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Abstract 

The partition function of the Hubbard model with local attraction and long-range Coulomb repulsion between 
electrons is written as a functional integral with an action A involving a pairing field A and a local potential V. After 
integration over V and over fluctuations in IAI 2, the final form of A involves a Josephson coupling between the local 
phases of A and a "kinetic energy" term, representing the screened Coulomb interaction between charge fluctuations. The 
competition between Josephson coupling and charging energy allows to understand the relation between Tc and 
composition in high-Tc materials, in particular superlattices, alloys and bulk systems of low doping. 
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We start with a Hamiltonian describing charge 
carriers (electrons or holes) on a lattice, subject to 
an on-site attraction, - U ,  and the long-range 
Coulomb repulsion, e2Vc, acting on particles on 
different sites: 

H = Ho + Hv  + Hc ,  (la) 

Ho = E E tc~,.cr,~ - # ~. Nl, (lb) 
(I,I') a l 

v_ 2 Hv = 2 l,a Cl+aCl 'aCl+'-aCl ' - -a,  (lc) 

1_ ~ (Nl -- no)e2Vc(l, l')(Nr - no) (ld) Hc = 2 l~r 

Here c~, (cl,,) are creation (annihilation) operators 
for charge carriers with spin a at lattice site l, (l, l ') 
denotes pairs of nearest-neighbor sites, # is the 
chemical potential, no the background, neutralizing 

the density of charge carriers, and Nl = Y~ o c[.oct.,. 
The partition function can be written as a func- 
tional integral by means of two successive 
Stra tonovich-Hubbard transformations [1, 2], de- 
coupling the two interaction terms in H with the 
help of a complex field A and a real field V: 

Z = Tr  e -~n = f D 2 A  f D V  Tr e -~n° 

} x r exp - i  d~ [!-I(A, V, z) + e(A, V, z) , 
0 

(2) 

~(A, V, z) = ~ [A* (l, z)ct, Tct, s + b.c. 
l 

+ iV(l,  z)(Nl(z) -- no)], 

1 1 
E(A, V, z) = ~ ~ I A (l, z)21 + 

2 7  -i- 

(3a) 

* Corresponding author. 
x ~ V(l,z)Vc~(l,l')V(l',z). 

I # l '  
(3b) 
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We then evaluate the trace over the electronic de- 
grees of freedom 

{fo Tr e- ano r exp -- i dz [~r (A, V, z) 

+ e(A, V, O]} - exp{-i f~ dz F(A, V, O} (4) 

and we expand the "free energy" F up to fourth order 
in A and to second order in V and up to leading terms 
in space and time gradients of the two fields: 

F = Fo + Fd,v (5a) 

FA, V (Z) = / alA(l, z)l 2 idA*(l, z) 
l L 

+ c ~ [A(l, z) - A(l', z)l z 
<l, l ' )  

+ i ~  V(l, z)(<Nt> - no) 
l 

1 
+ ~e 2 ~, V(I, "c)Vsc a (l, l')V(l', z) 

l,l' 

+ b ~, IA(l, z)l 4. (5b) 
l 

Here the coefficients a, b, c, d, are related to the 
free-electron particle-particle propagator [1-5], 
F0 is the free-electron contribution, and 
Vscl(l, 1') = Vc l ( l ,  l') + Zo(1, l') is the screened 
Coulomb potential (approximated by its static 
limit) with Zo (l, l') being the electronic polarizabil- 
ity. Integrating over the electric potential V yields 

F~(z) = ~t [a,A(l, z),2 + b,A(l, z),4 

- i d A * ( l , z ) ~ ]  

+ c ~ IA(1, "c) -- A(l', (112 
u,r> 

1 
+ ~e 2 ~ p(l, z)Vsc (l, l')p(l', z), (6) 

l,l' 

where p(l, z) = 2dlA(/, z)] 2 + (Nl> -- no represents 
charge density fluctuations. Next we introduce am- 

plitude and phase of A. In the following, we assume 
to be in a relatively strong coupling regime (t ~ U) 
in which fermions bind into on-site singlet pairs at 
a temperature of the order of the mean field 
transition temperature Tmf, well above the super- 
conducting phase transition, the latter being finally 
triggered by the onset of phase order [6-8]. Below 
Tmf , a < 0, so that the average amplitude has 
a non-vanishing mean value Ao given by 
a + 2hA ~ = 0. Charge neutrality implies 2dA ~ + 
( N l )  -- no = 0 and, for t ,~ U[1, 3-5, 9]: 

2t  2 1 
c U3, d = ~-5 (7a) 

A g = ¼ n o ( Z - n o ) U Z ' ~ ½ n o U  2 for no ,~ 1. (7b) 

Splitting the number of pairs at a given site into 
IA(l, z)l 2 = At  + ½ U2finp(l, z), we integrate over 
8np(l, z) which (neglecting gradient terms) yields 
a free energy functional for phase fluctuations only: 

Fo(z) = J ~ [1 - cos(O(/, z) - O(l', v))] 
<l,r> 

+ 2 _~ ~O(l,~z z) 21 ~S" ~O(l,~z z) 

1 0 0  (l', z) (8a) 
x (2~e)2 W- l ( l ' l ' )  ~z 

with the Josephson coupling [1, 9] J = 2cAg = 
2no(tZ/g), and 

J'Vsc(l, l'), 1 # 1', 
W(I, l') = [(2e)2b/d2 ' l = l' (8b) 

Our expansion of F in powers of A has yielded the 
on-site repulsion (2e)2b/d 2 between pairs. However, 
due to the exclusion principle, two pairs cannot 
really sit on the same lattice site. Thus, in the 
following, we exclude l = l' in the last term of (8a). 
By going from the "phase velocities" (~O(l, z)/~z) to 
the conjugate momenta p(l, r) we end up with the 
partition function of the Hamiltonian [10] 

H = ~ p(l) - [(2e) 2 W(l, l')] 

<t,r> 

(9) 
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Hamiltonian (9) describes the relevant physics of 
short coherence length superconductors in terms of 
Josephson coupled spatial phase variations and 
"charge fluctuations" coupled by the screened 
Coulomb interaction. It is also the "phase-only" 
representation of the Hamiltonian of interacting 
bosons [10-12]. Its critical behavior, in particular 
the influence of the "background", -½ no, has been 
studied in these references. Here, we apply expres- 
sion (9) to calculate the transition temperature of 
strongly anisotropic superconductors, such as su- 
perlattices and bulk systems in the underdoped 
regime [13]. We make the following approxima- 
tions: (i) H is restricted to one superconducting 
layer; (ii) the screened Coulomb interaction, which 
takes into account the electric coupling between 
layers, is modelled by a Yukawa-form, with 
a Thomas-Fermi screening length •TF, depending 
on the density no of charge carriers according to the 
well-known formula 

1 2.95 ~-1  
2~vx =2--~ r ~ / a o  [ ]' 

where rs = (3/(47tno)) 1/3 and ao is the Bohr radius; 
(iii) considering only no ,~ 1, the "background 
shift", -½ no, in the first term of(9) is neglected. We 
make connection with previous work [14, 15] by 
mapping (9) onto a "capacity model": 

-~ ~ p(l)[(2e) z W (l, l ' )]p(l ')  (2e)2 S' 
I,l' ~ 2C "{ P(1)z' 

with 

1 1 2~2TF e -  aLI~T~ 
2-C - ~ t~o W (l, O) - ea---~L " 

(10) 

This is the XY-model with kinetic energy [14, 15], 
e being the dielectric constant of the interlayer 
material and aL the lattice constant. In Ref. [14] the 
critical temperature in two dimensions was evalu- 
ated in the "self-consistent harmonic approxima- 
tion" (SCHA) which gives results in good agree- 
ment with Monte Carlo simulations [16]. A good 
overall fit of the numerical SCHA result is [17] 
Tc(~) ,~ Tc(0)x//] - - ~/Ctc where c~ = (2e)2/(2CJ) is 
the ratio between charging and Josephson energy. 
When at approches Ctc = 6.2, Tc goes to zero. This 
approach has been successfully applied [14, 15] to 

calculating the superconducting transition temper- 
ature for superlattices and for alloys by determin- 
ing the appropriate effective capacity through elec- 
trostatic considerations. 

We finally use Hamiltonian (9) to find Tc as 
a function of doping for high-Tc superconductors 
in the underdoped regime. For YBa2Cu3OT, our 
"capacity model" has allowed to fit the Tc vari- 
ation of both, superlattices and alloys, in a coherent 
way, using SCHA [14, 15] for J = 120 K at opti- 
mal doping (no ,,~ 0.16 of holes per cell [13]). Below 
optimal doping, the ratio a increases when the 
number no of charge carriers is reduced: the 
no dependence of J is given following Eq. (8a) and 
C varies with no through the screening length 2TF. 
Using the above expression for Tc(a), with doping- 
dependent J and C, we then find that Tc should be 
zero for no ,,~ 0.07, in good agreement with the 
measured phase diagram [13]. This shows that the 
phase boundary in the underdoped regime can be 
understood in terms of Bose-Einstein condensa- 
tion of preformed pairs, Tc being suppressed by 
phase fluctuations when the minimum doping is 
approached. 

In summary, starting from the attractive Hub- 
bard model with long-range Coulomb repulsion, 
we have given a microscopic derivation of a de- 
scription of short coherence length superconduc- 
tors in terms of the superconducting phase, the 
Hamiltonian for which includes a "charging en- 
ergy" and a Josephson coupling. This is a micro- 
scopic justification of such a Hamiltonian, which 
has been used previously [14, 15] in calculating 
Tc for superlattices and alloys and also allows 
understanding the phase boundary of bulk oxides 
in the underdoped regime. 
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