000207264 001__ 207264
000207264 005__ 20181203023825.0
000207264 022__ $$a0927-2852
000207264 02470 $$2ISI$$a000350870400002
000207264 0247_ $$2doi$$a10.1007/s10485-013-9328-5
000207264 037__ $$aARTICLE
000207264 245__ $$aExponential Kleisli Monoids as Eilenberg-Moore Algebras
000207264 269__ $$a2015
000207264 260__ $$bSpringer$$c2015$$aDordrecht
000207264 300__ $$a21
000207264 336__ $$aJournal Articles
000207264 520__ $$aLax monoidal powerset-enriched monads yield a monoidal structure on the category of monoids in the Kleisli category of a monad. Exponentiable objects in this category are identified as those Kleisli monoids with algebraic structure. This result generalizes the classical identification of exponentiable topological spaces as those whose lattice of open subsets forms a continuous lattice.
000207264 6531_ $$aExponentiable object
000207264 6531_ $$aMonad
000207264 6531_ $$aMonoidal category
000207264 6531_ $$aTopological category
000207264 700__ $$uUniv Aveiro, Dept Matemat, CIDMA, P-3810193 Aveiro, Portugal$$aHofmann, Dirk
000207264 700__ $$uGeorgia So Univ, Dept Math Sci, Statesboro, GA 30460 USA$$aMynard, Frederic
000207264 700__ $$aSeal, Gavin J.
000207264 773__ $$j23$$tApplied Categorical Structures$$k2$$q137-157
000207264 909C0 $$xU10968$$0252139$$pUPHESS
000207264 909CO $$pSV$$particle$$ooai:infoscience.tind.io:207264
000207264 917Z8 $$x105396
000207264 937__ $$aEPFL-ARTICLE-207264
000207264 973__ $$rREVIEWED$$sPUBLISHED$$aEPFL
000207264 980__ $$aARTICLE