisely, if we model the covariates as random variables Xj and
Xj′ , then 1/n

∑n
i=1 fjl(xij)fj′l′ (xij′ ) can be seen as a sample estimate

of the population covariance E[fjl(Xj)fj′l′ (Xj′ )] which will be 0 if Xj

and Xj′ are independent. Note that in this argument we use the fact that the
transfer functions are centered (see Sec. II).

The detailed proof can be found in the Appendix. Unlike the
recovery condition in Theorem 1, Theorem 2 does not depend
on the global coherence of the dictionary. This recovery
condition is particularly interesting in our applications where
µintra typically takes large values due to strong resemblance
between the transfer functions in the same subdictionary,
while µinter is small when the covariates are sufficiently
statistically independent. Interestingly, Theorem 2 shows that,
in the special case where subdictionaries are orthogonal to
each other, the parameter µintra can take values arbitrarily
close (but not equal) to 1 and BC-OMP still succeeds in the
recovery. In contrast, the recovery condition of Theorem 1 is
not satisfied in this case since the global coherence µ is close
to 1. Note that our recovery condition is not limited to BC-
OMP but also valid for the OMP algorithm, hence it extends
existing sparse representation theory for an interesting class
of sparsity structure.

Finally, we draw the reader’s attention to some results
related to the proposed recovery condition in Theorem 2. In
[22], the authors provide a new analysis of Matching Pursuit,
when the dictionary is built from an incoherent union of
possibly coherent subdictionaries. A sufficient condition that
guarantees the selection of atoms from the correct subdic-
tionaries is shown. In other words, the exact recovery of
atoms is dropped and a sufficient condition for the weaker
subdictionary recovery property is shown. This is completely
different from our setting, where we require the correct atoms
to be recovered when the signal contains at most one atom per
subdictionary. In [23], the “block sparse” model is introduced:
the signals’ non-zero entries appear in blocks rather than
being spread throughout the vector. Coherence-based recovery
conditions for a block version of OMP are shown. Once again,
our model significantly differs from this one, as we assume
one active component per subdictionary (or block), whereas
the work of [23] assumes that nonzero entries occur in clusters.

VI. EXPERIMENTAL RESULTS

In this section, we present experimental results. Baseline
methods and practical implementation details of our algorithm
are explained in Sec. VI-A. Sec. VI-B reports results on
synthetic data, and the following two sections show results
on electric load forecasting problems. More background on
using additive models for electricity demand forecasting can
be found in [24], [25] for example.

A. Experimental setup

We compare the proposed multi-task learning approach to
the following baseline regression methods:

1) Linear Regression (LR): A linear regressor is learned
independently using ε-SVR [26] with a linear kernel for
each task. The penalty parameter C is set using a cross-
validation procedure for each task. We use the Liblinear
implementation [27].

2) Support Vector Regression with Radial Basis Func-
tion kernel (SVR-RBF): We learn an ε-SVR-RBF
regressor independently for each task where the penalty
parameter C and kernel bandwidth σ are determined
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Fig. 3. Estimated transfer functions for the synthetic experiment, using the proposed and IAM methods. The black dots indicate the noisy observations used
to estimate the transfer functions, and the blue dashed lines represent the true transfer functions. The results are shown for a fixed covariate, leading to the
L = 3 estimated transfer functions that are illustrated. For the IAM method, the depicted transfer functions correspond to estimations obtained on arbitrary
tasks involving the true transfer functions.

using cross-validation. We use the LibSVM implemen-
tation [28].

3) Independent Additive Models (IAM): An additive
model is fitted for each task independently using the
mgcv package in R [2].

4) K-Means and Additive Model (KAM): This is a two-
step approach, where in the first step we use the K-
means algorithm to group the set of tasks into different
clusters. In the second step, one additive model is
learned independently for each cluster centroid. The
prediction of a signal is given by the prediction for the
centroid of the cluster it belongs to.

We now discuss practical aspects of our algorithm. For
simplicity, we have chosen the regularization value ν = 1
in all our experiments (see Eq. 5). Note that a cross-validation
procedure is likely to give better results, but is more compu-
tationally expensive. Moreover, in all experiments we set the
parameters Lj = L for all covariates j ∈ [p]. We envision
that, in real-world applications, the parameters Lj will be
manually selected by domain experts (possibly in an iterative
procedure) to find the optimal trade-off between predictive
performance and model interpretability from their point of
view. In the experiments below, we show results for different
values of L to evaluate how the choice of Lj affects the
predictive performance. Finally, similarly to K-means, our
proposed algorithm can incur the problem of “empty clusters”
when the number L of transfer functions per covariate is large.
We circumvent this problem by checking at each iteration for
unused transfer functions and, when such a transfer function
is detected, replacing it with the transfer function that leads
to minimum error for the task with the currently highest
approximation error.

B. Synthetic experiment

In our first experiment, we generate n = 100 samples
according to the multi-task additive model in Eq. (3), with
p = 10 covariates, N = 200 tasks and L1 = · · · = Lp = L =
3 candidate transfer functions per covariate. For simplicity,
we take the covariates x(m)

ij to be equal for all tasks (i.e.,
x
(m)
ij = xij for all m ∈ [N ]), and randomly sample xij from

the uniform distribution in [−1, 1]. In this synthetic example,
the ground truth transfer functions fjl are randomly generated
smooth functions, and the scaling weights are chosen to be
non-negative random numbers. Finally, the model noise ε(m)

i

is iid, and follows the standard normal distribution.
We first assess the quality of the estimated transfer functions

using our algorithm, and compare it to the ground truth transfer
functions (known in this synthetic setting), as well as the
functions estimated with IAM method (which treats each task
independently). For a fixed covariate, we show in Fig. (3) (a-
c) the L = 3 associated transfer functions, as well as the
proposed and IAM estimations. Clearly, the estimation of the
true transfer functions using our multi-task approach is much
more accurate and resilient to noise than IAM. In fact, the true
and estimated functions using our approach nearly coincide,
despite the fact that observations are highly noisy, and the
relatively low sample size. We then compare the prediction
performance (in terms of Root Mean Squared Error – RMSE)
of the proposed method to other competitor methods on a
test set of 400 samples. The results are illustrated in Fig. 4.
The proposed approach leads to significantly lower RMSE
compared to other approaches on this synthetic example.
Despite the limited number of training data, our approach
correctly detects and leverages the correlation between the
different tasks to significantly improve the results.

C. Modeling of smart meter data

In this experiment we use data from a smart metering trial
of the Irish Commission for Energy Regulation (CER) [29].
The data set contains half-hourly electricity consumption data
from July 14, 2009 to December 31, 2010 for approx. 5, 000
residential (RES) and small-to-medium enterprise (SME) cus-
tomers. It comes with survey information about different
demographic and socio-economic indicator, e.g., number of
people living in the household, type of appliances, and busi-
ness opening times. In our experiment, we only use customers
that do not have any missing consumption data, leaving us with
a total of N = 4, 066 meters out of which 3, 639 are residential
and 427 SME customers. Since half-hourly smart meter data
is very volatile due to the stochastic nature of electricity
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TABLE I
AVERAGE RMSE OVER ALL 4, 066 TASKS IN THE CER DATA SET, AND MODEL COMPLEXITY. FOR THE PROPOSED AND KAM METHOD, THE RESULTS

WITH L = 5 ARE SHOWN. FOR EASIER COMPARISON, THE FOURTH COLUMN SHOWS THE normalized MODEL COMPLEXITY, I.E., THE MODEL
COMPLEXITY DIVIDED BY Np WHERE N IS THE NUMBER OF TASKS AND p THE NUMBER OF COVARIATES. T IS THE NUMBER OF ELEMENTS IN THE

SPLINE BASIS (EQUAL FOR ALL COVARIATES, FOR SIMPLICITY).

Method RMSE Model complexity

Training Testing Theoretical Numerical example

Proposed 2.6 2.7 p(TL+ 2N) 2.01

LR 3.1 3.1 Np 1

SVR-RBF 2.2 2.5 Nn(p+ 1) ≥ 3800

IAM 2.3 2.6 pTN 12

KAM 3.1 3.2 pTL 0.01

Proposed LR SVR−RBF IAM KAM
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Fig. 4. RMSE on test data of the proposed method, and the competing
methods for the synthetic experiment. The experiments are performed on 50
independent trials.

consumption at the individual household level, we aggregate
each signal over 6 time points to obtain one measurement
every 3 hours. We split the data into 12 months of training and
6 months of test data. We consider a simple additive model
with “Hour Of Day”, “Time Of Year” and “Day of Week” as
covariates.

Table I shows the average RMSE on the training and test
data over all N = 4, 066 meters. Here, we use L = 5 for the
number of candidate transfer functions per covariate in our
approach, and the number of clusters in the KAM method.
In terms of predictive performance, our proposed approach
clearly outperforms LR and KAM; it performs only slight
worse than IAM albeit using only L = 5 different transfer
functions per covariate while IAM learns independently one
additive model per signal. Note that the methods based on
additive models are competitive with SVR-RBF, while the lat-
ter approach is computationally expensive at training and test
time, which makes it only moderately suitable for large-scale
problems, besides leading to models that are unfortunately
difficult to interpret.

In an attempt to quantitatively compare the interpretability
of the different methods, Table I shows the model complexity
of the different methods learned on the CER data, defined as
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2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

L

M
e
a
n
 R

M
S

E
 

 

Proposed

KAM

Fig. 5. Average RMSE on the CER data set vs. number of candidate functions
(per covariate) and clusters L, respectively, for the proposed and the KAM
method.

the number of scalar variables needed to store the model5.
For easier numerical comparison we divide the numbers by
Np, i.e., the number of tasks times the number of covariates.
As it can be seen, the SVR-RBF is the most complex model,
since it depends on the number of observations n. IAM also
has a high complexity as it fits one additive model per task.
On the other hand, our proposed approach only needs pTL
variables for the transfer functions, and 2Np values to store
the weights {λ(m)

j }. In the experiment on the CER data, this
results in a complexity of 2.01, where 0.01 results from the
representation of the transfer functions, and 2 from storing
the weight coefficients for each task. We conclude that our
proposed approach finds a good trade-off between predictive
performance and model complexity.

Fig. 5 shows the predictive performance of the proposed
algorithm and the KAM method for different values of L.
One can see that, already for values of L ≥ 2, our method
reaches an accuracy that is close to the performance of inde-
pendently learned additive models. The performance of KAM
is consistently worse, regardless of the number of clusters.

Fig. 6 (a)-(c) display the transfer functions obtained by our
method for L = 2, and Fig. 6 (d) shows the corresponding
matrix of correlations |DTD| between the atoms of the

5For the SVR-RBF method, it is assumed for simplicity that the number
of support vectors is equal to the number of training points n.
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Fig. 6. Transfer functions obtained with L = 2 (a-c), and correlation between atoms (d). (a): Hour of Day, (b): Time of Year (0: January, 1st, 1: December,
31st), (c): Day of Week.

dictionary estimated using the proposed algorithm6. As noted
in Section V, this matrix has a block diagonal structure due
to similarites between transfer functions depending on the
same covariate on the one hand, and independence of different
covariates on the other hand. We obtain the coherence values
µintra = 0.87 and µinter = 0.01 (see Definition 1), satisfying
our recovery condition for BC-OMP in Theorem 2, while the
original condition in Theorem 1 for recovery in OMP is clearly
not satisfied.

Let us consider the interpretability of the transfer functions
learned using our method, and study correspondances with
the customer survey information in the CER data set. Table II
relates the activation of the “Hour of Day” transfer functions
to the customer type (residential vs. SME). In this experiment
we chose L = 2, resulting in 4 “final” transfer functions
due to the non-negativity trick discussed in Sec. IV-A. One
can see that, for residential customers, overwhelmingly the
first transfer function is activated, while the majority of SME
signals is modeled using the second one. Looking at the
shape of the transfer functions, this intuitively makes sense:
the consumption of residential customers typically peaks in
the evening, while SMEs consume most electricity during the
day. Similarly, Table III shows the correspondence between
the activation of the “Day of Week” transfer function, and
the SME business days (which is available from the CER
survey information). Again, there is an intuitive and easy-
to-interpret correspondance between the learned models and
available ground truth information.

Finally, we evaluate the performance of our method in a
setting where training data is scarce. For this purpose, we
consider now a training set of n samples that are randomly
selected from the CER data, and consider the remaining
data for testing. Fig. 7 illustrates the testing RMSE of the
proposed method (with L = 2) and the other competing
methods with respect to n. It can be seen that when the
training data is scarce, the proposed method outperforms IAM,
and our method inherits the advantages of traditional multi-
task learning by sharing information across tasks, and hence
avoids overfitting. Note that for larger n, the gap between
the two methods decreases, and IAM slightly outperforms our
approach (with L = 2), as it provides a much more flexible

6In this experiment, the observed covariates are equal for all the tasks (i.e.,
x
(m)
ij = xij ), since Hour of day, Time of year and Day of week are clearly

independent of the task at hand. This leads to a unique dictionary D that is
independent of the task. See Sec. III for further details.
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Fig. 7. Testing RMSE versus number of training samples for the CER
experiment.

model, which however suffers from lack of interpretability.
Note finally that our approach consistently outperforms all
other competing methods (LR, SVR-RBF, KAM) in the range
of training samples in Fig. 7.

D. Intra-signal multi-task learning

In this last set of experiments, we consider another ap-
plication of our multi-task learning framework. A common
approach in hourly electrical load forecasting is to treat
each hourly period separately and use different models for
each hour of the day (see, e.g., [25] and [30]). Besides the
computational burden, such approaches unfortunately fail to
discover intra-daily commonalities in the electricity consump-
tion during different hours. Moreover, the resulting models are
difficult to interpret.

We address those issues using the proposed multi-task
framework. Given a signal y ∈ Rn representing hourly electri-
cal loads, we first reshape the signal into a matrix Y ∈ Rd×24,
where the d rows represent the days, and the columns the
hours in a day. We then treat the columns of Y as separate
tasks, and fit our model using the proposed algorithm. For
this experiment, we use 4.5 years of data from the GEFCom
2012 load forecasting challenge [31], considering “Time Of
Year”, “Day of Week” and “Temperature” as covariates. The
response variable is set to be the sum of the 20 zonal
level series expressed in gigawatt. Moreover, the temperature
covariates are obtained by computing the average signals over
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TABLE II
PERCENTAGE OF THE ACTIVATION OF “HOUR OF DAY” TRANSFER FUNCTIONS FOR RESIDENTIAL AND SME CUSTOMERS.

5 10 15 20
Hour of the day

5 10 15 20
Hour of the day

5 10 15 20
Hour of the day

5 10 15 20
Hour of the day

Residential 89% 9% 0% 2%
SME 19% 68% 8 % 5 %

TABLE III
PERCENTAGE OF THE ACTIVATION OF “DAY OF WEEK” TRANSFER FUNCTIONS FOR SMES WITH DIFFERENT BUSINESS DAYS (SEE THE LEFT COLUMN).

Mon Wed Fri
Day of week

Mon Wed Fri
Day of week

Mon Wed Fri
Day of week

Mon Wed Fri
Day of week

Week days only 1% 2% 93% 4%
Week days + Saturday 0% 0% 37% 63%
All days 36% 5% 19% 40%

TABLE IV
TRAINING AND TESTING RMSE FOR THE GEFCOM TASK.

Method RMSE training RMSE testing

Proposed (L = 4) 0.11 0.17
LR 0.62 0.50
SVR-RBF 0.11 0.18
Additive Model (AM) 0.13 0.19
IAM 0.11 0.18

the 11 weather stations provided in the data. We use the first
d = 1, 642 days in the data set. The first 4 years of the data
are considered for training, and the remaining for testing.

We compare the proposed approach to single-task regression
methods that do not split the signal into hourly signals. Specif-
ically, considering an additional “Hour of Day” covariate, we
fit linear and nonlinear models using LR, SVR-RBF as well
as an Additive Model that reads

yi = f1(Hour of Dayi) + f2(Time of Yeari)
+ f3(Day of Weeki) + f4(Temperaturei).

In addition, we compare the proposed approach to IAM using
the same split into hourly signals.

Table IV shows the result of the comparison. It can be seen
that, with L = 4, the proposed approach outperforms all other
methods in terms of testing RMSE. By splitting the signal into
hourly signals, our algorithm yields a testing RMSE that has
improved roughly by 10% with respect to AM. In addition,
our approach slightly outperforms IAM in terms of testing
accuracy in this experiment, while learning much less transfer
functions. Interestingly, our algorithm yields a clustering of the
hours of the day with some intuitive interpretations: consider
the matrix Λtemp in Fig. 8 (a) which shows the assignment of
the L = 4 temperature transfer functions (displayed in (b))
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Fig. 8. Results on the GEFCom data with L = 4. (a) Λtemp matrix showing
the activation of the temperature transfer functions for the 24 hours per day.
(b) Shapes of the estimated temperature transfer functions.

to the 24 signals representing different hours per day. To be
more specific, the matrix Λtemp is given by

Λtemp =


λ
(1)
j1 . . . λ

(24)
j1

...
...

...
λ
(1)
j4 . . . λ

(24)
j4

 ,
where j corresponds to the index of the “Temperature” co-
variate. Note that the transitions are “smooth”, i.e., consecutive
hours are typically modeled using the same temperature trans-
fer functions, albeit we did not explicitely enforce this prop-
erty. While all the transfer functions in Fig. 8 (b) have a similar
V-shape, there are noteworthy differences. For example, TF4
compared to TF1 leads to higher load predictions for hot
temperatures and lower load predictions for cold temperatures.
Intuitively, we can interpret TF4 and TF1 as representing
“air conditioning” and “heating” effects, respectively. This
corresponds well with the hours for which these two functions
are activated: TF4 during the day where most air conditioning
occurs, and TF1 during the night and early morning, where
most electricity is used for heating.
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VII. CONCLUSION

In this paper, we introduced a novel multi-task learning
framework for additive models with the key idea to share
transfer functions across the different tasks. We established a
connection between the proposed model and sparse dictionary
learning and leveraged it to derive an efficient fitting algorithm.
We further conducted a theoretical analysis of the recovery
conditions of the sparse representation step; by distinguishing
between coherence within and across different subdictionaries,
we were able to establish recovery for a wider range of
realistic settings that are particularly relevant in our multi-task
learning problem. Through synthetic experiments, we showed
that the proposed algorithm correctly estimates the underlying
transfer functions, and outperforms competing methods in
terms of predictive power. In experiments with real-world
electricity demand data, we demonstrated that our proposed
multi-task approach achieves competitive performance with
baseline methods that learn models independently for each
task, while providing models that are more interpretable,
extracting inherent structure in the tasks (e.g., clustering of
tasks corresponding to different customer types), and being
more robust in settings where training data are scarce. In future
work, we plan to improve the scalability of the method to apply
it to domains that potentially involve millions of tasks.

APPENDIX

A. Proof of Theorem 2

Assume that y =
∑p
j=1 γjdj,lj . We prove by induction that

the correct atoms dj,lj are recovered when the sufficient con-
dition holds. Assume that, after j ∈ {0, . . . , p− 1} steps, BC-
OMP has recovered correct atoms in the support. Therefore, it
holds that the residual signal rj ∈ span(d1,l1 , . . . ,dp,lp) and
we write

rj =

p∑
g=1

αgdg,lg .

Since y is exactly p-sparse, the residual is non-zero, and α 6=
0. The atom selected by BC-OMP at step j + 1 is optimal if
and only if:

max
k∈Aj

max
l∈[Lk]
l 6=lk

|〈rj ,dk,l〉| < max
k∈Aj

|〈rj ,dk,lk〉| . (8)

We establish the recovery condition by showing a lower bound
to the right hand side and an upper bound to the left hand side
of Eq. (8). Note that, for any k ∈ [p]:

|〈rj ,dk,lk〉| =
∣∣∣∣∣
p∑
g=1

αg
〈
dg,lg ,dk,lk

〉∣∣∣∣∣
=

∣∣∣∣∣∣αk +
∑
g 6=k

αg
〈
dg,lg ,dk,lk

〉∣∣∣∣∣∣
≥ |αk| −

∑
g 6=k

|αg|
∣∣〈dg,lg ,dk,lk〉∣∣ .

Moreover, by definition,
∣∣〈dg,lg ,dk,lk〉∣∣ ≤ µinter for g 6= k.

It follows that the right hand side of Eq. (8) can be bounded
as follows:

max
k∈Aj

|〈rj ,dk,lk〉|
(a)
= max

k∈[p]
|〈rj ,dk,lk〉|

≥ max
k∈[p]

|αk| − µinter∑
g 6=k

|αg|


(b)

≥ ‖α‖∞ − (p− 1)µinter‖α‖∞,

where (a) is due to the fact that atoms dk,lk that are not in
Aj have already been selected, and are therefore orthogonal
to rj . Inequality (b) is obtained by bounding each term |αg|
by ‖α‖∞.

We now exhibit an upper bound to the left hand side term
of Eq. (8). We have:

max
k∈Aj

max
l∈[Lk]]
l 6=lk

|〈rj ,dk,l〉|

≤max
k∈[p]

max
l∈[Lk]
l 6=lk

|〈rj ,dk,l〉|

= max
k∈[p]

max
l∈[Lk]
l 6=lk

∣∣∣∣∣∣αk 〈dk,lk ,dk,l〉+
∑
g 6=k

αg
〈
dg,lg ,dk,l

〉∣∣∣∣∣∣
≤max
k∈[p]

|αk|µintra + µinter
∑
g 6=k

|αg|

≤µintra‖α‖∞ + (p− 1)µinter‖α‖∞.

Therefore, we obtain the following condition for Eq. (8) to
hold:

µintra‖α‖∞ + (p− 1)µinter‖α‖∞
< ‖α‖∞ − (p− 1)µinter‖α‖∞.

Since α 6= 0, we simplify the condition to:

µintra + 2(p− 1)µinter < 1.

As the above condition holds by assumption, we conclude that
Eq. (8) is satisfied and BC-OMP selects a correct atom at step
j + 1.
Once the correct support is recovered, it is straightforward
to see that an orthogonal projection onto the span of the
recovered atoms yields the correct coefficients. Indeed, if we
have y =

∑p
j=1 γ

′
jdj,lj , the linear independence of the atoms

{dj,lj} imposes γ′j = γj . This concludes the proof.
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