Demand-based scheduling

Michel Bierlaire Stefan Binder Yousef Maknoon Tomáś Robenek

Transport and Mobility Laboratory
School of Architecture, Civil and Environmental Engineering
Ecole Polytechnique Fédérale de Lausanne

$$
\text { April 10, } 2015
$$

Outline

(1) Demand and supply

(2) Measuring satisfaction

(3) Ideal timetable

4 Disposition timetable
(5) Conclusion

Demand models

- Supply = infrastructure
- Demand = behavior, choices
- Congestion $=$ mismatch

TRANSP-OR

Demand models

- Usually in OR:
- optimization of the supply
- for a given (fixed) demand

Aggregate demand

- Homogeneous population
- Identical behavior
- Price (P) and quantity (Q)
- Demand functions: $P=f(Q)$
- Inverse demand: $Q=f^{-1}(P)$

Disaggregate demand

- Heterogeneous population
- Different behaviors
- Many variables:
- Attributes: price, travel time, reliability, frequency, etc.
- Characteristics: age, income, education, etc.
- Complex demand/inverse demand functions.

Demand-supply interactions

Operations Research

- Given the demand...
- configure the system

Behavioral models

- Given the configuration of the system...
- predict the demand

Johnson Sity Enterprise.
 Published Every Saturday,
 $$
\text { \$1. per jear- } \Delta \text { drance Payment. }
$$ \$1. per year-Advanco Payment.
 $$
\text { Saterday, April } 7,1883 .
$$ SATURDAY, APRIL $7,18 \mathrm{~S} 3$.
 TAME TABLE
 E. T., V. \& G. R. R.
 $$
x
$$

PAS: ENGER,

o. 1, West
№. 2, East,
No. 3, West,
No. 4 , East,
Local freight,
No. 5,
Jno. W. Eakin, Agen
E. T. \& W. N. C. R. R.
$\begin{array}{cc}\text { Passenger, leaves, } & 7, \text { a.m. } \\ \text { arrives, } & 6, \text { p. m. }\end{array}$ J. C. Hardin, Agent.

Demand-supply interactions

Multi-objective optimization

Minimize costs

TRANSP-OR

Maximize satisfaction

Outline

(1) Demand and supply

(2) Measuring satisfaction

(3) Ideal timetable

4 Disposition timetable
(5) Conclusion FEDIRALE DE LAUSANNE

Measuring satisfaction

Behavioral models

- Demand $=$ sequence of choices
- Choosing means trade-offs
- In practice: derive trade-offs from choice models

Choice models

Theoretical foundations

- Random utility theory
- Choice set: \mathcal{C}_{n}
- Logit model:

$$
P\left(i \mid \mathcal{C}_{n}\right)=\frac{e^{V_{i n}}}{\sum_{j \in \mathcal{C}_{n}} e^{V_{j n}}}
$$

2000

Decision rules

Neoclassical economic theory
Preference-indifference operator \gtrsim
(1) reflexivity

$$
a \gtrsim a \quad \forall a \in \mathcal{C}_{n}
$$

(2) transitivity

$$
a \gtrsim b \text { and } b \gtrsim c \Rightarrow a \gtrsim c \quad \forall a, b, c \in \mathcal{C}_{n}
$$

(3) comparability

$$
a \gtrsim b \text { or } b \gtrsim a \quad \forall a, b \in \mathcal{C}_{n}
$$

Decision rules

Utility

$$
\begin{gathered}
\exists U_{n}: \mathcal{C}_{n} \longrightarrow \mathbb{R}: a \rightsquigarrow U_{n}(a) \text { such that } \\
a \gtrsim b \Leftrightarrow U_{n}(a) \geq U_{n}(b) \quad \forall a, b \in \mathcal{C}_{n}
\end{gathered}
$$

Remarks

- Utility is a latent concept
- It cannot be directly observed

Example

Two transportation modes

$$
\begin{aligned}
& U_{1}=-\beta t_{1}-\gamma c_{1} \\
& U_{2}=-\beta t_{2}-\gamma c_{2}
\end{aligned}
$$

with $\beta, \gamma>0$

$$
U_{1} \geq U_{2} \text { iff }-\beta t_{1}-\gamma c_{1} \geq-\beta t_{2}-\gamma c_{2}
$$

that is

$$
-\frac{\beta}{\gamma} t_{1}-c_{1} \geq-\frac{\beta}{\gamma} t_{2}-c_{2}
$$

or

$$
c_{1}-c_{2} \leq-\frac{\beta}{\gamma}\left(t_{1}-t_{2}\right)
$$

Example

Example

Assumptions

Decision-maker

- perfect discriminating capability
- full rationality
- permanent consistency

Must deal with uncertainty

- Random utility models
- For each individual n and alternative i

$$
U_{i n}=V_{i n}+\varepsilon_{i n}
$$

and

$$
P\left(i \mid \mathcal{C}_{n}\right)=P\left[U_{i n}=\max _{j \in \mathcal{C}_{n}} U_{j n}\right]=P\left(U_{i n} \geq U_{j n} \forall j \in \mathcal{C}_{n}\right)
$$

Logit model

Utility

$$
U_{i n}=V_{i n}+\varepsilon_{i n}
$$

Choice probability

$$
P_{n}\left(i \mid \mathcal{C}_{n}\right)=\frac{e^{V_{i n}}}{\sum_{j \in \mathcal{C}_{n}} e^{V_{j n}}}
$$

- Decision-maker n
- Alternative $i \in \mathcal{C}_{n}$

Variables: $x_{i n}=\left(z_{i n}, s_{n}\right)$

Attributes of alternative $i: z_{i n}$

- Cost / price
- Travel time
- Waiting time
- Level of comfort
- Number of transfers
- Late/early arrival
- etc.

Characteristics of decision-maker n :
S_{n}

- Income
- Age
- Sex
- Trip purpose
- Car ownership
- Education
- Profession
- etc.

Demand curve

Disaggregate model

$$
P_{n}\left(i \mid c_{i n}, z_{i n}, s_{n}\right)
$$

Total demand

$$
D(i)=\sum_{n} P_{n}\left(i \mid c_{i n}, z_{i n}, s_{n}\right)
$$

Difficulty

Inverse demand not analytically available

Willingness to pay

Attributes of alternative $i: z_{\text {in }}$

- Cost / price
- Travel time
- Waiting time
- Level of comfort
- Number of transfers
- Late/early arrival
- etc.

Willingness to pay for alternative i

- Value of travel time
- Value of waiting time
- Value of comfort
- Value of transfers
- Value of not being on time
- etc.

Willingness to pay

Utility

$$
U_{i n}=\beta_{c} c_{i n}+\beta_{t} t_{i n}+\cdots
$$

Value of time

$$
\mathrm{VOT}_{i n}=\frac{\partial U_{i n} / \partial t_{i n}}{\partial U_{i n} / \partial c_{i n}}=\frac{\beta_{t}}{\beta_{c}}
$$

Equivalence

Utility

$$
U_{i n}=\beta_{c} c_{i n}+\beta_{t} t_{i n}+\beta_{w} w_{i n}+\beta_{c f t} c \mathrm{cft}_{i n}+\beta_{T} T_{i n}+\beta_{e} e_{i n}+\beta_{\ell} \ell_{i n}+\cdots
$$

Willingness to pay: cost per unit

- Travel time: β_{t} / β_{c}
- Waiting time: β_{w} / β_{c}
- Comfort: $\beta_{\mathrm{cft}} / \beta_{c}$
- Transfers: β_{T} / β_{c}
- Being early: β_{e} / β_{c}
- Being late: β_{ℓ} / β_{c}

Travel time equivalent: hours per unit

- Cost: β_{c} / β_{t}
- Waiting time: β_{w} / β_{t}
- Comfort: $\beta_{\mathrm{cft}} / \beta_{t}$
- Transfers: β_{T} / β_{t}
- Being early: β_{e} / β_{t}
- Being late: β_{ℓ} / β_{t}

Outline

(1) Demand and supply
(2) Measuring satisfaction
(3) Ideal timetable

4 Disposition timetable
(5) Conclusion COLE POLYTECHNIQUE

Planning of railway operations

\square \square ${ }^{\text {roo }}$IM

Timetables

Objectives

- Minimize cost
- Maximize satisfaction

Constraints

- Cyclicity
- or not...

Modeling elements

Supply

- Line ℓ : sequence of stations served by the same train
- Train $v \in V_{\ell}$: service of a line at a given departure time

Demand

- Origin / destination i
- Ideal arrival time t
- Path $p \in P_{i}$: sequence of portions of lines to reach d from o
- Access/egress time for path p (OD i)
- Travel time for path p
- Waiting time for path p

Model

Decision variables

- $x_{i}^{t p}: 1$ - if passenger with ideal time t between OD pair i chooses path $p ; 0$ - otherwise
- $y_{i}^{\text {tp/v }}: 1$ - if a passenger with ideal time t between OD pair i on the path p takes the train v on the line $\ell ; 0$ - otherwise
- d_{v}^{ℓ} : the departure time of a train v on the line ℓ (from its first station)
- u_{v}^{ℓ} : number of train units of a train v on the line ℓ
- $\alpha_{v}^{\ell}: 1$ - if a train v on the line ℓ is being operated; 0 - otherwise

Model

Calculation variables

- \mathcal{C}_{i}^{t} : total cost of a passenger with ideal time t between OD pair i
- w_{i}^{t} : total waiting time of a passenger with ideal time t between OD pair i
- s_{i}^{t} : value of the scheduled delay of a passenger with ideal time t between OD pair i
- z_{v}^{l} : dummy variable modeling the cyclicity corresponding to a train v on the line ℓ
- $o_{v g}^{\ell}$: occupation of train v of line ℓ on segment g

Model

Problem constraints

- passenger cost $\leq \varepsilon$
- everyone uses at most one path
- link between path and trains: everyone boards one train of each line in the path
- cyclicity
- everyone uses only trains that are actually running
- train capacity
- maximum number of train units

Model

Calculation constraints

- Scheduled delay
- Waiting time
- Overall cost

Models

Current model
Departure times of trains are fixed, current values are used (cyclic).

Cyclic model
Departure times are optimized, cyclicity is enforced.

Non-cyclic model
Departure times are optimized, cyclicity is not enforced.

Case Study - Switzerland

4 $\square>4$ 吕 >4 트 >4 트
플

S-Train Network Canton Vaud, Switzerland

Case study: Switzerland

Context

- SBB 2014 (5 a.m. to 9 a.m.)
- OD Matrix based on observation and SBB annual report
- 13 Stations
- 156 ODs
- 14 (unidirectional) lines
- 49 trains
- Min. transfer - 4 mins

Case study: Switzerland

Willingness to pay from the literature

- Value of travel time: 27.81 CHF / hour
- Value of waiting time: 69.5 CHF /hour
- Value of comfort:
- Value of transfers: 4.6 CHF / hour (10 min. travel time)
- Value of being late: 27.81 CHF / hour
- Value of being early: 13.9 CHF / hour
- etc.

Current model

Impact of congestion

Impact of congestion

Number of Passengers [thousands]

Passenger cost: highest demand, current model

Passenger cost: highest demand, cyclic model

Passenger cost: highest demand, non-cyclic model

Outline

(1) Demand and supply
(2) Measuring satisfaction
(3) Ideal timetable
(4) Disposition timetable
(5) Conclusion

Bierlaire et al. (EPFL)
Demand-based scheduling
April 10, 2015
$43 / 60$

Motivation

Figure: Bray Head, Railway Accident, Ireland, 1867. The Liszt Collection.

Recovery

Recovery strategies

- Train cancellation
- Partial train cancellation
- Global re-routing of trains
- Additional service (buses/trains)
- "Direct train"
- Increase train capacity

Research question
What are the impacts, in terms of passenger (dis-)satisfaction, of different recovery strategies in case of a severe disruption in a railway network?

Assumptions

Supply side

- Homogeneity of trains
- Passenger capacity of trains / buses
- Depots at stations where trains can depart

Demand side

- Disaggregate passengers : origin, destination and desired departure time
- Path chosen according to generalized travel time (made of travel time, waiting time and penalties for transfers and early/late departure)
- Perfect knowledge of the system
- No en-route re-rerouting

A sample network

A disrupted sample network

Time-expanded network

Nodes (N)

- s_{t}^{a} : train arrival event from station s at time t
- s_{t}^{d} : train departure event from station s at time t

Arcs (A)

- Train driving arcs
- Train waiting arcs
- Connection arcs
- Access \& egress arcs

Time-expanded network: an example

(0) GVE

$$
F R I_{30}^{a}
$$

$$
F R I_{35}^{d}
$$

$$
\begin{aligned}
& \hline B E R_{60}^{a} \\
& \hline B E R_{70}^{a} \\
& \hline B E R_{75}^{a} \\
& \hline
\end{aligned}
$$

Time-expanded network: an example

Time-expanded network: an example

Time-expanded network: an example

Time-expanded network: an example

Capacitated passenger assignment algorithm

(1) Assign passengers on the least expensive path according to path disutility function.
(2) If an arc capacity is exceeded, decide which passengers need to be re-assigned. Otherwise, stop.
(3) Re-assign unassigned passengers on a reduced network, then go to Step 2.

Decision variables

Supply
$x_{(i, j)}= \begin{cases}1 & \text { if a train runs on } \operatorname{arc}(i, j) \in A \\ 0 & \text { otherwise }\end{cases}$
Demand
$w_{(i, j)}^{p}= \begin{cases}1 & \text { if passenger } p \text { uses arc }(i, j) \in A_{p} \\ 0 & \text { otherwise }\end{cases}$

Objective function

$$
\min \sum_{p \in P} \sum_{(i, j) \in A_{p}} c_{(i, j)}^{p} \cdot w_{(i, j)}^{p}+\sum_{(i, j) \in A \mid i \in R} c_{t} \cdot x_{(i, j)}
$$

Passenger Cost $c_{(i, j)}^{p}$

- In-vehicle-time
- Waiting time
- Number of transfers
- Departure time shift

Constraints

$$
\begin{array}{rr}
\sum_{j \in N} x_{(r, j)} \leq n_{r} & \forall r \in R \\
\sum_{i \in V} x_{(i, k)}=\sum_{j \in V} x_{(k, j)} & \forall k \in V \\
x_{(i, j)}=0 & \forall(i, j) \in A_{D} \\
\sum_{(i, j) \in A_{p} \mid i=o_{p}} w_{(i, j)}^{p}=1 & \forall p \in P \\
\sum_{(i, j) \in A_{p} \mid j=d_{p}} w_{(i, j)}^{p}=1 & \forall p \in P \\
\sum_{i \in V_{p}} w_{(i, k)}^{p}=\sum_{j \in V_{p}} w_{(k, j)}^{p} & \forall k \in V_{p}, \forall p \in P \\
w_{(i, j)}^{p} \leq x_{(i, j)} & \forall p \in P, \forall(i, j) \in A \cap A_{p} \\
\sum_{p \in P} w_{(i, j)}^{p} \leq c_{(i, j)} \cdot x_{(i, j)} & \forall(i, j) \in A \cap A_{p} \\
x_{(i, j)} \in\{0,1\} \\
w_{(i, j)}^{p} \in\{0,1\}
\end{array} \quad \forall(i, j) \in A_{p}, \forall p \in P
$$

Framework

Adaptive large neighborhood search (ALNS)
It combines

- Simulated annealing
- Destroy and repair operators

Case study in Switzerland

- 8 stations : GVE, REN, LSN, FRI, BER, YVE, NEU, BIE
- 207 trains : All trains departing from any of the stations between 5am and 9am
- 40’446 passengers : Synthetic O-D matrices, generated with Poisson process
- Disruption : Track unavailable between BER and FRI between 7am and 9am

Case study network

Results

	Total passenger disutility	\# disrupted passengers
Before ALNS	'' $^{\prime} 666^{\prime} 630.49$	$2^{\prime} 847$
After ALNS	'' $^{\prime} 539^{\prime} 605.59$	1 '508
Improvement	4.8%	47.0%

Substantial improvements.

Outline

(1) Demand and supply

(2) Measuring satisfaction
(3) Ideal timetable

4 Disposition timetable

(5) Conclusion

Conclusions

Importance of demand

- Passenger satisfaction
- Choice behavior
- Willingness to pay
- Heterogeneity

Railway applications

- Ideal timetables
- Disposition timetables

