Abstract

Ab initio molecular dynamics (MD) simulations of the solvation of LiI3 in four different solvents (water, methanol, ethanol, and acetonitrile) are employed to investigate the molecular and electronic structure of the I-3(-) ion in relation to X-ray photoelectron spectroscopy (XPS). Simulations show that hydrogen-bond rearrangement in the solvation shell is coupled to intramolecular bond-length asymmetry in the I-3(-) ion. By a combination of charge analysis and I 4d core-level XPS measurements, the mechanism of the solvent-induced distortions has been studied, and it has been concluded that charge localization mediates intermolecular interactions and intramolecular distortion. The approach involving a synergistic combination of theory and experiment probes the solvent-dependent structure of the I-3(-) ion, and the geometric structure has been correlated with the electronic structure.

Details

Actions