Analysis of S. pombe SIN protein association to the SPB reveals two genetically separable states of the SIN

The Schizosaccharomyces pombe septation initiation network (SIN) regulates cytokinesis, and asymmetric association of SIN proteins with the mitotic spindle pole bodies (SPBs) is important for its regulation. Here, we have used semi-automated image analysis to study SIN proteins in large numbers of wild-type and mutant cells. Our principal conclusions are: first, that the association of Cdc7p with the SPBs in early mitosis is frequently asymmetric, with a bias in favour of the new SPB; second, that the early association of Cdc7p-GFP to the SPB depends on Plo1p but not Spg1p, and is unaffected by mutations that influence its asymmetry in anaphase; third, that Cdc7p asymmetry in anaphase B is delayed by Pom1p and by activation of the spindle assembly checkpoint, and is promoted by Rad24p; and fourth, that the length of the spindle, expressed as a fraction of the length of the cell, at which Cdc7p becomes asymmetric is similar in cells dividing at different sizes. These data reveal that multiple regulatory mechanisms control the SIN in mitosis and lead us to propose a two-state model to describe the SIN.

Publié dans:
Journal Of Cell Science, 128, 4, 741-754
Cambridge, Company Of Biologists Ltd

 Notice créée le 2015-04-13, modifiée le 2019-06-17

Liens externes:
Télécharger le documentURL
Télécharger le documentURL
Télécharger le documentURL
Évaluer ce document:

Rate this document:
(Pas encore évalué)