000207323 001__ 207323
000207323 005__ 20180913063054.0
000207323 0247_ $$2doi$$a10.1088/0957-0233/26/3/035202
000207323 022__ $$a0957-0233
000207323 02470 $$2ISI$$a000349839400009
000207323 037__ $$aARTICLE
000207323 245__ $$aMultiple phase derivative estimation using autoregressive modeling in holographic interferometry
000207323 260__ $$aBristol$$bInstitute of Physics$$c2015
000207323 269__ $$a2015
000207323 300__ $$a7
000207323 336__ $$aJournal Articles
000207323 520__ $$aA novel technique is proposed for the direct and simultaneous estimation of multiple phase derivatives from a deformation modulated carrier fringe pattern in a multi-wave holographic interferometry set-up. The fringe intensity is represented as a spatially-varying autoregressive (SVAR) model. The spatially-varying coefficients of the SVAR model are derived using a forward-backward approach of linear estimation of the fringe intensity. Using these coefficients, the poles of the SVAR model transfer function are computed and the angles of these poles provide the estimation of phase derivatives. The estimation of carrier frequency is performed by the proposed method using a reference interferogram. Simulation results are provided in the presence of noise and fringe amplitude modulation.
000207323 6531_ $$amulti-wave holographic interferometry
000207323 6531_ $$aphase derivative estimation
000207323 6531_ $$aspatially-varying autoregressive modeling
000207323 700__ $$0247133$$aKulkarni, Rishikesh$$g229457
000207323 700__ $$0241647$$aRastogi, Pramod$$g106189
000207323 773__ $$j26$$k3$$tMeasurement Science & Technology
000207323 909C0 $$0252031$$pIMAC$$xU10237
000207323 909CO $$ooai:infoscience.tind.io:207323$$particle$$pENAC
000207323 917Z8 $$x229457
000207323 937__ $$aEPFL-ARTICLE-207323
000207323 973__ $$aEPFL$$rREVIEWED$$sPUBLISHED
000207323 980__ $$aARTICLE