000207275 001__ 207275
000207275 005__ 20181203023832.0
000207275 0247_ $$2doi$$a10.1016/j.spa.2014.11.009
000207275 022__ $$a0304-4149
000207275 02470 $$2ISI$$a000350078400015
000207275 037__ $$aARTICLE
000207275 245__ $$aMoment bounds and asymptotics for the stochastic wave equation
000207275 260__ $$bElsevier Science Bv$$c2015$$aAmsterdam
000207275 269__ $$a2015
000207275 300__ $$a24
000207275 336__ $$aJournal Articles
000207275 520__ $$aWe consider the stochastic wave equation on the real line driven by space time white noise and with irregular initial data. We give bounds on higher moments and, for the hyperbolic Anderson model, explicit formulas for second moments. These bounds imply weak intermittency and allow us to obtain sharp bounds on growth indices for certain classes of initial conditions with unbounded support. (C) 2014 Elsevier B.V. All rights reserved.
000207275 6531_ $$aNonlinear stochastic wave equation
000207275 6531_ $$aHyperbolic Anderson model
000207275 6531_ $$aIntermittency
000207275 6531_ $$aGrowth indices
000207275 700__ $$0242538$$g175976$$aChen, Le
000207275 700__ $$aDalang, Robert C.$$g104859$$0242536
000207275 773__ $$j125$$tStochastic Processes And Their Applications$$k4$$q1605-1628
000207275 909C0 $$xU10123$$0252062$$pPROB
000207275 909CO $$pSB$$particle$$ooai:infoscience.tind.io:207275
000207275 937__ $$aEPFL-ARTICLE-207275
000207275 973__ $$rREVIEWED$$sPUBLISHED$$aEPFL
000207275 980__ $$aARTICLE