Efficient Subnetwork Selection in Relay Networks

We consider a source that would like to communicate with a destination over a layered Gaussian relay network. We present a computationally efficient method that enables to select a near-optimal (in terms of throughput) subnetwork of a given size connecting the source with the destination. Our method starts by formulating an integer optimization problem that maximizes the rates that the Quantize-Map-and-Forward relaying protocol can achieve over a selected subnetwork; we then relax the integer constraints to obtain a non-linear optimization over reals. For diamond networks, we prove that this optimization over reals is concave while for general layered networks we give empirical demonstrations of near-concavity, paving the way for efficient algorithms to solve the relaxed problem. We then round the relaxed solution to select a specific subnetwork. Simulations using off-the-shelf non-linear optimization algorithms demonstrate excellent performance with respect to the true integer optimum for both diamond networks as well as multi-layered networks. Even with these non-customized algorithms, significant time savings are observed vis-a-vis exhaustive integer optimization(1).


Published in:
2014 Ieee International Symposium On Information Theory (Isit), 1927-1931
Presented at:
IEEE International Symposium on Information Theory (ISIT), Honolulu, HI, JUN 29-JUL 04, 2014
Year:
2014
Publisher:
New York, Ieee
ISBN:
978-1-4799-5186-4
Laboratories:




 Record created 2015-04-13, last modified 2018-09-13


Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)