Demand-based scheduling

Michel Bierlaire Stefan Binder Yousef Maknoon Tomáš Robenek

Transport and Mobility Laboratory School of Architecture, Civil and Environmental Engineering Ecole Polytechnique Fédérale de Lausanne

April 10, 2015

Outline

- 2 Measuring satisfaction
- 3 Ideal timetable
- Disposition timetable

ECOLE POLYTECHNIQUE

(日) (同) (三) (三)

Demand models

- Supply = infrastructure
- Demand = behavior, choices

< ロト < 同ト < ヨト < ヨト

• Congestion = mismatch

Demand models

- Usually in OR:
- optimization of the supply
- for a given (fixed) demand

Bierlaire et al. (EPFL)

Aggregate demand

- Homogeneous population
- Identical behavior
- Price (P) and quantity (Q)
- Demand functions: P = f(Q)
- Inverse demand: $Q = f^{-1}(P)$

(4) (2) (4) (4) (4)

ÉCOLE POLYTECHNIQUE

Disaggregate demand

- Heterogeneous population
- Different behaviors
- Many variables:
 - Attributes: price, travel time, reliability, frequency, etc.
 - Characteristics: age, income, education, etc.

• Complex demand/inverse demand functions.

April 10, 2015 6 / 60

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Demand-supply interactions

Operations Research

- Given the demand...
- configure the system

Johnson Sity	Enterprise.
Published Ever	y Saturday,
\$1. per year-Adva	ince Payment.
SATURDAY, AI	PRIL 7, 1883.
TIME T	ABLE
E. T., V. &	G. R. R.
PAS: ENGER,	ARRIVES.
No. 1, West,	6:37, a. m
No. 2, East,	9:45, p. m
No. 3, West,	11:51, p.m
No. 4, East,	5:56, a. m
LOCAL FREIGHT,	ARRIVES
No. 5,	1:20, a. m.
No. 5, JNO. W. EA	KIN, Agent.
E. T. & W. N	. C. R. R.
Passenger, leaves,	7, a. m.
" orrives	6, p. m.

Behavioral models

- Given the configuration of the system...
- predict the demand

- ∢ /⊐ >

I ≡ ►

April 10, 2015 7 / 60

-

Demand-supply interactions

Multi-objective optimization

Maximize satisfaction

< ロト < 同ト < ヨト < ヨト

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Outline

2 Measuring satisfaction

Ideal timetable

Disposition timetable

Bierlaire et al. (EPFL)

April 10, 2015 9 / 60

(日) (同) (三) (三)

Measuring satisfaction

Behavioral models

- Demand = sequence of choices
- Choosing means trade-offs
- In practice: derive trade-offs from choice models

Choice models

Theoretical foundations

• Random utility theory

 $P(i|\mathcal{C}_n) = \frac{e^{V_{in}}}{\sum_{j \in \mathcal{C}_n} e^{V_{jn}}}$

- Choice set: C_n
- Logit model:

2000

(日) (同) (三) (三)

Decision rules

Neoclassical economic theory

 ${\sf Preference-indifference\ operator\ }\gtrsim$

reflexivity

$${\sf a}\gtrsim {\sf a} \;\; orall {\sf a}\in {\cal C}_{\sf n}$$

Itransitivity

$$a\gtrsim b \text{ and } b\gtrsim c \Rightarrow a\gtrsim c \ \ \, orall a,b,c\in \mathcal{C}_n$$

comparability

$$a\gtrsim b ext{ or } b\gtrsim a \ \ orall a,b\in \mathcal{C}_n$$

Decision rules

Utility

$$\exists U_n : \mathcal{C}_n \longrightarrow \mathbb{R} : a \rightsquigarrow U_n(a) \text{ such that}$$
$$a \gtrsim b \Leftrightarrow U_n(a) \ge U_n(b) \quad \forall a, b \in \mathcal{C}_n$$

Remarks

- Utility is a latent concept
- It cannot be directly observed

Example

Two transportation modes

$$U_1 = -\beta t_1 - \gamma c_1$$

$$U_2 = -\beta t_2 - \gamma c_2$$

with β , $\gamma > 0$

$$U_1 \geq U_2$$
 iff $-\beta t_1 - \gamma c_1 \geq -\beta t_2 - \gamma c_2$

that is

$$-rac{eta}{\gamma}t_1-c_1\geq -rac{eta}{\gamma}t_2-c_2$$

or

$$c_1-c_2\leq -rac{eta}{\gamma}(t_1-t_2)$$

Demand-based scheduling

INANSE-UK

Bierlaire et al. (EPFL)

14 / 60

ECOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

3

Example

Example

Assumptions

Decision-maker

- perfect discriminating capability
- full rationality
- permanent consistency

Analyst

- knowledge of all attributes
- perfect knowledge of \gtrsim (or $U_n(\cdot)$)
- no measurement error

Must deal with uncertainty

- Random utility models
- For each individual *n* and alternative *i*

$$U_{in} = V_{in} + \varepsilon_{in}$$

and

$$P(i|\mathcal{C}_n) = P[U_{in} = \max_{j \in \mathcal{C}_n} U_{jn}] = P(U_{in} \ge U_{jn} \forall j \in \mathcal{C}_n)$$

Logit model

Utility

$$U_{in} = V_{in} + \varepsilon_{in}$$

Choice probability
$$P_n(i|\mathcal{C}_n) = rac{e^{V_{in}}}{\sum_{j\in\mathcal{C}_n}e^{V_{jn}}}.$$

- Decision-maker n
- Alternative $i \in C_n$

Variables: $x_{in} = (z_{in}, s_n)$

Attributes of alternative i: zin

- Cost / price
- Travel time
- Waiting time
- Level of comfort
- Number of transfers
- Late/early arrival
- etc.

Characteristics of decision-maker n: s_n

- Income
- Age
- Sex
- Trip purpose
- Car ownership
- Education
- Profession
- etc.

STRANSP-OR

April 10, 2015 19 / 60

A B A A B A

ÉCOLE POLYTECHNIQUI

Demand curve

Price

Willingness to pay

Attributes of alternative *i*: *z*_{in}

- Cost / price
- Travel time
- Waiting time
- Level of comfort
- Number of transfers
- Late/early arrival
- etc.

Willingness to pay for alternative i

- Value of travel time
- Value of waiting time
- Value of comfort
- Value of transfers
- Value of not being on time
- etc.

Willingness to pay

Utility

$$U_{in} = \beta_c c_{in} + \beta_t t_{in} + \cdots$$

Value of time

$$VOT_{in} = \frac{\partial U_{in} / \partial t_{in}}{\partial U_{in} / \partial c_{in}} = \frac{\beta_t}{\beta_c}$$

Equivalence

Utility

$$U_{in} = \beta_c c_{in} + \beta_t t_{in} + \beta_w w_{in} + \beta_{cft} cft_{in} + \beta_T T_{in} + \beta_e e_{in} + \beta_\ell \ell_{in} + \cdots$$

Willingness to pay: cost per unit

- Travel time: β_t/β_c
- Waiting time: β_w/β_c
- Comfort: $\beta_{\rm cft}/\beta_c$
- Transfers: β_T / β_c
- Being early: β_e/β_c
- Being late: β_{ℓ}/β_{c}

Travel time equivalent: hours per unit

- Cost: β_c/β_t
- Waiting time: β_w/β_t
- Comfort: $\beta_{\rm cft}/\beta_t$
- Transfers: β_T / β_t
- Being early: β_e/β_t
- Being late: β_{ℓ}/β_t

< ロト < 同ト < ヨト < ヨト

Outline

2 Measuring satisfaction

Ideal timetable

Disposition timetable

Bierlaire et al. (EPFL)

Image: A matrix

April 10, 2015 24 / 60

A B F A B F

Planning of railway operations

Timetables

Objectives

- Minimize cost
- Maximize satisfaction

Constraints

- Cyclicity
- or not...

Modeling elements

Supply

- Line $\ell :$ sequence of stations served by the same train
- Train $v \in V_\ell$: service of a line at a given departure time

Demand

- Origin / destination i
- Ideal arrival time t
- Path $p \in P_i$: sequence of portions of lines to reach d from o
 - Access/egress time for path p (OD i)
 - Travel time for path p
 - Waiting time for path p

A B A A B A

Decision variables

- x_i^{tp}: 1 if passenger with ideal time t between OD pair i chooses path p; 0 otherwise
- y_i^{tp/v}: 1 if a passenger with ideal time t between OD pair i on the path p takes the train v on the line ℓ; 0 otherwise
- d_v^{ℓ} : the departure time of a train v on the line ℓ (from its first station)
- u_v^{ℓ} : number of train units of a train v on the line ℓ
- α_v^{ℓ} : 1 if a train v on the line ℓ is being operated; 0 otherwise

Calculation variables

- C_i^t : total cost of a passenger with ideal time t between OD pair i
- w_i^t : total waiting time of a passenger with ideal time t between OD pair i
- s_i^t : value of the scheduled delay of a passenger with ideal time t between OD pair *i*
- z_v^l: dummy variable modeling the cyclicity corresponding to a train v on the line l
- o_{vg}^{ℓ} : occupation of train v of line ℓ on segment g

Problem constraints

- passenger cost $\leq \varepsilon$
- everyone uses at most one path
- link between path and trains: everyone boards one train of each line in the path
- cyclicity
- everyone uses only trains that are actually running
- train capacity
- maximum number of train units

Calculation constraints

- Scheduled delay
- Waiting time
- Overall cost

A B < A B </p>

Current model

Departure times of trains are fixed, current values are used (cyclic).

Cyclic model

Departure times are optimized, cyclicity is enforced.

Non-cyclic model

Departure times are optimized, cyclicity is not enforced.

Case Study – Switzerland

S-Train Network Canton Vaud, Switzerland

Case study: Switzerland

Context

- SBB 2014 (5 a.m. to 9 a.m.)
- OD Matrix based on observation and SBB annual report
- 13 Stations
- 156 ODs
- 14 (unidirectional) lines
- 49 trains
- Min. transfer 4 mins

(B)

Case study: Switzerland

Willingness to pay from the literature

- Value of travel time: 27.81 CHF / hour
- Value of waiting time: 69.5 CHF /hour
- Value of comfort: —
- Value of transfers: 4.6 CHF / hour (10 min. travel time)
- Value of being late: 27.81 CHF / hour
- Value of being early: 13.9 CHF / hour
- etc.

Current model

Bierlaire et al. (EPFL)

Demand-based scheduling

April 10, 2015 37 / 60

3

Impact of congestion

Impact of congestion

Passenger cost: highest demand, current model

Passenger cost: highest demand, cyclic model

Passenger cost: highest demand, non-cyclic model

Number of passengers

Outline

Demand and supply

- 2 Measuring satisfaction
- 3 Ideal timetable
- Disposition timetable

Motivation

Figure: Bray Head, Railway Accident, Ireland, 1867. The Liszt Collection.

Bierlaire et al. (EPFL)

Demand-based scheduling

April 10, 2015 44 / 60

(日)

Recovery

Research question

What are the impacts, in terms of passenger (dis-)satisfaction, of different recovery strategies in case of a severe disruption in a railway network?

Recovery strategies

- Train cancellation
- Partial train cancellation
- Global re-routing of trains
- Additional service (buses/trains)
- "Direct train"
- Increase train capacity

Assumptions

Supply side

- Homogeneity of trains
- Passenger capacity of trains / buses
- Depots at stations where trains can depart

Demand side

- Disaggregate passengers : origin, destination and desired departure time
- Path chosen according to generalized travel time (made of travel time, waiting time and penalties for transfers and early/late departure)
- Perfect knowledge of the system
- No en-route re-rerouting

April 10, 2015 46 / 60

A sample network

A disrupted sample network

Time-expanded network

Nodes (N)

- s_t^a: train arrival event from station s at time t
- s_t^d : train departure event from station s at time t

Arcs (A)

- Train driving arcs
- Train waiting arcs
- Connection arcs
- Access & egress arcs

Capacitated passenger assignment algorithm

- Assign passengers on the least expensive path according to path disutility function.
- If an arc capacity is exceeded, decide which passengers need to be re-assigned. Otherwise, stop.
- Re-assign unassigned passengers on a reduced network, then go to Step 2.

ÉCOLE POLYTECHNIQU Fédérale de Lausann

Decision variables

Supply

$$x_{(i,j)} = egin{cases} 1 & ext{if a train runs on arc} (i,j) \in A \ 0 & ext{otherwise} \end{cases}$$

Demand

$$w_{(i,j)}^{p} = \begin{cases} 1 & \text{if passenger } p \text{ uses arc } (i,j) \in A_{p} \\ 0 & \text{otherwise} \end{cases}$$

Objective function

$$\min \sum_{p \in P} \sum_{(i,j) \in A_p} c^p_{(i,j)} \cdot w^p_{(i,j)} + \sum_{(i,j) \in A | i \in R} c_t \cdot x_{(i,j)}$$

Passenger Cost $c_{(i,j)}^p$

- In-vehicle-time
- Waiting time
- Number of transfers
- Departure time shift

Constraints

$\sum_{j\in N} x_{(r,j)} \leq n_r$	$\forall r \in R$	
$\sum_{i \in V} x_{(i,k)} = \sum_{j \in V} x_{(k,j)}$	$\forall k \in V$	
$x_{(i,j)} = 0$	$\forall (i,j) \in A_D$	
$\sum_{(i,j)\in A_{\mathcal{P}} i=o_{\mathcal{P}}}w^{\mathcal{P}}_{(i,j)}=1$	$\forall \rho \in P$	
$\sum_{(i,j)\in A_p}w^p_{(i,j)}=1$	$\forall p \in P$	
$\sum_{i \in V_p} w_{(i,k)}^p = \sum_{j \in V_p} w_{(k,j)}^p$	$\forall k \in V_p, \forall p \in P$	
$w^{p}_{(i,j)} \leq x_{(i,j)}$	$\forall p \in P, \forall (i,j) \in A \cap A_p$	
$\sum_{p \in P} w_{(i,j)}^p \leq cap_{(i,j)} \cdot x_{(i,j)}$	$\forall (i,j) \in A \cap A_p$	
$x_{(i,j)} \in \{0,1\}$	$orall (i,j)\in A$	
$w_{(i,j)}^p \in \{0,1\}$	$\forall (i,j) \in A_p, \forall p \in P$	(PAL
TRANSP-OR		ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE
	<□> < □> < □> < □> < 三>	 ◆ 差 ▶ 差 の < @

April 10, 2015 54 / 60

Framework

Adaptive large neighborhood search (ALNS)

- It combines
 - Simulated annealing
 - Destroy and repair operators

< 注入 < 注入

Case study in Switzerland

- 8 stations : GVE, REN, LSN, FRI, BER, YVE, NEU, BIE
- **207 trains** : All trains departing from any of the stations between 5am and 9am
- **40'446 passengers** : Synthetic O-D matrices, generated with Poisson process
- **Disruption** : Track unavailable between BER and FRI between 7am and 9am

Case study network

Results

	Total passenger disutility	# disrupted passengers
Before ALNS	2'666'630.49	2'847
After ALNS	2'539'605.59	1'508
Improvement	4.8 %	47.0 %

Substantial improvements.

Outline

- Demand and supply
- 2 Measuring satisfaction
- 3 Ideal timetable
- Disposition timetable

Bierlaire et al. (EPFL)

April 10, 2015 59 / 60

(日) (同) (三) (三)

Conclusions

Importance of demand

- Passenger satisfaction
- Choice behavior
- Willingness to pay
- Heterogeneity

Railway applications

- Ideal timetables
- Disposition timetables

