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Abstract

We describe in this document our preliminary results regarding the
tracking of dendrites spreading from a neuron in confocal microscope im-
ages. When using a small number of image layers, we obtain good results
by combining a EM-based local estimate of the probability that an image
pixel belongs to a neuron filament with the global tree properties of the
complete set of dendrites. The optimal tree is obtained with a modified
minimum-spanning tree procedure. We will argue that this approach ex-
tends naturally to the complete data volume and should give even better
results.

1 Introduction

Full reconstruction of neuron morphology is of fundamental interest for the
analysis and understanding of their functioning. So far, most commercial
products such as Neurolucida1, Imaris2 or Metamorph3 provide with pow-
erful interfaces to reconstruct dendritic trees but relies heavily on manual
operations for initialization and re-initialization of the procedures able to
follow neuron filaments along in the tissue.

In its most basic form, the problem consists of processing a stack of
pictures produced by a confocal microscope, each of them showing a slice

1http://www.microbrightfield.com/prod-nl.htm
2http://www.bitplane.com/products/imaris/imaris product.shtml
3http://www.moleculardevices.com/pages/software/metamorph.html
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of the same piece of tissue at a different depth. It is transparent enough
so that these pictures can be acquired by simply changing the focal plane.
Since dye was injected into the cell to be reconstructed, it became opaque
to light, while the rest of the tissue retains its original color. Finally, the
neuron and its extension appear on the picture as dark filaments as shown
inFig. 1(a).

To automatically delineate the dendrites in such images, the main dif-
ficulty comes from the multiple discontinuities in the filaments, which are
due to inhomogeneities in their thickness. For example, the presence of
synapses locally increases the diameter of a filament and results in series
of dots such as those that are clearly visible in Fig. 2(a).

Thus, simply following the darkest paths in the picture cannot be ex-
pected to yield good results. A successful strategy has to involve both the
local characterization of the filament-like parts of the pictures and more
global modeling of dendritic networks.

In this report, we propose such a strategy, similar to (He et al. 2003),
which combines local color-based estimate of the probability that an image
pixel belongs to a filament with the global tree properties of the complete
set of filaments. We avoid having to de-noise the image by keeping a
probabilistic semantic in the result of the segmentation step. Our method
produces results such as those of Fig. 1(b), which compare favorably to
manual delineation. So far, we have only tested our approach in the 2–D
case using a small number of layers. However, we expect our approach
to naturally extend to the full data volume, where it should perform even
better.

2 Related Work

Reconstruction of large networks of filaments is an important subject at
the interface between medical imaging and computer vision. Its two main
applications are the reconstruction of brain vascular networks (Kirbas &
Quek 2003, Krissian et al. 2004) and neuron dendritic trees.

For clean high-resolution images, techniques can rely on the continuity
of the structures to follow and take advantage of sophisticated 3D mod-
els of the filaments (Shen et al. 2001, Al-Kofahi et al. 2002). However,
since we want to deal here with pictures of lower quality, where structures
may appear to be discontinuous due to noise, we propose to use a tech-
nique based on the minimal spanning tree technique. This optimization
scheme has been used in computer vision since the 80s, for instance for
road-tracking in satellite images (Fischler et al. 1987). Our approach is
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(a) (b)

Figure 1: Delineating the dendritic network in the 2–D image corresponding to a
particular depth. (a) Original image. (b) Resulting fully automatic delineation
(the original image has been darkened to make the delineation more visible)

globally similar to (He et al. 2003), but we avoid the deconvolution step
and rely on a log-odd ratio computed during the pre-processing to score
the candidate trees. This scoring scheme is consistent under a legitimate
model of the image, and our probabilistic formulation gives flexibility for
improving the models of the filament appearance or tree geometry while
keeping the global optimization framework.

3 Approach

We formulate the problem as Bayesian inference. The hidden state we have
to infer is the actual location of the dendritic tree in the tissue volume, and
the visible state is the tissue color. The prior on the hidden state is that
it is a tree as opposed to a graph, which means that there are no cycles or
unconnected parts. The prior on the color, given the tree, is that pixels
located on the filaments are significantly darker than pixels that are on the
rest of the tissue.

Our algorithm involves the two following algorithmic steps:
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Table 1: Notation used in Sections 3.1 and 3.2

I(x, y)

Image intensity at location (x, y);

Y (x, y)

Boolean random process standing for the presence
of a filament at pixel (x, y);

W (x, y)

Boolean random process standing for the visibility
of filament (if present) at pixel (x, y);

Z(x, y) = Y (x, y) W (y, x)

Boolean random process standing for the actual
neuron-color coloration of pixel (x, y);

ξ(x, y) = P (Z = 1 | I(x, y))

Probability that a pixel is on a visible part of a
filament given its color;

δ = P (Y = 1) and ε = P (W = 1)

The prior probability of the filament presence and
filament visibility.

1. Estimating the probability for every pixel to be on a filament, given
only its intensity;

2. Building the optimal tree.

In the two following sections, we describe these individual steps.

3.1 Estimating the Probability of Belonging to a
Filament

Our algorithm’s first step is to estimate the probability for every pixel to
belong to a filament given its color. As stated above, our basic assumption
is that a filament pixel is, in general, darker than a non-filament one. Note,
however, that this is a local property as opposed to a global one. For
example, in the images we experimented with, some areas were globally
brighter than others, presumably due to imaging artifacts. As a result,
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(a) (b)

(c) (d)

Figure 2: Building and pruning the spanning tree. (a) Detail of the image of
Fig. 1 , (b) Anchor points after decimation, (c) Full tree before pruning and (d)
Final tree after pruning. The red segments do not appear to be filaments but
they are retained to connect subtrees.
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(a) (b) (c)

Figure 3: Estimating the probability that a pixel belongs to a filament based
on its color. (a) Initial estimate. (b) Refined estimate using a single layer. (c)
Refined estimate using seven layers.

some pixel filaments in the bright image areas can actually be lighter than
non-pixel filaments in dark areas.

Also, as shown in Fig. 2(a), very thin portions of a filament may not
be visible, resulting in what appears to be set of unconnected fragments.
We must therefore allow the tree to spread to light parts of the picture as
necessary to connect those fragments. To model this situation we introduce
a boolean variable Y (x, y) which is equal to 1 on filaments and a variable
W (x, y) equal to 1 when the filament at that location is visible, assuming
there is actually a filament. The product of the two Z(x, y) = Y (x, y) ∗
W (x, y) modulates the darkness of the pixels: pixels are darker when Z
is equal to one. We therefore write the probability we want to estimate
as ξ(x, y) = P (Z = 1 | I(x, y)). This model takes explicitly into account
invisible parts of filaments and relaxes the penalty for the tree spanning
such areas, instead of relying for instance on the variance of a Gaussian
model to account for such anomaly.

To evaluate ξ, we make the assumption that in any sub-image of size
∆×∆ the intensity of pixels is a mixture of two Gaussian distributions, one
standing for the intensity on the visible filaments, and one for the intensity
on the rest of the tissue. As said earlier intensity on filaments or tissues
varies greatly in different part of the image, however the assumption of
being locally constant seems reasonable experimentally.

We thus have developed a variation of the classical E-M algorithm. We
alternatively estimate the probability ξ(x, y) for each pixel to be neuron-
colored given an a priori conditional distribution of pixel intensities in its
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neighborhood, and then re-estimate this conditional intensity distribution
given which pixels are considered to belong to filaments and which are not.

Thus, this can be divided in three parts:

1. Initialize ξ

This is done by setting this value to 1 where the intensity is more
than one standard deviation from the mean, where both mean and
standard deviation have been computed over the whole image;

2. Update the local models
Compute for each pixel the conditional expectation and standard
deviation of the intensity inside and outside neuron filaments in a
neighborhood of size ∆×∆. The cost of this estimation can be made
independent from ∆ by using integral images;

3. Update ξ

Re-estimate ξ according to a Bayesian rule and Gaussian models. Go
back to 2. until convergence.

Fig. 3(a) shows the initialization values. Fig. 3(b) depicts the resulting
refined probability image. To further improve the result, we can perform
this computation on several layers of thin stack of images and take ξ to
be the maximum value at each (x, y) location, which yields the result of
Fig. 3(c).

3.2 Computing the Optimal Tree

Let T be the set of pixels on the actual filament tree. We show in Appendix
A that the log probability of observing the specific image I we use as input,
given T , can be evaluated as

log P (I |T ) = Ψ0 +
∑

(x,y)∈T

Ψ(x, y)

where

Ψ(x, y) = log
P (I(x, y) |Y (x, y) = 1)
P (I(x, y) |Y (x, y) = 0)

which can be computed from the estimate of ξ(x, y) = P (Z(x, y) = 1 | I(x, y))
and the priors δ = P (Y = 1) and ε = P (W = 1) (see Appendix B).
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Thus finding the maximum likelihood tree T reduces to finding the tree
t that maximizes

∑
(x,y)∈t

Ψ(x, y) .

To this end, we have developed a greedy algorithm, which is a variation
of the maximum spanning tree (Kruskal Jr. 1956, Prim 1957, Gower &
Ross 1969, Zahn 1971). We first find a set of anchor points, which are
local maxima of the ξ(x, y) probability defined in Section 3.1. We then
build the maximum likelihood tree that spans them.

1. Subsampling the set of pixels
The purpose of this initial step is to reduce the cardinality of the
set of pixels to process. We call the pixels remaining after that step
anchor points and they are chosen to be sufficiently dense on the areas
of interest so that the optimal tree can be defined as a tree spanning
a subset of these points.
To select anchor points, we build a ranked list of all the pixel of the
image according to their Ψ value. We take the first element of the
list to be an anchor and remove from the list all other points within
a radius ρ. We then iterate this process until the list is empty, which
yields results such as the one if Fig. 2(b).
This process dramatically reduces the number of pixels to be consid-
ered, while retaining all pixels at locations likely to be on a filament.

2. Building the Tree
We build the set of all edges of length less than 3ρ between anchors
and rank them according to the average value of Ψ along the segment
joining them. We then consider them sequentially and add to the tree
any edge which does not create a cycle in the resulting graph.
This yields trees such as the one of Fig. 2(c). Note that due to the
3ρ distance threshold, we may not be able to build a tree spanning
all anchors. Non-connected anchors are considered as belonging to
pieces of pieces of filaments unrelated to the considered neuron.

3. Pruning optimally
Given the optimal full tree spanning all the anchor points, we can
compute the global optimal subtree by removing all the anchors such
that the integral of Ψ on the subtree it holds is negative (see figure 2
(c) and (d) and 4). This can be done by ranking the anchors according
to their discrete distance to the starting point, measured by how many
intermediate anchors between it and the starting point there are, and
updating that integral score by considering them sequentially.
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Figure 4: Sub-trees which negative score are pruned. Solid dots denote vertices
that are retained and hollow dots vertices that are removed.

Such an algorithm keeps an edge with a very negative scores when
it connects a subtree with a high score to the origin. This property
ensures a good behavior at gaps, as shown in Fig. 5.

4 Future Work

This short study shows that a Bayesian formulation combined with a clas-
sical tree-optimization method is effective to delineate dendritic branches
in thin stacks of confocal microscope images.

All the results presented were obtained using either a single or a small
number of image layers, which we refer to as the 2–D case. This gives rise
to ambiguities that may evaporate if one considers the full data volume
instead. This typically happens when a filament is above another. In a
single layer, they may appear to intersect even though, in 3–D, they do
not.

Fortunately, all the algorithms described above extend naturally to the
3–D case and should therefore work even better than in 2–D. The only
serious difficulty we expect to encounter is the vastly increased computa-
tional cost, especially to handle the list of all possible edges of Section 2.
Fortunately, this can be dealt with in a pure algorithmic way by using
lazy algorithms and sparse representation, such as hash table or Kd-trees.
Furthermore, should the need arise, the algorithm could be parallelized to
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(a) (b)

Figure 5: Bridging gaps. (a) Image detail with substantial gaps between fila-
ments. (b) The pruning algorithm may retain edges whose score is bad, such as
those shown in red, if they connect high scoring subtrees.

take advantage of EPFL’s BlueGene computer.

Also, the estimation of P (Y (x) | I), as described in Section 3.1, is based
on the individual pixel intensities, which is very crude. It does not take
advantage of all the information that can be extracted from the intensity
patterns around the pixels. For example, the neighborhood of a filament is
cylindrical and therefore locally isotropic. We could clearly take this into
account by using statistical learning applied to pattern recognition.

Given a few stacks of images that have been labeled by an expert,
we will collect many image patches located on those filaments to build a
training set. We will use it create a non-parametric model—decision tree,
naive Bayesian, or SVM—to predict whether or not a new image patch of
image is likely to be located on a neuron filament. Such an approach has
the potential to account for shape and color regularities in small cubes of
brain matter. This prediction will be easy to convert into a directly usable
a posteriori probability.
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A Tree score

log P (I |T = t) =
∑
(x,y)

log P (I(x, y) |T = t)

=
∑
(x,y)

log P (I(x, y) |Y (x) = 1(x,y)∈t)

=
∑
(x,y)

log P (I(x, y) |Y (x) = 0) +
∑

(x,y)∈ t

log
P (I(x, y) |Y (x, y) = 1)
P (I(x, y) |Y (x, y) = 0)︸ ︷︷ ︸

Ψ(x,y)

= Ψ0 +
∑

(x,y)∈t

Ψ(x, y)

B Value of Ψ

Ψ(x, y) =
P (I |Y = 1)
P (I |Y = 0)

=
P (I, W = 0 |Y = 1) + P (I, W = 1 |Y = 1)
P (I, W = 0 |Y = 0) + P (I, W = 1 |Y = 0)

=
P (I |W = 0, Y = 1)P (W = 0 |Y = 1) + P (I |W = 1, Y = 1)P (W = 1 |Y = 1)
P (I |W = 0, Y = 0)P (W = 0 |Y = 0) + P (I |W = 1, Y = 0)P (W = 1 |Y = 0)

=
P (I |W = 0, Y = 1)P (W = 0) + P (I |W = 1, Y = 1)P (W = 1)
P (I |W = 0, Y = 0)P (W = 0) + P (I |W = 1, Y = 0)P (W = 1)

=
P (I |Y W = 0)P (W = 0) + P (I |Y W = 1)P (W = 1)
P (I |Y W = 0)P (W = 0) + P (I |Y W = 0)P (W = 1)

=
P (I |Y W = 0)P (W = 0) + P (I |Y W = 1)P (W = 1)

P (I |Y W = 0)

= P (W = 0) +
P (I |Y W = 1)
P (I |Y W = 0)

P (W = 1)

= P (W = 0) +
P (Y W = 1 | I)P (Y W = 0)
P (Y W = 0 | I)P (Y W = 1)

P (W = 1)

= P (W = 0) +
ξ

1− ξ

1− P (Y W = 1)
P (Y W = 1)

P (W = 1)

= (1− ε) +
ξ

1− ξ

1− δε

δε
ε

= (1− ε) +
ξ

1− ξ

(
1
δ
− ε

)
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