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Abstract Packings of granular materials are complex systems consisting of large

sets of particles interacting via contact forces. Their internal structure is interesting for

several theoretical and practical reasons, especially when the model system consists in

a large amount (up to 105) of identical spheres. We herein present a method to process

three-dimensional water density maps recorded in wet granular packings of mm-size

spheres by magnetic resonance imaging (MRI). Packings of spheres with highly mono-

dispersed diameter are considered and the implementation of an ad hoc reconstruction

algorithm tailored for this feature allows for the determination of the position of each

single sphere with an unprecedented precision (with respect to the scale of the system)

while ensuring that all spheres are identified and no non-existing sphere is introduced

in the reconstructed packing. The reconstruction of a 0.5 L sample containing about

2 9 104 spheres is presented to demonstrate the robustness of the method.

1 Introduction

Granular packings are excellent model systems for the study of many open problems

in rheology and non-equilibrium statistical mechanics [1]. They are loosely defined

as large sets of macroscopic particles that interact only via contact forces such as
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Hertzian forces and dry friction [2, 3], and via inelastic collisions [4]. However, the

apparent simplicity of the forces that govern their static and dynamic properties

hides an underlying complexity that one still fails to understand [5].

Studies on the geometrical properties of arrangements of spheres date back to

Kepler [6]. In modern times, the problem has been tackled also from an

experimental point of view [7–10] and has recently seen a renewed interest [5,

11]. In addition to theoretical and rheological approaches, the determination of the

static structure of granular packings is of crucial importance in the comprehension

of their properties.

To date, the largest three-dimensional reconstruction from tomographic projec-

tions of granular packings has been obtained using X-ray computed tomography and

a Fourier space reconstruction algorithm [12]. Although this method allows for the

determination of the structure of packings composed of up to 1.5 9 105 1-mm

spheres, neither the identification of each single sphere nor the absence of non-

existing spheres incorporated into the reconstruction can be guaranteed. The

importance of a flawless reconstruction method can be highlighted by the following

observation: failing to identify 1 out of 1000 spheres or mistakenly introducing a

non-existing sphere in a sample of 1000 spheres leads to a computational error on

the packing density that corresponds to about 1 % of the full density range inherent

to random sphere packings, comprised between the limits of random close packing

(RCP) [13] and random loose packing (RLP) [14].

More direct approaches [15] consist in acquiring extremely high-resolution data,

and then apply simple image analysis filters (threshold segmentation and erosion),

but this requires long acquisition times and computationally intensive image post-

processing.

We herein present a robust and precise method based on magnetic resonance

imaging (MRI) to determine the exact position of sphere centers in wet granular

packings composed of 2 9 104 spheres. This reconstruction method was previously

used to study fine structural details of sphere packings [16]. The aim of this study is

to describe in detail the algorithm and the method on which the reconstruction

procedure is based, and to highlight its wide applicability for studying granular

materials.

2 Materials and Methods

A standard MRI method, namely gradient echo (GRE) imaging [17], was used to

acquire tomographic projections. The projections were processed on a standard

desktop computer to determine the three-dimensional coordinates of all sphere

centers and reconstruct the packings.

The studied packings were composed by 3-mm nominal diameter plastic spheres

(polyoxymethylene, R.P.G. International, Italy).

To obtain a precise determination of the sample density, we measured the exact

average volume and standard deviation Vs = 14.348 ± 0.07 mm3 of the plastic

spheres using Archimede’s method. This corresponds to an average sphere diameter

of d = 3.0148 mm with a standard deviation of rd = 1.65 9 10-3 d. The mismatch

634 R. Balzan et al.

123



between the nominal 14.137 mm3 and the measured 14.348 mm3 volume is about

1.5 % and it was taken into account in all calculations, including the determination

of the packing density.

The packing preparation consisted in soaking the plastic spheres in a CuSO�
4

doped aqueous solution; this operation was necessary to avoid formation of air

bubbles in the following procedures. The spheres were subsequently slowly poured

in a vertical cylinder previously filled with the same solution (Fig. 1a). The density

of the solution was not matched to the sphere density. The CuSO4 concentration was

chosen to set the nuclear magnetic resonance (NMR) longitudinal relaxation time T1
and transverse relaxation time T2 of protons to T1 * T2 * 15 ms.

The sample was vertically vibrated using colored noise agitation, with a flat

spectrum in the frequency range 40–1000 Hz and vanishing amplitude at other

frequencies. We agitated with average acceleration modulus
ffiffiffiffiffiffiffiffi

€z2h i
p

� 2:5 g, and

kept it still (no convection) for 30 min (aging procedure).

The sample was scanned in a head-only 7 T human MRI scanner (Siemens,

Erlangen, Germany) using a birdcage volume coil designed to accommodate a

human head. The three-dimensional images were acquired using a GRE imaging

sequence (repetition time TR = 5 ms, echo time TE = 3.79 ms, resolution 0.2 mm

isotropic, total acquisition time *6 h). The raw data consisted in isotropic three-

dimensional gray scale images mapping the water proton density in each voxel

(Fig. 2a).

Image processing was performed using a custom-made C program running on a

standard dual-core desktop PC. The program takes a three-dimensional image as

input, performs the three processing steps described in detail in the following

section, and outputs a list containing the three-dimensional position associated with

each identified sphere. Average running time for the reconstruction of a 0.5 L

sample with about 2 9 104 spheres was 1 h, scaling roughly linearly with the

volume. An example of reconstructed packing is shown in Fig. 1b.

Fig. 1 a Granular packing inside the phantom used for the tomographic measurements; b example of 3D
reconstructed packing. The outer spheres close to the container walls (light blue spheres) are discarded
from the analysis to avoid boundary effects
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2.1 Reconstruction Algorithm

For each sample, we obtained a high contrast-to-noise ratio (CNR) 3D image

consisting in a matrix I x; y; zð Þ containing the water proton density measured in each

voxel (Fig. 2a). The reconstruction algorithm consists of three steps:

– I Construction of a 3D binary image Associate each image slice with a binary

proton density map by forcing each voxel to be assigned either the value 1 if

most of its volume is located inside a sphere or 0 if it mostly contains water.

– II Thresholded Hough transform filter This step sets to zero the proton density

assigned to voxels containing contact points between adjacent spheres.

– III Individual sphere identification The last step uses the prior knowledge of the

average sphere size and is based on the fact that, following steps I and II, the

clusters of voxels representing individual spheres do not overlap.

2.1.1 I. Construction of Binary Images

The first step of the algorithm consists in identifying the voxels contained in the

volume occupied by the spheres.

Although the CNR of the acquired images was high, their brightness was not

uniform across the sample volume. To overcome this issue, we used a local

threshold criterion to identify the voxels located inside the plastic spheres [18, 19].

We defined a local threshold value T(x, y, z) for each voxel as follows:

T x; y; zð Þ ¼ max I x0; y0; z0ð Þ½ � �min I x0; y0; z0ð Þ½ �ð Þt þmin I x0; y0; z0ð Þ½ �; ð1Þ

where max I x0; y0; z0ð Þ½ � and min I x0; y0; z0ð Þ½ � represent the best estimation, given the

local brightness level, of the intensity of an entirely water-filled and an entirely

sphere-filled voxel, respectively, and t is a threshold parameter such as 0\ t\ 1.

The local maxima and minima are defined with the condition

x� x0; y� y0; z� z0ð Þj j\RT, with RT as the local threshold radius. There are thus

Fig. 2 Example of an acquired and processed horizontal slice. a Acquired raw image (gray scale); b 2D
projection of the transformed image after step II of the reconstruction algorithm (green) superimposed
onto the raw image (red); c 2D projection of the reconstructed sample (green) superimposed onto the raw
image (red)
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two free parameters in Eq. 1, namely t and RT. To compute a binary thresholded

image, a Heaviside step function hð�Þ was used to obtain a matrix:

It x; y; zð Þ ¼ h T x; y; zð Þ � I x; y; zð Þð Þ; ð2Þ

in which all voxels identified as being within a sphere are assigned the value 1.

RT and t are not strongly correlated and, due to the high CNR of the acquired

data, these two parameters can be assigned values lying within a wide range without

dramatically affecting the quality of the thresholding procedure. RT has to be large

enough to ensure that the local max and min functions span over both types of

voxels, i.e., water-filled and sphere-filled voxels. This condition imposes a lower

limit, namely RT[ d/2. On the other hand, if RT is too large, spatial fluctuations in

image brightness might affect the accuracy of the determination of the local

maximum and minimum values. Considering these two constraints, the value RT ¼
1:5d was chosen. The natural choice for t is 0.5 since it will lead to a preservation of

the average local brightness of the image. Increasing t will produce an increase in

the apparent spheres size and blur the contact points between them. Conversely,

decreasing t will help separate the spheres but lead to loss of positive matches in

voxels close to the sphere boundaries. However, for images with a high enough

CNR, as is the case for the herein presented acquisitions, it was found that the

results are only weakly depending on the exact t value as long as it stays within the

range 0.25\ t\ 0.75. The value t = 0.5 was chosen for all computations. Finally,

the value of It x; y; zð Þ was set to zero for all voxels located outside the sample

physical boundaries, which are known exactly from the geometry of the cylindrical

container.

2.1.2 II. Thresholded Hough Transform Filter

Part of the clusters of voxels representing spheres in It may overlap due to the

imperfect thresholding procedure described in step I. The aim of step II is thus to set

to zero the voxels connecting neighboring clusters to obtain a matrix containing

well-separated clusters. To do so, a real-space spherical Hough transform [20], and

an additional threshold procedure was applied to It. The matrix resulting from the

spherical Hough transform has the same dimensions as It and is given by:

H x; y; zð Þ ¼
P

It x
0; y0; z0ð Þh RH � x� x0; y� y0; z� z0ð Þj jð Þ
P

h RH � x� x0; y� y0; z� z0ð Þj jð Þ ; ð3Þ

where RH and h RH � x� x0; y� y0; z� z0ð Þj jð Þ are the radius and the kernel of the

spherical Hough transform, respectively. The additional threshold procedure based

on a Heaviside step function hð�Þ leads to a binary image described by the matrix:

IH x; y; zð Þ ¼ h H x; y; zð Þ � hð Þ; ð4Þ

where h is an additional threshold parameter.

Unlike in step I, the two free parameters RH and h are strongly correlated. RH has

to be as small as possible to assign the maximum number of voxels to each cluster

for insuring a high precision in the packing reconstruction, but large enough to

obtain well-separated and nearly spherical clusters in IH. The best compromise was
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empirically found to be RH = d/3. The natural choice for the threshold parameter

would be h * 1 so that the only voxels that are set to 1 in IH are the ones for which

almost the entire kernel of the Hough transform is filled with voxels set to 1 in It.
We empirically determined that, for RH = d/3, the packing reconstruction depends

weakly on the exact h value as long as it lies in the range 0.99[ h[ 0.9. The

median of this range was chosen, i.e., h = 0.95. With this choice of parameters, a

binary image containing well-separated (distance of at least d/4) and nearly

spherical voxel clusters were obtained (Fig. 2b).

2.1.3 III. Individual Sphere Identification Algorithm

The last part of the reconstruction procedure consists in calculating the center of

mass of each cluster of voxels. To obtain a complete reconstruction, i.e., to ensure

that all spheres are identified and no non-existing sphere is introduced into the

packing by the algorithm, we implemented two checking procedures based on the

properties of the clusters: first, to avoid the assignment of two neighboring spheres

to a single sphere center, a cluster diameter must be at most 0.9 d; second, to

prevent isolated small clusters produced by noise to be identified as sphere, each

cluster must at least contain a specified minimum number of voxels (this number

was set to 50).

The algorithm sequentially analyzes all voxels, identifies the clusters and, once a

cluster passes the checking procedures, its center of mass is computed and

associated to the coordinates of a sphere center. Only the voxels assigned to a sphere

are deleted from IH and the procedure repeated until all voxels have been

considered. All remaining unassociated voxels contained in IH are plotted and

superimposed to the original raw image to visually detect, a posteriori, the eventual

presence of artifacts. The final output of this workflow consists in a dataset listing

the spatial coordinates of each sphere center. To visually check the completeness of

the reconstruction, the volume occupied by the reconstructed spheres in the datasets

can be overlapped to the original raw image (Fig. 2c).

3 Results

To evaluate the robustness and the precision of the reconstructions, we performed

two quality tests. The first test focused on the repeatability of the method and

consisted in performing two sequential MRI acquisitions of the same sample to

quantify the mismatch between two consecutive reconstructions. The second aimed

at testing the accuracy of the method by computing and analyzing the two-body

radial correlation function of a sample.

3.1 Repeatability

Two complete MRI datasets from the same sample were sequentially acquired and

reconstructed using identical conditions and parameters. The same exact number of

sphere centers was identified in the two datasets. Each identified sphere center from
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the first dataset was then associated to the corresponding sphere center in the second

dataset. The differences in sphere center coordinates along the three Cartesian

directions were determined (Fig. 3a).

The distribution of the displacements along the x, y (horizontal) and z (vertical)

axes was considered separately and the resulting histograms were fitted with simple

Gaussian functions to determine the standard deviation.

The displacement standard deviation was found to be in the range 3–5 9 10-3 d,

leading to a repeatability error over the two datasets of e2 *6 9 10-3 d, which is

comparable to the sphere diameter standard deviation (rd = 1.65 9 10-3). It must

be highlighted that, although e2 is small and demonstrates the robustness of the

method, the origin of the repeatability error may be partly due to a rearrangement

(aging) of the packing, consequence of the motion induced by the gradient coil

vibrations during MRI acquisitions.

3.2 Correlation Function

The radial correlation function f(r) is a sensitive way to highlight geometrical

properties of crystalline and amorphous structures. It is routinely used in granular

material packings analysis.

Despite being an averaged quantity, f(r) is extremely sensitive to the local

properties of the sample.

It can be consistently used to assess the sensitivity of the reconstruction, provided

the granular sample has a degree of polydispersion lower than the reconstruction

error.

In our previous publication, and references therein, we discussed the properties of

f(r) and a method to reliably calculate the correlation function even in low-sized

samples or sample fractions [16].

Fig. 3 a Displacement distribution along the three Cartesian directions in sequential reconstruction of
the same sample. The standard deviations in units of sphere diameter are rX = 3.41 9 10-3,
rY = 3.09 9 10-3 and rZ = 4.7 9 10-3. The dashed lines represent a Gaussian fit; b Two-body
correlation function; c Detail of the peak around r * 1 with a Gaussian fit (dashed line) performed on the
upper half of the peak. The computed standard deviation in units of sphere diameter is rexp = 7 9 10-3.
In both graphs, the radial distance (r) is expressed in units of diameter (d)
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The spheres with centers located at a distance smaller than 3 d away from the

container boundaries were discarded from the analysis to limit spurious boundary

effects caused by the container walls (e.g., crystallization at boundaries). The two-

body radial correlation function f(r) is defined as the average number of centers

located inside the spherical shell of thickness d at distance [r - d/2, r ? d/2] from
the center under consideration Nd(r), normalized by the average sphere volume Vb

and the spherical shell volume Vd(r):

f rð Þ ¼ Nd rð Þ � Vb

Vd rð Þ

� �

; ð5Þ

A shell thickness of d = 10-3 d was chosen as an optimal trade-off value

between high resolution and smoothness (Fig. 3b). The peak at r * d represents the

distribution of distances between spheres in direct contact (nearest neighbors). Its

shape is essentially Gaussian, slightly skewed on the right side due to the presence

of spheres almost, but not quite, in contact with the sphere under consideration.

From the line width, it is possible to deduce the precision of the reconstruction. If

we assume a perfect reconstruction and no correlation between nearest neighbors

diameter, the line shape is expected to be Gaussian (except from the right side

skewing) with a standard deviation rD given only by the dispersion in sphere

diameter:

rD ¼ rd=
ffiffiffi

2
p

¼ 1:17� 10�3 d; ð6Þ
The line width of the peak increases with increasing reconstruction error rR. If

we assume that eR is randomly distributed and not correlated with the nearest

neighbor diameter, the line shape will still be Gaussian and the standard deviation is

given by:

rexp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2e2R þ r2d
2

r

; ð7Þ

From a simple Gaussian fit of the f(d) peak (Fig. 3c), it is possible to determine

rexp and, inverting Eq. 7, the reconstruction error can be computed as follows:

eR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2exp þ r2d=2

2

s

; ð8Þ

We observed that 5 9 10-3 d\ rexp\ 8 9 10-3 d for all recorded datasets [16].

From Eq. 8, we obtained a reconstruction error of 3�10-3 d\ eR\ 5 9 10-3 d

which is on the same order as rd and e2.

4 Discussion

The MRI acquisition and reconstruction method herein presented exhibits two main

benefits as compared to previous proposed schemes: first, the image acquisition time

is short, allowing either recording rapid consecutive acquisitions to reduce statistical

noise on a sample of given size or increasing the sample size, i.e., the number of
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spheres. Second, the high CNR together with the relatively high spatial resolution

allows accurate determination of the sphere centers. This novel method gives

unprecedented high-precision determination of the internal structure of granular

packings, giving access to the observation of fine-grained details. The evaluation of

the precision of the sample reconstruction allows for a direct quantification of the

errors affecting the geometrical quantities extracted from the packing structure.

The small errors inherent to the reconstruction method allow computing, with

high precision, the asymptotic value of f(r) as r becomes large, which provides a

value for the granular density q of the packing. This definition of granular density

corresponds to the averaged long-range density of the system and can be compared

to local densities defined, for instance, through the decomposition of the space in

Voronoi polyhedra [21]. The herein presented reconstruction algorithm allows to

observe the decay of the oscillatory behavior of f(r) for 3\ r\ 8 and thus estimates

with high accuracy the asymptotic value of q even for relatively small samples or

for partial volumes of a large sample [16].

A flawless reconstruction algorithm and a high monodispersion in sphere

diameter are key features to obtain packings reconstructions with minimal errors in

the determination of the sphere position.

For comparison, the precision of the reconstructed positions obtained in the

state-of-the-art measurements presented in Aste et al. [12] was estimated from the

number of voxels associated with each sphere, leading to questionably low values

(*10-4 d), especially considering the relatively high scatter in sphere diameter

(4–5 9 10-2 d). The uncertainty in the number of spheres contained in the

reconstructions presented in Aste et al. [12] might therefore have led to errors in

the determination of quantities such as density or average number of contact

neighbors.

5 Conclusions

A high-precision three-dimensional image of a 0.5 L sample containing about

2 9 104 spheres was reconstructed in less than 1 h on a standard desktop computer

from an MRI tomography acquired in a time shorter than 6 h. A direct measurement

of the precision of the technique showed that the errors in the reconstructed data,

both in terms of repeatability and accuracy, are comparable to the physical diameter

dispersion of the spheres composing the sample, suggesting that better precision

could be obtained by reducing the dispersion in sphere diameter. The flawlessness

and the high accuracy granted by this method have already proven to be crucial for

the discovery of novel properties of highly mono-dispersed sphere packings,

allowing accurate determination of the radial two-body correlation function and the

observation of important geometrical properties [16].
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