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Abstract— We propose three modeling methods using a
mobile sensor network to generate high spatio-temporal
resolution air pollution maps for urban environments. In our
deployment in Lausanne (Switzerland), dedicated sensing nodes
are anchored to the public buses and measure multiple air
quality parameters including the Lung Deposited Surface Area
(LDSA), a state of the art metric for quantifying human
exposure to ultrafine particles. In this paper, our focus is
on generating LDSA maps. In particular, since the sensor
network coverage is spatially and temporally dynamic, we
leverage models to estimate the values for the locations and
times where the data are not available. We first discretize the
area topologically based on the street segments in the city and
we then propose the following three prediction models: i) a
log-linear regression model based on nine meteorological (e.g.,
temperature and precipitations) and gaseous (e.g., NO2 and CO)
explanatory variables measured at two static stations in the city,
ii) a novel network-based log-linear regression model that takes
into account the LDSA values of the most correlated streets
and also the nine explanatory variables mentioned above, iii) a
novel Probabilistic Graphical Model (PGM) in which each street
segment is considered as one node of the graph, and inference on
conditional joint probability distributions of the nodes results
in estimating the values in the nodes of interest. More than
44 millions of geo- and time- stamped LDSA measurements
(i.e., more than 14 months of real data) are used in this paper
to evaluate the proposed modeling approaches in various time
resolutions (hourly, daily, weekly and monthly). The results
show that the three approaches bring significant improvements
in R2, RMSE and FAC metrics compared to a baseline K-
Nearest Neighbor method.

I. INTRODUCTION

More than 7 millions of premature deaths are annually

linked to air pollution from which 2.6 millions are particularly

caused by urban outdoor air pollution [1]. Many studies on

human health have concluded that environmental stress is a

major factor for morbidity and has a negative impact on the

quality of life especially in urban areas (e.g., [2]). One of

the major challenges in these studies is to obtain or estimate

high resolution (spatial and temporal) air quality data to be

able to analyze the correlation between health and the exact

air to which people are exposed.

Among all the airborne pollutants (SOx, NOx, CO, NH3,

O3, etc.), recently there has been a growing attention to study

particulate matters due to their significant adverse impact

on human health. In urban environments, this measure is

closely linked to urban traffic conditions [3]. Most of the

recent studies (e.g., [4] and [5]) have focused on PM10 or
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PM2.5 which describe the amount (mass/number) of particles

smaller than 10 µm or 2.5 µm in a given volume. However,

the mass or number of particles do not necessarily represent

the best measures for all risks to human health. The size

and the surface area of the particles also matters. It is well-

known that finer particles are potentially more toxic than

coarse particles [6]. Studies have shown that measuring the

surface of nanoparticles, rather than their mass or number,

is more meaningful for quantifying their health impact [7],

[8], [9], [10]. In fact, ultrafine particles (UFPs) are able to

travel deeper into the lungs and, due to their large surface-

to-volume ratio, have higher reactivity which can result in

higher toxicity. Therefore we are interested in measuring and

estimating the Lung-Deposited Surface Area (LDSA) which

is a measure that describes the deposited surface of particles

per volume of air inhaled.

The established method for monitoring air pollution, in

most countries, is through the use of static air pollution

monitoring stations. These reference stations provide highly

accurate measurements from a limited number of specially

selected sites, which should be representative of different

types of locations (e.g., the National Air Pollution Monitoring

Network - NABEL - in Switzerland, consists of 16 stations

in total over the whole country). The stations are expensive,

large, and power hungry, and so this type of monitoring

networks can only provide spatial resolutions in the order

of several hundred kilometers which must be interpolated

with dedicated, state-of-the-art physico-chemical modeling

techniques in order to reach a resolution of about 1 km2.

A. Mobile Sensing

As opposed to traditional air quality monitoring stations,

the use of networks of low-cost sensors is quickly emerging,

aiming at providing air quality data with unprecedented

temporal and spatial resolution. In this application field as well

as others (e.g., surveillance [11], crowdsensing through smart-

phones [12] and dynamic coverage [13]) there is a growing

trend towards mobile sensing platforms. For air pollution

monitoring in particular, innovative sensing strategies such

as wearable air quality sensing nodes [14] and smart-phones

used as mobile air quality sensors [15] are proposed. This

will open exciting new opportunities for the study of urban

air quality and its impact on health. An important issue for

obtaining accurate and spatially highly resolved air pollution

data is the trade-off between high cost of accurate air pollution

monitoring sensors and the number of such devices required

for succinctly monitoring a given geographical area. Fig. 1

depicts this trade-off and classifies the various techniques for
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Fig. 1. Sensing trade-off for a given budget.

gathering data. In the context of the OpenSense II1 project

funded by the Swiss national research initiative Nano-Tera.ch

and aiming at investigating mobile sensing technologies to

monitor air pollution, we consider data gathered via all types

of devices and stations shown in Fig. 1, i.e., from [high

quality / low spatial resolution] to [low quality / high spatial

resolution].

We have anchored our sensing platforms on top of ten

public buses in Lausanne. This innovative deployment which

adds mobility to monitoring platforms brings significant

benefits in comparison to canonical static Wireless Sensor

Networks (WSNs): finer spatial resolution, coverage of wider

area with fewer nodes, cheaper maintenance, etc. However, not

much literature exists on field estimation using non-stationary

sensor networks. The movements of the nodes are not under

our control and not even predictable since the buses are

assigned to different lines every few hours depending often

on real-time needs of the public transportation company.

The coverage of the network dynamically changes over time

and generating consistent maps with high spatio-temporal

resolution is a tough challenge.

To state the problem, consider a heterogeneous sensor

network which consists of mobile and stationary nodes.

Stationary nodes provide meteorological and gaseous

information from fixed locations of a city. The mobile nodes

measure LDSA while dynamically navigating various streets

of the city on trajectories which are not systematically

predictable. The question is how to generate spatio-temporal

high resolution LDSA maps in this city. We are aiming at

hourly maps with spatial resolution of small street segments.

Since the coverage area of the limited number of mobile

nodes changes from one hour to the other, there are always

many street segments that do not have any measurements.

We address this problem by building statistical models for

the street segments of the city.

B. Air Pollution Modeling

Most of the works on air pollution modeling fall into two

categories [16]: deterministic and statistical. Deterministic

dispersion models simulate the physico-chemical processes

1http://opensense.epfl.ch

of airborne gas dispersion, using the sources of emissions as

input. GRAL [17] is an advanced example of this category

which mathematically models the motion of pollution plume

particles in the atmosphere using a Lagrangian dispersion

model. A drawback of this category of models is that

they need accurate information about emission inventories,

structural and geographical details of the environment, and

meteorological data, which are not always available in high

temporal resolutions.

Alternatively, statistical models do not describe the actual

physical processes, but they treat the input measurements

as random variables to derive a statistical description of

the target distribution. These methods can be divided into

two subcategories. The first subcategory is represented by

the purely field-driven models which aim at finding all

the dependencies and variables from the measurement data.

Spatial interpolation methodologies (e.g., inverse distance

weighting interpolation [18], and K-Nearest Neighbor (KNN)

[19]) are the most common approaches in this subcategory.

The performance of such methods drops drastically if the

field is dynamic and multi-variant (which is usually the

case for urban environments under short term observational

conditions). The second subcategory are the statistical models

which work not only based on the field measurements but

also take one or more explanatory variable(s) into account.

The explanatory variables are usually other related modalities

to the target variable. These methods usually show higher

performance compared to the purely field-driven models. In

the next paragraph, we will provide additional details about

latter subcategory.

Hussein et al. [20] fitted a linear regression model on the

data of a monitoring station to predict aerosol particles in

Helsinki. Mølgaard et al. [21] used a Bayesian regression

model to predict ultrafine particles concentrations of an

urban monitoring station using meteorological and traffic

data as inputs. To obtain better prediction performance,

Clifford et al. [22] proposed a generalized additive model

using meteorological data, time, solar radiation and rainfall

as explanatory variables. Reggente et al. [23] employed a

Gaussian process regression to estimate UFPs in an urban

air pollution monitoring network based on local and remote

concentrations of NOx, O3 , CO, and UFPs. None of the

mentioned works have considered mobile sensor networks.

One stream of research has focused on modeling the air

pollution based on land-use data. Land-use features (in the

context of urban environmental modeling) are measures of

average traffic volume, population density, building heights,

heating type, terrain elevation, terrain slope, types of roads, etc.

Li et al. [24] proposed a Gaussian process regression (AKA

Kriging) model using land-use characteristics to estimate

urban UFP levels from measurements collected from the

trams in Zurich (Switzerland) within different grid-cells. The

main problem with land-use data is that usually they are not

available in high temporal resolutions. For instance, the most

recent traffic counts data available for Lausanne (our targeted

city) that was available to us, was gathered in 2010. This

data obviously does not represent the dynamics of the traffic



from one day to the other in 2015. Therefore, this kind of

data is usually considered as long-term representative for

trends and can therefore produce only long-term predictions

(i.e., low temporal resolution) of air pollution. One way to

overcome this issue is to generate different models for every

target time period. Hasenfratz et al. [25] and Li et al. [24]

(in two separate works) built up two sets of a thousand

models, each targeting one time period (e.g., one model per

day) for one city. These models cannot be used for time

periods other than the training ones. These two contributions

used the mobile sensor network dataset gathered from the

Zurich deployment of the former phase of the OpenSense

project. In the method proposed by Hasenfratz et al. [25],

measurements gathered in a previous period are also used in

the model to increase the accuracy of high resolution maps.

In particular, they annotate the UFP measurements obtained

during one year with the corresponding meteorological (e.g.,

temperature) and time data (e.g., weekday). Then based on

the current meteorological conditions and time, they fetch

the most relevant historic UFP measurements and use them

to augment the current dataset represented by the real-time

UFP measurements. This method significantly increases the

accuracy of the maps, although the real-time meteorological

data are not directly used in the model itself. On the other

hand, Li et al. [24] did not consider meteorological parameters

at all.

C. Our Contribution

To address the stated problem, we propose three statistical

modeling methods using data from our mobile sensor network.

The details of our sensor network are presented in Section II.

Differently from many previous works which partition the

space into square grids, we discretize the area topologically

based on the street segments in the city (explained in section

II-E). Then we propose the following three models to predict

LDSA values in each street segment:

1) A log-linear regression model based on nine

meteorological (e.g., temperature and precipitations)

and gaseous (e.g., NO2 and CO) explanatory variables

obtained from the two static stations (explained in

section III-A). Although log-linear regression modeling

has been vastly used in the literature, the number of

explanatory variables, the scale of the data, and the

time resolutions which we consider in this paper are

beyond the framework of many previous works in this

area.

2) A novel network-based log-linear regression model that

takes into account the measurement (LDSA) values of

the most correlated streets and also the nine explanatory

variables from two static stations. The proposed virtual

network captures the dependencies between the street

segments and also takes into account the explanatory

variables in the model of each street. Moreover, it

automatically handles the issue of dynamic coverage

of the mobile sensor network. To the best of our

knowledge, no previous work has ever proposed such a

network-based model for extending the spatiotemporal

mapping capabilities of a mobile sensor network.

Section III-B provides details of this contribution.

3) A novel Probabilistic Graphical Model (PGM) in which

each street segment is considered as one node of the

graph, and inference on conditional joint probability

distributions of the nodes results in estimating the

targeted modality (in our case, LDSA) in the nodes

of interest. None of the previous works in this area

have designed a PGM to capture automatically all the

cross-correlations between the explanatory variables

and LDSA values in different streets and also deal with

the dynamic coverage of mobile sensor networks. This

powerful tool is explained in section III-C.

Finally section IV presents the evaluation of the proposed

methods by comparing them with each other and with a

baseline KNN model.

II. THE SYSTEM

A. Sensing nodes

In our Lausanne deployment, dedicated sensing nodes are

anchored to ten public buses and measure multiple air quality

parameters including LDSA. The localization of the mobile

nodes is achieved through fusion of GNSS and the vehicle

dead-reckoning. Accurate time is also obtained from the

GNSS module. All the measurements are geo- and time-

stamped locally by the sampling node and sent through GPRS

to a database server. Along with these, there are several meta-

data information that are sent to the server to indicate the

health state of the measurements. The final deployment of

our mobile sensor network started in October 2013. The

LDSA sensors are Naneos Partector [26] devices and have

been added to the nodes starting from December 2013. The

sampling rate for LDSA is 1 Hz. Fig. 2 shows one of the

sensing nodes used in this project.

For this paper we only focus on the LDSA mapping due

to following reasons:

• The LDSA sensors are calibrated by the manufacturer

and therefore ready to use without further calibration

efforts.

• The LDSA sensors are the fastest sensors in our

deployment. The response time for this actively sniffing

sensor is in the order of fractions of a second.

Considering the fact that our sensors are mobile, the fast

response of the sensors implies that the measurements

are already spatially and temporally associated with the

local field.

• The aging and time drift are negligible for the LDSA

sensors, although minimal maintenance effort is required

(approximately once per year).

In addition to the LDSA measurements collected by the

buses, we consider two static monitoring stations in our

system. One is the NABEL station located near the city

center (on the César-Roux street) which monitors many

air quality parameters (e.g., CO, NO, NO2). The other

is the meteorological monitoring station operated by the

national weather service of Switzerland (MeteoSwiss) in Pully



Fig. 2. One sensor node anchored on top of a public bus (left). One of the
LDSA sensing modules (right).

which provides meteorological parameters (e.g., precipitations,

radiation and humidity). These two stations report their

measured values every ten minutes.

B. LDSA data

About 44.5 millions of geo- and time- stamped real LDSA

measurements gathered during more than 14 months are used

in this paper. This amount of data is available after data

cleaning (i.e. applying several simple filters based on the

device health meta-information).

C. Explanatory variables

The data of the meteorological and pollution monitoring

stations are about 70,000 rows each in total, due to their

lower sampling rate. From these two stations, the data of the

following 9 parameters are used in this paper:

• CO, NO and NO2: These gases are mainly produced by

combustion of fossil fuels and so they can be a good

measure for traffic conditions in the city. Since ultrafine

particles are produced from the same sources in the

urban environment, these are good candidate parameters

for our models.

• Ground level O3: Ozone is the primary oxidant of

pollutant gases present in the atmosphere and since it

plays an important role in the balance between NO and

NO2 in the atmosphere, we include it as a parameter in

our LDSA models.

• Radiation, precipitations, temperature and wind speeds:

The stability of the atmosphere is highly dependent

on these parameters. Solar radiation and temperature

change the size of eddies which eventually affect the

concentration of particles through dispersion. When a

precipitation event (e.g., rain) starts, the concentration

of the particles drastically drops. Also wind is generally

expected to disperse locally the aerosols from one

place to another. It is therefore important to take these

parameters into account.

• Relative Humidity: The growth pattern of ultrafine

particles is related to adsorption of water vapor, so

humidity is a parameter to model the aerosols particles.

Statistical analysis of the correlation between the

aforementioned parameters and the ultrafine particle

data has been already studied in the literature (e.g., [27]).

Throughout this paper we refer to these 9 parameters as

“explanatory variables”.

D. Time discretization

This paper considers “hour”, “day”, “week”, and “month”

time resolutions. In less than one hour, there are not enough

LDSA measurements for most parts of the city, making it

impossible to fit models. Depending on the time resolutions,

the LDSA measurements and the explanatory variables are

partitioned and aggregated in time and in space.

E. Space discretization

Most of the previous works (e.g., [25], [28]) partition the

area to uniform grid cells and assume that the measurements

inside a cell have the same conditions (e.g., in terms of

weather, wind and traffic). Depending on the cell-size, one cell

can cover several streets which have different environments

and traffic conditions. To overcome this issue, Jutzeler et

al. [29] proposed to use regions of homologous emissions

to divide the city into partitions with similar daily traffic

estimations. They associated every measurement to the closest

road segment based on Euclidean distance. They showed

that compared to grid-based, the region-based partitioning

produces better predictions across aggregates of yearly to

daily time scales. We follow this concept while using a more

advanced street matching algorithm.

In this paper, the data of the street segments of the city

are acquired from the online OpenStreetMap [30] database.

Then we split the very long streets into multiple smaller

streets in order to not lose high spatial resolution. The use

of this space discretization will naturally result into higher

resolutions in the downtown areas where street segments

are shorter and the heterogeneity of the measured field is

expected to also be higher than in suburban areas. Fig. 3

shows the length histogram of the street segments. Using

the localization data of the measurements and estimating

the azimuth of the bus, the LDSA values are assigned to

their corresponding road segments based on the algorithm

explained in [31]. The general idea of this algorithm is to

continuously track the buses based on their location and

to keep a list of route candidates for them during their

movements in the streets. Each route has a score that defines

how well the traced trajectory of the bus matches this route.

Fig. 3 shows one snapshot of our street matching software

and shows an example of how well the measurements are

assigned to one street segment.

All the LDSA measurements are projected on 1377

street segments covering the region of interest depicted in

Fig. 4. As the figure shows the measurements are unevenly

distributed in various segments, representing a dynamic non-

uniform coverage. An important metric of the goodness of a

particular spatial discretization is how homogeneous are the

measurements inside a given partition element (i.e., segment

or grid cell), with better discretizations having lower deviation

from the mean of the partition element. We have compared the

standard deviation of LDSA values in our street segments with

grid-cell partitioning considering six different cell numbers

in Fig. 5. This figure shows that the standard deviation we

obtain from street segmentation with 1377 segments is better

then when we use 4900 (and for some cases 10000) grid
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Fig. 3. Left: One snapshot of the developed street matching software.
In this example the blue lines show the reported trajectory traces of the
buses during one week in one segment. Due to localization errors, the blue
traces are deviated form the actual position of the street segment. Our street
matching algorithm has matched all of them to one segment. The green lines
show the other segments that buses have passed during this period. Right:
The histogram of length of the street segments. Most of our segments are
shorter than 25 meters.

Fig. 4. The coverage area of the sensors from Dec. 1st. 2013 to Feb. 1st
2015. The number of samples is normalized considering the length of each
link. The segments with less than 1 sample per meter are not considered in
the coverage area.

cells. These results show the benefit of “street segmentation”

over “grid partitioning” in urban environments.

III. MODELING APPROACHES

A. Log linear explanatory variables

It has been experimentally shown that the mathematical

links between gaseous parameters in air are logarithmic [32],

[21]. In the first attempt, similar to many previous works

(e.g., [25]) we use a log-linear regression model to estimate

LDSA values in every street using the data of explanatory

variables (defined in Section II-B) as inputs. The mathematical

formulation of this model is defined by the following equation:

log (Lm) = α0 +

9
∑

i=1

αi . log (vi) (1)

where Lm denotes the LDSA estimated value in segment m,

α0 the intercept, vi the explanatory variables i, and αi the

coefficient of each variable.

We divide the available data into two subsets, the “training

set” and the “validation set”, using 10-fold cross validation.

On the training set, we use the QR decomposition algorithm

[33] to solve the linear least squares problem in order to

find the coefficients of the model for each street segment.

Working on four time resolutions and 1377 street segments,
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Fig. 5. Standard deviation of LDSA values in one spatial partition (cell or
street segment). Lower standard deviation indicates more homogeneity in
the measurements in one cell. The measurements are integrated based on the
four time resolutions and then the standard deviation in each cell/segment is
computed for every space-time tessellation. Street segmentation shows good
results considering that the number of segments is 1377.

we developed 5508 models. The results are reported in Section

IV.

B. Network-based log-linear regression

The goal is to estimate the LDSA values for the locations-

times that the mobile sensor network has not covered (but

still covered previously at least once). The previous model

computes the LDSA values based on the values of the

explanatory variables (which are always available through

the static stations). Here, the idea is to take also into account

the measured LDSA values of other segments for predicting

the LDSA values in a given segment in a given time window.

However, this is not trivial considering the fact that the

sensors are mobile and the coverage is dynamic, an especially

important factor when high temporal resolutions (e.g., hour)

are considered. For instance, if the model of the segment

Sm is dependent on the LDSA value of the segment Sn,

then the model cannot work when there is no bus covering

the segment Sn. To address this challenge we propose to

build a virtual dependency network on the segments. In this

network, each segment is one node and a directed edge is

drown between node Sm and Sn if node Sn is considered

as a variable in the model of node Sm. As we will see this

network is able to address the problem of dynamic coverage

of the mobile sensors.

Now the question is how to build the network and define

how the models work on the network. We propose to connect

node Si to Sj if the following two conditions hold:



Fig. 6. The correlation map for segment 1061 (shown by a small black dot
and the arrow). The segments along one long street show high correlation
while some nearby streets in other directions do not show high correlations.

1) If the Pearson correlation between the LDSA values

of node Si and Sj is high. This is due to the fact

that correlation is a basic need for every variable in

a model. We have noticed that the segments which

are geographically close do not necessary show high

correlations, especially if they are not in the same

direction. Fig. 6 shows a correlation map for one

exemplar segment.

2) If node Sj has reported enough “complementary data”

relative to the available data of node Si. We define

“complementary data” as the number of time-slots when

there are LDSA values reported for the segment Sj

but no value was reported for Si. Based on the first

condition, some of the segments which are along one

street have the highest correlations and since they are

most probably covered by the same bus they do not

have any “complementary data” meaning that either all

segments have data or none of them (making the models

inefficient). With this second condition we make sure

that the edges in the network are going to be efficient

for the models.

To create the network based on the two mentioned edge

conditions, using the available LDSA data of the segments,

we compute the cross correlation of LDSA values of all

combinations of the segments and then for every segment Si

we find the M (= 10 in this paper) most correlated segments.

Among the most correlated segments we find the ones that

have more complementary data relative to Si. We establish

an edge for every node Si and then keep adding edges to

the network (while considering the two conditions) until the

network is minimally connected.

To take the nine explanatory variables into account, we

insert them as nodes to this network and connect them to

every other node in the network. In our deployment, this

process generated a network with 1386 nodes (1377 street

segments + 9 explanatory variables) and found 15040 edges.

Fig. 7 shows this network.

Since we have ten buses, during one time slice (e.g., one

Fig. 7. The generated network for Lausanne’s street segments for LDSA
estimation model. Each red node represents the center of one segment while
the black lines between two nodes represent the correlation between the
LDSA values of two segments. The big 9 blue nodes represent the nine
explanatory variables which are in fact connected to all other nodes. For
increasing the readability of this figure we have removed all the edges
between the blue nodes and the red nodes.

hour) a fraction of nodes of the network will have actual

measurements, while the rest should be estimated using the

models. It is obvious that if the network is (at least) minimally

connected, then theoretically all the nodes can be predicted

one by one even if only one segment has actual measurement.

Denoting E as the edge list of this network, and LSm
as the

LDSA value of segment Sm, here is the proposed model for

node Sm:
log (LSm ) = α0 +

9
∑

i=1

αi . log (vi) +
∑

[m−n]∈E

αn . log (LSn ) (2)

The optimal values for the coefficients of this model are

found similar to the first method using the training set data.

This novel graph-based approach iteratively estimates the

LDSA value of the segments based on the LDSA value of

the correlated nodes and also based on the values of the

explanatory (meteorological and gaseous) variables. This is

an approach well-suited for mobile sensor networks where the

coverage area of the network dynamically changes over time.

Basically it does not matter which nodes have measurements

and which nodes are to be estimated, as long as there is at

least one node with a measurement, the LDSA value of all

the other segments can be estimated iteratively. Section IV

evaluates this approach in detail.

C. Probabilistic Graphical Model

In this section, we propose a probabilistic graphical model

to infer the LDSA values from the observed values, their

dependencies to other segments and to the explanatory

variables. Our probabilistic model for street correlations

is based on the assumption that values of LDSA in two

correlated streets are more likely to be similar. To design

the model, we use the framework of Markov networks

or Markov random fields [34], very common in statistical

physics, economy, and image processing. Assuming X =
{X1, X2, ..., XN} a set of discrete random variables, a binary

Markov network over X defines a joint distribution P (X).
The network is defined via a graph whose nodes correspond to

variables in X and its edges E represent direct probabilistic



dependencies between those variables. Each variable Xi is

associated with a potential ϕ(Xi) and each edge [Xi −Xj ]
is associated with a non-negative compatibility potential

ϕ(Xi, Xj). The joint distribution is then defined as:

P (X1, ..., XN ) =
1

Z

N
∏

i=1

ϕ(Xi)
∏

[Xi−Xj ]∈E

ϕ(Xi, Xj) (3)

where Z is a normalizing constant. Intuitively, ϕ(Xi)
encodes how likely the different values of Xi are, ignoring

dependencies between the variables. For assigning a particular

value xi to variable Xi and value xj to Xj , the potential

ϕ(Xi, Xj) specifies how “compatible” this assignment is; the

higher the value, the more likely this pair of values is to

appear together.

In our problem setting, the variables are the union of the

LDSA values in the segments S = {S1, S2, ..., Sn} and the

explanatory variables V = {V1, V2, ..., V9}, thus X = S ∪ V ,

and the edges are defined by relationships between them. The

network defined in Section III-B represents the interaction

between our variables. Intuitively, an edge eij between Si

and Sj captures the basic intuition that, if Si and Sj interact,

they are more likely to have similar values (i.e., high Pearson

correlation). Now we need to determine:

1) the marginal probability distribution of LDSA in all

segments, ϕ(Si), i ∈ [1..n],
2) the marginal probability distribution of explanatory

variables, ϕ(Vj), j ∈ [1..9],
3) the pairwise probability distribution of LDSA in

segment i and k, ϕ(Si, Sk),
4) the pairwise probability distribution of LDSA in

segment i and explanatory variable j, ϕ(Si, Vj).

All the random variables in this problem are continuous which

makes the computation of marginals intractable. Hence we

discretize the values into equal width intervals. For each

modality (the nine explanatory variables and the LDSA)

we divide the range into 20 sections and discretize their

values. Then we compute the normalized frequency tables

and joint frequency tables of all the variables (nodes and

edges) as marginals and pairwise probability distributions.

Fig. 8 (left) shows the marginal probability distribution of

LDSA in three segments. Fig. 8 (right) shows the pairwise

probability distribution of LDSA in two correlated segments.

These distributions are obtained from the LDSA data of the

corresponding segments.

At a given time some of the segments have observations

forming an “observed set” called So, while some are not

observed forming an “unobserved set” called Su, such that

S = So ∪ Su. Our approach aims to find the value of LDSA

for missing streets Su based on the observed values So (other

streets and the explanatory variables V ) that can be formalized

as:
P

(

Su|(So, V )
)

=
P (X1, ..., XN )

P (So, V )
(4)

We use the inferred full joint probability (Eq. (3)) in the

above equation to answer any query in which some of the

streets in the graph are clamped to observed values. Fig. 9

presents this concept. Marginalization of P (So, V ) scales

Fig. 8. An example that shows the marginal probability distribution of
LDSA in three different segments (left). The blue and red (corresponding
to segments 1089 and 1326) show very high correlations. The pairwise
probability distribution of LDSA in two correlated segments is represented
on the right plot.

Fig. 9. A simple example showing a graphical model in this context. Each
node (corresponding to one street segment) has one potential function (the
small blue curves), the edges represent the interaction between the nodes
corresponding to the joint potentials (the small pink 2D surfaces). LBP can
solve this problem and find the best values for unobserved nodes (in this
case X2 and X4) given the values of the other nodes.

exponentially with the length of So ∪ V . As a more efficient

approach we use the approximate algorithm of Loopy Belief

Propagation (LBP) [35] to answer the conditional query of

Eq. (4). LBP is a greedy strategy to sequentially update the

value of each variable, keeping the value of the rest fixed. The

algorithm performs the value assignment in random order

for all variables. Each variable Xi is assigned to a value

that maximizes the likelihood of joint probability. After all

variables are assigned, they are randomly re-ordered, and the

assignment process is repeated. This process continues until

no value of any variable is changed between two successive

iterations [36]. The output of this iterative algorithm is a

probability distribution for all the unobserved variables (Xu).

We consider the argument of the maximum of this distribution

as the final output value of the model for the corresponding

segments. The higher the maximum probability is, the lower

the uncertainty on the value estimated by the model.

There are a few significant advantages of this proposed

model compared to the other two (and to many other previous

works e.g., [25]):

• There is only one single model built for every time

resolution, i.e,, four models in total. This means that

this model can capture all the dependencies between

all the segments and also the dependencies between

the LDSA values of each segment with the explanatory

variables. This is a huge advantage considering the fact

that most other methods are either location dependent

(e.g., our network-based log linear regression model) or



Fig. 10. Two examples of the hourly air pollution map of streets of Lausanne
based on estimated (modeled) and measured LDSA values. These maps are
generated based on the third proposed model.

time dependent (e.g., the one proposed in [25]).

• Since the output is probabilistic, the method always

provides a metric of uncertainty on the possible output

values. Many other modeling methods also provide a

metric of uncertainty but this one gives the uncertainty

not only for the output value but also on every other

possible value.

• This method perfectly deals with the heterogeneity

and dynamics of the system. It does not matter which

segments are covered at a given time by the mobile

sensor network, the model propagates the belief in

the network and is able to predict the value of the

other nodes. Of course the more segments report

measurements, the higher is the accuracy of the predicted

values for the other nodes.

IV. EVALUATIONS AND RESULTS

The three proposed models are used to model LDSA values

for locations/times of interest. Using the models we have

generated complete hourly, daily, weekly and monthly air

pollution maps of Lausanne. Fig. 10 presents some examples

of the hourly maps resulting from the third proposed model.

In our evaluation sets, for every estimated value (model

output), there is an observed value. Denoting M as the

set of modeled values and O as the set of corresponding

observations, we consider the following three metrics:

1) RMSE: The root mean square error is computed as the

following:

RMSE =

√

1

L

∑

i

(Oi − Mi)2 (5)

where L is the number of estimations provided by the

model. Obviously, the lower this metric is, the better

the model works.

2) FAC2: The factor of two measure, is the percentage of

ratios Oi/Mi that lay between 0.5 and 2. i.e.

0.5 <
Oi

Mi

< 2 (6)

The more close to 1 this metric is, the better the model

has estimated the values.

3) R2: The coefficient of determination shows the linear

dependence of observed and modeled values.

R
2
= 1 −

∑

i (Oi − Mi)
2

∑

i (Oi − mean(O))2
(7)

where mean(O) denotes the mean of all observations

which are considered in the validation sets. R2 = 1
represents a perfect linear fit between the model and

the observations.

In addition to the three proposed modeling approaches

we have also implemented the conventional KNN regression

model as a baseline to evaluate the results. We trained the

KNN model (to find the optimal value of K) using a training

set of LDSA values. No explanatory variable was used in this

method (so the model is fully field-driven based on LDSA).

Like the other 3 models, we have aggregated the data into

street segments and used the center of the street segment

as the geographical location of the measurements in KNN.

Euclidean distance is used as the metric of distance and the

search method was exhaustive.

There are two advantages for KNN in our problem setting:

i) Using KNN we can build a single model for the city per

time resolution (4 models in total). Among the three proposed

methods only the third one is similar to KNN in this regard.

ii) KNN is able to predict even for the segments which do

not have any observations. None of the proposed methods in

this paper have this ability. However, the results show that the

performance of KNN is very poor on our data (see Fig.11).

The RMSE is large, FAC2 is not satisfying and particularly

R2 is mostly negative.

We have evaluated the three proposed methods using

exactly the same procedure and data. The data is divided into

training and evaluation sets using a 10-fold cross validation

method. The results are shown in Fig. 12, Fig. 13 and Fig. 14.

The first method (log-linear regression modeling) shows good

results in comparison to KNN. In fact this method only uses

the explanatory variables to predict LDSA while KNN uses

only LDSA measurements of the other segments to predict

LDSA in a given one. The fact that log-linear regression

shows better results proves the impact of the explanatory

variables in our system.

The second method (network-based log linear regression)

shows much better results than the first method and KNN.



Fig. 11. The results of the KNN model: RMSE (left), FAC2 (center), R2

(right). Note: R2 is mostly negative indicating that this statistical approach
does not work well on this data.

Fig. 12. The results of the log-linear regression model.

Fig. 13. The results of the Network-based log-linear regression model.

Fig. 14. The results of the probabilistic graphical model.

RMSE, KNN FAC2, KNN R2, KNN

RMSE, Log-linear FAC2, Log-linear R2, Log-linear

RMSE, Network FAC2, Network R2, Network

RMSE, PGM FAC2, PGM R2, PGM

The RMSE, FAC2 and R2 are all improved. This shows the

impact of the proposed virtual network on the model.

The third method (probabilistic graphical model)

outperforms the other three models. However, this model

could not obtain results for the time resolution of “month”

due to lack of enough data to build all the potentials correctly

(we have less than 15 months of data so far). All the three

metrics show good performance for this method, validating its

effectiveness. An advantage about our PGM is that one model

can capture all the dependencies between all the segments

and also the dependencies between the LDSA values of each

segment with the explanatory variables. Another good point

about this method is that the results of the estimations are

probabilistic and they show the certainty of an estimated

value and the likelihood of another value.

V. CONCLUSION AND OUTLOOK

Three modeling methods using a real-world large scale

mobile sensor network were proposed to generate high spatio-

temporal resolution LDSA maps for an urban environment.

The models can deal with dynamic coverage of the mobile

sensor network. We topologically divided the city based

on the street segments and showed that this way of space

discretization is more efficient than its grid-based counterpart.

The first method was a conventional log-linear regression

model based on nine meteorological and gaseous explanatory

variables. For the second and the third methods, we proposed

creating a virtual network based on the dependencies of

LDSA values in which each street segment is considered as

one node of the graph and each edge represents correlations

between two nodes. The second method is a novel network-

based log-linear regression model that takes into account

the LDSA values of the most correlated streets and also the

nine explanatory variables from two static stations. The third

model is a novel probabilistic graphical model which infers

on the conditional joint probability distributions of the nodes

and results in estimating the values in the nodes of interest.

More than 44 millions of geo- and time- stamped LDSA

measurements (i.e., 14 months of real data) are used in this

paper to evaluate the proposed modeling approaches in various

time resolutions (hourly, daily, weekly and monthly).

Studying RMSE, FAC2 and R2, we conclude that the

proposed network-based models (the second and the third)

show more promising results than the first method and

KNN. In particular the third method (probabilistic graphical

model) outperforms the other three models. One of the main

advantages of the proposed probabilistic graphical model is

that it builds one single model for the whole city and for the

whole period. This model can capture all the dependencies

between all the segments and also the dependencies between

the LDSA values of each segment with the explanatory

variables. The other good point about this method is that

the results of the estimations are probabilistic and they show

the certainty of an estimated value and likelihood of any

other value. The only drawback is that when there is not

enough data to accurately compute the joint distributions, the

uncertainty grows in the output of this model.

In future, we will apply similar modeling methods for

generating high resolution maps for other measured modalities

(e.g., CO and NO2). However this is a challenging task

since the other sensors in our platform need to be carefully

calibrated and their data need to be validated through non-

trivial techniques considering their drift and aging.

Integrating land-use data into the models is another

important future work which potentially can improve the

quality of the maps. This is very useful specially for the

third proposed method (PGM) since one single model was

built for all streets. Differently from the temporal explanatory

variables used so far in this paper, land-use data provides

spatial characterization for the regions of the city. This

complementary source of information would increase the

performance of the models.

In the long-term, we also plan to crowd-source chemical

sensors to citizens in order to increase the space- and time-

resolution of the maps. However, going to this direction

implies significant work on addressing privacy and data

quality issues.
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