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ABSTRACT

Our demo demonstrates the method we published at CVPR this
year [3] for tracking specular and poorly textured objects. Instead
of detecting and matching local features, we retrieve the pose in the
input images by aligning them with a reference image exploiting
dense optimization techniques. Our main contribution is an efficient
novel local descriptor that can be used in place of the intensities to
make the alignment much more robust.

Our approach, which requires only a standard, monocular cam-
era (no need for a depth sensor), is of great interest for all Aug-
mented Reality applications involving shiny, texture-less objects,
such as those typically encountered in industrial environments.

Index Terms: Robust tracking; Dense Descriptors; Specular ob-
jects;

1 INTRODUCTION

Despite a long history of research in 3D tracking [4, 6], it is still
very challenging to reliably register poorly textured, specular ob-
jects. This is a clear obstacle to the development of Robotics and
Augmented Reality (AR) applications in industrial environments,
where such objects can typically be found.

Because of the typical presence of metallic and non-Lambertian
masses in such environments, 3D sensors and depth cameras do not
perform well, and markers are at best highly impractical. Because
of the absence of textures and presence of specularities, standard
Computer Vision techniques, which rely mostly on feature points
or texture, also completely fail.

We use an an approach that we refer to as “Descriptor Fields”,
introduced in [3], that resolves this issue. Instead of detecting and
matching local features, we rely on a dense image alignment frame-
work [7, 2, 5, 1, 9, 10]. Dense alignment is attractive because it
globally exploits most of the image information, even when lo-
cal image features such as interest points or edges are ambiguous.
However it typically relies directly on image intensities, which is
prone to fail in presence of non-Lambertian effects such as spec-
ularities, or when the objects do not exhibit convenient textures.
Moreover, a multi-scale approach is typically required for robust
alignment, where low-pass filters are applied to the signals to align.
When the signals are the image intensities, or a linear combination
of them, low-pass filtering rapidly deteriorates information.

We therefore employ a more robust local descriptor in place of
the pixel intensities. Our descriptor allows us to handle challenging
imaging artifacts on a highly specular, poorly textured object. It
is computed from a small set of convolutional filters applied to the
images, which makes it suitable for real-time applications. How-
ever, instead of relying on the simple linear transformation of the
intensity signal issued by the convolutions, we apply a non-linear
operation that separates the descriptors’ positive values from the
negative ones. This step is crucial for obtaining the best tracking
performances.

This can be explained by the fact that, thanks to our non-linear
operation, our Descriptor Fields remain discriminant even after
low-pass filtering. As a result, large Gaussian kernels can be used
to significantly broaden the region of convergence of the alignment
optimization algorithms, which is an important factor for robust-
ness.

2 DENSE ALIGNMENT FOR CAMERA TRACKING

For retrieving an estimation of the pose p̂ of a captured image J,
we align it against a reference image T . More exactly, optimize the
following cost function:

F(p) = ∑
x
‖d(J,W (x,p))−d(T,x)‖2 , (1)

where d(I,x) is a function that returns a descriptor for location x in
a generic image I, W : R2×Rn→R2 is a warp function depending
on an array p of n parameters, and the sum is extended to a dense
subset of the pixels x on the template. Finally, we set:

p̂ = argminp F(p). (2)

We employ an homography (n = 8) for tracking planar objects, or
the transfer function used in [3] (n = 6) for tracking a general 3D
scene. In previous dense alignment works, d(I,x) is almost always
taken as I(x), the intensity in image I at location x.

We can exploit several algorithms to efficiently optimize func-
tions in the form of Equation (1), including the Lucas-Kanade (LK)
algorithm [7, 1], the Inverse Compositional Algorithm (ICA) [1],
and the Efficient Second Order Method (ESM) [8].

In practice, a multi-scale approach is used to optimize Eq. (1) by
taking and considering the intermediate objective function:

F(p;σ) = ∑
x
‖Dσ (J,W (x,pT ,p))−Dσ (T,x)‖2 , (3)

where Dσ (x) is a low-pass version of d(x):

Dσ (x) = (Gσ ∗d)(x) (4)

with Gσ a Gaussian kernel of standard deviation σ . The optimiza-
tion scheme starts with a large value for σ , optimizes F(p;σ) to
obtain a first estimate p̃ of the actual pose, decreases σ , optimizes
F(p;σ) again starting from p̃, and iterates for a fixed number of
iterations.

This multiscale optimization scheme is important in practice as
low-pass filtering increases the basin of convergence, but it also
degrades the localization of the minimum of the original function
in Eq. (1). In our implementation, the optimization is initialized
with the camera pose for the template T . We use 4 scales, with
σ initialized to a fixed parameter σmax for the coarsest scale, and
divided by 2 between each scale level.

The next section discusses how we compute the d function to
improve the convergence when the images exhibit challenging arti-
facts.
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Figure 1: Some examples of objects our method can track: (a) a flat, lambertian object; (b) a flat, shiny object with specular artifacts; (c), (d), (e)
a 3D scene with shiny and poorly specular objects; (f), (g), (h) an indstrial machinery in a cluttered environment.

3 DESCRIPTOR FIELDS

As mentioned in the previous section, a very common choice for
the function d(I,x), which appears in Eq. (1) and on which image
alignment is based, is simply

d(I,x) = I(x) , (5)

that is, the pixel intensity in image I at location x. However, this
option is very sensitive to complex light changes, especially in the
absence of texture. For improving the tracking robustness, we em-
ploy the Descriptor Fields proposed in [3].

They consist in the following dense descriptor:

d(I,x) =
[

[(f1 ∗ I)(x)]+, [(f1 ∗ I)(x)]−, . . . ,
[(fn ∗ I)(x)]+, [(fn ∗ I)(x)]−

]>
,

(6)

where the fi filters are typically Gaussian derivatives kernels, and
the [·]+ and [·]− operations respectively keep the positive and neg-
ative values of a signal:

[x]+ =

{
x, if x≥ 0
0, otherwise

, and [x]− = [−x]+.

These operations are simple but fundamental, and make the descrip-
tor of Eq. (6) stay discriminant after strong Gaussian smoothing.
This yields an objective function with a large basin of attraction
and a well localized minimum, which is key for robustness of the
alignment.

4 DEMO

Our demo aims at highlighting the advantages of our 3D tracking
approach based on Descriptor Fields for shiny, texture-less objects,
such as a whiteboard, a plastified sheet of paper or an industrial
machinery.

Users will be able to experiment the robustness of our approach
by comparing it with state-of-the-art methods, such as those based
on local features or dense image alignment and intensities.

We believe that our approach will contribute to expand the do-
main of application of Augmented Reality to environments where
previous visual tracking techniques do not provide enough robust-
ness. A demo video of our tracking framework is available on the
project page at http://cvlab.epfl.ch/research.

5 CONCLUSION

We present a visual tracking framework based on a novel local de-
scriptor, the Descriptor Fields, that makes tracking much more ro-
bust to various imaging artefacts. Since Descriptor Fields are effi-
cient and very simple to implement, they are suited for AR applica-
tions in difficult environments.
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