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Abstract
The aim of this paper is to analyze and to improve the current planning process of the
passenger railway service. At first, the state-of-the-art in research is presented. Given the
recent changes in legislature allowing competitors to enter the railway industry in Europe,
also known as liberalization of railways, the current way of planning does not reflect the
situation anymore. The original planning is based on the accessibility/mobility concept
provided by one carrier, whereas the competitive market consists of several carriers that are
driven by the profit.
Moreover, the current practice does not define the ideal timetables (the initial most profitable
timetables) and thus it is assumed that the Train Operating Companies (TOCs) use their
historical data (train occupation, ticket sales, etc.) in order to construct the ideal timetables.
For the first time in this field, we tackle the problem of ideal timetables in railway industry
from passenger behavior point of view. We propose the Ideal Train Timetabling Problem
(ITTP) to create a list of train timetables for each TOC separately. The ITTP approach in-
corporates the passenger demand in the planning and its aim is to minimize the passengers’
cost. The outcome of the ITTP is the ideal timetables (including connections between the
trains), which then serve as inputs for the traditional Train Timetabling Problem (TTP).

Keywords
Ideal Railway Timetabling, Cyclic - Noncyclic timetable, Mixed Integer Linear Program-
ming

1 Introduction

The time of dominance of one rail operating company (usually the national carrier) over the
markets in Europe is reaching to an end. The new EU regulation (EU Directive 91/440)
allows open access to the railway infrastructure to companies other than those who own the
infrastructure, thus allowing the competition to exist in the market.

Up to this point, the national carriers were subsidized by local governments and their
purpose was to offer the accessibility and mobility to the public (passengers). On the other
hand, the goal of the private sector is to generate revenue, i.e. to maximize the captured
demand.

However, the passenger demand is subject to the human behavior that incorporates sev-
eral factors, to list a few: sensitivity to the time of the departure related to the trip purpose
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(weekday peak hours for work or school, weekends for leisure, etc.), comfort, perception,
etc. Moreover the passenger service has to compete with other transportation modes (car,
national air routes, etc.) and thus faces even higher pressure to create good quality timeta-
bles.
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Figure 1: Planning overview of railway operation

If we have a closer look at the planning horizon of the railway passenger service (as
described in Caprara et al. (2007) and visualized on Figure 1), we can see that the issue of
ideal departure times has been neglected in the past. The Train Timetabling Problem (TTP)
does take as input the ideal timetables (in its non-cyclic version), however the procedure
of generating such timetables is missing. Similarly, in the cyclic version of the TTP, the
objective function that would consider passenger demand as the driver is undefined.

We believe that the lack of the definition of the ideal timetables and how to create them,
is a major gap, caused by the lack of a competition in the previous railway market settings.
We assume that not taking the passengers’ wishes into account, lead to the decrease of the
railway mode share in the transportation market.

And thus we propose to insert an additional section in the planning horizon called the
Ideal Train Timetabling Problem (ITTP). In the ITTP, we introduce a definition of the ideal
timetable as follows: the ideal timetable, consists of train schedules, such that the cost asso-
ciated with traveling by train, of all of the passengers is minimized. Such a timetable would
benefit both, passengers and the TOC in the respective manner: it would fit passengers’
wishes, which would lead to the increase of the demand and to increase the TOCs’ profit.

The ITTP is using the output of the LPP and serves as an input to the traditional TTP
and hence, it is placed between the two respective problems (Figure 2). The driver of this
problem is the passenger demand. The model will allow timetables of the line to take
the form of the non-cyclic or cyclic schedule. Moreover, we introduce a demand induced
connections. The connections between the trains are not pre-defined, but are subject to the
demand. In the literature the connections are handled only in the cyclic version of the TTP,
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Figure 2: Modified overview of railway operation

where the connections are always induced, without a proper reasoning.
In this manuscript, we introduce the current literature on the topic (Section 2) and before

we formulate the Ideal Train Timetabling Problem mathematically (Section 4), we discuss
how to define quality of a timetable from the passenger point of view, i.e. how to form the
objective function (Section 3). We finalize the paper by drawing some conclusions (Section
5).

2 Literature Review

The state-of-the-art literature is mostly focused on the traditional planning problems and
considers the demand only in the initial phase (i.e. the LPP). Due to the extensiveness of
the literature, we focus on reviewing of the classical TTP as the ITTP’s goal is to provide
better information for the TTP using the outcome of the LPP. The latest extensive literature
review on LPP can be found in Schöbel (2012).

The aim of the TTP is to find a feasible (operational) timetable for a whole railway
network, i.e. there are no conflicts of the trains using the tracks. In the non-cyclic version,
ideal timetables with their respective profits or costs serve as the main input. The TTP then
shifts the departures for conflicting trains, such that the losses of the profits or increase of the
costs are minimized. In the cyclic version, the model searches for a first feasible timetable
given the size of the cycle. The user can create his/her own objective function, otherwise
arbitrary solution will be selected.

2.1 Non-Cyclic TTP

Most of the models, on the non-cyclic timetabling, in the published literature, formulate the
problem either as Mixed Integer Linear Programming (MILP) or Integer Linear Program-
ming (ILP). The MILP model uses continuous time, whereas the ILP model discretizes the
time. Due to the complexity of the problem, many heuristic approaches are considered.

Brannlund et al. (1998) use discretized time and solve the problem with lagrangian re-
laxation of the track capacity constraints. The model is formulated as an ILP. Caprara et al.
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(2002, 2006), Fischer et al. (2008) and Cacchiani et al. (2012) also use lagrangian relaxation
of the same constraints to solve the problem. In Cacchiani et al. (2008), column generation
approach is tested. The approach tends to find better bounds than the lagrangian relaxation.
In Cacchiani et al. (2010a), several ILP re-formulations are tested and compared. In Cac-
chiani et al. (2010b), the ILP formulation is adjusted, in order to be able to schedule extra
freight trains, whilst keeping the timetables of the passengers’ trains fixed. In Cacchiani
et al. (2013), dynamic programming, to solve the clique constraints, is used.

In Carey and Lockwood (1995), a heuristic, that considers one train at a time and solves
a MILP, based on the already scheduled trains, is introduced. Higgins et al. (1997) then
show several more heuristics to solve the MILP model.

Oliveira and Smith (2000) and Burdett and Kozan (2010), re-formulate the problem as a
job-shop scheduling one. Erol (2009), Caprara (2010) and Harrod (2012), survey different
types of models for the TTP.

None of the above formally defines the ideal timetable. The models focus on the fea-
sibility of the solutions, i.e. the track occupation constraints. Demand is omitted in the
formulations.

2.2 Cyclic TTP

One of the first papers, dealing with cyclic timetables is Serafini and Ukovich (1989). The
paper brings up the topic of cyclic scheduling based on the Periodic Event Scheduling Prob-
lem (PESP). The problem is solved with an algorithm using implicit enumeration and net-
work flow theory. In Nachtigall and Voget (1996) model for minimization of the waiting
times in the railway network, whilst keeping the cyclic timetables (based on PESP), is solved
using branch and bound. The same model is solved using genetic algorithms in Nachtigall
(1996). The general PESP model is solved using constraint generation algorithm in Odijk
(1996) and with branch and bound in Lindner and Zimmermann (2000).

In Kroon and Peeters (2003), variable trip times are considered. Peeters (2003) then fur-
ther elaborates on PESP and discuss different forms of the objective function. In Liebchen
and Mohring (2002), the PESP attributes are analyzed on the case study of Berlin’s un-
derground and in Liebchen (2004) implementation of the symmetry in the PESP model is
presented. Lindner and Zimmermann (2005) propose to use decomposition based branch
and bound algorithm to solve the PESP.

Kroon et al. (2007) and Shafia et al. (2012), deal with robustness of cyclic timetables.
Liebchen and Mohring (2004) propose to integrate network planning, line planning and
rolling stock scheduling into the one periodic timetabling model (based on PESP). Caimi
et al. (2007) and Kroon et al. (2014) introduce flexible PESP – instead of the fixed times of
the events, time windows are provided.

3 Quality of a Timetable

In order to find a good timetable from the passenger point of view, we need to take into
account passenger behavior. Such a behavior can be modeled using discrete choice theory
(Ben-Akiva and Lerman (1985)). The base assumption in discrete choice theory is that the
passengers maximize their utility, i.e. minimize the cost associated with each alternative
and select the best one.

We propose the following costs associated with passengers’ ideal timetable:
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• in-vehicle-time (VT)

• waiting time (WT)

• number of transfers (NT)

• scheduled delay (SD)

The in-vehicle-time is the (total) time passengers spend on board of (each) train. This
time allows the passengers to distinguish between the “slow” and the “fast” services.

The waiting time is the time passengers spend waiting between two consecutive trains in
their respective transfer points. The cost perception related to the waiting time is evaluated
as double and a half of the in-vehicle-time (see Wardman (2004)).

The transfer(s) aim at distinguishing between direct and interchange services. In liter-
ature and practice, it is by adding extra travel (in-vehicle) time to the overall journey. In our
case, we have followed the example of Dutch Railways (NS), where penalty of 10 minutes
per transfer is applied (see de Keizer et al. (2012)). Even though variety of studies show
that number of interchanges, distance walked, weather, etc. play effect in the process, it is
rather difficult to incorporate in optimization models. Thus using the applied value (by NS)
will bring this research closer to the industry.

The scheduled delay is indicating the time of the day passengers want to travel, i.e.
following the assumption that the demand is time dependent. For example: most of the
people have to be at their workplace at 8 a.m. Since it is impossible to provide service that
would secure ideal arrival time to the destination for everyone, scheduled delay functions
are applied (Figure 3).

Time

Scheduled Delay

Ideal Time

f_1f_2

Figure 3: Scheduled Delay Functions

As shown in Small (1982), the passengers are willing to shift their arrival time by 1 to
2 minutes earlier, if it will save them 1 minute of the in-vehicle-time, similarly they would
shift their arrival by 1/3 to 1 minute later for the same in-vehicle-time saving. If we would
consider the boundary case, the lateness (f1 = 1) is perceived equal to the in-vehicle-time
and earliness (f2 = 0.5) has half of the value (as seen on Figure 3).

To estimate the perceived cost (quality) of the selected itinerary in a given timetable for
a single passenger, we sum up all the characteristics:

C = V T + 2.5 ·WT + 10 ·NT + SD [min] (1)

For a better understanding, consider the following example using network on Figure 4:
passenger’s itinerary consists of taking 3 consecutive trains in order to go from his origin to
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Figure 4: Example Network

his destination, he has to change train twice. If he arrives to his destination earlier than his
ideal time, his SD will be:

SDe = argmax
(
ideal time− arrival time

2
, 0

)
(2)

We use argmax function as one train line has several trains per day scheduled and the
passenger selects the one closest to his desired traveling time. On the other hand, if he
arrives later than his ideal time, then his SD will be:

SDl = argmax (0 , arrival time− ideal time) (3)

The overall scheduled delay is then formed:

SD = argmin (SDe , SDl) (4)

His overall perceived cost will be the following:

C =
∑

trains

V T + 2.5 ·
∑

transfers

WT + 10 ·NT + SD [min] (5)

The resulting value is in minutes, however it is often desirable to estimate the cost in
monetary values for pricing purposes. In such a case, national surveys estimating respective
nation’s value of time (VOT) exist. The VOT is given in nation’s currency per hour, for
instance in Switzerland the VOT for commuters using public transport is 27.81 swiss francs
per hour (Axhausen et al. (2008)). To make the cost in monetary units, simply multiply the
whole Equation 1 by the VOT/60.

The aim of our research is not to calibrate the weights in Equation 1, but to provide
better timetables in terms of the departure times. The weights serve as an input for our
problem and thus can be changed at any time. Adding everything up, the ideal timetable
from the passenger point of view can be defined as follows:

The ideal timetable consists of train departure times that passengers’ global
costs are minimized, i.e. the most convenient path to go from an origin to a
destination traded-off by a timely arrival to the destination for every passenger.

Similar concept, improving quality of timetables has been done in Vansteenwegen and
Oudheusden (2006, 2007). Their approach has been focused on reliable connections for
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transferring passengers, whereas in our framework we focus on the overall satisfaction of
every passenger.

Other concept similar to ours has been used in the delay management, namely in Kanai
et al. (2011) and Sato et al. (2013). However their definition of dissatisfaction of passengers
omits the scheduled delay.

4 Mathematical Formulation

In this section, we present a mixed integer programming formulation for the Ideal Train
Timetabling Problem.

The aim of this problem is to define and to provide the ideal timetables as input for
the traditional TTP. It is not well said in the TTP, what ideal means. It is only briefly
mentioned, that supposedly, those are the timetables, that bring the most profit to the TOCs
(this assumption is in line with the competitive market). Generally speaking, the more of the
demand captured, the higher the profit. Thus the ITTP’s goal is to design TOC’s timetables,
such that the captured passenger demand is maximized (objective, but not the form of the
objective function).

The input of the ITTP is the demand that takes the form of the amount of passengers that
want to travel between OD pair i ∈ I and that want to arrive to their destination at their ideal
time t ∈ Ti. Apart of that, there is a pool of lines l ∈ L along with the lines’ frequencies
expressed as the available train units v ∈ V l (both results of the LPP) and the set of paths
between every OD pair p ∈ Pi. The path is called an ordered sequence of lines to get from
an origin to a destination including details such as the running time from the origin of the
line to the origin of the OD pair hpl

i (where l = 1), the running time from an origin of the
OD pair to a transferring point between two lines rpli (where l = 1), the running time from
the origin of the line to the transferring point in the path hpl

i (where l > 1), the running time
from one transferring point to another rpli (where l > 1 and l < |Lp|) and the running time
from the last transferring point to a destination of the OD pair rpli (where l = |Lp|). Note
that the index p is always present as different lines using the same track might have different
running times.

Part of the ITTP is the routing of the passengers through the railway network. Using a
decision variable xtp

i , we secure that each passenger (it) can use exactly one path. Similarly,
within the path, passenger can use exactly one train on every line in the path (decision
variable ytplvi ). These decision variables, among others, allow us to backtrace the exact
itinerary of every passenger. The timetable is understood as a set of departures for every
train on every line (values of dlv). The timetable can take form of a non-cyclic or a cyclic
version (depending if the cyclicity constraints are active, see below).

Since the input demand is deterministic, the objective function would be to minimize
the total travel time of every passenger. However, as discussed in the previous section,
passengers are not simply minimizing the total travel time, but the overall cost of the journey
by train. Thus the objective function takes form of the Equation 5 weighted by the demand
and the value of time.

It could be objected that since the demand is deterministic, the problem does not reflect
the reality. However,the goal of the ITTP is to take the deterministic demand and design
such timetables that would fit the estimated demand and avoid loss of the estimated number
of passengers. In order to increase the forecasted deterministic demand, external factors like
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service on board, destinations served, renewed vehicle park, etc. would have to be changed.
We can formulate the ITTP as follows:

Sets Following is the list of sets used in the model:

I – set of origin-destination pairs
Ti – set of ideal times for OD pair i
Pi – set of possible paths between OD pair i
L – set of operated lines
Lp – set of lines in the path p
V l – set of available vehicles on line l

The lines and the set of available vehicles per line V l is an output from the Line Planning
Problem based on the selected frequencies within the problem.

Input Parameters Following is the list of parameters used in the model:

M – sufficiently large number (for daily planning in minutes, the value can be
1440)

m – minimum transfer time
c – cycle
rpli – running time between OD pair i on path p using line l

hpl
i – time to arrive from the starting station of the line l to the first point (that

involves this one) in the path p of the OD pair i
Dt

i – demand between OD i with ideal time t′

qw – value of the waiting time (=2.5)
qt – value of the in vehicle time (VOT)
f1 – coefficient of being early (SDe = 0.5)
f2 – coefficient of being late (SDl = 1)
a – penalty for having a train transfer (=10 min)

Decision Variables Following is the list of decision variables used in the model:

Cti – the total cost of a passenger with ideal time t between OD pair i
wt

i – the total waiting time of a passenger with ideal time t between OD pair i
wtp

i – the total waiting time of a passenger with ideal time t between OD pair i
using path p

wtpl
i – the waiting time of a passenger with ideal time t between OD pair i on

the line l that is part of the path p, i.e. the waiting time in the transferring
point, when transferring to line l

xtp
i – 1 – if passenger with ideal time t between OD pair i chooses path p; 0 –

otherwise
sti – the scheduled delay of a passenger with ideal time t between OD pair i
stpi – the scheduled delay of a passenger with ideal time t between OD pair i

traveling on the path p
dlv – the departure time of a train v on the line l
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ytplvi – 1 – if a passenger with ideal time t between OD pair i on the path p takes
the train v on the line l; 0 – otherwise

zlv – dummy variable to help modeling the cyclicity corresponding to a train
v on the line l

Routing Model The ITTP model can be decomposed into 2 parts: routing and pricing.
The routing takes care of the feasibility of the solution, whereas pricing takes care of the
cost attributes. At first, we present the routing of the passengers – the Routing Model (RM):

min
∑
i∈I

∑
t∈Ti

Dt
i · Cti (6)

∑
p∈Pi

xtp
i = 1, ∀i ∈ I, ∀t ∈ Ti, (7)

∑
v∈V l

ytplvi = 1, ∀i ∈ I, ∀t ∈ Ti,∀p ∈ Pi,∀l ∈ Lp, (8)

(
dlv − dlv−1

)
= c · zlv, ∀l ∈ L,∀v ∈ V : v > 1, (9)

Cti ≥ 0, ∀i ∈ I, ∀t ∈ Ti, (10)

dlv ≥ 0, ∀l ∈ L,∀v ∈ V l, (11)

xtp
i ∈ (0, 1) , ∀i ∈ I, ∀t ∈ Ti,∀p ∈ Pi, (12)

ytplvi ∈ (0, 1) , ∀i ∈ I, ∀t ∈ Ti,∀p ∈ Pi,∀l ∈ Lp,∀v ∈ V l, (13)

zlv ∈ N, ∀l ∈ L,∀v ∈ V l. (14)

The objective function (6) is minimizing the passengers’ costs. Constraints (7) secure
that every passenger is using exactly one path to get from his/her origin to his/her desti-
nation. Similarly constraints (8) make sure that every passenger takes exactly one train on
each of the lines in his/her path. Constraints (9) model the cyclicity using integer division.
When solving the non-cyclic version of the problem, these constraints have to be removed.
Constraints (10)–(14) set the domains of decision variables.

Pricing Constraints To make the ITTP complete, we need to expand the Routing Model
with the pricing constraints. We will add the pricing constraints in blocks of attributes that
create the cost of a passenger.

sti ≥ stpi −M ·
(
1− xtp

i

)
, ∀i ∈ I, ∀t ∈ Ti,∀p ∈ Pi, (15)

stpi ≥ f2 ·
((

d|L|v + h
|L|
i + r

p|L|
i

)
− t
)

−M ·
(
1− y

tp|L|v
i

)
, ∀i ∈ I, ∀t ∈ Ti,∀p ∈ Pi,∀v ∈ V |L|, (16)

stpi ≥ f1 ·
(
t−
(
d|L|v + h

|L|
i + r

p|L|
i

))
−M ·

(
1− y

tp|L|v
i

)
, ∀i ∈ I, ∀t ∈ Ti,∀p ∈ Pi,∀v ∈ V |L|, (17)

sti ≥ 0, ∀i ∈ I, ∀t ∈ Ti, (18)
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stpi ≥ 0, ∀i ∈ I, ∀t ∈ Ti,∀p ∈ Pi. (19)

The first block of constraints takes care of the scheduled delay (SD). In our model we
have 2 types of scheduled delay: SD for every path (constraints (19)) and SD that is linked to
the path, which will be the final selected path of a given passenger(s) with a given ideal time
(constraints (18)). As described in the Section 3, the constraints (16) model the earliness
of the passengers (Equation 2) and constraints (17) model the lateness (Equation 3). Since
both of the above constraints are active at the same time, the Equation 4 is implicitly taken
care of (greater equal sign). Constraints (15) make sure that only one SD is selected – not
necessarily the lowest one as it depends on the cost of the whole path, i.e. the path with the
smallest overall cost will be selected for the given OD pair with a given ideal time.

wt
i ≥ wtp

i −M ·
(
1− xtp

i

)
, ∀i ∈ I, ∀t ∈ Ti,∀p ∈ Pi, (20)

wtp
i =

∑
l∈Lp\1

wtpl
i , ∀i ∈ I, ∀t ∈ Ti,∀p ∈ Pi, (21)

wtpl
i ≥

((
dlv + hpl

i

)
−
(
dl

′

v′ + hpl′

i + rpl
′

i +m
))

∀i ∈ I, ∀t ∈ Ti,∀p ∈ Pi,∀l ∈ Lp :

−M ·
(
1− ytpl

′v′

i

)
−M ·

(
1− ytplvi

)
, l > 1, l′ = l − 1,∀v ∈ V l,∀v′ ∈ V l′ ,

(22)

wtpl
i ≤

((
dlv + hpl

i

)
−
(
dl

′

v′ + hpl′

i + rpl
′

i +m
))

∀i ∈ I, ∀t ∈ Ti,∀p ∈ Pi,∀l ∈ Lp :

+M ·
(
1− ytpl

′v′

i

)
+M ·

(
1− ytplvi

)
, l > 1, l′ = l − 1,∀v ∈ V l,∀v′ ∈ V l′ ,

(23)

wt
i ≥ 0, ∀i ∈ I, ∀t ∈ Ti, (24)

wtp
i ≥ 0, ∀i ∈ I, ∀t ∈ Ti,∀p ∈ Pi, (25)

wtpl
i ≥ 0, ∀i ∈ I, ∀t ∈ Ti,∀p ∈ Pi,∀l ∈ Lp.

(26)

The second block of constraints is modeling the waiting time (WD). There are 3 types
of waiting time: the final selected waiting time in the best path (constraints (24)), the total
waiting time of every path (constraints (25)) and the waiting time at every transferring point
in every path (constraints (26)). The constraints (22) and (23) are complementary constraints
that model the waiting time in the transferring points in every path. In other words, these
two constraints find the two best connected trains in the two train lines in the passengers’
path. Constraints (21) add up all the waiting times in one path to estimate the total waiting
time in a given path. Constraints (20) make sure that only one WT is selected (similarly as
constraints (15) for SD).

Cti = qv · qw · wt
i + qv · a ·

∑
p∈P

xtp
i · (|L

p| − 1)

+qv ·
∑
p∈P

∑
l∈Lp

rpli · x
tp
i + qv · sti, ∀i ∈ I, ∀t ∈ Ti. (27)

At last, constraints (27) combine all the attributes together as in Equation 5 multiplied
by the VOT. The complete ITTP model can be seen in Appendix A.
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5 Conclusions and Future Work

In this research, we survey the literature on the current planning horizon for the railway
passenger service and we identify a gap in the planning horizon – demand based (ideal)
timetables. We then define a new way, how to measure the quality of a timetable from the
passenger point of view and introduce a definition of such an ideal timetable. We present
a formulation of a mixed integer linear problem that can design such timetables. The new
Ideal Train Timetabling Problem fits into the current planning horizon of railway passen-
ger service and is in line with the new market structure and the current trend of putting
passengers back into consideration, when planning a railway service.

The novel approach not only designs timetables that fit the best the demand, but also
creates by itself connection between two trains, when needed. Moreover, the output consists
of the routing of the passengers and thus the train occupation can be extracted and be used
efficiently, when planning the rolling stock assignment (i.e. the Rolling Stock Planning
Problem). The ITTP can create both non-cyclic and cyclic timetables.

In the future work, we will focus on efficient solving of the problem. The new definition
of a quality of a timetable (the passenger point of view) creates a lot of opportunities for
future research: efficient handling of the TOC’s fleet, better delay management, robust train
timetabling passenger-wise, etc.
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A ITTP Model

min
∑
i∈I

∑
t∈Ti

Dt
i · Cti

Cti = qv · qw · wt
i + qv · a ·

∑
p∈P

xtp
i · (|L

p| − 1)

+qv ·
∑
p∈P

∑
l∈Lp

rpli · x
tp
i + qv · sti, ∀i ∈ I,∀t ∈ Ti,∑

p∈Pi

xtp
i = 1, ∀i ∈ I, ∀t ∈ Ti,∑

v∈V l

ytplvi = 1, ∀i ∈ I, ∀t ∈ Ti,∀p ∈ Pi,∀l ∈ Lp,

(
dlv − dlv−1

)
= c · zlv, ∀l ∈ L,∀v ∈ V : v > 1,

sti ≥ stpi −M ·
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Cti ≥ 0, ∀i ∈ I, ∀t ∈ Ti,

dlv ≥ 0, ∀l ∈ L,∀v ∈ V l,

xtp
i ∈ (0, 1) , ∀i ∈ I, ∀t ∈ Ti,∀p ∈ Pi,

ytplvi ∈ (0, 1) , ∀i ∈ I, ∀t ∈ Ti,∀p ∈ Pi,
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