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You might slide, you might tumble and fall by the road side;  
don't you ever let nobody drag your spirit down. 

Remember you're walkin' up to heaven, don't let nobody turn you round. 

Walk with the rich, walk with the poor; learn from everybody that's what life is for;  
don't you ever let nobody drag your spirit down. 

(Charlotte Hoglund, Eric Bibb) 
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ABSTRACT 

People in developed countries spend today most of their time inside buildings as part of the 

modern way of life. As a result, the building sector accounts for almost 40% of the total 

energy consumption and a big part of the energy bill goes to maintain the visual and thermal 

comfort of their occupants. At the same time, awareness is being raised during the last 

decades about the greenhouse gas emissions and the possibly irreversible effects of global 

warming; both linked to excessive use of non-renewable primary energy sources which still 

power most of the world, including our buildings. Thus, moderating the energy consumed in 

them is a top priority. However, this does not imply a horizontal cut in energy consumption 

that would result in a drop of user comfort. 

Instead, we suggest that improving energy efficiency in buildings while maintaining or even 

improving the user comfort is the optimal solution. It is indeed the core of this thesis that 

there is a great energy saving potential in refining the control of building systems such as 

electric lighting, heating, cooling and ventilation, which more than often consume a lot of 

energy without delivering the analogous amount of visual and thermal comfort.  

In this direction, this thesis proposes the development of a novel predictive control algorithm 

for the control of electrochromic glazing using a low cost sky scanner using a simple web 

camera. The developed algorithm demonstrated an average prediction accuracy of 92% and 

integrates and controls the blinds and electric lighting to maximise visual comfort taking into 

account outdoor and indoor conditions, presence and user actions. Measurements and 

extensive simulations showed that the elaborated algorithm improves thermal and visual 

comfort when compared to standard glazing coupled with blinds and exhibits acceptable 

levels of energy consumption for space heating and electric lighting. 

In the same subject of improving building control, a novel approach for controlling building 

systems by using state-based stochastic data-driven models to identify “season” is defined 

and developed. We reason that the season variable is unique to every building and it 

depends on weather conditions, user behaviour and building construction. The developed 

models identified “season” with an accuracy that ranged from 69 to 91% and it was shown 

through simulations that a controller based on Hidden Markov Models can reduce energy 
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demand for heating and improve the thermal comfort of occupants in different building 

construction types. 

Finally, the use of Hidden Markov Models was further explored in this thesis by suggesting a 

novel model for the estimation of occupants’ visual comfort in buildings. The proposed 

model is based on horizontal workplane illuminance measurements using ceiling-mounted 

sensors as well on vertical illuminance monitoring at the observer’s eyes plane (pupillary 

illuminance) by means of wearable portable sensors. We argue that the proposed model 

improves greatly over the various existing discomfort glare indices and metrics and it is also 

convincingly demonstrated that it can be seamlessly integrated and used in building 

automation systems based on fuzzy logic. 

 

Keywords: integrated control of building systems, electrochromic windows, predictive 

control, fuzzy logic, visual and thermal comfort, energy saving, Hidden Markov Models, 

machine learning, clouds motion prediction, sky prediction, stochastic modelling, user 

adaptation, season modelling, HVAC systems 
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RÉSUMÉ 

 

Dans les pays développés, les gens passent aujourd'hui la plupart de leur temps à l'intérieur 

des bâtiments dans le cadre de la vie moderne. Par conséquent, le secteur du bâtiment est 

responsable de près de 40% de la consommation totale d'énergie et une grande partie de la 

facture d'énergie concerne la production du confort visuel et thermique de leurs occupants. 

Dans le même temps, au cours des dernières décennies, le public est de plus en plus 

concerné par le sujet des émissions de gaz à effet de serre et des effets peut-être 

irréversibles du réchauffement climatique; tous deux liés à une utilisation excessive des 

sources d'énergie primaires non renouvelables qui alimentent l'ensemble de nos activités, y 

compris l'énergie consommée dans nos bâtiments. Ainsi, modérer la consommation de ces 

énergies non renouvelables est une priorité absolue. Mais, est-ce que cela signifie une 

réduction drastique de notre consommation d'énergie et donc une baisse de notre confort et 

de notre niveau de vie?  

Pas du tout, répondons-nous dans cette thèse, où nous suggérons que l'amélioration de 

l'efficacité énergétique dans les bâtiments tout en maintenant, voire en améliorant le confort 

de l'utilisateur est le chemin à parcourir. En particulier, la position de cette thèse est qu'il y 

un grand potentiel pour des grandes économies d'énergie dans l’affinage du contrôle des 

systèmes, tels que l'éclairage électrique, le chauffage, la climatisation et la ventilation, qui 

en plus consomment souvent beaucoup d'énergie sans fournir un réel confort visuel et 

thermique.  

Dans cette direction, la thèse propose le développement d'un nouvel algorithme de contrôle 

prévisionnel de fenêtres électrochromiques utilisant un « sky-scanner » à faible coût  dont le 

capteur est une simple caméra web. L'algorithme développé démontre une précision de 

prédiction de 92% en moyenne et il intègre et il contrôle les stores et l'éclairage électrique 

afin de maximiser le confort visuel en tenant compte des conditions à l’extérieur et à 

l’intérieur du bâtiment, de la présence et des actions des utilisateurs. Des mesures et des 

simulations ont montré que l'algorithme développé améliore le confort thermique et visuel 

des occupants par rapport à un vitrage standard couplé avec des stores et présente des 

niveaux de consommation d'énergie acceptables pour le chauffage et l'éclairage électrique. 



 

viii 

En relation avec le même sujet de l'amélioration du contrôle des systèmes dans les 

bâtiments, une nouvelle approche pour identifier la « saison » en utilisant des modèles 

stochastiques tels que les modèles de Markov cachés est définie et développée. Nous 

considérons que la variable  « saison » est unique à chaque bâtiment et qu'elle dépend des 

conditions météorologiques, du comportement de l'utilisateur et de la construction 

(typologie) du bâtiment. Les modèles développés identifient la « saison » avec une précision 

comprise entre 69 et 91%. Ainsi, il a été montré par le biais de simulations qu'un contrôleur 

basé sur des modèles de Markov cachés peut réduire la demande d'énergie pour le 

chauffage et améliorer le confort thermique des occupants dans  différentes typologies de 

bâtiments. 

Finalement, l'utilisation de modèles de Markov cachés a été approfondie dans cette thèse en 

proposant un modèle nouveau pour l'estimation de confort visuel des occupants dans les 

bâtiments. Le modèle proposé est basé sur des mesures d'éclairement dans le plan de travail 

horizontal utilisant des capteurs montés au plafond, ainsi que sur des mesures de 

l'éclairement dans le plan vertical des yeux de l'observateur au moyen de nouveaux capteurs 

portables. Nous soutenons que le modèle présente une amélioration face aux différents 

indices d’éblouissement existants et montrons de manière convaincante qu'il peut être 

intégré et utilisé dans le contrôle automatique des installations techniques du bâtiment basé 

sur la logique floue. 

 

Mots-clés: contrôle intégré des installations techniques du bâtiment, fenêtres 

électrochromiques, contrôle prévisionnel, logique floue, confort visuel et thermique, 

économies d'énergie, modèles de Markov cachés, prédiction de mouvement des nuages, 

modélisation stochastique, adaptation aux préférences des utilisateurs, modélisation de la 

saison, systèmes CVC 
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ΠΕΡΙΛΗΨΗ 

Οι μοντέρνοι ρυθμοί ζωής στις αναπτυγμένες χώρες θέλουν τους ανθρώπους να περνούν το 

μεγαλύτερο ποσοστό του χρόνου τους μέσα στα κτίρια. Ως εκ τούτου, ο κτιριακός τομέας 

τομέας ευθύνεται για το 40% της συνολικής τελικής κατανάλωσης ενέργειας, μεγάλο μέρος 

της οποίας φροντίζει για την θερμική και οπτική άνεση των ενοίκων τους (κλιματισμός και 

φωτισμός). Ταυτόχρονα, τις τελευταίες δεκαετίες σημαντικό μέρος της κοινής γνώμης έχει 

ευαισθητοποιηθεί σχετικά με την κλιματική αλλαγή και τις πιθανά μη αναστρέψιμες 

επιπτώσεις που αυτή έχει στη βιόσφαιρα και κατανοεί πως αυτή οφείλεται κατά κύριο λόγο 

στην αλόγιστη χρήση μη ανανεώσιμων πηγών ενέργειας. Αυτές οι «μη καθαρές» πηγές 

ενέργειας τροφοδοτούν κατά κανόνα και τα κτίριά μας, ενώ η ελάττωση της ενέργειας που 

καταναλώνουμε σε αυτά αποτελεί προτεραιότητα και αναπόσπαστο πλέον κομμάτι πολιτικών 

σε εθνικό και παγκόσμιο επίπεδο. Η εξοικονόμηση όμως της ενέργειας δεν είναι επιθυμητή 

όταν γίνεται οριζόντια και με τρόπο βλαπτικό ως προς την ποιότητα ζωής του χρήστη. 

Αντίθετα, θα πρέπει να επιτυγχάνεται στοχευμένα μέσω της αύξησης της ενεργειακής 

απόδοσης των κτιρίων και της ταυτόχρονης διατήρησης (ή ακόμα και βελτίωσης) των 

συνθηκών διαβίωσης σε αυτά. 

Αυτή ακριβώς η λογική αποτελεί τον πυρήνα γύρω από τον οποίο αναπτύχθηκε η παρούσα 

διατριβή, η οποία υποστηρίζει πως η βελτιστοποίηση του ελέγχου των ενεργοβόρων 

κτιριακών συστημάτων όπως ο φωτισμός και ο κλιματισμός μπορεί να απελευθερώσει μεγάλο 

δυναμικό εξοικονόμησης ενέργειας και ταυτόχρονα να διασφαλίσει πως αυτά προσφέρουν τις 

καλύτερες δυνατές συνθήκες στους χρήστες τους. 

Σε αυτήν την κατεύθυνση, στα πλαίσια της παρούσας διατριβής αναπτύχθηκε ένας 

καινοτόμος αλγόριθμος ελέγχου ηλεκτροχρωμικών παραθύρων ο οποίος προβλέπει τοπικά τη 

νεφοκάλυψη και την ηλιοφάνεια μέσω μιας απλής κάμερας ηλεκτρονικού υπολογιστή. Ο 

αλγόριθμος επιτυγχάνει πρόγνωση με ακρίβεια 92% και ελέγχει (εκτός των ηλεκτροχρωμικών 

υαλοπινάκων) και τα συστήματα σκίασης και ηλεκτρικού φωτισμού, λαμβάνοντας υπόψη τις 

καιρικές συνθήκες, την παρουσία και τις ενέργειες του χρήστη. Επί τόπου μετρήσεις καθώς 

και εκτενείς προσομοιώσεις έδειξαν πως το προτεινόμενο ολοκληρωμένο σύστημα ελέγχου 

βελτιώνει τα επίπεδα θερμικής και οπτικής άνεσης, ενώ κρατάει τα επίπεδα κατανάλωσης 

ενέργειας σε αποδεκτά επίπεδα (συγκρινόμενο με κλασικά συστήματα υαλοπινάκων με 

εξωτερικά σκιάδια). 
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Στην ίδια θεματική ενότητα (αυτήν της βελτίωσης της απόδοσης κτιριακών συστημάτων), 

αναπτύχθηκε μία νέα προσέγγιση ελέγχου συστημάτων κλιματισμού, η οποία βασίζεται σε 

Κρυφά Μοντέλα Μαρκόφ (Hidden Markov Models) και μηχανική μάθηση και η οποία 

προτείνει έναν καινοτόμο ορισμό της έννοιας της «εποχής». Συγκεκριμένα, προτείνεται πως η 

παράμετρος της «εποχής» – σύμφωνα με την οποία αποφασίζεται συνήθως η λειτουργία των 

συστημάτων θέρμανσης, ψύξης και κλιματισμού – είναι μοναδική για κάθε κτίριο ή ακόμα και 

τμήμα του κτιρίου και εξαρτάται από τις καιρικές συνθήκες, την κατασκευή του κτιρίου και 

τους ίδιους τους ενοίκους (συμπεριφορά, χρήση, επιθυμίες). Τα μοντέλα που αναπτύχθηκαν 

επέτυχαν να αποδώσουν σωστά την «εποχή» με ακρίβεια που κυμαίνεται από 69 έως 91%, 

ενώ προσομοιώσεις που πραγματοποιήθηκαν σε διαφορετικές τυπολογίες κτιρίων έδειξαν 

πως η ενσωμάτωση τέτοιων αλγορίθμων σε κτιριακά συστήματα ελέγχου μπορεί να μειώσει 

την κατανάλωση ενέργειας για θέρμανση και να βελτιώσει τα επίπεδα θερμικής άνεσης των 

ενοίκων τους. 

Τέλος, η χρήση των Κρυφών Μοντέλων Μαρκόφ επεκτάθηκε και στην εκτίμηση της οπτικής 

άνεσης των ατόμων εντός των κτιρίων γραφείων. Τα προτεινόμενα μοντέλα βασίζονται σε 

μετρήσεις των επιπέδων του φωτισμού στην (οριζόντια) επιφάνεια εργασίας των χρηστών 

καθώς και στο επίπεδο των οφθαλμών τους (κάθετα) μέσω των αντίστοιχων κάθε φορά 

αισθητήρων. Τα μοντέλα που αναπτύχθηκαν στα πλαίσια της παρούσας διατριβής 

παρουσιάζουν αρκετά πλεονεκτήματα σε σχέση με τα υπάρχοντα μοντέλα και δείκτες (είναι 

λιγότερο πολύπλοκα, πιο ακριβή, ιδιαίτερα όταν κάνουν χρήση του φωτισμού στο κάθετο 

επίπεδο, προσαρμόζονται στις προτιμήσεις του κάθε ατόμου κ.α.), ενώ αποδεικνύεται πως 

δύναται να ενσωματωθούν εύκολα σε αυτόματα συστήματα φωτισμού τα οποία βασίζουν τη 

λειτουργία τους στην Ασαφή Λογική (fuzzy logic).  

  

Λέξεις-κλειδιά: Ολοκληρωμένος έλεγχος κτιριακών συστημάτων, ηλεκτροχρωμικά παράθυρα, 

έλεγχος βασισμένος σε μοντέλα πρόγνωσης, ασαφής λογική (fuzzy logic), οπτική και θερμική 

άνεση, εξοικονόμηση ενέργειας, Κρυφά Μοντέλα Μαρκόφ, μηχανική μάθηση, πρόγνωση 

κίνησης νεφών και ηλιοφάνειας, στοχαστικές μέθοδοι και μοντέλα, συστήματα ψύξης-

θέρμανσης-κλιματισμού 
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1. INTRODUCTION 

 

1.1. Context of the thesis  

People in developed countries spend as much as 80 to 90% of their time inside buildings as 

part of their residence, work, education, leisure and other activities [1; 2]. As a result, the 

provision of a sound indoor environment quality is absolutely essential. Leaving other factors 

aside, visual and thermal comfort are crucial elements of shaping a healthy, productive and 

pleasant indoor environment [3; 4; 5]. To satisfy these needs, a large amount of energy is 

required: bibliography indicates that electric lighting accounts for 16 up to 60% of buildings’ 

total electricity load [6; 7; 8; 9], while the energy demand for heating, ventilation and air 

conditioning (HVAC) systems depending on climate, can represent about half of the energy 

consumed in buildings [8]. Considering that building sector is responsible for almost 40% of 

the total energy consumption [8; 10] one can realise the magnitude of these figures and the 

importance of improving the energy efficiency in buildings, while preserving the users 

comfort. But, how can this be achieved? 

1.1.1. Thermal and visual comfort 

In the context of buildings, we distinguish between different aspects of occupants’ comfort, 

such as thermal, visual, acoustic, air quality, etc. In the context of this thesis, we focus on 

the two first. 

Thermal comfort 

ASHRAE defines thermal comfort as “that state of mind which expresses satisfaction 
with the thermal environment” [11]. Hence, thermal comfort is largely a matter of 

preference and its estimation is performed subjectively: most researchers and standards use 

the seven-point thermal sensation scale introduced by Fanger [12] and later adopted by ISO 

[13] and ASHRAE, where comfort is rated by the users by means of subjective notions, such 

as feeling cold, cool, slightly cool, neutral, etc. Thermal comfort models do exist and they 

never fail to point out the subjective nature of the subject. Fanger's model, which is used 

widely by the scientific community, computes the predicted mean vote (PMV) of a population 

of occupants according to which, there is at best 5% of dissatisfied people, which expresses 

the impossibility of creating thermal conditions satisfying all the occupants, but that it is 
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possible to create an indoor environment where the relative fraction of satisfied is maximal” 

[14]. Other models, such as the Adaptive comfort models, mention the neutral or comfort 

temperature, which is the Operative Temperature at which either the average person will be 

thermally neutral or at which the largest proportion of a group of people will be comfortable 

[15]. 

Visual comfort 

Although there are several definitions of visual comfort, most studies agree that horizontal 

illuminances (especially on the workplane) must be sufficiently high (but not too much), the 

light flux on the workplane has to be properly distributed (appropriate illuminance 

uniformities) and discomfort glare (e.g. from luminaires or through windows) must be 

avoided [16]. 

On par with thermal comfort, visual comfort is perception-based and as such, differences at 

preferred illuminance levels can been observed between individuals.  For instance, Nabil and 

Mardaljevic [17] noticed that illuminances spanning between 100 and 500 lx were rated as 

effective, while at higher levels (500-2000 lx) their perception varies from desirable to 

tolerable. In a study performed in the LESO building, Lindelöf [18] estimated the probability 

of visual discomfort when desktop illuminance is between 400 and 500 lx as high as 30%, 

highlighting among others that no predefined visual conditions can satisfy everyone's 

preferences. 

1.1.2. Advanced building systems  

As difficult as it may be to provide for occupant's comfort, all building systems have 

eventually one universal aim: to offer a comfortable environment to the users while they 

exercise their numerous indoor tasks. In today's buildings, along with the conventional 

lighting, shading or HVAC systems, advanced technologies and systems are becoming 

available with the aim of improving the occupant's comfort while preserving energy the 

energy resources. 

Daylighting systems 

Harvesting and using a part of the naturally abundant daylight has a significant energy 

saving potential [9], affects positively the health and wellbeing of building users [16] and 

was found to be more comfortable than electric lighting [19]. The energy saving potential 

consists of an integrated approach where daylighting reduces (directly) the need for electric 

lighting while in parallel takes into account the thermal aspects of the building, reducing the 

heating and cooling loads of indoor space by means of appropriate technologies and control 

strategies (indirect/long-term aspects). On-going research regarding daylighting that has 

been carried out internationally has resulted in innovative and efficient technologies such as 

Anidolic Daylighting Systems (ADS) [20] or electrochromic glazing. 
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Electrochromic glazing 

Electrochromic (EC) glazing has been commercially available the last few years as an 

alternative to the combination of standard window glazings with mobile sun shadings (very 

often discarded by the architects) or to permanently tinted solar protection glazings. EC 

glazing has the ability of changing dynamically its optical properties and modulating the 

transmission of visible light and solar gains through the window, while maintaining at all 

times the view towards outside [21]. EC windows might replace in the future the vast 

existing stock of permanently tinted solar protection glazings which are often unsuitable to 

varying weather conditions while at the same time are not effective for protecting against 

overheatings. The EC glazings commercially available provide a transmission dynamics with 

a large enough range [22; 23], which provides a good protection against the overheating 

when properly controlled. Control in combination with other systems such as blinds can be 

necessary to address possible glare issues [24]. 

1.1.3. Building control  

To succeed at their role of providing a comfortable indoor environment while saving as much 

energy as possible, available daylight and other building systems have to be controlled 

optimally. As it became clear before, comfort is subjective by definition, based on the 

individual’s perception of the indoor environmental conditions. As such, building systems 

should be able to adapt to each user’s personal preferences and comfort boundaries. 

Personalised or room-based control is envisaged but seldom provided by control systems 

today (especially in office buildings), in spite the fact that it has been found by multiple 

studies that occupants' satisfaction with their indoor environment improves when they have 

the ability to control their environment and that users are also more tolerant towards 

discomforting influences in buildings that provided good opportunities for occupant control 

[25; 26]. Also, control systems usually are based on average fixed values without taking into 

consideration fluctuations due to current or future changes in the real use of the building 

(user presence and activity) or due to varying weather conditions. This kind of predictive 

control is crucial, for instance, when controlling systems with a long response time, such as 

EC windows or HVAC. What is more, automatic control often regards building systems as 

‘isolated islands’ which work independently from each other [27]. Last, the building's 

characteristics that are unique to each construction are often only partly considered, leading 

to unsatisfactory HVAC control. 

1.2. Constitutive hypothesis 

In the research context outlined above, we pointed out that the delicate balance between 

energy savings and the provision of a comfortable indoor environment to building occupants 

is often undermined by the inadequate control of building systems. Based on this, we 

formulated the following hypothesis on which this thesis is based on: 
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Proper visual and thermal comfort are vital for a healthy, productive and pleasant 
indoor environment. On the other hand, artificial lighting and HVAC systems are 
responsible for the greatest part of energy demand in buildings. We believe that a 
sound automatic control which integrates successfully the different subsystems, 
respects user wishes and adapts to the building's own characteristics as well as to 
outdoor variations can reduce the energy consumption and provide for a better visual 
and thermal environment for the users. 

Figure 1-1 illustrates the scope of the doctoral thesis, while its structure is outlined next in 

Section 1.3. 

 

 

Figure 1-1. General scheme representing the scope of the doctoral thesis. 

 

1.3. Thesis structure 

In Chapter 2 we introduce the LESO solar experimental building where data acquisition and 

the experimental parts of the thesis took place. The existing infrastructure is presented 
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along new equipment which has been installed specifically in the framework of this work (i.e. 

the electrochromic windows and the EnOcean sensors network).  

Chapter 3 presents the concept, the development and the commissioning of a predictive 

control algorithm for electrochromic glazing. The algorithm addresses the inherent slow 

response of electrochromic windows to varying weather conditions by implementing a novel 

sky-scanner approach which detects the motion of clouds and predicts their probability of 

obscuring the sun in a time horizon of 3 to 7 minutes. The algorithm also integrates and 

controls the blinds and electric lighting to maximise visual comfort taking into account 

outdoor and indoor conditions, presence and user actions. 

Chapter 4 presents the evaluation of the control algorithm developed in the previous 

Chapter, via field measurements (including a short evaluation by actual users) and 

simulations which focused on the energy demand for heating and electric lighting, as well as 

on the evaluation of thermal and visual comfort. 

In Chapter 5 we define and develop a novel approach for controlling building systems by 

using state-based stochastic data-driven models for the identification of the “season”. The 

new model attempts to identify the state of the variable between three possible values: 

heating, cooling and intermediate season, by taking into account weather conditions, user 

behaviour and the thermo-physical properties of buildings. The ability of the developed 

model to reduce energy for heating while preserving thermal comfort has been assessed 

through simulations. 

In Chapter 6 we pursue further the investigation on state-based stochastic data-driven 

models and suggest a novel model for the estimation of visual comfort which improves 

greatly over the existing discomfort glare indices. 
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2. EXPERIMENTAL SETUP 

This chapter introduces the LESO solar experimental building where the data acquisition and 

the experimental parts of the thesis took place. An important part of the infrastructure 

presented herein had already been in place when the presented work started (i.e. the 

building itself, the sensors, the EIB/KNX building automation bus, the database), while other 

components (like the EC glazing and the EnOcean sensors network) have been installed 

specifically in the framework of the presented thesis. Parts of this section have been 

published in an article by Zarkadis et al. [28] as well as in a final report for the Swiss Federal 

Office of Energy by Zarkadis and Morel [29]. 

2.1. The LESO office building 

The LESO solar experimental building is located in EPFL campus near the cities of Ecublens 

and Lausanne in Switzerland. It is a 3-storey, 20-room building as seen on Figure 2-1. About 

half of the offices are occupied by a single person while the other half features two to three 

occupants. Sixteen of all office rooms are south-oriented and equipped on their South facade 

with both a conventional window on their lower part and an Anidolic Daylighting System 

(ADS) on the upper one, designed to increase the daylighting illuminance provided at the 

rear of the room [30; 20] (Figure 2-2). LESO’s construction is a heavy one with thick walls 

and substantial thermal mass. All openings of the southern façade have a wooden frame and 

are double glazed with IR coating (the IR coating is not present on the ADS). The windows 

of all south-looking offices are protected by two external textile blinds, one for the normal 

window (lower) and one for the anidolic one (upper). The building features no active cooling 

or ventilation system and it is naturally ventilated by a stack effect [28]. More details about 

LESO in general are provided by Altherr & Gay [31], Morel [32] and in a number of PhD 

theses, i.e. [33; 18; 16].  

2.1.1. Geometric and thermal characteristics of a typical office room  

On this thesis, all data as well as all field measurements, experiments or simulations were 

collected or performed in one or more south-oriented office rooms. Following are the 

principal characteristics of a typical, south-oriented LESO room [32]. 

Room size 

• Floor area of one room: 15.7 m2 
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• Room height: 2.8 m 

Walls and slabs 

All the layers of the construction elements below are given from the inside layer to the 

outside. Where present, the thermal insulation is mineral wool, glass wool, polystyrene or 

polyurethane and its conduction coefficient is equal to 0.04 W/m⋅K. 

• Façade wall (South): 5.4 m2 light wall (1 cm plaster panel + 12 cm thermal 

insulation + 1 cm wood) + windows (see below) 

• Rear wall (North, gives to internal circulation area): 7.0 m2 heavy partition wall (12 

cm concrete bricks + 8 cm thermal insulation + 12 cm concrete brick) + 3.0 m2 door 

(2 cm wood) 

• Wall to neighbour cell: 13.3 m2 heavy partition wall (12 cm concrete bricks + 8 cm 

thermal insulation + 12 cm concrete bricks) 

• Wall to neighbour room of the same thermal cell: 13.3 m2 light partition wall (1 cm 

plaster panel + 4 cm thermal insulation + 1 cm plaster panel) 

• Floor: 15.7 m2 (1 cm rubber coating + 6 cm screed + 6 cm thermal insulation + 25 

cm concrete slab) 

• Ceiling (only for the rooms of the 2nd floor immediately under the roof): 15.7 m2 (25 

cm concrete slab + 16 cm thermal insulation + 10 cm concrete and roof gravel) 

Windows 

All windows feature double glazing; U-value 1.4 W/m2K; g-value 0.54. 

• Normal window: 2.1 m2 net glass area with IR coating 

• Anidolic window: 1.7 m2 net glass area  

• Frame area (total for the façade of one room): 0.9 m2 wood (U-value 2 W/m2K) 

2.2. Existing infrastructure 

The LESO building is equipped with an EIB/KNX building management bus provided by 

Siemens. As detailed below, the heating, the artificial lighting and the blinds systems are all 

connected and can controlled by the bus or manually via a large number of sensors and 

actuators installed in the building. All the commands and the signals that travel through the 

bus are stored in a database. 
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Figure 2-1. LESO building: (a) ground floor; (b) first floor; (c) second floor; (d) southern façade [28]. 

 

 
Figure 2-2. Vertical section detail of an office room located in the South façade of LESO building 
which showcases the conventional window on the lower part and the ADS on the upper one [32]. 
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2.2.1. Sensors and actuators 

The EIB/KNX was first installed in 1999; as reported by Lindelöf [18] 240 sensors and 

actuators were integrated in the system as of August 2004. Today, LESO features 237 

sensors and actuators (devices) that generate information on 716 different logic addresses 

on the EIB/KNX bus. For each room of the building (but also for the common areas where 

applicable), these inputs control or give information on [28]: 

• Air temperature (integrated in the control box for the heating and the electric 

lighting in each room or common area); the sensor measures a weighted average 

between air temperature and wall temperature (due to the fact that the sensor itself 

is contained in the box, located on the room wall). 

• Presence (infra-red sensor mounted on the ceiling). 

• Lighting level (actually, the sensor is a conventional luminance sensor mounted on 

the ceiling and looking downwards, measuring the luminance in a given cone; it is 

used as a illuminance sensor, but this is only valid if the objects in the sensing cone 

are not too dark or too bright). 

• Window opening (on/off sensors, one for each openable window). 

• Blinds: the blinds position is not directly recorded; instead, the basic commands to 

actuators, i.e. “blind up”, “blind down”, “stop”, are recorded as EIB/KNX telegrams. 

From these commands and the respective timestamps the actual position is 

calculated and inserted into the database. 

• Heating: electric radiators are controlled by an on/off controller, using a pulse 

width modulation for implementing a proportional controller, with a cycle time of 

several minutes; like for the blinds, the significant variable, i.e. the average heating 

power, is not directly available, but only the elementary commands on and off with 

the respective timestamps, allowing to reconstruct the heating power from the 

on/off commands. 

• Electric lighting data (on/off and dimming status). 

Additionally, weather data (for the whole building) is also recorded by sensors installed on 

the roof of the building: ambient temperature, solar radiation on a horizontal surface (direct 

and diffuse components), global horizontal illuminance, wind speed and direction and rain 

alarm. 

2.2.2. The LESO database 

Until March 2008, a server was connected to the EIB system via its serial port and run a 

Java program called Eibserver. This server was used as an interface both for data acquisition 

and for control algorithms implemented on another computer and connected to the 

EibServer through Java/RMI protocol. Eibserver kept in memory at all times the complete 

known state of the LESO building; when any variable was modified, that change was 

committed to memory and logged to disk. The program logged all bus events to disk and a 



NOVEL MODELS TOWARDS PREDICTIVE CONTROL OF ADVANCED BUILDING SYSTEMS AND OCCUPANT COMFORT IN BUILDINGS 

11 

Perl script that run every day at 5 a.m. read the log files that had been written during the 

last 24 hours and inserted the corresponding values in a MySQL database. The MySQL 

database called “leso_eib” includes all the data recorded by Eibserver since it began 

recording data in 2001 till March 2008 [28; 18]. After May 2010, a different setup has been 

implemented; however the data used on this thesis was collected when the described setup 

was in place. 

Concerning the origin of the data passed on to the database, it is always possible to 

distinguish controller commands from user commands. In particular, by looking at the prefix 

of the device’s name recorded in the database (“type” field) one knows whether it was a 

user-initiated action or a system-originated command sent through Eibserver [28]. 

2.3. Electrochromic glazings setup 

For the development of the proposed predictive control system for EC windows (see Chapter 

3), new EC glazings were installed at the LESO building. The chosen room (LE 003) is a 

typical South-facing office and it can be seen on the pictures and plan drawing of Figure 2-3. 

This office room it is also the one used in previous research by Page et al. [34] where EC 

glazings were coupled with an ADS. EC glazings both for the normal windows (lower part) 

and for the anidolic daylighting system (upper part) were installed. 

2.3.1. Electrochromic glazing and characteristics 

The newly installed glazings completely replaced the existing ones. Their total area is 5.10 

m2, their Visible light Transmission (Tv) is in the range of 0.15 - 0.50 while their Solar Heat 

Gain Coefficient (SHGC) is 0.12 - 0.38. The glazings have been provided by EControl-Glas 

GmbH and installed by Flachglas AG on February and March 2011. The EC glazings can be 

seen in the two pictures of Figure 2-4, one taken with the glazing at maximum transmission 

and the other with the minimum transmission (dark configuration). A dominant blue colour 

can be seen when the system is in the dark configuration. The principal characteristics of the 

installed EC glazings are summarized in the Table 2-1 while the images on Figure 2-5 show 

the schematic representation and a cross section of the glazings. (The information presented 

was taken from the documentation of EControl-Glas that accompanied the glazings or/and 

from the website of the company [35]). 
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Figure 2-3. Pictures and plan drawing of the LESO solar experimental building and office room LE 003 
where the EC glazings have been installed. 
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EC glazings in the clear configuration (Tv=50%, 
SHGC=38%). 

EC glazings in the dark configuration (Tv=15%, 
SHGC=12%). 

Figure 2-4. EC glazings in the bleached (clear) and fully tinted (dark) states. 

 

Table 2-1: Principal characteristics of the installed EC glazings. 
 dark configuration clear configuration unit 

Light transmission (Tv) 0.15 0.50 - 

Energy transmission 

(SHGC) 

0.12 0.38 - 

U-value 1.1 W/m2K 

type of glazing double glazing with argon filling and low-e coating - 

 

Schematic view of the EC glazing Cross section of the EC glazing 

Figure 2-5. Schematic view and cross section of installed EC glazings (images: ©EControl-Glas GmbH). 
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2.3.2. Control and communication protocols  

The EC glazings are connected to their control units through a dedicated cable. Two control 

units are installed: one for the normal window (3-pane window) and one for the anidolic 

system (3-pane upper window; see Figure 2-4). Each control unit bears in the front an 

interface for manual operation featuring 2 pushbuttons which can be pressed sequentially by 

the user to choose the desired transmission level. Alongside the pushbuttons there are 5 

LEDs indicating the 5 transmission regions set either manually or via the control system 

(Figure 2-6). Moreover, each control unit is connected to a dedicated computer 

implementing the automatic control algorithm and collecting and storing in a database the 

EC glazings data (Tv, panes’ temperature, status, etc.), through an RS485 serial link 

interface. At a later stage, it is envisioned to completely integrate the EC glazings with the 

EIB/KNX building bus. 

The “conversation” between the computer and the EC glazings through the control unit is 

rather complex and had to be implemented from scratch. The industrial partner of the 

research project and supplier of the EC windows (EControl-Glas GmbH) provided us with the 

specifications for the communication protocol of the control unit of the glazings (provided in 

full detail in Appendix A.1). Consequently, the necessary interface modules described in the 

protocol were built using Matlab software platform [36]. 

 

 

 

Figure 2-6. One of the two control units of the EC glazings with the manual control panel in the 
front (right image) and its position inside the office room LE 003. 
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2.4. EnOcean gateways and sensors 

In the framework of the research performed on the visual comfort modelling based on 

stochastic state-based approaches (Chapter 6), a small network of EnOcean sensors and 

gateways has been installed in LESO in March 2014. EnOcean is an emerging energy 

harvesting wireless technology that allows for building automation and sensor data collection 

while using minimal energy to do so. 

2.4.1. Components installed, network and communication 

In total, 6 illuminance/motion and 4 temperature/CO2 sensors were installed in 6 single-

occupant offices in LESO. The wireless communication between the sensors and the central 

node takes place through 2 EnOcean gateways. As seen on Figure 2-7, each gateway is 

implemented using a Raspberry Pi model “B” as base unit, an EnOcean USB 300 dongle and 

an SD card (which is necessary for the operation of the base unit and carries all the required 

software). The illuminance and the CO2 sensors were purchased from Eltako GmbH. In 

particular, the illuminance sensor is the model FBH63AP Wireless Motion/brightness sensor 

(Figure 2-7) which measures illuminances in the range of 0 to 2000 lux and transmits a new 

value to the gateway every 100 seconds, provided that the new value differs more than 10 

lux from the old one (not configurable). Power supply can be either provided by 12V DC 

power supply unit or by AAA batteries or by the built-in solar cell under normal ambient 

light, in a daily average of at least 200 lux [37]. In our case, the third option has been 

preferred to keep the sensor portable and without any additional weight. 

The telegrams with the new values are transmitted wirelessly from the EnOcean sensors to 

the gateways and they are stored in a MySQL database residing on the SD card. The 

gateways are connected via Ethernet (wired connection) to LESO’s LAN and they can be 

accessed (i.e. for data retrieval) through their unique IP addresses. Figure 2-8 provides a 

schematic with the connection topology for one of the two gateways. 

2.4.2. Web of Things (WoT) 

The implementation of new network and type of sensors in LESO brought forward the issue 

of the integration of heterogeneous building management systems. In particular, the 

question that arose was how to integrate the EnOcean infrastructure (or any other installed 

in the future) with the existing EIB/KNX building management bus. Bovet and Hennebert 

[38] provided a solution which leverages on the concept of Web-of-Things and uses well 

implemented standards like the HTTP protocol where the real-time access to the sensors is 

independent from the underlying infrastructure and takes the simplified form of a logical tree 

structure (i.e. http://buildingX.floorY.roomZ.sensorN=status). A prototype KNX-WoT 

gateway (based on the Raspberry Pi mini PC) has been installed and tested in LESO in late 

2013. Although time constrains did not allow for the use of this technology in the framework 
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of this thesis, it is believed that it has a lot to offer in the future when a standardised way to 

interact with devices connected to different networks will be needed. 

 

 

Figure 2-7. EnOcean gateway connected to Ethernet and to DC power supply (left image) and 
autonomous EnOcean illuminance/motion sensor with the solar cells around the sensor (image on 
the right). 

 

Figure 2-8. Connection topology of EnOcean sensors with the gateway and the local area network 
(LAN) via Ethernet. 
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3. PREDICTIVE CONTROL ALGORITHM FOR 
ELECTROCHROMIC WINDOWS 

The development of an advanced control algorithm for an electrochromic (EC) glazing 

coupled with an anidolic daylighting system (ADS), blinds and dimmable lights taking into 

account the optimal use of the direct solar gains and the (visual and thermal) comfort of the 

users is presented in this chapter. To satisfy the visual comfort requirements, the elaborated 

algorithm integrates a novel sky-scanner approach to predict the probability of clouds 

obscuring the sun for a time horizon of 3 to 7 minutes which corresponds roughly to the 

time required by the EC glazings to switch between different transmission states (up to 15 

minutes). For the thermal comfort, a wider time horizon is considered, taking into account 

season, weather, presence, user actions and other data collected from the EIB/KNX bus. 

Parts of this section have been published by Zarkadis and Morel in an article [39] as well as 

in a final report for the Swiss Federal Office of Energy [29]. 

3.1. Introduction 

3.1.1. Electrochromic & Switchable glazing 

The EC phenomenon of materials was originally discovered in the late 1960s [24] in 

tungsten oxide (WO3) thin films which until now remains the material most widely used in 

applications and research. Electrochromism constitutes a rather complex electrochemical 

reaction where ion insertion and extraction processes are taking place. Although until today 

the exact phenomenon cannot be fully described, it can be presented with the following 

simplified reaction [40]: (ݐ݊݁ݎܽ݌ݏ݊ܽݎݐ)	ܹܱଷ + ାܯݔ ି݁ݔ	+ 	↔  (1-3)  (݁ݑ݈ܾ	݌݁݁݀)	௫ܹܱଷܯ	

where M+ can be H+, Li+, Na+ or K+, 0 < x < 1 and where e– are denoting electrons. Other 

EC metal oxides have also been applied in prototype EC windows with nickel oxide, iridium 

dioxide and niobium pentoxide being the most promising ones [23]. 

Besides oxide films, organic materials (polymers) have been used in EC devices. Similarly, 

other types of switchable glazings do exist. Gasochromic devices use hydrogen gas (H2) 
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instead of voltage to switch between the bleached and coloured states. Liquid crystal (LC) 
devices use as a switching mechanism the change in the orientation of liquid crystal 

molecules between two conductive electrodes by applying an electric field, resulting in a 

change of their transmittance. Electrophoretic or suspended-particle (SP) glazing is a film-

based patented technology similar to that of LC devices [23]. Unless otherwise explicitly 

noted, any further reference on this thesis to the term “EC” or “switchable” windows will 

imply tungsten-oxide (WO3) EC windows. 

3.1.2. Key factors and properties of EC glazings 

To better understand the need for the development of an advanced control algorithm for EC 

windows, the issues related with it as well as the user acceptance of such a system (detailed 

in Chapter 4), the key factors and properties of EC glazing are given next. 

Visible transmittance (Tv) and solar heat gain coefficient (SHGC) range  

Both values denote the percentage of solar radiation transmitted through the glazing. 

Baetens et al. reported in 2010 that values of Tv in today’s available EC windows are 

between 0.15 and 0.035 for the dark state and no more than 0.60 for the bleached state, 

while SHGC values range between 0.09 and 0.48 respectively [23]. However, in 2012 Sbar et 

al. [41] reported on commercially available EC glazing with less than 2% of Tv in the tinted 

state. The wider the ranges, the more flexible the EC windows and more capable to respond 

to different conditions and to a variety of different scenarios, i.e. a Tv lower than 1% maybe 

necessary for glare protection in the case of direct sunlight [42; 43], while high values of Tv 

and SHGC are required for maximum daylight harvesting under low-light conditions and 

when maximum solar gains are needed, respectively. 

Colour 

As also seen on Figure 2-4, their colour varies from deep blue (when tinted) to fully clear. 

When the EC window is switching between intermediate states, some non-uniformity may be 

observed [44]. 

Switching time  

The switching speed of an EC varies with its temperature, size (see below), depth and 

direction of switching (transition from dark to bleached is generally faster than the opposite 

[45]). A manufacturer reports that for a pane measuring 100cm x 100cm the transition 

between the fully bleached (Tv = 50%) to the fully dark setting (Tv = 15%) requires 12 

minutes [35]. In measurements carried out by Lee et al. a prototype EC unit of 43cm x 85cm 

required up to 5 minutes for the switching [45]. Further detailed tests performed by Lee et 

al. using EC windows of another manufacturer showed that an EC window measuring 

approximately 46cm x 90cm (35x18-inch) required less than 7 minutes to change completely 

its state when the surface temperature was greater than 10oC. The same window required 
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37 minutes to switch from a bleached state to dark (Tv of 0.56 to a Tv of 0.13) with an EC 

surface temperature between –3oC and –1oC [44].  

Detailed measurements of the Tv during the switching were carried out by Fasano et al. 
[46]. They reported that the switching curve (under a given temperature and pane size) 

resembles an exponential decay, where:  

“[…] the curve steeply decreases during the first minutes, then the curvature 
changes and the profile is flat until the process finishes.”  

These reports are confirmed by similar measurements carried out in the framework of this 

thesis and presented in Section 4.1.1. These observations can help us to describe in a more 

accurate fashion the terms “switching speed/time” cited in this document and to define 

switching speed U(t) as follows: ܷ(ݐ) = ݀ ்௩(௧)ௗ௧ ,  (3-2) 

where Tv(t) is the visible transmittance curve of the EC glazings as a function of the 

transition time t.  

In general, fast switching speeds are desired for prompt response to variations of external 

conditions, especially during days with intermediate sky conditions and are reported as being 

critical for protection against glare and user acceptance [42]. On the other hand, lower 

switching speeds can be tolerated when controlling the windows with regard only to thermal 

aspects. Today’s commercially products are generally characterized by slow switching speeds 

and there is a consensus that higher speeds are required [23; 47]. 

Temperature 

The surface temperature of the EC window depends on incident solar radiation levels, wind 

speed and air temperature and is an important factor affecting switching speed (in general, 

higher temperature facilitates switching). EC windows have been successfully tested in a 

temperature range of -10oC to 95oC, but in practice reported temperatures do not exceed 

76oC [44]. 

Surface size 

As stated above, the switching speed of an EC window is closely related to its size and larger 

EC panels tend to have longer switching times. The size of EC glazings has also been 

reported as being responsible for partial loss of tint uniformity during the switching from one 

state to another [23; 45]. Also, as technology of EC materials progresses, larger sizes are 

progressively becoming available. Insulating glass units (IGU) of up to 3m2 (125cm x 245cm) 

are currently available as commercial products, while sizes of up to 135cm x 330cm are 

expected shortly in the market [35]. On the other hand, professionals claim that a size of 

6m2 (200cm x 300cm) is desired for applications [23]. 
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Life expectancy 

First-generation commercial EC windows suffered from degradation effects visible to the 

naked eyea such as dissolution, corrosion and etching [48]. Although there is still much 

uncertainty as to the exact causes for the degradation effects, several possible factors have 

been reported as being responsible: the entry of water vapour into the gap between the 

panes of an IGU [44], the operation in extreme temperatures, rapid cycling (no relaxation) 

between the bleached and dark states, UV stress, sudden thermal shocks and delamination 

of interfaces [48]. Leading manufacturers today serve a 10-year guarantee on their 

products, but a minimum lifetime of twenty years (and a minimum of 105 cycles) is expected 

[23], which is the standard operating lifetime of a standard IGU [21]. 

Power consumption 

A low DC voltage (usually of 5 Volt) is required by the EC windows for the change of their 

state. Certain types of EC windows also require a similarly low voltage to maintain their 

current state. [23; 44]. In particular, the installed glazings in LESO which are used in the 

presented research require a 24V DC source for the controller, their power consumption 

during switching is less than 10W (the energy required is 0.5 Wh/m2 or lower) and they do 

not require power to maintain their state [35]. 

3.2. Previous research work 

3.2.1. On the control of EC windows 

The characteristics of EC windows make them suitable for use in buildings where we can 

achieve maximum occupant comfort [45]. Nevertheless, the control issue of EC glazings has 

not been addressed adequately as the vast majority of proposed control schemes failed to 

address the time the EC glazing requires to switch between the bleached and dark states 

(~5-15 minutes).  

Several research studies have been carried out during the last few years with regard to the 

use of EC windows in buildings. In some of these, the visual or thermal comfort is evaluated 

through computer simulations [49; 50; 51; 52; 53; 54] or with the use of small-scale models 

[55]. This type of research involves an easier setup, is favourable for the study of energy 

aspects and allows for the execution of different scenarios; nevertheless, it lacks the 

evaluation by real persons in real-life situations. User acceptance tests were performed in 

full-scale environments by Scartezzini et al. [43] and by Zinzi et al. [47]. However, both 

                                                
a Personal on-site observations of EC windows installed in August 2002 at the LESO solar experimental 
building, Lausanne. 
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teams implemented manual control of EC windows, electric lighting and internal blinds. 

Simple closed-loop schemes have been implemented by laboratories worldwide carried out 

measurements on EC glazings (see for instance [56] or [57]). In the same vein, Lee et al. 

[45] developed an automatic closed-loop control strategy, where the transmittance of the EC 

windows was continuously modulated to maintain the levels of daylight work plane 

illuminance within a predetermined range. Based on this research, Clear et al. [42] published 

in 2006 the responses of users of an office room equipped with automatically controllable EC 

glazings and electric lights, while blinds were available but controlled manually. To the best 

of the author's knowledge, these two studies were the first (and only) efforts until today to 

address effectively the slow switching speed issue of EC glazings in a control strategy, albeit 

on the expense of energy consumption. This was achieved by first changing accordingly the 

level of dimmable electric lighting (a system with almost immediate response) while waiting 

for the EC windows to reach the desired transmission state (which can take up to several 

minutes). 

More advanced control systems were also attempted. Fuzzy logic controllers following the 

principles of the adaptive neuro-fuzzy inference system were developed by Assimakopoulos 

et al. [54; 50] but they were not tested in a real environment. Fuzzy control was also 

attempted in LESO by Scartezzini et al. [43] as an attempt to counter-balance the slow 

switching speed of EC windows; results were reported as “promising”.  

Regarding the control strategies, whether they are optimized for visual comfort or thermal 

comfort, bibliography suggests that user presence and user wishes is a key factor to 

consider when implementing an advanced building control system. Earlier studies carried out 

in LESO concerning intelligent blind controllers proposed that user presence should 

determine the adopted control strategy at a given time: When user is present in the room 

then visual comfort is a priority, while in the absence of users a strategy favouring long term 

thermal aspects and maximum energy conservation should be implemented [58; 59]. With 

regard to user wishes, they should be respected at all times (override of the automatic 

control made possible) while at the same time they should be considered as a valuable 

source of information allowing for the adaptation of the control system to the user specific 

needs [33]. 

3.2.2. On sky prediction methods 

As becomes evident from the research performed previously, the characteristic of slow 

switching speeds of EC windows pose a challenge yet to be met by an advanced control 

system. On this research, it is proposed to meet this challenge by predicting the sky 

luminances for a time horizon that equals the time required by the EC windows to switch to 

the desired transmission status (up to 15 minutes). Towards this short-term prediction, 

image manipulation of sky images taken by a camera was implemented in a way that blue 

sky is recognized and separated from clouds and other elements in the image. Other 
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techniques that do not use a camera do exist, such as the estimation of cloud speed using 

measurements from multiple irradiance sensors placed in a semi-circular array [60] or 

stochastic approaches, where the transition probability from one sky type to another sky 

type is gathered in a transition probability matrix, which can be evaluated by collecting data 

over a sufficiently long period of time [61]. Nevertheless, these approaches are not further 

explored here as they fall outside the scope of the proposed work. 

Image Correlation and Image Convolution techniques are widely used for calculating the 

changes between two consecutive images [62]. Template matching between the two images 

is applied within a predefined search area. The motion vector (e.g. of the clouds) can then 

be determined by the best match position [63]. Zafarifar and With [64] presented a model 

which is one of the few mentioned in bibliography that explicitly aims at the detection of 

blue-sky regions. Intended primarily for video enhancement functions in modern TVs, this 

method performs a classification of sky areas by computing a pixel-accurate sky probability. 

Lalonde et al. [65] proposed a cloud segmentation algorithm based on the Perez sky model 

[66] which is expressed as a function of camera parameters. Regularized fitting is applied to 

the model by the computation of a data-driven prior model of clear skies. More complex 

than standard image correlation, Optical flow method is a collection of techniques used for 

the estimation of object velocities between two consecutive images or video frames. In 

particular, the methods of Horn & Schunck [67] and Lucas & Kanade [68] are the most 

referred ones in bibliography. On a different approach, satellite imagery can be used to 

detect cloud motion over large areas. Remote sensing techniques [63] are largely based on 

image correlation techniques discussed earlier. However, remote sensing is not directly 

relevant to the present research as the characteristics of processed images are vastly 

different (i.e. area covered and resolution, background).  

3.3. Methodology 

3.3.1. The principles 

The proposed algorithm predicts an optimal setting for the EC glazing, the blinds and the 

electric lighting taking into account all the available data on instantaneous weather condition 

and building status, including data on room occupancy and user wishes/actions, workplane 

illuminance, internal air temperature. The algorithm predicts this optimal setting at a time 

horizon corresponding to the EC glazing latency time (ideally from 5 to 15 minutes; see 
4.1.1). Electric lighting is used only complementary when daylight is not sufficient, while 

blinds are likewise only employed to protect from glare and/or to avoid overheating when 

protection from EC windows is not sufficient. A longer time horizon is taken into account for 

the thermal aspects. Moreover, when the room is occupied priority is given to visual comfort, 

while if the user is absent the algorithm is optimized for thermal comfort [39]. 

The developed algorithm consists of two parts: 
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1. A ‘child’ algorithm that uses a sky scanner approach:  the sky is continuously 

monitored by a simple web camera connected to a computer and the possibility of 

clouds obscuring the sun is deducted at short time steps (30s to 1 min).  

2. A ‘mother’ algorithm that uses the input of the child algorithm along with all other 

inputs mentioned above and finally implements the control of EC Windows, electric 

lights and blinds. 

3.3.2. Sky prediction algorithm 

To address the problem of the slow switching speed of the EC windows we implemented a 

predictive algorithm based on the image processing of sky images taken by a standard web 

camera.  

In particular, Matlab computing environment is installed in a LESO PC, to which a standard 

USB camera has been connected. The camera is placed below the skylight of an office room 

where it can have an almost unobstructed view of the sky. It faces towards the south at a 

measured angle ‘z’ from the zenith, making sure the sun trajectory is included in the images 

taken (Figure 3-1). At first, the camera was setup to take automatically images of the sky at 

fixed-time intervals of 5, 10, 30s and 1, 2 & 5 min. For low to moderate wind speeds the 

time interval of 1 min is sufficient for the observation of changes in the sky concerning the 

motion of clouds, similar to other studies [69; 70]. However, it was observed that higher 

wind speeds require shorter time intervals of 30 or even down to 5s. To cover even the most 

extreme weather conditions, an interval of 5s is considered. The images taken have a 

resolution of 640 × 480	pixels. 

First efforts targeted at having the blue parts of the sky recognized and separated from 

clouds and other elements in the image. Sky detection and cloud separation has been 

attempted using simple colour thresholding techniques [62; 36] but it became quickly 

evident that the separation process had still to be optimized. As noted by Lalonde et al. [65], 

sky images exhibit a varying appearance depending on various parameters such as weather 

conditions, time in the day and camera parameters. Likewise, colour of the sky can occupy a 

wide part of the colour space, from saturated blue to gray, and even to orange and red 

when sun is close to the horizon [64].  

Earlier, Perez et al. [66] had pointed out the variability and non-uniformity in the angular 

distribution of sky luminance. Consequently, “blue” sky exhibits high non-uniformity of 

colour, hue, brightness and texture across different images or even across areas of the same 

image, rendering fixed-colour detection (e.g. simple colour thresholding techniques) 

problematic and rather unsuitable. To solve this problem, Li et al. [71] proposed the Hybrid 

Thresholding Algorithm (HYTA) that combines fixed-colour and adaptive thresholding 

methods together with the use of the blue and red channels ratio of the image. 
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An extensive and time-consuming application of Ariadne’s thread problem-solving approach 

was evolved in a string of trial-and-error, which started formulating the basis of the 

algorithm. In this course, the sky detection and cloud separation approach was abandoned 

and replaced by the estimation of cloud motion between two consecutive images.  

(a) 

 
(c) 

(b)

Figure 3-1. (a) Outside and (b) inside view of the skylight in the office room where the camera was 
placed; the red circles indicate the point where the camera was placed during the measurements; (c)
the USB camera “BulletHD PRO 1080p” used for the study, at an angle ‘z’ from the zenith. (Image 
taken while the camera was off-duty, placed on a desk). 
 

z
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In specific, Block Matching block of Matlab is used and the two images are divided down to 

blocks of ଵܰ × 	 ଶܰ pixels eachb. Each block of pixels from the first image is moved around, 

compared and eventually matched with a block of pixels in the second one within a 

predefined search area. For the best match, the Mean Square Error (MSE) is applied to 

estimate the similarity of the blocks compared; if k is the first image then k+1 is the second 

one and (݀ଵ, ݀ଶ) is the displacement pair of values of the centre pixel of the block that 

minimizes the equation: 

,ଵ݀)	ܧܵܯ  ݀ଶ) = ଵேభ×ேమ ∑ ∑ ,݅)ݏ] ݆, ݇) − ݅)ݏ + ݀ଵ, ݆ + ݀ଶ, ݇ + 1)]ଶேమ௝ୀଵேభ௜ୀଵ    (3-3), 

 

where ݏ(݅, ݆, ݇)	denotes a pixel’s location at coordinates (݅, ݆)	of the block in the 1st image 

[62]. After block matching is performed for all the blocks of the image, the calculated motion 

vectors (u,v) of all the blocks are inserted in a ቒ଺ସ଴ேభ ቓ × ቒସ଼଴ேమ ቓ matrix. On Figure 3-2, the images 

(a) and (b) are the two original images and on Figure 3-3 the (c) is the combined image 

(blend) with the calculated motion vectors overlaid on top (1 motion vector per block).  

 

                                                
b Both N1 and N2 are odd positive integers (≥3); this ensures that each block possesses a centre pixel. 
Furthermore, blocks located at the image borders may overlap with neighbouring blocks to ensure all blocks 

are of  ܰ1 × 	ܰ2 size.  

(a) (b) 

Figure 3-2.  Sky prediction image-processing – part I: (a) and (b) show two consecutive original 
images taken on 2012.06.07 at 10h29m40s and at 10h29m45s (UTC+2), respectively. 
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(c) 

 

(d) 

Figure 3-3. Sky prediction image-processing – part II: (c) shows the combined image of the two 
original images with motion vectors grid overlaid; (d) presents the decision image including sun disc 
position (area inside orange circle), the vectors corresponding to (parts of) clouds heading towards the
sun disc (in red) and the part of clouds that can potentially obscure the sun with the time prediction 
for each of them (blue numbers in min). 
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A similar technique of “cloud velocity fields” was implemented in posterior researchc by 

Marquez and Coimbra [70], where the Matlab Particle Image Velocimetry (MPIV) toolbox is 

used in conjunction with the Minimum Quadratic Difference method [72]. 

It was observed (and it is partly evident on image (c) of Figure 3-3), that motion vectors in 

the processed images are rarely uniform in terms of speed and/or direction; clouds in the 

sky can move towards the prevailing wind direction, others follow a different path (e.g. 

turbulences) or they can “stay in the same part of the sky” simply changing forms. Thus, 

only the motion vectors (and hence, the clouds) that are identified consistently in 

consecutive image correlations and they are heading towards the sun are taken into 

account. The sun position is known at every time step and is mapped on the image (Figure 

3-3d). 

Open-source Matlab coded based on the algorithm of Reda & Andreas [73] is being used to 

compute the sun position (zenith and azimuth angle at LESO location) as a function of local 

time and geographic coordinates. Then, the sun position coordinates are transformed from 

spherical (polar) to rectangular (Cartesian) coordinates. The zenith angle ‘z’ of the camera is 

taken into consideration to correctly project the computed sun position onto every image. 

However, the calculated and projected sun position is only a point on the image. To estimate 

the possibility of clouds passing in front and obscuring the sun we observed that considering 

only the apparent dimensions of the sun’s disc in the images (about 35 pixels wide) is not 

enough. After trials, a sun disc with 90 pixels diameter is found to be optimal to identify the 

cloud vectors pointing towards the sun. On this step, these are represented by the red 

vectors on Figure 3-3 (d). 

The next and final step for the sky prediction algorithm is to keep only those “potential” 

vectors that consistently appear in consecutive image processing operations. Further, the 

“density” of these vectors on a given region should also be sufficient to be taken into 

account: for the given grid (block) size (15 × 	15 pixels) and image frequency (5s) if there 

are less than 6 “red” vectors around a “red” vector then the this is disregarded as having 

less potential to obscure the sun (most probably corresponding to a part of non-dense or 

scattered clouds). The remaining vectors are then name-coded “potential” and the time 

required to obscure the sun is calculated based on their detected (angular) speed and 

distance from the sun disc (times in blue on Figure 3-3d). The speed is easily calculated 

since each detected motion vector bears its displacement information dS in the form of (u,v) 

                                                
c Marquez and Coimbra published their article in 2013; the work concerning the development of the proposed 
sky prediction algorithm in this thesis was concluded in the summer of 2012. 
d Code by Vincent Roy; available here: http://www.mathworks.com/matlabcentral/fileexchange/4605-sun-
position-m 
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coordinates and the time dt in which this displacement takes place is the time between two 

consecutive images. 

The possibility of the clouds to obscure the sun during the next 5 minutes is estimated and – 

if necessary – adjusted every 30s (that means after every 6 image processing operations) 

and subsequently fed into the “mother” algorithm that is responsible for the final control of 

the EC windows and the other building devices (Section 3.4). The time frame of the 

prognosis can be higher than 5 minutes if the sky image remains relatively unaltered for 

longer periods but it can also fall down to only 2 to 3 minutes or less if clouds in the images 

are moving fast relative to the sun or if the sun is located close to the edge of the images 

with prevailing wind blowing from that edge.  

3.3.3. Performance analysis of the sky prediction algorithm 

In a first step, the algorithm’s capacity to estimate accurately the cloud motion vectors and 

to predict the time needed for the “potential” cloud vectors to obscure the sun was 

evaluated by multiple visual assessments which demonstrated that the developed algorithm 

performs quite satisfactorily. To verify objectively its performance, an additional statistical 

analysis was carried out. 

In this analysis, four days with prevailing intermediate sky conditions were chosen from June 

2012. The intermediate conditions are the most crucial conditions that a sky prediction 

algorithm has to work under but they are also the most interesting ones: during days of 

stable overcast or clear blue skies, the necessity for a sky prediction clearly diminishes. 

We tested the capacity of the algorithm to correctly predict whether the sun will be 

obstructed in a 5-min horizon. As explained in Section 3.3.2, the algorithm gives a prediction 

every 30s; thus we compared every prediction given by the algorithm between 11:30 and 

15:30 (UTC+2) for each of the four days with the actual sky situation. To get the actual sky 

situation, we went through 1920 imagese and we labelled each one of them accordingly (sun 

obstructed/sun not obstructed). The specific 4-hour time frame has been chosen because for 

the given days (of June) and the camera available, the sun stayed well inside the images 

during this time (solar noon was approximately at 13:30). 

Table 3-1 shows the prediction performance of the algorithm for each day and tested hour 

against the sky conditions which are represented by the average Global Horizontal Irradiance 

(Ave Igh) and its standard deviation (Stdv Igh). The global accuracy achieved for all the 

1920 forecasts analysed was 92%. The prediction is almost perfect (up to 97% accuracy) 

when the Igh stays stable (Day 1 and partly, Day 3). This is expected since the forecasting 

                                                
e ସ௛ௗ௔௬ 	× ଺଴௠௜௡௛ × ଶ௜௠௔௚௘௦௠௜௡ × ݏݕ4݀ܽ =  ݏ݁݃ܽ݉݅	1920
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task is significantly easier under stable sky conditions. Under heavily changing sky conditions 

(mostly Days 2 and 4) it still performs very well and the prediction accuracy of the algorithm 

fluctuates between 86 and 93% for all but one case. 

As it shown on Figure 3-4, the prediction accuracy of the algorithm is satisfactorily correlated 

with the variability of the sky conditions which is represented by the hourly standard 

deviation of the Igh. However, it should be noted that this correlation is true under the sky 

conditions tested herein and it may differ for different sky types (e.g. overcast). 

 

Time [h:min] 
Ave Igh 
[W/m2] 

Stdv Igh 
[W/m2] 

Prediction 
Accuracy [%] 

Day 1 [June 1, 2012] 

11:30 – 12:29 873 7 96.7 

12:30 – 13:29 867 23 96.7 

13:30 – 14:29 778 35 95 

14:30 – 15:29 639 49 95.8 

Day 2 [June 4, 2012] 

11:30 – 12:29 823 276 90.8 

12:30 – 13:29 471 216 88.3 

13:30 – 14:29 434 221 79.2 

14:30 – 15:29 470 232 89.2 

Day 3 [June 5, 2012] 

11:30 – 12:29 886 39 96.7 

12:30 – 13:29 805 159 93.3 

13:30 – 14:29 751 79 95 

14:30 – 15:29 651 58 93.3 

Day 4 [June 7, 2012] 

11:30 – 12:29 794 201 85.8 

12:30 – 13:29 746 130 89.2 

13:30 – 14:29 746 83 91.7 

14:30 – 15:29 611 158 90 

Table 3-1: Accuracy of the sky prediction algorithm to predict sun-obscureness in 5-min forecast 
horizons for each day and tested hour. 
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Figure 3-4. Prediction accuracy of the sky scanner algorithm as a function of the variability of the sky 
conditions (as represented by the hourly standard deviation of the Global Horizontal Irradiance) for the 
four days analysed. 
 

3.4. Building systems integration 

3.4.1. Why combine EC windows control with blinds and electric lights? 

One might have expected that a “smart” control algorithm for EC windows (as the sky 

prediction one presented previously) should only keep to controlling the EC glazings. After 

all, when EC windows are in place, the use of blinds has proven to be substantially reduced 

when compared to normal windows [42; 47]. To answer the question above, one should 

look into certain daylighting issues related with the promising technology of EC Windows. In 

this regard, when considering the present technology of EC windows and its limitations 

regarding the minimum Tv value achievable and their slow switching speeds (see 3.1.2), 

blinds cannot be wiped out from a system wishing to offer an integrated daylighting solution 

(and visual comfort). As Lee et al. state [24]: 

“If the sun (or specular reflections of the sun) is in the field-of-view, the 11%-glazing 
cannot control its intensity to permit comfortable viewing of the sun or areas of the 
sky in which the sun is visible. Disability glare will impair the visibility of secondary 
objects (similar to night roadway visibility with oncoming headlights). The luminance 
of the sun ranges from several million cd/m2 when it is near the horizon, to over a 
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billion cd/m2 as it approaches the meridian. Glare calculations suggest that 
transmittances of less than 0.001 are needed to reduce these luminances to 
comfortable levels. For these conditions, blocking direct sun with an interior shading 
device will yield better lighting energy-efficiency. Under partly cloudy conditions and 
with slow switching speeds, instantly deployed shading devices also have advantages 
for controlling direct sun.” 

In addition to the problem of glare, blinds can be also a meaningful means to tackle with the 

issue of overheating during summer periods, as the minimum value of SHGC is ~10%.  

On the other hand, what happens when daylight harvesting is impeded by low intrinsic 

maximum visible transmittance values? As stated earlier (see 3.1.2), the Tv of today’s EC 

glazings is limited to a maximum of 50%, while Tv values of standard, non-EC IGUs can be 

significantly higher. This characteristic can potentially render inadequate the luminous flux 

entering the room under low-light conditions (i.e. overcast skies) and thus makes the use 

(and hence, the control) of artificial lighting necessary [24]. The same can happen when the 

EC windows are fully coloured to prevent glare phenomena. A way to increase the efficiency 

of the system and moderate the increase in energy caused by electric lighting is to couple 

the EC system with ADS, which can increase the light comfort and reduce the risk for glare 

[20; 30]. Detailed measurements of daylighting and visual comfort have been previously 

carried out in a LESO office room equipped with an anidolic system coupled with an EC 

glazing [34]. The glazing was divided in two independent zones: the lower (larger/main) 

vertical window was equipped with normal glazing and external tissue blinds; the upper part 

featured a slanted EC window, the ADS as well as external tissue and internal opaque blinds. 

The study demonstrated that this is a promising concept but it also concluded that the 

system’s response time (it ranged around 7 minutes) had to be improved. Field research 

carried out independently [22; 74] as well as parametric studies [75] also favour the 

implementation of two-zone or multi-zone window panes. 

3.4.2. Implementation of the integration 

Once we have the output of the ‘child’ sky prediction algorithm (time in which the sun will 

likely be obscured by the clouds), we use it as an input to the ‘mother’ algorithm that is 

responsible for the integration of all possible controllable building systems. For the 

implementation of this part we use a rule based fuzzy logic control, building on work 

previously performed in LESO [33; 58; 59]. In specific, we follow on the work of Daum [76], 

where a Takagi-Sugeno-Kang (TSK) rule based model is chosen, which requires a relatively 

small number of rules to describe complex, non-linear models [77; 78]. For example:  

IF sun=obscured in 5’ AND user=1 AND user action=1 THEN ec, el, bl = C, 

mandates that no action (C=constant) is assigned to EC windows (ec), electric lights (el) and 

blinds (bl) by the mother algorithm when the user is present (user=1) and he or she has 
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performed an override action on one of the building elements (action=1), despite the fact 

that the sun is going to be obscured by the clouds in about 5 minutes (sun=obscured in 5’). 

As seen by this example, one of the important rules of the control algorithm is the 

prevalence of user actions over any automatic control. Both experience and bibliography 

suggest that user presence and user wishes is a key factor to consider when implementing 

an advanced building control system. Earlier studies carried out in LESO concerning 

intelligent blind controllers proposed that user presence should determine the adopted 

control strategy at a given time: When user is present in the room then visual comfort is a 

priority, while in the absence of users a strategy favouring long term thermal aspects and 

maximum energy conservation should be implemented [58; 59]. As a result, user wishes are 

respected by the developed algorithm at all times.  

Similar to the above example, a rather complex set of rules has been built comprising all 

available input from the LESO EIB system: instantaneous weather condition (Irradiances and 

illuminances, external temperature) and building state (room occupancy, user wishes/actions 

on building systems, workplane illuminance, and internal air temperature). Additional 

variables including “season” (based on average external temperatures on the last 48 hours) 

are also incorporated in the rule base. Next, in Section 3.4.3, the framework of the Fuzzy 

Rule Bases is given. For the complete rule bases including membership functions, see 

Appendix A.2. 

3.4.3. Fuzzy Rule Bases 

User Present, “EC Tv” Fuzzy Rule Base 

It controls the Tv of the EC windows when the user is present in the room. The visual 

comfort and the user’s wishes are the top priorities followed by thermal comfort and optimal 

use of thermal gains depending on the season. 

Inputs (fuzzy values): 

• Sky obscured probability 

• Workplane illuminance 

• Outdoor average temperature on the last 48 hours 

• Room temperature 

• User interaction with EC windows  

Output (crisp value): 

• EC Windows visible light transmission  

User Absent, “EC Tv” Fuzzy Rule Base 

This scheme controls the EC windows when the user is absent from the room for more than 

thirty minutes. Priority is given to the optimal use of thermal gains depending on the season. 
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Whenever allowed by the thermal gains management, the Tv is kept high so the EC windows 

can provide the maximum possible daylight to the circulation area (corridor) outside the 

office room (the door is kept open most of the times when the user is absent). 

Inputs (fuzzy values): 

• Global horizontal solar irradiation  

• Outdoor average temperature on the last 48 hours 

• Room temperature 

Output (crisp value): 

• EC Windows visible light transmission  

User Present, “Blinds” Fuzzy Rule Base 

This controller sets an optimum position for the roller blinds in the room with respect to the 

user’s visual comfort and his/her interaction with the blinds. The blinds are kept completely 

open and are employed only when the EC windows cannot deal with excessive desktop 

illuminance. 

Inputs (fuzzy and crisp values): 

• Workplane illuminance  

• EC windows Tv 

• User interaction with Blinds  

Output (crisp value): 

• Blind position  

User Absent, “Blinds” Fuzzy Rule Base 

This controller is used in parallel with the User Absent, “EC Tv” scheme above. It controls 

the roller blinds in the absence of the user with respect to the optimal use of thermal gains 

depending on the season. Following the logic explained above, whenever possible it allows 

for the maximum possible penetration of daylight to the circulation area (corridor). 

Inputs (fuzzy and crisp values): 

• EC windows Tv 

• Global horizontal solar irradiation 

• Outdoor average temperature on the last 48 hours 

• Room temperature 

Output (crisp value): 

• Blind position  
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User Present, “Lights” Fuzzy Rule Base 

The controller is acivated when the global horizontal illuminance drops below 20 kluxf and it 

controls the electric dimmable luminaires. Electric lighting is only used when the amount of 

light on the user’s workplane is too low, the blinds are completely rolled up and the Tv of 

the EC windows is over 41%. Like above, user preferences are always accounted for. 

Inputs (fuzzy and crisp values): 

• Workplane illuminance 

• EC windows Tv 

• Blind position  

• User interaction with electric lights 

Output (crisp value): 

• Electric lights power 

3.5. Discussion 

In this chapter we presented the development of an algorithm that automatically controls 

the EC windows, the electric lights and the blinds of an office room based on a novel sky-

scanner approach. In this approach, images of the sky taken with a camera are logged in a 

PC and processed in a way that [39]: 

1. the relative motion of clouds between two consecutive images is detected; 

2. analysis of the cloud motion using a series of images is performed;  

3. the possibility of clouds to obscure the sun during the next 5 minutes is deducted 

and passed on to the main control algorithm so it can issue on time the appropriate 

commands to the EC windows, blinds and electric lighting. 

The development of the sky prediction algorithm was based on a consumer-grade USB 

camera on purpose, as we wanted to demonstrate that it is feasible to implement a low-cost 

but rigid solution without the need to invest in dedicated (and costly) traditional sky scanner 

systems as those referred to in bibliography [70; 69; 79]. In the same vain, no wide angle 

lens was used in this study. However, a fish-eye lens (or camera) that captures the whole 

sky dome will allow for a better sky prediction from dusk till dawn and it will also maximize 

the prediction window. As seen before, the prediction window is currently at about 5 min. As 

suggested in other studies in which the whole sky is captured in the images, under certain 

                                                
f As deduced from the measurements presented in Section 4.1.2, Egh≈20 klx provides over 400 lx at about 3 
m away from the fully bleached EC windows, which is considered sufficient for most occasions. 
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wind conditions the prognosis window can reach up to 15 to 20 minutes [69], which is 

needed for controlling EC windows as seen on this chapter. 

The inclusion of a fish-eye camera would undoubtedly improve on prediction times, 

providing a larger time-frame. At the same time, some alterations to the algorithm (like the 

transformations to rectangular grid implemented by Marquez [70]) would be necessary to 

correctly compute cloud speeds close to the horizon (at the edges of the image) as every 

fish-eye lens uses a particular type of projection on the image plane (i.e. hemispherical or 

angular). On this study, no compensation for the deformation (which is higher on the 

corners) of the images was applied as the camera possesses a limited field-of-view (FOV) 

which is ≈115o on the horizontal and only ≈61o on the vertical axisg; values which are far 

from the 180o of a total sky imager or a fish-eye lens. The only compensation was applied 

due to the “shrinking” of the image along the horizontal axis due to the 4:3 ratio of the 

images taken (480x640 pixels)h. 

Also regarding the camera, in other studies the CCD sensor is protected from direct sunlight 

by means of sun-tracking moving shadow bands in [69; 70]. Such protection appears to be 

necessary for the longevity of the CCD and its absence from the presented study might be 

the reason why the camera stopped working a few months after it was first commissioned. 

Nevertheless, it should be noted that when these protective bands are in place are likely to 

have an impact on the algorithm’s capacity for short term predictions (in the region of 1 to 3 

minutes), especially if wind direction is parallel to them. 

Concerning the main control algorithm that implements the final control (fuzzy logic control), 

although a rather complex set of rules is in place, an elementary fuzzy control is 

implemented without optimization with artificial neuron networks [59], genetic algorithms 

[33], or other tuning or adaptive processes [76]. Similarly, the control system does not 

employ a two-zone window control (i.e. independent control of the normal and ADS EC 

window) as suggested by relevant research [22; 74; 75]. 

These limitations of the controller can be explored and eliminated in future research; in the 

framework of the presented study however the main attention was given in developing a 

novel image-based prediction algorithm as well as paving the way towards the automatic 

control of EC windows which until recently remained poorly covered in relevant research. 

 

                                                
g Approximate measurements based on these directions: http://www.dr-lex.be/info-stuff/viewangle.html 
h One can notice on the original images (Figure 3-3a/b) the sun’s deformation to an elliptical shape. 
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4. FIELD MEASUREMENTS AND EVALUATION OF 
THE SKY PREDICTION APPROACH  

This section presents an experimental measurement phase on an office room of the LESO 

building equipped with EC glazing as wells as a parametric study (simulations) comparing 

the developed algorithm and experimental setup (presented in the previous sections) against 

other control and setup scenarios. Filed measurements, albeit not extensive, were carried 

out with real persons and aimed principally at the investigation of visual and thermal comfort 

felt by the user, including the acceptance of a control system incorporating EC glazings by 

the occupants. Simulations tested different control scenarios of EC windows against a long 

period of time (one year) and against varying meteorological conditions. The simulations 

allowed for the comparison of the energy consumption for heating and electric lighting, as 

well as for the comparison of the estimated thermal comfort and the estimated visual 

comfort for each of the proposed control setups. Parts of this section have been published 

by Zarkadis and Morel in an article [39] as well as in a final report for the Swiss Federal 

Office of Energy [29]. 

4.1. Field measurements 

4.1.1. Measurements and characterization of switching time curves of the EC windows 

The switching speed of an EC varies with its temperature, size, depth and direction of 

switching (transition from dark to bleached is generally faster than the opposite [45] but this 

was not verified in the measurements of the presented study). Following the installation and 

communication setup between the EC windows and the control computer (see Section 2.3), 

the switching time curvesa were described through extensive measurements and applied into 

the newly developed algorithm (‘mother’ algorithm; Section 3.4.2) as well as into the 

simulations (Section 4.2.7). Values derived from in-situ measurements of the installed EC 

                                                
a The EC transmission values against the time required when switching from one extreme state to the other. 
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glazings and are specific to them. EC glazings were given numerous times the command to 

switch between their 2 extreme states (clear and tinted). Their status during transmission 

change was recorded continuously and logged to a text file. For the switch from clear to 

dark blue (at about 26oC), the measured visible transmittance (Tv) values were fitted almost 

perfectly (R2=0.9992) to the equation:  ݕ = ଷݔ0.0049− 	+ ଶݔ0.3071	 	− 	ݔ6.4843	 + ݔ ,65.015	 ∈ [0.157,25.77]   (4-1) 

where ݔ denotes time (in min) and ݕ is the Tv. For the reverse change from dark to clear (at 

about 26oC), the measured Tv values were fitted also perfectly (R2=0.9982) to the equation: ݕ = 	−0.0012xସ + ଷݔ0.0367 − ଶݔ0.2111	 + 	ݔ1.4903	 + ݔ ,18.037 ∈ [0,17.69]  (4-2) 

Figure 4-1 presents the switching decay curve of the installed EC glazing showing Tv levels 

(%) vs. switching time (min) during transition from bleached to coloured states for a given 

temperature (26oC). Figure 4-2 presents the inverse process (transition from coloured to 

bleached states). 

The technical specifications provided by the manufacturer mention the extreme transmission 

values of the glazings (%): Tv EC = [18,64]; Tv IGU = [15,50]; SHGC = [12,38], where ‘Tv 
EC’ is the transmittance of the visible light through the EC element (laminated unit) of the 

windows, while ‘Tv IGU’ is the resulting visible light transmittance of the double pane 

window (Insulated Glass Unit). These extremes were used to extrapolate the values of Tv 

IGU and SHGC (given in the Appendix A.3) from the measured Tv EC values. No significant 

differences were observed between the anidolic (ADS) and the lower (normal) glazing hence 

there is no necessity for introducing separate fitted curves and matrices. 

As it can be observed in Figure 4-1, the switching curve from clear to dark (under the given 

temperature and glazing dimensions) resembles an exponential decay reproducing with 

extreme fidelity the outcome of other independent research where “the curve steeply 
decreases during the first minutes, then the curvature changes and the profile is flat 
until the process finishes.” [46]. 

These observations can help us to describe in a theoretically accurate fashion the terms 

“switching speed/time” cited in this thesis and to define switching speed U(t) as follows: ܷ(ݐ) = ݀ ்௩(௧)ௗ௧ ,  (4-3) 

where Tv(t) is the visible transmittance curve of the EC glazings as a function of the 

transition time t (see also Figure 4-1). 
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Figure 4-1. Switching decay curve (blue marks) of the EC element (laminated unit) for the installed 
EC glazing showing Tv levels (%) vs. switching time (min) during transition from bleached to 
coloured states for a given temperature (~26oC). The black line is the polynomial fit with displayed 
equation and coefficient of determination. 

 

y = -0.0049x3 + 0.3071x2 - 6.4843x + 65.015
R² = 0.9992

0

10

20

30

40

50

60

70

0 2 4 6 8 10 12 14 16 18 20

Lu
m

in
ou

s t
ra

ns
m

itt
an

ce
 (T

v)
 [%

]

Time [min]

 
Figure 4-2. Switching decay curve (blue marks)  of the EC element (laminated unit) for the installed EC 
glazing showing Tv levels (%) vs. switching time (min) during transition from coloured to bleached 
states for a given temperature (~26oC). The black line is the polynomial fit with displayed equation and 
coefficient of determination. 
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However, this notion of theoretical approach can have little practical meaning, especially due 

the non-linear form of the switching curves. In practice, it is useful to define speed as the 

time required by the EC glazings to obtain a certain percentage of the total switching depth. 

For this reason, Table 4-1 provides some meaningful alternative to the theoretically defined 

EC glazings speed. Transition from the dark to the clear state is remarkably slower than the 

opposite (e.g. EC glazings perform 50% of the full switch from clear to dark in less than 5 

min). On the other hand, a complete change from dark to clear requires 18 min, whereas 

the opposite direction full transition takes more than 25 min. 

 
Depth of switching [%] Time required [min] 

 From clear to dark  From dark to clear  

30%  2.5  8.5  

50%  4.6  11.2  
70%  7.4  13.5  

80%  9.4  14.7  

90%  12.4  16  
100%  26  18  

Table 4-1: Switching speed of EC Glazings (time required by the EC glazings to execute a certain 
percentage of the total switching depth). 

4.1.2. Daylight Factor (DF) measurements 

Illuminance measurements during diffuse light conditions (overcast sky) were carried out to 

determine the daylight factor (DF), which is used to determine the use of electric lights 

(Section 4.2.8) and to aid on the estimation of the visual comfort in the simulations 

presented in Section 4.3.3. The process included multiple measurements of the global 

horizontal illuminance on the roof (unobstructed 180o view of the sky) and on 5 points on 

the desktop level of the office room LE 003 where the EC glazings are installed. The 5 points 

were spread on equal distances (≈90 cm) from each other and they were situated on the 

central axis of the room (vertical to the south façade and parallel to the floor). The first 

point was chosen at a distance of about 90 cm from the windows plane while the last one 

was at about 30 cm from the back wall. Measurements were performed with the EC 

windows fully bleached (DF-15) and fully tinted (DF-50). Values are presented on Table 4-2 

and on Figure 4-3 (where the ≈90 cm distances are given in meters):  

 

DF for Tv level Distance from the windows [m] 

5 4 3 2 1 

DF-50 0.68% 0.84% 1.83% 3.08% 4.35% 

DF-15 0.38% 0.56% 0.84% 1.43% 1.50% 

Table 4-2: Daylight factors for the 2 extreme Tv levels of the EC windows and for each point.  
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Figure 4-3. Daylight factors for the two extreme Tv levels of the EC windows (50 and 15%) as a 
function of the distance from the windows (measurement errors: 15% for the DF and ±0.1m for the 
distances). The apparent non-homotheticity of the curves can be attributed to measurement errors and 
to the presence of the ADS in the upper window. 
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end of the session, they were asked to fill in the short questionnaire which is provided in 
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Hence, no thorough statistical analysis (ANOVA, Tukey Test [42] or other [47]) was 

conducted on the users’ answers. 

At the time of the survey, all subjects were working at the LESO building and were familiar 

with the building systems and the controls available to them. Thus, before the beginning of 

each session they were given only a brief introduction to the technology of EC windows 

including their principal characteristics and instructions on how to control them. They were 

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

0 1 2 3 4 5 6

DF
 [%

]

Distance from windows [m]

DF-50 DF-15



CHAPTER 4. FIELD MEASUREMENTS AND EVALUATION OF THE SKY PREDICTION APPROACH  

 

42 

also given the choice between two working places in the room: the first one was at the main 

desk situated close to the windows (which are on the right of the user who faces the east 

wall; see Figure 2-4); the second one was a meeting table at the back of the room (about 

4m away from the windows) and facing either the windows or the back wall. Subjects were 

told they could adjust the EC windows, the electric lights, and the blinds available in the 

office room any time during the session according to their preferences (single-user office 

room). Then, they were asked to perform their standard working tasks for 2 to 3 hours as 

they would have done in their usual working place (they were allowed to bring in their 

personal portable computer, use the desktop terminal already in the room or/and bring any 

reading or other related material necessary to work with).  

Responses showed that most users were not satisfied by the unnatural colour rendering of 

the room and/or that of the view when looking outside, especially when the windows were 

fully tinted (Persian blue colour). Glare issues were also mentioned by half of the persons, 

which eventually motivated them to use the blinds. This was true in cases that direct 

sunlight hit the desk and/or the computer monitor. Also, some users expressed the wish for 

a bigger dynamic range of transmissions (on both ends). However, most users are willing to 

oversee any inconveniences or disadvantages of EC windows and they are generally positive 

when comparing this daylighting system to a standard one (i.e. blinds) mainly due to the 

unobstructed view that EC windows offer at all times. Users did not express dissatisfaction 

regarding the manual control of the EC Windows nor did they seem to consider negatively 

the slow switching time between different transmission levels. 

Interesting additional comments included: 

• Since the transition from one state of transmission to another one happens without 

the user actually noticing the change, there is no way for the user to know if the 

manual command given to the EC windows is sufficient, underestimated or 

overestimated (e.g. when blinds are deployed by the user to reduce illuminance or 

glare, user gets an instant feedback and stops the deployment as soon as they feel 

satisfied with the resulting visual environment). 

• Manual control panels could use a small LCD screen instead of the 5 LED diodes to 

indicate their transmission level (see also Figure 2-6). 

• The colour of the EC windows (also) when windows are fully bleached could be 

more “clear” and natural. For the tinted state the light Persian blue seems to be cold 

or dull by many. 

• When the person working inside the office leaves the room to visit an adjacent office 

equipped with normal double glazings, then upon their return time is needed to 

adjust to the different visual environment and colour rendering. 
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4.1.4. Algorithm testing (automatic control) 

Tests of the algorithm were brief but they allowed for a short check of the elaborated 

algorithm on the experimental level. Regarding the visual comfort, workplane illuminance 

was measured by the ceiling-mounted sensor described in Section 2.2.1 while the EC was 

controlled automatically. A hand held lux meter (BEHA 93408) was used prior to the test to 

verify that illuminance values reported by the sensor were not affected by the varying 

reflectance of the desktop surface (i.e. papers or other objects on the desktop can impact 

the value of the ceiling-mounted sensor).  

Measurements took place during a day with intermediate sky conditions (global horizontal 

irradiance was between 120-320 W/m2) and workplane illuminances were kept inside 

acceptable visual comfort levels (at around 450-1000 lx) most of the time (Figure 4-4). 

 

As it is often the case when a real-life experimental test is being setup, hardware and 

technical issues plagued the field testing campaign. The computer that communicated with 

and controlled the EC windows experienced stop errors (‘Blue screen’) even after the switch 

to different operating systems and hardware configurations. Most likely this issue originates 

in the serial port card but no solution has been found during the duration of this study. At 

the level of the building management bus (EIB/KNX), the meteorological station of LESO and 

the system that interfaces with the EibServer experienced some serious malfunction and it 

Figure 4-4. Desktop illuminance and Global Horizontal Irradiance (IgHor) measurements before and 
around noon time on 31 August 2012 (day with intermediate sky conditions). 
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was out of operation during most of the testing of the algorithm (the sensors of Global 

Horizontal Illuminance and Vertical South Illuminance were particularly affected). Last, the 

waterproof web camera that was purchased for this research not only proved to be a non-

wide angle camera, despite the specifications given by the manufacturerb, but it also ceased 

to operate about 6 months after its purchase. 

Even though a proper user evaluation of the developed control algorithm was not possible 

due to the aforementioned reasons, short-time checks were promising. The integrated 

system of EC windows, blinds and electric lighting was controlled in a satisfactory manner 

and provided good lighting conditions even under changing sky conditions. The sky 

prediction algorithm seemed to work well, although sometimes the prediction window needs 

to be bigger. 

4.1.5. Proposed future field work 

As mentioned previously (Section 4.1.3), only a very limited on-site experimental test of the 

developed sky prediction algorithm has taken place. Whereas the comprehensive parametric 

study (presented in Section 4.2) allows for the evaluation of the proposed control system, 

further field work will allow for the evaluation of the system by real users while at the same 

time long term measurements will help validate simulation results. 

In particular, extensive experimental tests could take place in LE003 office room of the LESO 

building. They could include long-term data acquisition in the database of the building's 

central management system of all the relevant parameters from sensors or actuators as 

instantaneous weather conditions, room conditions as well as user wishes. Simultaneously, 

EC transmission data will also be logged and user actions could be used as a learning input 

for the implemented control algorithm. This process could potentially introduce some 

refinements to the control algorithm. Heating system consumption could be also recorded 

and then compared with the output of the simulations. 

Further, detailed assessment of the user satisfaction (visual and thermal comfort) and 

acceptance through on-line questionnaires being displayed several times a day on the users' 

personal computers [14] or smart phones could be performed.  

Last, glare risk could be evaluated using novel high dynamic range (HDR) imaging 

techniques, following recent relevant research by Borisuit and Scartezzini [81; 82] or Inanici 

[83]. 

                                                
b Bullet HD Pro 1080; http://www.bullethd.us/bullethd-best-wearable-sports-waterproof-helmet-
camera/bullethd-pro-1080p-helmet-camera/ 
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4.2. Simulations methodology  

In this section, we give a detailed description of the simulation test bed parameters and 

process. 

4.2.1. Introduction 

The field measurements realized on LESO building did not allow for a detailed energy 

comparison, mainly because EC glazings equipment is installed in one office room only. 

Thus, simulation allowed for the testing of different control scenarios over a long period of 

time (one year) and against varying meteorological conditions. The simulation presents 

results for the following parameters: 

1. Energy consumption for heating; 

2. Energy consumption for electric lighting; 

3. Estimated thermal comfort; 

4. Estimated visual comfort. 

4.2.2. Simulation tool (thermal model) 

Simulations were performed using Matlab computing environment [36]. They were based on 

dynamic thermal simulations code that has been previously developed by the LESO-PB 

laboratory and used in various research and teaching projects. The choice of Matlab has 

been made on the grounds of robustness, customization and flexibilityc. The tool had been 

initially developed for the assessment of heating and cooling needs by comparing different 

blind control strategies. The calculations are based on a basic dynamic nodal model, taking 

into account the heat capacity of the construction elements and of the room air. At every 

time step the heat exchange between all the different nodes is calculated: the room air (first 

node) exchanges heat with the internal room surfaces (every wall and slab layer is a 

different node) and external air (last node), while at the same time the energy received and 

absorbed by the internal surfaces via the windows in the form of solar radiation is also 

considered. Figure 4-5 presents the distribution of the nodes and the connections via their 

conductances in a schematic diagram of the model used in the simulations. A detailed 

general description of a 2-node thermal model including its electric circuit analogy and 

mathematical description is given by Daum [76 pp. 128-130]. 

In this study, fourteen (14) nodes were considered during the simulations performed: 

• node 1: heated zone air 

                                                
c The use of IDA/ICE has been initially considered but quickly aborted because of the difficulty to incorporate 
a module for EC windows. 
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• nodes 2, 3: floor screed (surfaces from inside to outside zone) 

• nodes 4, 5, 6: ceiling slab (surfaces from inside to outside zone; node 5 is in the 

middle of the slab) 

• nodes 7, 8, 9: internal partition walls (surfaces from inside to outside zone; node 8 

is in the middle of the wall) 

• nodes 10, 11, 12, 13: facade wall (layers from inside to outside; see 4.2.4) 

• node 14: outside air temperature 

 

 
Figure 4-5. A schematic of the thermal model used in the simulations as an equivalent electric 
circuit. 
 

 

Also, the Matlab code was modified and expanded accordingly to include: 

• An appropriate module to take into account the EC glazing features (switching 

curves) and control algorithm. 

• A module for electrical lighting (illuminance levels on desktop and energy 

consumption). 

• A simple occupancy schedule feature. 

• A visual and thermal comfort prediction feature. 
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• A shorter time step (one minute instead of hourly) to be able to predict 

illuminances and cater to the visual comfort aspects. 

4.2.3. Simulated scenarios 

The parametric study compared the following cases of windows for a South-facing office 

room:  

1. Conventional transparent double glazing; 

2. Conventional transparent double glazing coupled with blinds; 

3. Solar protection glazing with SHGC=0.38 and Tv=0.50; 

4. Solar protection glazing with SHGC=0.12 and Tv=0.15; 

5. EC glazing with simple automatic control (See 4.2.7); 

6. EC glazing with the proposed sky prediction control algorithm. 

4.2.4. Description and characteristics of the simulated office room 

The room model used in all simulations is a simplified nodal model of a South-facing office 

room similar to the LESO building room LE 003 where the EC glazing was installed. North, 

West and East are partition walls adjacent to other offices and the corridor. Ceiling and roof 

are also adjacent to other offices. Thus, the room is connected to the outside with only the 

South wall. The blinds considered are made of textile tissue and they can roll up (completely 

open) and down (when closed). Window surface was modelled as a single conventional 

window instead of the coupling of a conventional window with ADS. The room is not 

occupied; there are no internal gains and only light furniture. The infiltration rate was set to 

a constant value of 0.3h-1 in the winter and 0.8h-1 in the summer and no additional night or 

day cooling takes place via the windows (they stay closed all the time). 

The main characteristics of the room model are as close as possible to the ones of a real 

LESO office room presented in Section 2.1.1, with only a few differences: 

• Floor area of one room: 15.7 m2 

• Room height: 2.8 m 

• Facade wall (to South): 5.4 m2 light wall (2 cm plaster panel + 12 cm thermal 

insulation [0.04 W/m⋅K] + 3 cm wood) + windows (see below) 

• Window area including frames: 5.10 m2 (frames area: 17%) 

• Standard glazing: SHGC= 67%; Tv=78%; U-value 1.1 W/m2K (U-value the same for 

all types of glazings including frames) 

• Blinds: Textile tissue with 20% solar gains transmission when completely drawn 

• Light partition walls with bricks: 10 cm thickness 

• Floor screed: 6 cm (concrete) 

• Ceiling slab thickness: 25 cm (concrete) 
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4.2.5. Meteorological data 

The meteorological data used for the simulation are synthetic values generated by the 

Meteonorm software [84]. Data for one year were generated for the city of Ecublens near 

EPFL and LESO building. Time interval was set at one (1) minute to account for our sky 

prediction developed algorithm. Simulations used the same time-step (1 minute). The 

generated data included date, time, external temperature, global horizontal solar radiation, 

diffuse horizontal solar radiation, global vertical south solar radiation as well as solar height 

and azimuth angles. 

4.2.6. Heating control system 

The heating controller is a simple, closed-loop system based on the internal air temperature 

and the season. The set point for the temperature is 20°C (no night setback schedule is 

implemented). At every time step the controller checks whether the temperature is below 

the set point and the season is set to “heating season”; if both conditions are met, then it 

injects the necessary amount of energy in the room so that the temperature can reach the 

set point value (no hysteresis is implemented). Heating season is not implemented using a 

calendar definition. Instead, we consider a given simulation time step as being in “winter” if 

the average external temperature over the last 7 days is below 10°C. 

No (active or passive) cooling system is employed, to reflect the current real situation of 

LESO building. 

4.2.7. Electrochromic windows and blind control 

A separate module for the EC windows that gives at any time step the values of the solar 

heat and visible transmission of EC glazings was implemented and inserted into the 

simulation code. As explained in the experimental setup chapter (4.1.1), tabular values of 

switching time curves were produced (see Appendix A.3) and inserted into this simulation 

module. The time step of the simulation was the same as the time step of the switching 

curves (1 min).  

For the simulation scenario 5 (EC simple automatic control), a simple closed-loop control is 

used based on the global vertical south solar radiation (Igvs)d and the seasone. In the 

cooling season the EC windows are kept fully bleached for an Igvs below 100 W/m2; fully 

tinted if it exceeds 300 W/m2 and assigned linearly interpolated target values of SHGC 

                                                
d The internal air temperature (Tair) was initially also considered in the control: In the summer, solar gains 
were allowed only when Tair<20°C and during winter were rejected if Tair>25°C. Simulation tests showed 
no difference so it was excluded from the control scheme. 
e As defined in Section 4.2.6 above. 
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(between 12 and 38%) and Tv (15-50%) for solar radiation values between 100 and 300 

W/m2. By “target value” we mean that EC windows at a certain time-step are assigned a 

desired transmission value. Due to the intrinsically low switching speed of EC glazings (see 

3.1.2 and 4.1.1), this value cannot be assigned instantly; instead it will be achieved in the 

next time steps (next minutes) following the incorporated switching time curves. In the 

winter, all solar gains are accepted and EC windows act like low solar gains windows with 

SHGC=38%.  

For the simulation scenario 6 (EC with the developed control algorithm), we use the same 

control variables and limits as above but we consider that a perfect sky prediction allows the 

EC windows to achieve desired transmittance values at every time step. In this case, the EC 

windows are always assigned with the right transmission values, as required by the control 

variables. 

Regarding the blinds control in simulation scenario 2 (Conventional glazing coupled with 

blinds), we follow exactly the same control as above: In the summer, they are fully rolled up 

if Igvs is lower than 100 W/m2; fully deployed if it exceeds 300 W/m2 and in an intermediate 

position linearly interpolated for solar radiation values between 100 and 300 W/m2. Likewise, 

in the winter they are fully open. 

Suggested by test simulations, the decision to permit all solar gains during the winter is a 

conscious compromise between visual comfort (which may be affected negatively due to 

extreme brightness and/or glare phenomena) and decreasing energy consumption for space 

heating. 

4.2.8. Electric lighting calculation 

Electric lighting is commissioned to maintain horizontal illuminance at the user’s workplace 

on the desktop level at 500 lx when daylight is not sufficient. The dimmable light fixture 

considered is the one that currently is found inside the office LE 003 of the LESO 

experimental building and can deliver 250 lx of illuminance on the user’s workplace at a 

maximum power of 4x36 W. On top of the nominal power of the 4 lamps (144 W), we 

assume 15% overconsumption due to the fixture ballasts (21.6 W). This power is considered 

as base power and it is consumed during all work hours when the fixture is not completely 

switched off. The fixture’s power consumption from 21.6 to 165.6 W is linearly correlated 

with the required artificial lighting illuminance of 0 to 250 lx.  

As it can also be seen in Figure 4-6, electric lights remain switched off when available 

daylight maintains workplace illuminance above 500 lx. When workplace illuminance due to 

daylight is between 250 and 500 lx, then electric light is commissioned to contribute the 

necessary amount of lighting so the resulting desktop illuminance (natural & artificial light) is 

maintained at 500 lx. When natural daylight yields workplane illuminances equal or lower 

than 250 lx, then the electric lights are switched on at full power (165.5 W & 250 lx). 
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To calculate if any additional desktop illuminance is needed, the desktop illuminance due to 

daylight is first computed. At every time step, it depends on the global horizontal illuminance 

(Egh), EC windows visual transmission level (Tv) and blinds position. To calculate Egh from 

global horizontal irradiance (Igh), one normally has to resort to a physically accurate model 

such as the Perez model [85; 66].  On the practical level, this simulation use an 

approximation which is only correct for diffuse light conditions according to which the Egh is 

correlated to Igh:  1 W/m2 of Igh corresponds to 179 lx of Egh (luminous efficacy of 179 

lm/W) [86]. As noted, this approximation is not valid for intermediate or clear sky conditions 

with a direct illuminance component. We assume that in such cases corresponding 

illuminance would be higher, resulting in a slight over-estimation of energy used for electric 

lighting. 

Next, we use the measurements of the Daylight Factors (DF) as described previously 

(Section 4.1.2) for the given user position in the room (at approximately 1.8 m away from 

the windows) and for the 2 extreme states of the EC windows (DFfully bleached=3.13%; DFfully 

tinted=1.43%). We then interpolate linearly the DF for the actual EC transmission at every 

time step. Finally, the multiplication of the DF with the estimated Egh, gives us the amount 

of desktop illuminance due to daylight. 

For the simulation scenario where we have standard glazing with the use of blinds (scenario 

2), we use results from a study previously performed in LESO by Bauer et al. [58] in an 

office room identical to the one used here. Following on this research, we estimate for the 

user position (~1.8 m away from the windows) the value of DF for the blinds completely 

rolled up to be DFno blinds=10.4%, while for blinds completely rolled down is DFblinds= 1.8%. 

For an intermediate blind position the resulting DF is again a linear interpolation between the 

two values. 

 
Figure 4-6. Electric lights usage as a function of the natural light-induced desktop illuminance. 
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4.2.9. Occupancy schedule 

For the electric light use, the visual and the thermal comfort we consider the presence of a 

single occupant only during the working hours with a 9-hour daily schedule of 08.00 to 

18.00 with a lunch break (absence) from 12.00 to 13.00, from Monday to Friday. 

4.3. Simulation results and discussion 

4.3.1. Energy consumption 

The results of the simulation study regarding the energy consumption for heating and 

electric lighting are shown on Figure 4-7 and on Table 4-3. As expected, standard (clear) 

glazing permits high solar gains during the winter which results in significantly low energy 

demand for space heating.  In these cases, energy required for electric lighting is also 

reduced when compared to other cases due to the abundant daylight penetrating inside the 

room. However, both cases of standard glazing offer the worst thermal and visual comfort 

(overheating and extreme illuminances, respectively) as seen next. 

Scenario 4 appears on the other extreme in terms of energy demand. This case features a 

low solar gain glazing with a very low constant coefficient of solar radiation transmission of 

0.12. Solar gains are mostly cut-off and energy demand for heating escalates to over the 

double in comparison to the other scenarios. Energy demand for electric lighting is also 

significantly higher (about 40%) when compared to scenarios 3, 5 and 6. This is due to the 

constant low visible light transmission and the subsequent more frequent use of electric 

lighting. 

The energy demand of the case of low solar gain glazing with a constant coefficient of solar 

radiation transmission of 0.38 (scenario 3) is comparable to the energy demand by the 

scenarios 5 and 6 with the EC glazings. It is important to compare these 3 scenarios in 

respect to the predicted visual and thermal comfort they offer, as it is done next. 

 

Table 4-3: Annual energy demand for space heating and electric lighting for different simulation 
scenarios. 

Simulation scenario Heating 
[kwh/m2] 

Electric lighting  
[kwh/m2] 

Total 
[kwh/m2] 

1: Standard glazing 2.7 5.6 8.3 

2: Standard glazing+Blinds 4.2 5.6 9.8 

3: Low Solar gain glazing (0.38) 13.6 7.9 21.5 

4: Low Solar gain glazing (0.12) 36.4 11.1 47.5 

5: EC Simple control 14.9 8.0 22.8 

6: EC Predictive control 14.9 7.9 22.9 
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4.3.2. Thermal comfort 

Indoor air temperature 

As a first indication of thermal comfort, we compare the indoor temperature across the 

different simulation scenarios. We observe unacceptable temperatures for the cases with the 

standard glazing (1 and 2). In particular, scenario 1 demonstrates very high indoor air 

temperatures between 30-40oC for all months except those during winter (Figure 4-8). 

Scenario 2 is slightly improved but still unacceptable overheating occurs during some days in 

late winter and, to a lesser extent, during some days in late autumn with internal 

temperatures over 30oC (Figure 4-9). However, it should be noted that high temperatures 

are expected since neither cooling nor any form of ventilation is considered in the building 

model. Naturally, overheating can be partially mitigated by simply opening the window 

during mid-season or summer. 

Scenario 4 (low solar gain glazing with SHGC=0.12) exhibits an indoor temperature that for 

almost the entire winter season stays stable at around the set-point temperature of 20oC 

(Figure 4-11), while in the warmest days of the non-heating period the indoor temperature 

is never over 25oC. However, during some intermediate season days in spring and fall when 

heating is not required, internal air temperature falls at 18oC or lower. Again, this is due to 

permanent glazing characteristic of cutting-off most of potential solar gains from entering 

Figure 4-7. Annual energy demand for space heating and electric lighting for different simulation 
scenarios. 
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the room in days when they would have been beneficial for the conditioning of the space. 

However, it should be noted that the heating controller and thus the season definition are 

identical for all compared scenarios. In this one (4), where solar heat gains are largely 

prevented from entering the room and being stored in the heavy construction elements, it 

would be more realistic to modify the season definition to reflect the scenario’s particular 

conditions (i.e. consider the season as “winter” if the average external temperature over the 

last 2-3 days is below 12°C (instead of the considered 10°C) or even follow a more 

advanced definition, like the one presented in Chapter 5). 

Cases 3, 5 and 6 appear to have comparable energy consumption but when compared 

against the internal temperature significant differences are observed. In scenario 3 (low 

solar gain glazing with SHGC=0.38) internal temperature at around 30oC is observed for 

about 75 days during the year. In the scenarios with the EC windows (5, 6; Figure 4-12 & 

Figure 4-13), indoor temperature during non-heating season is at around 25oC, with the 

exception of some warm days during spring.  
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Figure 4-8. Temperatures variation for Scenario 1 (Standard glazing; no blinds). Overheating is 
observed from March to November. 
 

Figure 4-9. Temperatures variation for Scenario 2 (Standard glazing + blinds). Internal temperature 
exceeding 30oC is observed during intermediate season. 
 

Figure 4-10. Temperatures variation for Scenario 3 (Low Solar gain glazing; SHGC=0.38). Internal 
temperatures around 30oC are observed for about 75 days during the year. 
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Figure 4-11. Temperatures variation for Scenario 4 (Low Solar gain glazing; SHGC=0.12). 
 

 

Figure 4-12. Temperatures variation for Scenario 5 (EC simple control). 
 

 

Figure 4-13. Temperatures variation for Scenario 6 (EC Predictive control) 
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Figure 4-14 displays a qualitative approach comparing the internal temperatures distribution 

for each of the six proposed simulation scenarios. Scenarios 1 and 4 appear immediately as 

the extreme cases. Scenario 4 is the one having less dispersion with most of the values close 

to the median (20oC), keeping the temperature steady throughout the year, in the expense 

of high energy consumption as we showed above. 

Scenario 1 is having a median at around 33oC and values inside the 25th and 75th 

percentiles in the area of 26.2 - 36.4oC. Scenario 2 has a reduced interquartile range (22.7-

27.5 oC), but its median is rather high (overheat risk) and the whiskers extend far from this 

range, both over and under. The significance of these distributions becomes crucial next, 

when we calculate the Predicted Percentages of Dissatisfied (PPD). 

 

 

Figure 4-14. Distribution of indoor air temperature values for the six different simulation scenarios for 
a period of one year. The blue bottom and top of the box represent the 25th and 75th percentile 
respectively; the red mark inside the box is the 50th percentile (the median); whiskers represent the 
minimum and maximum of data points not considered outliersf (red points outside whiskers). 

 

                                                
f Points are drawn as outliers if they are larger than q3 + w(q3 – q1) or smaller than q1 – w(q3 – q1), where 
q1 and q3 are the 25th and 75th percentiles, respectively. The value w=1.5 used here corresponds 
approximately to +/–2.7σ and 99.3 coverage if the data are normally distributed. The plotted whisker 
extends to the adjacent value, which is the most extreme data value that is not an outlier [36]. 
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Predicted Percentages of Dissatisfied (PPD) 

Thermal comfort was analyzed with the use of Fanger’s model [12]. Using as input for every 

time step of the simulation the season, the radiant temperature in the room and the room’s 

air temperature, the Predicted Percentages of Dissatisfied (PPD) and the Predicted Mean 

Vote (PMV) were generated for every working hour in the year. The comfort parameters of 

air humidity, air velocity, clothing insulation and metabolic heat production were set to fixed 

values and they are shown on Table 4-4.  

 

Parameter Heating period  Non-heating period 

Clothing [clo] 1.0  0.50 

Activity [met] 1.2  1.2 

Air speed [m/s] 0.10  0.10 

Relative humidity [%] 50.0  50.0 

    

Operative temperature [°C] 19.2 - 23.8  23 - 26.3 

Table 4-4: Comfort parameters and calculated operative temperature used in Fanger’s model for a 
PPD<10%. 

 

The operative temperatures for the heating and the non-heating seasons were calculated as 

the limits within which the PPD remains below from the generally accepted standard for 

office rooms of 10% (-0.5<PMV<0.5 or 90% of thermally satisfied occupants). These 

comfort limits are proposed by the ISO 7730 standard [13]. Clothing insulation was set to 

0.5 clo for the non-heating period and to 1 clo during the heating period (for the definition 

of “season” see paragraph 4.2.6). The metabolic heat production was set to 1.2 met (light 

desk work) in all simulations.  

The estimation of the thermal comfort for the whole period (1 year) was conducted to 

evaluate the ability of the simulated case studies to keep the internal air temperature within 

the comfort limits specified by the said standards (Table 4-4). The percentage of the 

working time when the air temperature is outside the range defined by the comfort limits 

was determined for all the simulation scenarios and seasons and it can be seen on Table 4-5 

and Figure 4-15. Again, it should be noted that results should be put in perspective of the 

absence of cooling and of any form of ventilation. Hence, extreme temperatures and thermal 

discomfort are expected during mid-season and – most notably – during summer (i.e. non-

heating periods). 
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Simulation 
scenario 

Heating period 
[%] 

Non-heating period
[%] 

Entire 
year 
[%] 

PMV < -0.5
(=feeling 

cold) 

PMV > +0.5 
(=feeling 

warm) 

Total PMV < -0.5
(=feeling 

cold) 

PMV > +0.5
(=feeling 

warm) 

Total 

1: Standard glazing 0 61.4 61.4 0 99.5 99.5 81 

2: Standard glazing 
+ Blinds 

0 58.4 58.4 20.4 43.5 63.9 61.3 

3: Low Solar gain 
glazing (0.38) 

0 20.9 20.9 6.9 60 66.9 44.7 

4: Low Solar gain 
glazing (0.12) 

0 0 0 80.5 0 80.5 41.6 

5: EC Simple control 0 15.6 15.6 49.9 0.8 50.7 33.7 

6: EC Predictive 
control 

0 15.6 15.6 50.2 0.4 50.6 33.6 

Table 4-5: Percentage of working time during the simulation period where temperature is outside 
comfort limits (PMV<-0.5 or PMV>+0.5; PPD>10%), for each of the six considered simulation cases. 

 

 
 

Figure 4-15. Percentage of working time during the simulation period where temperature is outside 
comfort limits (i.e. PPD is over 10%), for each of the six considered simulation cases. 
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The comparison between all different scenarios shows clearly that automatically controlled 

EC windows (scenario 5 and 6) provide the best possible thermal comfort conditions with 

only a 15.6% of working time during the winter season found outside the thermal comfort 

limits. Scenario 3 also provides acceptable thermal comfort with 21% of working time during 

the winter season lying outside the thermal comfort limits. Standard glazing scenarios 

provide unacceptably high discomfort conditions. During winter, scenario 4 interestingly 

enough provides the “perfect” thermal comfort conditions with zero working time being 

outside comfort conditions. That is of course due to the excessive use of heating energy 

since almost all solar gains are rejected. 

We kept separately the reports for the non-heating season on purpose. Since there is no 

active cooling system (and we chose not to implement night-cooling as well), temperatures 

during the “summer” days are more likely to fall outside thermal comfort criteria. But also in 

this case, EC windows scenarios are performing better than the others. 

It is also interesting to note the distinction made on Table 4-5 concerning the PPD 

percentages between these that are due to overheating and those that occur due to risk of 

feeling cold. In this regard, during the heating period, the predicted percentages of 

dissatisfaction in all scenarios are all due to anticipated complaints of overheating 

(PMV>+0.5) and none for the contrary. This is expected, since the controller keeps the air 

temperature at 20°C minimum during the entire heating season (see Figure 4-17Figure 4-16 

& Figure 4-19). On the other hand, best performing cases (scenario 5 and 6) seem to suffer 

from excessive rejection of solar heat gains during the non-heating period and users are 

likely to complain because they are feeling cold. However, these complains would likely be 

mitigated with the adaptation of user clothing during this period (i.e. from 0.5 to 0.65 clo; 

see Table 4-4). 

Figure 4-16, Figure 4-17, Figure 4-18 and Figure 4-19 below complete the picture in thermal 

comfort providing some additional qualitative information about the indoor temperature 

during the simulation periods. In particular, the distribution of indoor temperature (values, 

median, mean and standard deviation) during working hours for both the non-heating and 

the heating period is displayed together with the limits of the operative temperatures (green 

and red lines) for all simulation scenarios. 
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Air temperature distributions during working hours 

(Scenario 1a) 

(Scenario 2a) 

(Scenario 3a) 

Figure 4-16. Indoor temperature values distribution during working hours in non-heating period (a) 
for simulation scenarios 1-3. Displayed are the values (black points), median (orange line), mean 
(light blue dashed line) and standard deviation (σ) together with the limits of the operative 
temperatures (green and red lines). 
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(Scenario 1b) 

 

 (Scenario 2b) 

 

 
(Scenario 3b) 

Figure 4-17. Indoor temperature values distribution during working hours in heating period (b) for 
simulation scenarios 1-3. Displayed are the values (black points), median (orange line), mean (light 
blue dashed line) and standard deviation (σ) together with the limits of the operative temperatures 
(green and red lines). 



CHAPTER 4. FIELD MEASUREMENTS AND EVALUATION OF THE SKY PREDICTION APPROACH  

 

62 

(Scenario 4a) 

(Scenario 5a) 

(Scenario 6a) 

Figure 4-18. Indoor temperature values distribution during working hours in non-heating period (a) 
for simulation scenarios 4-6. Displayed are the values (black points), median (orange line), mean 
(light blue dashed line) and standard deviation (σ) together with the limits of the operative 
temperatures (green and red lines). 
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 (Scenario 4b) 

 

 
(Scenario 5b) 

 

 
(Scenario 6b) 

Figure 4-19. Indoor temperature values distribution during working hours in heating period (b) for 
simulation scenarios 4-6. Displayed are the values (black points), median (orange line), mean (light 
blue dashed line) and standard deviation (σ) together with the limits of the operative temperatures 
(green and red lines). 
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4.3.3. Visual comfort 

Estimation of visual comfort in th(b) facis section is based on the work of Lindelöf [18] 

realised in LESO regarding the Bayesian optimization of visual comfort. Lindelöf calculates 

the user Visual Discomfort Probability (VisDP) as a function of the horizontal workplane 

illuminance (Figure 4-20), based on a large number (7273) of user actions on the blinds or 

on electric lightingg. Based on his work, we list the approximate illuminance limits for the 

VisDP as per Table 4-6: 

Table 4-6: Ranges of workplane illuminance and their probability to cause visual discomfort to space 
occupants (approximate values derived from Figure 4-20). 

 
 

Figure 4-20. User discomfort probability as a function of horizontal workplane illuminance (values 
greater than ~3 klux should be ignored due to the saturation of the illuminance sensors of the study 
above this limit) [18] (image: ©Lindelöf). 

                                                
g For more details on visual comfort, please refer to Chapter 6. 

Visual discomfort probability [-] Workplane illuminance [lx] 

< 0.30 400-500 

< 0.35 300-720 

< 0.40 250-1620 

< 0.45 225-2000 

< 0.50 210-2545 

≥ 0.50 (outside the above limits) 
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Using as input for every time step of the simulation the desktop (workplane) illuminance, the 

VisDP was generated for every working hour in the year. The estimation of the visual 

comfort for the whole period (1 year) was conducted to evaluate the ability of the simulated 

case studies to keep the workplane illuminance within ranges (Table 4-6) which are less 

likely to cause discomfort to the occupants. The percentage of the working time where the 

visual discomfort probability is kept below 30, 35, 40, 45 and 50% was determined for all 

the simulation scenarios and it is presented on Table 4-7 and Figure 4-21.   

  
Simulation scenario Working hours/year [%] with visual discomfort probability below: 

 <=0.3 <0.35 <0.4 <0.45 <0.5 

1: Standard glazing 4.7 10 26.2 29.9 35.2 

2: Standard glazing + Blinds 4.7 10.1 29.2 36.9 49.2 

3: Low Solar gain glazing (0.38) 13.9 25.5 58.3 65.9 74.4 

4: Low Solar gain glazing (0.12) 24.9 46.4 87 94.8 99.8 

5: EC Simple control 14.2 26.3 70.8 83.3 93.7 

6: EC Predictive control 14 26.1 70.7 83.7 93.7 

Table 4-7: Percentage of working time during the simulation period where visual discomfort probability 
is kept below fixed values, for each of the six considered simulation cases. 

 

Figure 4-21. Percentage of working time during the simulation period where visual discomfort 
probability is kept below 30, 35, 40, 45 and 50%, for each of the six considered simulation cases. 
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It should be noted that predicted visual discomfort only accounts for the illuminance 

intensity on the workplane and does not take into consideration at all the visual discomfort 

due to glare phenomena. 

Extreme-case scenario 4 demonstrated the best possible visual performance between the 

studied cases (87% of the working hours the VisDP is kept below 0.4), followed closely by 

the EC windows scenarios (5 and 6) and scenario 3, although that is true only for the 

illuminance ranges corresponding to discomfort probability below 0.35. For the thresholds of 

VisDP above 0.35, scenario 3 performance deteriorates as there is some dispersion of 

illuminance towards higher values (Figure 4-22, Figure 4-23 & Figure 4-24).  

Figure 4-22 compares the distribution of desktop illuminance values of the studied scenarios. 

As with the temperature values, we observe the great dispersion and the high values of the 

standard glazing scenarios. On the other hand, scenario 4 appears “the perfect case” but we 

should consider that illuminances are kept to ideal only because a great deal of electric 

lighting is administered throughout the year. As in thermal comfort estimation, Figure 4-23 & 

Figure 4-24 provide additional qualitative and quantitative information about the workplane 

illuminance during the simulation periods. In particular, the distribution of illuminance during 

working hours for the entire period is displayed together with the range limits of the VisDP 

(Table 4-6) for each simulation scenario. Also noted on the figures are the percentages of 

working hours of the entire period measured inside the limits of each range. 

 
Figure 4-22. Distribution of desktop illuminance values for the six different simulation scenarios for a 
period of one year. The blue bottom and top of the box represent the 25th and 75th percentile 
respectively; the red mark inside the box is the 50th percentile (the median); whiskers represent the 
minimum and maximum of data points not considered outliersh (red points outside whiskers). Top 
whisker of Scenario ‘1’ is >9000 lx and it is not displayed here. 

                                                
h Points are drawn as outliers if they are larger than q3 + w(q3 – q1) or smaller than q1 – w(q3 – q1), where 
q1 and q3 are the 25th and 75th percentiles, respectively. The value w=1.5 used here corresponds to 
approximately +/–2.7σ and 99.3 coverage if the data are normally distributed. The plotted whisker extends 
to the adjacent value, which is the most extreme data value that is not an outlier [36]. 
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Desktop illuminance distributions during working hours 

 

(Scenario 1) 

 

(Scenario 2) 

 

(Scenario 3) 

Figure 4-23. Simulation scenarios 1-3: Desktop illuminance values distribution during working hours 
for the entire simulation period. The illuminance limits for every range of the VisDP are marked with 2 
identical vertical lines for every range (see Table 4-6 for the range limits). Displayed next to the limit 
lines with the same colour as them are the percentages of working hours of the entire period with 
illuminance inside the limits of each range. 
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(Scenario 4) 

(Scenario 5) 

 

(Scenario 6) 

Figure 4-24. Simulation scenarios 4-6: Desktop illuminance values distribution during working hours 
for the entire simulation period. The illuminance limits for every range of the VisDP are marked with 2 
identical vertical lines for every range (see Table 4-6 for the range limits). Displayed next to the limit 
lines with the same colour as them are the percentages of working hours of the entire period with 
illuminance inside the limits of each range. 

 



NOVEL MODELS TOWARDS PREDICTIVE CONTROL OF ADVANCED BUILDING SYSTEMS AND OCCUPANT COMFORT IN BUILDINGS 

69 

From the results presented thus far, scenarios 5 and 6 appear to achieve same levels of 

visual comfort in this analysis. Nevertheless, a close look to workplane illuminance values 

when comparing the two scenarios against the same weather conditions and time period 

(Figure 4-25), reveals that predictive control strategy (scenario 6) maintains workplane 

illuminance more stable compared to simple control (scenario 5).  

 

Figure 4-25. Desktop illuminance (EC 5; EC 6), Global Horizontal Irradiance (IgHor) and Vertical 
South Global Irradiance (IgvSouth) fluctuation around noon time on a day with intermediate sky 
conditions (September 5th; non heating period) for 2 different EC windows control strategies 
(Scenario 5 and 6).  

 

Workplane illuminance in non-predictive control tends to fluctuate in almost perfect 

agreement with external irradiance levels. This is especially true under constantly varying 

sky conditions where the switching-time inertia of the system is in the same order as the sky 

variations. Matching illuminance levels for the two scenarios occur when Vertical South 

Global Irradiance (IgvSouth) exceeds the upper cut-off limit of solar gains (300 W/m2) and 

EC glazings keep in both cases a steady transmission value of Tv=15%. 
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4.4. Conclusion  

In this section we present the evaluation of the performance of the proposed sky prediction 

EC control algorithm via (limited) field measurements and a parametric study. 

Simulations showed that the elaborated algorithm for the automatic control of EC windows 

can provide better thermal and visual comfort conditions when compared to standard glazing 

coupled with blinds and still exhibit acceptable levels of energy consumption for space 

heating and electric lighting. Permanently tinted windows (solar protection windows) with a 

SHGC=0.38 (the same as the clear state of EC windows) can offer competitive conditions as 

EC windows, exhibiting slightly worse thermal and visual behaviour, especially during days 

when solar gains are high (sunny days) which is expected since they cannot modify their 

transmission and block unwanted solar radiation. 

As it became evident during the comprehensive parametric study, the developed sky 

prediction algorithm does not outperform a simpler closed-loop algorithm based on external 

irradiation with no EC switching-time compensation when considering energy consumption 

aspects. In respect to visual comfort, the two control systems perform similarly when 

analysed for the Visual Discomfort Probability (VisDP). However, under varying intermediate 

sky conditions predictive control strategy minimizes workplane illuminance fluctuation when 

compared to simple control and thus, it provides a more stable luminous working 

environment. 

The short field survey showed that user acceptance of a daylight control system including EC 

windows is severely impaired by the unnatural colour rendering of the room and of the view 

when looking outside. Also, a bigger dynamic range of possible transmissions would be 

positively seen by most users. As it was expected, glare issues were mentioned by some 

users and blinds were employed in these occasions. However, most users are willing to 

oversee any inconveniences or disadvantages when comparing EC windows with a standard 

daylight control system such as blinds, mainly favouring the unobstructed view that EC 

windows offer at all times.  

As discussed before (Section 4.1.5), future field work including long-term measurements of 

the implemented EC control as well as detailed user surveys will allow for the comprehensive 

evaluation of the system by real users, the validation of simulation results and possible 

improvements of the control algorithm.  

Closing, it is our belief that the research presented herein so far has confirmed the 

hypothesis that advanced building systems such as EC windows when integrated into a 

holistic building control scheme (heating, cooling, electric lighting) can create a comfortable 

visual and thermal environment and can be considered as a future replacement to standard 

window glazings with mobile solar shadings or to permanently tinted solar protection 

glazings. 
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5. SEASON MODELLING USING STATE-BASED 
STOCHASTIC DATA-DRIVEN MODELS 

This section presents a novel approach to model the “season” variable used in building 

control systems by using state-based stochastic data-driven models such as the Hidden 

Markov Models (HMMs). In Section 5.1 we provide a comprehensive definition of the variable 

and identify the main factors affecting it. Next, Section 5.2 discusses the ways these factors 

are taken into account in the domain of building control, both in common practice and in 

relevant research. As the presented state-of-the art reveals, there is a scarcity of models 

that properly address all parameters that influence the season variable. This lack of models 

motivated the elaboration of a novel HMM-based season approach in Section 5.3, building on 

the analysis of real-life time series data obtained in the course of an 8-year period in The 

LESO solar experimental building. The key advantages of the proposed model are: it does 

not require a thorough comprehension of the underlying physical process; it is building-

independent and it can be adapted to new or modified building configurations; it 

incorporates information of the building characteristics, the weather conditions and the user 

behaviour (hence, it learns from and adapts to the user preferences). The novel approach’s 

ability to maintain the user’s thermal comfort while preserving energy for space heating is 

explored in Section 5.4 and the first results (obtained through simulations) are encouraging. 

Finally, Section 5.5 discusses several points in relation with the proposed model and 

recommends possible future work. 

Preliminary results on the subject of this chapter have been published by Ridi, Zarkadis et al. 

[87] and they are cited in-text as appropriate. 

5.1. Introduction 

In the domain of Heating, Ventilation and Air Conditioning (HVAC) equipment or solar 

protection systems control, the “season” variable plays an important role. In the very 

context of this thesis, in Section 3.4.2, the season is based on average external 

temperatures over a period of 48 hours and it is used as an input for the control of EC 

windows and blinds. On the simulations presented in Section 4.2, season is used again into 

EC windows and blinds control and it is also incorporated into the heating controller; in that 

later case, it is defined as a two-value variable: The value “heating season” is assigned if the 

average external temperature over the last 7 days is below 10°C and the value “non-heating 
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season” is applied for the remaining hours/days of the year. But, where do these two 

different definitions stem from? And which of the two – if any – is the correct one? 

5.1.1. General definition of the “season” variable 

In building control, season depends heavily on the weather conditions but it is not 

associated with the calendar seasons in a strict way. When only a heating system is present, 

as it is the case with the LESO solar experimental building, two seasons are usually 

considered: heating season and non-heating season. In buildings where full HVAC systems 

are installed, cooling season has also to be considered and three seasons may be 

distinguished: heating season, cooling season, and no heating/no cooling season. However, 

as we explain next, these three seasons can (and should) be considered in all buildings, 

independently of whether a complete HVAC is deployed. By generalising, the three different 

values of the “season” variable can be defined as follows: 

Heating season 

The heating season is defined when heating is needed to avoid that the inside temperature 

is getting lower than the optimal user comfort temperature. During this period, the available 

heat gains (i.e. passive solar, appliances, persons) are always welcome and they allow for a 

reduction of the heating power provided by the HVAC equipment. 

Cooling season 

On the other hand, the cooling season is the season when cooling is required to maintain 

the internal room temperature inside the occupant’s comfort limits. This can be achieved 

either by mechanical means (HVAC) or by other techniques such as passive night cooling or 

protection against solar gains (i.e. EC windows, blinds). During this period, the heat gains 

are never welcome (since they increase the cooling load) and they must be rejected. If the 

structure of the building permits so (e.g. heavy construction with significant thermal mass), 

“cold” should be stored in the heavy parts of the building (i.e. heavy walls or slabs) during 

the relatively cooler periods. 

Intermediate season 

While in the other two seasons there is a clear demand for either heating or cooling, the 

intermediate season (mid-season) is defined as the period where well-designed buildings are 

neither heated nor cooled actively by an HVAC system. Passive measures (i.e. accepting or 

rejecting solar gains, opening or closing the windows, night cooling) should be enough to 

regulate the inside climate and maintain the occupants’ thermal comfort. Heavier 

constructions hold again an advantage because the effect of short periods of relatively hot 

weather or relatively cool weather can be attenuated by the heat storage in the thermal 

mass of the building. In the extreme (hypothetical) case where a building has no thermal 

mass whatsoever, the mid-season is either completely absent or severely shrunk and 
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heating and cooling may be used successively (often in the same day) to preserve thermal 

comfort. 

5.1.2. Factors affecting the “season” in buildings 

As it becomes readily evident from the definitions given above, weather conditions (i.e. 

outside temperature ௘ܶ௫௧ or solar irradiation) is not the only factor which influences the 

“season” variable in building control. Season is also depended on the design characteristics 

of the building (heat transmission coefficient of the envelope, effective thermal mass, 

passive solar gains penetration and storage capability) and its use. For instance, in the case 

of an office building with an important number of appliances such as computers and 

extensive use of electric lighting, the available internal heat gains can shorten significantly 

the heating season but they can also extend the duration of the intermediate or cooling 

seasons. 

Regarding the building construction characteristics, they also influence the duration of the 

seasons and the switching from one season to the other can be longer or shorter. As 

mentioned before, in the worst case scenario, poorly-designed buildings would require 

during the same day heating (during the morning) and cooling (during the afternoon) 

following closely the outside temperature variations. This (rather extreme) situation can be 

observed when there is an absence of enough thermal storage in the building which, in 

normal conditions, provides the necessary thermal inertia against external temperature 

fluctuations. To describe one building’s thermal storage capacity, thermal mass (or thermal 

capacitance ܥ) alone is not a sufficient indicator; even in cases where a construction has a 

relatively small thermal mass, if the building envelope has a very low heat transmission 

coefficient then it would allow for a satisfactory temperature smoothing. A good indicator for 

the quality of the building for absorbing transient heat gains is the time constant of the 

building ߬, which is related to the response of a building to outside temperature changes 

[88] and it is defined as follows: ߬ = ஼ுಽ	, (5-1) 

where ܥ	ቀܹℎ ൗܭ° ቁ is the effective heat capacity of the building and ܪ௅	൫ܹ ൗܭ° ൯ denotes its 

overall heat loss coefficient (See Section 5.3.3). A heavy construction has a longer time 

constant and therefore the passage from one season to the next requires more time than in 

a lightweight one. 

Concerning the succession of “seasons”, it should be noted here that the passage from one 

season to the next it does not follow the “common sense”, calendar-like season sequence 

shown in Figure 5-1(a), where seasons are succeeding one another in a periodic circle. 

Instead, for instance, a mid-season period in the spring can be followed by the return of a 

short period of heating season before switching directly to the cooling season after an 

abrupt rise in external temperatures. Figure 5-1(b) illustrates this sort of possible transitions. 
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(a) 

 
(b) 

Figure 5-1. Season succession over the course of one year in (a) the classical, calendar definition of 
the season and (b) in season definition in building control. 
 

 

Another factor that has an important impact on the aforementioned season definition orbits 

around the operation of the buildings by their users. Identical buildings in the same location 

but each having a different use integrate different kind of equipment (appliances, etc.), 

which in return, as discussed earlier, can prolong or reduce the duration of seasons. But 

even inside the same building, seasons can differ, for example, between two identical office 

rooms because of their users: as it is well established in related bibliography (i.e. [14; 12]), 

the perception of thermal comfort is strongly subjective and therefore the notion of 

providing a “comfortable indoor temperature” can greatly differ from person to person. Last, 

building occupants tend to behave differently under a given environment and this different 

behaviour can affect the season variable: a more eco-conscious person will be likely inclined 

to control the available building systems in a way that, for instance, solar heat gains are 

totally rejected during the cooling season and totally accepted in the heating season period. 

5.2. Current practice and research status 

In the previous section we set the definition and the possible values of the “season” variable 

in the context of building control and we identified the key factors that have a direct impact 

on it (weather conditions, building construction characteristics and use). In this section we 

present which of these factors and in what way are taken into account in the domain of 

building control in common practice as well as in the relevant research. 

5.2.1. Calendar definition of season 

As show in several studies [58; 61], the calendar definition of the season variable is still in 

widespread use as far as the control of heating systems is concerned. In this definition, the 
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heating season is fixed between two, rather arbitrarily, chosen days in the year based on the 

empiric knowledge of outside climate where “normally” the building is heated and the 

building users do not complain about feeling too cold in the building. For a building located 

in a temperate climate zone (i.e. Switzerland), one could define the value of the variable as 

being “heating season” between the 1st October and the 31st of May. In different climate 

zones (i.e. Mediterranean or North European), different values must be of course 

considered. During the heating season, the heating is turned on the entire period and 

rudimentary control strategies can be present depending for instance on a threshold of the 

outdoor or indoor temperature [61; 89], and including possibly a night setback or night cut-

off. On office buildings a fixed-schedule operation based upon anticipated occupancy and 

use of the building is usually applied [90]. Similar considerations are taken into account for 

the cooling season. 

In their simplicity, these control strategies that base their operation on fixed-term schedules 

have important drawbacks. Risk of overheating and wasting heating energy is eminent when 

the control strategy is not good; likewise, instances of inadequate heating can arise when 

cool periods occur out of the arbitrarily set heating period. Additionally, heating systems that 

operate in standby mode even when they are not needed, they waste energy as all systems 

or appliances when in standby. And when comparing these control schemes against the ones 

based on the season definition we attempted earlier in this chapter, we notice that the 

building’s characteristics are completely ignored (at least explicitlya) while the weather 

conditions and the building’s use are taken into account only partially (external temperature 

and fixed-occupancy schedules). 

Although advanced control systems are being proposed for several decades (as we will see 

next), their adoption in practice has been slow and hindered by mainly the requirements in 

hardware and software that the majority of these control systems require and secondly by 

the lack of properly trained commission engineers able to setup these rather complex 

systems [91]. 

5.2.2. Average outdoor temperature approach 

In this approach, season definition is based on the average temperature over a defined 

number of n past days. The number of days should be chosen to reflect the time constant ߬ 
of the building, which ranges typically from 2 to 10 days. A temperature threshold is 

considered, taking into account the heating setpoint temperature, the normal free heat 

                                                
a Setting fixed-time schedules for the operation of building systems may actually incorporate an approximate 
empiric consideration of the building’s response curve to alternating weather conditions (i.e. the case of an 
attentive superintendent). However, the building’s characteristics are not used explicitly as variables in the 
said controllers. 
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gains, and the insulation characteristics of the building. This is an improvement compared to 

the calendar-based definition, because the building characteristics are also taken explicitly 

into consideration. Automatic control systems including that feature are not common, but 

they have been investigated by researchers, for instance for the control of heating and 

blinds [33; 29; 92]. This type of control was also used in three instances in the framework of 

the present thesis (Sections 3.4.2, 4.2 & 5.3.8).   

5.2.3. Average outdoor temperature and solar radiation approach 

This is an improvement over the previous definition; solar gains are additionally taken into 

account. At the same time, this definition requires some sort of prediction of the solar gains 

which is the main difficulty when implementing control schemes based on this approach. A 

recent study by Oldewurtel et al. [93] which uses hourly weather predictions over the next 

three days coupled with a Stochastic Model Predictive Control (SMPC), confirmed the high 

performance potential of such control strategies. Likewise, such strategies are on the 

forefront of research and application, forming the current state-of-the art on the building 

control domain, as presented next. 

5.2.4. State of the art 

Fuzzy Logic 

One important tool for elaborating smart control algorithms is Fuzzy Logic, which allows to 

express domain knowledge as rules and represents facts as fuzzy sets expressing linguistic 

knowledge (for instance the terms “very cold”, “cold’’, “medium”, “warm” or “hot” can be 

employed to specify temperature) [94]. Dounis et al. [95] presented a living space thermal 

comfort control based on Fuzzy Logic. The thermal comfort is expressed in terms of the PMV 

(Predicted Mean Vote) comfort index [12], which is together with the outdoor temperature 

the only input to the system. The system has three actuators: heater, cooler and natural 

ventilation (window opening). The fuzzy system was tested on a model for two different 

climate conditions, in summer and in winter. The results show that the system is able to 

keep the PMV level within the predefined range. However, no statement is made about the 

energy efficiency or expected energy saving of the system. A similar system was proposed 

by Calvino et al. [96], which tries to keep the PMV at a certain level by controlling the speed 

of the heating fan. Tests took place in a real room during wintertime; the system performed 

well, but again no information was provided given about possible energy savings. 

For solar shading, Fuzzy Logic is for instance used in the system proposed by Trobec Lah et 

al. [97] for controlling a roller blind in respect to the lighting environment in the building. 

The input information of the system is: internal illuminance, global and diffuse solar 

radiation, and current position of the roller blind. The thermal comfort and the building 

characteristics are not considered by the system. Kolokotsa et al. [98] presented a fuzzy 

logic controller for indoor thermal, visual comfort and air quality based on a EIB building bus 
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and Matlab. The fuzzy logic controller is fed with the following information: PMV, outdoor 

temperature, heating or cooling requirement, window opening, indoor illuminance, status of 

electric lighting and solar shading and it generates as an output the electric lighting and 

solar shading position. The system was tested during a short time period in an experimental 

chamber of 2 m3 equipped with various sensors and results showed good performance in 

term of keeping the target values. No indications on energy savings were available. More 

recently, Kurian et al. [99] developed a combined system for controlling shading devices and 

electric lighting. Their system consisted of three fuzzy logic controls (glare, visual comfort, 

and energy effectiveness when user was absent), and an adaptive neuro-fuzzy inference 

system for prediction and lighting control. The control system has been compared with a 

simple on/off scheme and reported energy savings were between 5% and 60%. Last, in the 

framework of the present thesis (Section 3.4.2), fuzzy logic has been used to control EC 

windows, blinds and electric lights by using the available instantaneous weather information 

(Irradiances and illuminances, external temperature) and building state (room occupancy, 

user wishes/actions on building systems, workplane illuminance, and internal air 

temperature). 

Genetic algorithms and genetic rule selection 

As stated previously, fuzzy logic is based on linguistic rules established by experts. However 

in certain situations, experts might fail to accurately define at once the rules with optimal 

performance. The optimization of these rules is known as tuning and it consists of adjusting 

the connexions between the rules after their establishment. Genetic algorithms are used to 

optimize progressively the rule bases in a three step approach: evaluation, selection and 

alteration/mutation. Over the generations, better and better solutions appear, increasing the 

quality of the rule base versions. In the domain of HVAC control, Alcala et al. [100] proposed 

the use of weighted linguistic fuzzy rules in combination with a rule selection process where 

the main criteria was the energy efficiency, while maintaining the required level of thermal 

comfort, the indoor air quality, and the system stability. The control system was compared 

with a simple on/off strategy and the results showed energy savings of 14% with the rule 

base optimization as compared to a 9% energy saving without the optimization. In the field 

of shading device control, Guillemin and Morel [33; 92] applied genetic algorithm for the 

optimisation process of a blinds and electric light controller which adapts to the user wishes 

and it is optimized for energy savings when the user is not present. The controller allowed 

for 26% of energy savings when compared to a manual system, whereas when compared to 

an non-adaptive algorithm, it consumed slightly more energy but it achieved a 5% rejection 

rate from the users as opposed to 25% of the non-adaptive controller. 

Artificial neural networks 

Artificial neural networks (ANN) are mathematical models replicating the biological neural 

networks. An ANN is an interconnected group of artificial neurons, and it processes 

information using a connectionist approach for computation. Basically, an ANN is an adaptive 
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system that changes its structure and parameters based on external or internal information 

that flows through the network during the learning phase. The corresponding models being 

non-linear, ANN can be used to capture complex relationships between inputs and outputs, 

or to find patterns in data.  Yang et al. [101] developed an ANN for predicting the optimal 

start time of the heating system in a non-residential building. For training the ANN, a 

building simulation program was used to collect training data for various conditions. The 

following input variables were used: indoor temperature, varying rate of indoor temperature, 

outdoor temperature, varying rate of outdoor temperature. From these factors, the start 

time of the heating system was predicted by the ANN. Morel et al. [59] used an ANN for the 

thermal model of a building to optimize the sequence of control commands for the heating in 

a time horizon of 12 hours. The model was progressively adapted to the real building 

characteristics, using the data measured by sensors. 

Predictive optimization algorithms 

These algorithms allow the optimization of a future control sequence over a given time 

horizon, using a model of the building and building services to be controlled and an 

algorithm to optimize a “cost function”. Dounis et al. [95] use a thermal model of the 

building and a dynamic programming optimization process. In this case, the cost function is 

a weighted sum of the energy consumption and thermal discomfort, both factors being 

considered as inconveniences. To use such an optimization algorithm, the future evolution of 

the boundary conditions (weather conditions) within the time horizon has to be provided. In 

this controller, this prediction was using an ANN. In research carried out by Nygard Ferguson 

[61], the prediction of boundary conditions was done by considering the evolution of the 

weather within the time horizon modelled by a Markov chain. 

Stochastic machine learning algorithms 

Markov chains or Markov Models are stochastic approaches that have been used in research 

to identify parameters connected to the buildings use such as presence and activity patterns 

[14] or appliance recognition [102]. Gaussian Mixture Models (GMM) and Hidden Markov 

Models (HMM) are state-based stochastic approaches that can be used for machine learning 

and modelling of complex systems. Dong et al. [90; 103] proposed a building controller, 

which integrates local weather forecasting (temperature, solar radiation and wind speed) 

with occupant behaviour pattern detection (number of occupants and occupancy duration) 

into a real-time Model Predictive Control (MPC) design. In this context, GMM are used for 

the categorization of the changes of the selected features. These categorizations are then 

used as the observations input vector for an HMM which estimates the number of occupants. 

Machine learning algorithms coupled MPC design were further explored by Domahidi et al. 

[91] where building controllers were constructed from building data through a process that 

minimizes the number of input data (i.e. sensors) needed and their performance is found to 

be building-independent when tested in different building types.  
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From the preceding literature review we can conclude that in the domain of intelligent 

building control there is a plethora of advanced solutions and techniques available in the last 

decades. However, according to the definition of “season” variable given in the beginning of 

this chapter, there are three main factors that an ideal controller must be based on:  

• Building characteristics relate to design and the construction of the envelope 

• Present and anticipated weather conditions (i.e. outside temperature and solar 

irradiation) 

• User preferences, user behaviour and building use. 

By looking closely at the relevant research, there are few instances where all these factors 

are properly addressed. This scarcity of “all-inclusive” models is the main driver that propels 

our research towards a new comprehensive season model.  

5.3. Methodology 

The approach we follow herein builds on data mining and machine learning processes where 

the developed model is learnt from the analysis of time series data. The advantages of this 

approach are several: data-driven techniques and self-learning algorithms do not require a 

comprehension of the underlying physical process; the model can be adapted to new or 

modified building configurations (making it building-independent) as soon as new 

observation data are available; model incorporates information for the building 

characteristics, the modus operandi of its users and some statistical information concerning 

the dominant weather conditions [87]. 

5.3.1. Model framework (Hidden Markov Models) and definitions 

In specific, we use HMMs which are state-based stochastic approaches. Historically they 

have been applied in many domains such as speech recognition, handwriting recognition, 

biometric authentication and financial time series analysis [104; 105], but in the later years 

they have been increasingly used in building control, principally in the field of occupant 

pattern detection [90; 106] and appliance identification [107]. HMMs offer a robust 

probabilistic framework to model time series, where the system being modelled is assumed 

to be a Markov process with hidden states (unlike the standard Markov models, where states 

are directly visible). In HMMs, the output tokens are visible and dependent on the (hidden) 

state. For instance, when modelling the season variable we “cannot see” the state in which 

the variable is found (heating, cooling or mid-season) but the parameters of the model are 

visible (e.g. external temperature or user actions with the blinds). To the best of the author’s 

knowledge, this is the first attempt to model season using HMMs. 

Following on the example given, we consider an HMM where the “season” variable can take 

the value of one the following 3 hidden states: 
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• Heating season (HS) 

• Cooling season (CS) 

• Intermediate season or Mid-season (MidS) 

The exact definition of the 3 hidden states is given in the introduction of this chapter 

(Section 5.1.1); the variable is considered “ergodic”b and the possible transitions from one 

state to the next are shown in the Figure 5-1b. 

5.3.2. Observations (features) vector and data mining 

To be able to model and identify “season”, a feature vector ܺ = ,ଵݔ} ,ଶݔ … ,  ௡} with nݔ
different components is chosen. The components ݔଵ, ,ଶݔ … ,  are the system variables which	௡ݔ

combined can give an indication of the current (hidden) state. As explained previously, there 

are 3 main factors that affect season and the following selection of features reflect all three 

of them. Selection of course is always limited by data availability. In this study, we involve 

the signals from HVAC, window opening, window blinds, external and internal temperature 

and solar irradiation [87]. Data used comes from the LESO database which includes over 

eight years of multiple sensor and actuator data recordings. More details concerning the 

database can be found in Section 2.2.2 as well as in an article by Zarkadis et al. [28]. 

Vector components 

The feature vector has n=8 components and consists of the signals of 7 actuators and 

sensorsc and of one calculated parameter (߬). The signal of an 8th actuator, the heating 

power switch, is used as the “ground truth” for the value “HS” of the season and it verifies 

the outcome of the model. ܺ = ൛ ௘ܶ௫௧, ௜ܶ௡௧,ܹ݅݊݀ݓ݋, ,݈݀݊݅ܤ ,௚௛ܫ ߬ൟ  (5-2),  where: 

 is the instantaneous outside temperature and it is one of the two parameters ݐݔ݁ܶ •

that provide information on the weather conditions.  

 .is the internal temperature ݐ݊݅ܶ •

 gives the information about user interactions with the windows. This ݓ݋ܹ݀݊݅ •

information can be interpreted in (at least) two ways: the opening of windows is 

                                                
b In this context, it is meant that any state can be reached from any other state at any given step (Figure 
5-1b).  
c The components “blinds” and “window actions” are constituted from the output of 2 actuators (and 2 
sensors respectively) each: there are 2 blinds in the room, one for the anidolic window and one for the lower 

part as well as two openable windows. ܶ݁ݐݔ, ,ݐ݊݅ܶ  .ℎ correspond each to the output of a separate sensor݃ܫ

Hence, 7 actuators/sensors in total provided data to the observation vector. 
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either linked to the need of air exchange between inside and outside for sanitary 

reasons or to overheating (or both). Measurement of inside pollution may allow to 

distinguish between the former and the need to exchange inside air and cooler 

outside air, which is a clear indication of overheating risk and therefore of being 

currently in the cooling season.  

 denotes the user actions with the available blinds. Their use may also be ݈݀݊݅ܤ •

triggered by two situations: daylighting glare (during any season) or protection 

against overheating (during CS only).  

• I୥୦ represents the instantaneous global horizontal solar irradiance and it is the 

second parameter that gives information on the weather conditions.  

• ߬ denotes the time constant of the building, as it is defined in Section 5.1.2 and is 

the parameter that gives valuable information on building characteristics. It does not 

derive from recorded data but it is calculated as shown next. 

5.3.3. Building’s time constant 

As mentioned earlier, a good indicator for the quality of the building for absorbing transient 

heat gains is the time constant 	߬ of the building, which is related to the response of a 

building to outside temperature changes [88] and it is defined as follows: ߬ = ஼ுಽ		 (5-3) , 

where ܥ	ቀܹℎ ൗܭ° ቁ is the effective heat capacityd of the building and ܪ௅	൫ܹ ൗܭ° ൯ denotes its 

overall heat loss coefficient. It’s inclusion into the elaborated model is important for the 

portability of the model in other buildings or in unseen configurations. The overall heat loss 

coefficient is calculated using the expression: ܪ௅ =෍ ௝ܷܣ௝ + ௣ܸ௞௝ୀଵܥߩ , (5-4) 

Where ܷ݆ is the overall heat-transfer coefficient (W/oK m2), ݆ܣ is the outdoor surface (m2) of 

each of the ݇ external building elements of the envelope (i.e. exterior walls, roof and 

fenestration); ߩ (kg/m3) and ܥ௣ (J/kg oK) are the density and the specific heat of the air, 

respectively, and ܸ denotes the volume-flow rate of the infiltration and ventilation air (m3/s). 

The total heat capacity of the building can be expressed: 

                                                
d The effective heat capacity C relates to the ability of the building to smooth down the diurnal (short-term) 
temperature variations and it is only a fraction of the building’s total heat capacity C′, which expresses the 
long-term thermal storage capacity of the building due to its entire mass. The relation connecting the two 
can be written as: C = a଴C′, where a଴ ∈ (0,1] is a correction coefficient. 
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′ܥ = ∑ ௜ܸߩ௜ܥ௜௟௜ୀଵ , (5-5) 

where ௜ܸ (m3), ߩ௜ (kg/m3) and ܥ௜ (J/kg oK) are the volume, the density and the specific heat 

of each of the ݈ different structure elements of the building inside of the insulation layer (i.e. 

slabs, walls, furniture, etc.) [108].  

This is the generally formulated expression of the building time constant. However, 

Antonopoulos and Tzivanidis [108] claim that “an experimental investigation, as well as 

comparisons with more elaborate time-constant models, showed that [the above equations] 

lead to overestimations of ߬ exceeding 100%”. Reddy et al. [109] use the presented 

calculation method but they point out that it is based on heating losses and not on cooling 

load; therefore small differences may occur when one attempts to use it also for cooling load 

estimation. Antretter et al. [110] use the above equations with the addition of 2 coefficients, 

but this transformation was adapted to “continuously heated buildings (heated more than 12 

hours per day)”. 

Following the relevant bibliography and based on the above equations, we calculated the 

LESO time constant, for which we have the empiric knowledge of being a heavy building 

with an increased time constant that is approximately 7 days. We found that the use of a 

coefficien ܽ଴ = 0.5 corresponds well to the ground truth and it confirms the claims of 

Antonopoulos and Tzivanidis [108] for a 100% overestimation resulting from the calculations 

above. Subsequently, the final expression for the calculation of the time constant becomes: ߬ = 0.5 ஼ᇲுಽ	  (5-6) 

It should be noted however that this expression is valid for the LESO building and is 

probably accurate to a certain extent for rather heavy building constructions. I should be 

used with caution to other buildings. 

5.3.4. Data pre-processing 

Before their inclusion into the HMM toolbox, data had to be prepared and structured 

accordingly. Four main data types were structured: training sets (cTr), testing sets (cTs) and 

their corresponding label vectors: labTr for the training data sets and labTc for the testing 

data sets. Both training and testing sets are clustered into three categories that correspond 

to the three different hidden states we attempt to identify: HS, CS and MidS. The label 

vectors are used as indexes which indicate the category of each set. Although it may seem 

counter-intuitive, labelling the test sets is required by the HMM toolbox in order to output 

the identification accuracy of the resulted model in the confusion matrices (see Section 

5.3.6). 
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The training and testing sets are structure arrayse that group related data using data 

containers called fields. They contain D observations. Every observation O in both training 

and test set has to be an element “c” of the structure and access to the data of the structure 

is possible through the use of dot notation of the form c1(i).c. The observations are allowed 

to have different lengths (T) but they must have the same dimensionality (P). Hence, every 

observation is a matrix of ܲ × ܶ dimensions. In this case, the observations have always P = 

8 dimensions (exactly as the components of the observations vector; see Section 5.3.2). 

Their length varied from about 800 to 1800, depending on data granularity (see next). 

Before the preparation of data into data structures of testing and training sets, the 

observation vector data had been extracted from the original MySql database (Section 2.2.2) 

and filtered out. The filtering consists of: 

• Excluding periods of time where data recording has been problematic (i.e. 

interruptions in recording due to data logging malfunction). 

• Homogenization of the data. When multiple values of a recorded variable exist per 

hour (i.e. in the case of Igh), an averaged value was considered over a fixed time-

step. Multiple training/testing cycles were attempted with data averaged down to 

fixed time-steps of 1h, 30 and 15 min (which are sufficient when thermal comfort is 

regarded). 

5.3.5. Labelling rules of data sets 

As described in section 5.3.4, labellingf of the training and testing sets had to be performed. 

The following rules were applied to assign one of the 3 possible hidden states to the 

observations: 

• HS: When heating has been switched on over the last 24h. 

• CS: When തܶ௘௫௧ >  over the last 24h or if the windows have been kept open for ܥ25°

more than 15 min over the last 1hg. 

• MidS: All the remaining time series. 

                                                
e Matlab “struct arrays” 
f = spitting data into three categories (classes) that correspond to the three different hidden states we 
attempt to identify: HS, CS and MidS. 
g When the outside temperature is too high, windows are likely to be kept closed; on the other hand, when 
they are opened up for a brief time only (15 min), we consider that the user wants to exchange the air of the 
room with fresh air from outside, not to deal with overheating risks. 
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5.3.6. Model training and testing 

After pre-processing, data structures were ready to be trained. An HMM toolbox in Matlab 

with a comprehensive library has been built in the framework of the Green-Mod research 

project by A. Ridih. Therefore, it should be noted that the work presented in this subsection 

describes work not performed by the author of this PhD thesis; however, and on the 

grounds of completeness, a general description of the process and of the main algorithms 

used is provided herein. 

The training of the HMMs consists in the creation of a transition matrix and the emission 

matrix, which is expressed by the Sigma, the Mean and the Weight matrices (see definitions 

next). For every class, a model is created characterized by those matrices. 

In specific, training is composed of three main phases: 

• Initialization of the transition matrix 

• Initialization of Mean, Sigma, PComp (weight) matrices 

• Convergence of the model 

For the first phase, we initialize the transition matrix having N states (including the first-

entry and last-exit, which are non-emitting). A simple example with an ergodic variable 

(N=4) is given in Table 5-1. In this example, we have 2 “real” states plus the start and end 

state (4 in total). When starting, there is a 0.5 probability of transiting to each of the 2 

states. When we are in state 1 or 2, 3 transitions with the same probability (0.33) exist: we 

can switch to 1, 2 or exit (end). Once ended, we cannot return back. 

 

 Start 1 2 End 

Start 0 0.5 0.5 0 

1 0 0.33 0.33 0.33 

2 0 0.33 0.33 0.33 

Table 5-1: Transition probability matrix of an ergodic variable (N=4). 

 

For the second phase of the initialization of Mean, Sigma, PComp (weight) matrices, we 

proceed as follows: 

1. An initialization function takes as input all the training observations of a specific 

model, the number of states N and the vector of Gaussians K. As a first step, a 

                                                
h PhD candidate specialized in data-driven machine-learning algorithms in the University of Applied Sciences 
of Western Switzerland (HES-SO), Fribourg, Switzerland. 
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vector containing all the set of points of all the observations associated to a specific 

state is created. 

2. Then, we create a number of vectors equal to the number of states. For every 

vector we have a series of points in a P-dimensional spacei. For those points, we 

perform k-means clustering, using as a number of clusters the number of Gaussians 

K. That way, we use this clustering as a starting configuration for the next step. 

3. We then use the Expectation-Maximisation (EM) iterative algorithm for computing 

the distribution of the Gaussian Mixture Models. A GMM is a parametric probability 

density function computed as a weighted sum of Gaussian component densities 

[107]: 

(௜ܯ|௡ݔ)݌ =෍߱௜ܰ(ூ
௜ୀଵ ,௡ݔ (௜ߑ௜ߤ   (5-7), 

where ݔ௡ is the feature vector, 	ܫ is the number of mixtures,	߱௜ is the weight, ܰ the 

Gaussian densities, ߤ௜	is the mean (P x 1 vector), ߑ௜ is the (P x P) covariance matrix 

and ܯ௜ is the model for the Gaussian mixture	݅. It should be noted that the following 

constraint is satisfied: 

෍߱௜ = 1ெ
௜ୀଵ  

Next, we assume that the selected features of the observation vector are not 

correlated. That way we simplify the GMM computation by using diagonal covariance 

matrices. An additional assumption regarding the independence of the 

measurements used, allow us to compute the global likelihood score ௜ܵ for the 

sequence of our feature vectors: ܺ = ,ଵݔ} …,ଶݔ ,  ,	{௡ݔ
given a model ܯ௜ , as follows: 

௜ܵ = (௜ܯ|ܺ)݌ =ෑ݌(ݔ௡|ܯ௜)ே
௡ୀଵ   (5-8) 

To compute this expression and to fit a mixture model to a given set of training 

data, we call the EM algorithm [111]. For each state of the season variable, all data 

                                                
i P is equal to the number of the components of the observations vector. 
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sets labelled with that state are used to compute the model ܯ௜. Since the EM works 

in an iterative way, we use the starting configuration of the k-means clustering 

discussed above in (2) as the starting point (as initial values of the Gaussian 

distributions ܰ(ݔ௡,  ௜)). Assuming equal priors, the likelihood performs theߑ௜ߤ

classification according to the Bayes rule (see also 6.2.3).   

4. Following the implementation of the EM algorithm, we obtain K Gaussians. Inside a 

specific model, we have a certain number of states; we make the hypothesis that 

the number of Gaussians K is constant within the states: we have the same number 

K of Gaussians for every state in the same model. In this way we build the following 

matrices: 

• MI (p,i,k) is the matrix of means. It is a 3-dimensional matrix where p is the 

dimension (P the total), i is the state (out of total N) and k denotes the Gaussian 

(K in total). 

• SIGMA (p,i,k) is the matrix of standard deviations. It is also a 3-dimensional 

matrix (annotations as before). 

• PComp (i,k) is the weight in the mixture of Gaussians. It is a 2-dimensional 

matrix (with annotations as above). It is not depended on the dimension; hence 

p is absent. 

Regarding the EM algorithm, it calculates a diagonal matrix. For this reason the Ml 
and the SIGMA matrices are of the same dimension. 

In the next phase, the convergence of the model is computed by calculating the probabilities 

and the alignment through the Viterbi algorithm, through the following steps: 

• Verifying the presence of enough observation vectors to initialize all states. 

• Calculation of the probabilities and the alignment using the Viterbi algorithm. 

• Re-estimation of HMM (re-estimation of transition matrix). 

The Viterbi algorithm is a dynamic programming algorithm used to find the best state 

sequence (among hidden states) that results in a sequence of observed events (our training 

data). We test all the models against the test data sets and we search the most probable 

among the models. Along with the observation, we take as input the three matrices that 

derived earlier from the training as well as the transition matrix which had been initialized 

during the first phase. Then, we test a specific observation {Ox} using the Viterbi algorithm, 

which computes the alignment and the associated probability (best score). This time we take 

into account only the probability in order to find the most probable model. We create a 

vector of probability, one for every model, and we chose the most probable. Rabiner [112] 

describes this process as follows: 

If ܳ = ,ଵݍ} ,ଶݍ … , ܱ is the best single state sequence for a given observation sequence {்ݍ = { ଵܱ, ܱଶ, … , ்ܱ}, we define for the model λ as ߜఛ(݅) the best score (highest probability) 

along a single path at time t (accounts for the first t observations) that ends in state Si:  
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(݅)ఛߜ = max௤భ,௤మ,…,௤೟షభ ܲ ଶݍଵݍ] ∙∙∙ ௧ݍ = ݅, ଵܱܱଶ ∙∙∙ ௧ܱ|(5-9)  [ߣ 

By induction: 

(݆)ఛାଵߜ = [max௜ [ఛ(݅)ܽ௜௝ߜ ∙ ௝ܾ( ௧ܱାଵ)   (5-10), 

where ܽ௜௝ denotes the state transition probability between states i and j and ௝ܾ represents 

the emission probabilities of state j. To get the actual state sequence, we keep track of the 

argument which maximised (5-10), for every t and j. 

The Viterbi algorithm is executed for every observation and finally the confusion matrix is 

given as output. The confusion matrix presents the classification performance for every 

hidden state of the HMM on the test data sets. Given that the test data are not imperatively 

balanced among the classes, the confusion matrix is constituted by the number of 

observations and not by their percentage. However, to improve presentation and to easy 

comparisons between models, the numbers in the matrix (observations correctly identified) 

are divided by the population of every class so that the accuracy per class expressed in 

percentages is presented, like in the Table 5-2 below.  

Confusion matrices 

In the end of each training/testing campaign, we obtained the confusion matrices which 

summarize the identification accuracy of the developed HMM-based season model. As also 

reported by Ridi et al. [107], best results are obtained with a number K of Gaussians greater 

than 15. However, no significant differences were found between observation vectors with 

different granularities (15, 30 min and 1-h averaged data) concerning the same 

training/testing periods. Multiple tests revealed that a training period of 6 to 9 months of 

recorded data is necessary to produce a satisfactory model. The best results obtained are 

presented in Table 5-2 and show that HS was identified with an accuracy of 91% followed 

by CS and MidS.  

 HS CS MidS 

HS 91 0 9 

CS 0 85 15 

MidS 19 12 69 

Table 5-2: Confusion matrix showing accuracy per class (in percentages). Results were obtained with 
9-month training data with 1-h granularity for the GMMs with 17 mixtures.  
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“Higher accuracy is observed when identifying heating or cooling seasons, while it drops 

significantly for the intermediate season. This is expected behaviour as intermediate season 

is not a crisp state and it is far more hard to define and thus to correctly identify. Also, the 

absence of active cooling in LESO building adds a further difficulty in the validation of our 

model, as it would have provided us with an (accurate) indication of the cooling season” 

[87]. 

5.3.7. Model simplification: Feature selection 

The model that was obtained through the process above it is a satisfactory first attempt to 

model season using HMMs. However, two questions arose after our first results: 

– Is HMM-based season modelling just a purely academic exercise, or can it be 
used in the building control domain? 

– If yes, can we simplify the observation vector and make our model applicable 
in buildings where a limited set of sensors/data is available?  

To answer the first question, it has been decided that simulations would be the logical first 

step to evaluate the model’s performance. The use of the developed model “as is” for the 

simulations (i.e. keeping the observations vector intact), it requires the utilisation of 

synthetic values for user’s actions on windows and blinds, either based on simple occupancy 

heuristic rules or on stochastic approaches, such as the discrete-time Markov process 

proposed by Haldi [14 pp. 39-102]. The necessary modules for windows and shading devices 

would then have to be built and incorporated in to the Matlab simulation code (see next 

Section) or a suitable simulation tool, such as IDA/ICE, would have to be used and 

customized accordingly. However, when also considering the second question above, it was 

decided to reduce the terms of the observation vector so it can be used in building 

configurations where only a minimum set of sensors is installed. The new reduced 

observation vector is comprised of 3 terms:  ܺ′ = ൛ ௘ܶ௫௧, ,௚௛ܫ ߬ൟ. (5-11) 

The indoor temperature too was eliminated from the observations for practical reasons 

related to the simulationsj; however we feel that it should probably make sense to be 

included in a future final version of the model. 

                                                
jOn data recorded in real buildings, T୧୬୲ is usually readily available and, as such, it can feature in the 
observation vector fed to the HMM algorithm. However, in (dynamic) thermal simulations it is calculated at 
every time step given a number of different parameters (i.e. Tୣ ୶୲, etc.). The inclusion of T୧୬୲ in the simplified 
model, it would have required the “live” connection between the thermal simulation code and the HMM 
season code at every iteration instead of just once per simulation run (see 5.3.8), which would be 
impractical. 
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The initial selection of the seven features that constituted the original observations vector 

was based on an “expert’s knowledge” decision. The subsequent elimination of features 

from the observations has been performed on the grounds of facilitating the simulation 

process and catering to sensor-poor buildings. To avoid subjective or even erroneous 

decisions, a formalised approach for feature selection (and reduction) could have been used. 

For instance, Domahidi et al. [84] utilize the GML AdaBoost Matlab Toolbox to assign 

weighting factors to all available features; future selection is performed by selecting the 

sensors or actuators that contribute to the highest weighting factors. In the framework of 

the Green-Mod project mentioned earlier, the developer of the HMM algorithm will likely 

include a module for a feature selection in the future. 

Confusion matrix of the simplified model 

Following the feature elimination and the creation of the new observation vector, multiple 

training/testing campaigns were performed. Best results are obtained with a number K of 

Gaussians greater than 21. This time, only 1-h averaged data were used for training/testing. 

The best results obtained follow the pattern of the first model where HS is much more 

accurately detected (83%) than CS and MidS (Table 5-3). General accuracy however is 

reduced when compared to the first model (Table 5-2), with CS being particularly affected 

(15% less accurate than before) while both HS and MidS are 9% less accurate when 

compared to the first model. 

 HS CS MidS 

HS 83 1 16 

CS 1 72 27 

MidS 22 15 63 

Table 5-3: Confusion matrix showing accuracy per class (in percentages) for the simplified modes (3-
feature observation vector). Results were obtained with 12-month training data with 1-h granularity for 
the GMMs with 21 mixtures.  

5.3.8. Simulations 

To assess the efficiency of the newly developed model (the simplified one) when it is 

integrated into building control, we ran simulations of different control schemes and 

construction types against the varying meteorological conditions of one year. The 

simulations (presented next in Sections 5.4.1 and 5.4.2) employed the same nodal thermal 

model described in Section 4.2.2 and focused on the energy consumption for space heating 

and on the estimation of thermal comfort.  

The Matlab code was further expanded to include a new module for calculating the building’s 

time constant discussed earlier which is fed as an input in the “season’s” observation vector 

(and thus taken into account in the heating controller). A connection module was 

implemented which interfaces with the HMM Matlab code described above. In an iterative 

process, the observation vectors of each time step are fed into the HMM season model and 
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the season value is returned for each step and stored in a “season” matrix, which is used 

later during the simulations. The chosen time step for the simulation was one hour, which is 

sufficient when only heating and thermal comfort aspects are considered and it is also 

remarkably less computationally expensive than when shorter time steps are chosen. 

Simulated scenarios 

The parametric study compared the following four cases of a South-facing office room:  

1. A typical LESO office with standard heating/blinds control; 

2. A typical LESO office with control based on the HMM season definition; 

3. An office room in a light-weight building with standard heating/blinds control; 

4. An office room in a light-weight building with control based on the HMM season 

definition. 

Description and characteristics of the simulated office rooms  

The office room used in the first two simulation cases is a simplified nodal model of a typical 

South-facing LESO office room, exactly as described in full detail in Sections 2.1.1 and 4.2.4. 

 
Construction elements LESO office room Office room in a light-weight, 

non-insulated building 

Floor area 15.7 m2 

Room height 2.8 m 

South façade wall (layer 1) 2 cm plaster panel 

South façade wall (layer 2) 
12 cm thermal insulation [0.04 

W/m⋅K] 
5 cm concrete 

South façade wall (layer 3) 3 cm wood 

Window area (including 

frames) 
5.10 m2 (frames area: 17%) 

Glazing SHGC=0.4; U-value=1.1 W/m2K (same U-value the for the frames) 

Blinds 
Textile tissue with 20% solar gains transmission when completely 

drawn 

Partition walls (internal) 10 cm (concrete bricks) 5 cm (concrete bricks) 

Floor screed 6 cm (concrete) 4 cm (concrete) 

Ceiling slab 25 cm (concrete) 5 cm (concrete) 

Table 5-4: Main characteristics of the two different office rooms in the considered simulations. (Wall 
layer 1 is the inside layer and layer 3 is the outside one). 
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The only difference is that no EC glazings are present; instead, standard IGUs are 

considered with a SHGC transmission of 40% (equivalent to low solar gain windows). U-

value, frame-to-window ratio and all other characteristics remained unchanged. 

Regarding simulation scenarios 3 and 4, an office room identical to the typical LESO room 

above was considered, the only exceptions being the absence of insulationk and that the 

building structure considered is a much lighter one with low thermal mass (i.e. much thinner 

walls, slabs, etc.). The main characteristics of the two different rooms are summarized in the 

Table 5-4. 

Meteorological data 

The meteorological data used for the simulation are synthetic values for one year generated 

by the Meteonorm software [84] for the village of Ecublens near EPFL and LESO building. 

Time interval was set to one (1) hour which is also the simulations’ time-step as explained 

above. The generated data which were used in the simulations included hour of the day, day 

and month of the year, external temperature, global horizontal and global vertical south 

solar radiation. The values of Text and Igh additionally went through the structure 

transformation needed by the HMM module (See section 5.3.4). 

Standard heating control system 

In simulation scenarios 1 and 3, we use a simple, closed-loop control system based on the 

internal air temperature and the season definition as given in the Section 5.2.2. The set 

point for the heated zone temperature is 20°C (no night setback schedule is implemented). 

At every time step the controller checks whether the temperature is below the set point and 

if the season is set to “heating season”; if both conditions are met, then it injects the 

necessary amount of energy in the room so that the temperature can reach the set point 

value (no hysteresis is implemented). A time step is considered as heating season if the 

average external temperature over the last 7 days is below 10°C. 

To reflect the current situation of LESO building neither active nor passive cooling system is 

employed. Also, as mentioned earlier, ventilation is only through infiltration and windows 

remain closed at all times (see 4.2.4). 

Heating controller based on the HMM season definition 

In simulation scenarios 2 and 4, the heating controller bases its operation on the novel 

season model developed in this study (simplified model). Again, the set point for the internal 

temperature is set at 20°C with no implementation of night setback or occupancy schedule. 

                                                
k Although it can be argued that the absence of insulation is an extreme scenario, it has been chosen  to test 
the capabilities of the developed model under difficult conditions. 
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The operation of the controller stays the same as above when a simulation step is labelled 

as “heating season”. However in this case, the season can take three values (Heating, 

Cooling or Mid-season) and is dependent on the values of the input vector	ܺ′ = [ ௘ܶ௫௧, ,௚௛ܫ ߬], 
at each time step as described in Sections 5.3.2 & 5.3.7. When the season is labelled as 

cooling or mid-season, the controller stays idle as no cooling system is considered (same as 

above). However, these seasons are used by the blind controller as it can be seen next. 

Blinds controller 

For simulation scenarios 1 and 3 (standard heating/blinds control), a simple closed-loop 

control is used based on the global vertical south solar radiation (Igvs), internal air 

temperature (Tint) and the season (as defined in the section Standard heating control system 

above). During the “heating season”, if the Tint is lower than 25°C then solar gains are 

welcome and the blinds are completely open. If the temperature is over that limit, solar 

gains are rejected and blinds are completely closed. In the “non-heating season”, if the Tint 

is over 23°C, solar gains are rejected to the maximum. In the case that the temperature is 

lower than 23°Cl, blinds are kept fully open for an Igvs below 100 W/m2; fully closed if it 

exceeds 300 W/m2 and assigned linearly interpolated open/closed ratio values for solar 

radiation values between 100 and 300 W/m2 m. 

For simulation scenarios 2 and 4 (HMM season definition), when the label “cooling season” is 

applied by the new season model, the controller blocks as much as possible the solar heat 

gains by keeping the blinds fully deployed keeping up with the season definitions given in 

the beginning of this chapter (Section 5.1.1). Likewise, in the winter (heating season) they 

are kept fully open. When the time step is labelled as “mid-season”, then the simple control 

strategy based on the Igvs and Tint described above for the non-heating season is applied. 

Occupancy schedule 

For the estimation of thermal comfort we consider the presence of a single occupant only 

during the working hours with a 9-hour daily schedule of 08.00 to 18.00 with a lunch break 

(absence) from 12.00 to 13.00, 5 days per week. 

                                                
l Approximate lower temperature limit where an average person feels comfortable inside an office room 
during the summer period given a set of parameters; please refer to Section 4.3.2 and to Fanger’s model 
[12] for more details. 
m The open/closed ratio is ‘1’ for 100 W/m2 and ‘0’ at 300 W/m2. 
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5.4. Results 

5.4.1. Energy consumption 

The results of the parametric study regarding the energy consumption for space heating for 

the four different considered cases are shown on Figure 5-2. As expected, under the same 

conditions a building with heavy structure and good insulation (i.e. LESO) requires much less 

energy (-30%) for space heating during one year than a building with low thermal mass.  

When comparing the control schemes that were applied, we note that a 7% reduction in 

energy consumption can be achieved when a LESO office room is controlled with the newly 

developed HMM season model. On the other hand, for a light-weight building, the energy 

consumption practically stays the same. This is expected behaviour: structures with 

increased thermal inertia require a more delicate energy planning because of their intrinsic 

slow response in external temperature variations. It seems that the incorporation of the 

building’s time constant in the decision for the season identification (and hence the heating 

and blinds control) contributes in this direction. On light-weight structures, the demand of a 

good (predictive) control is less crucial and simple control schemes based on the outside 

temperature are likely to yield satisfactory results. Notwithstanding the foregoing, when it 

comes to poor building constructions (i.e. low thermal mass, inadequate insulation, etc.), 

primarily focus should be given to improving the structures themselves before considering 

the application of intelligent control algorithms. 

 

 
Figure 5-2. Annual energy demand for space heating for different simulation scenarios. 
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However, the comparison of energy consumption it should be viewed against the quality of 

the indoor environment that each of the compared test cases offers to potential occupants. 

With this in mind, these 4 scenarios are compared in respect to the predicted thermal 

comfort in the next Section. 

5.4.2. Thermal comfort 

Indoor air temperature 

Akin to what was presented previously in Section 4.3.2, as a first indication of thermal 

comfort, we compare the indoor temperature across the different simulation scenarios. In 

Figure 5-3, Figure 5-4, Figure 5-5 and Figure 5-6, we can immediately notice the strain to 

keep the indoor temperature from being either too high or too low during some intermediate 

season days in March and September. However, when comparing the HMM control scenarios 

(2 and 4) with the standard control ones (1 and 3), it is evident that the HMM-based control 

copes much better with the mid-season difficulty. And, in the case of autumn, it notably 

raises and keeps the Tint around 20-22oC and it does so without spending extra energy for 

heating; apparently the good season identification manages to deploy much more efficiently 

the blinds and thus, take advantage of the free solar heat gains. On the other hand, the 

“standard” controller apparently is cutting-off most of potential solar gains from entering the 

room in days when they would have been beneficial for the conditioning of the space. 

When comparing the cases 1 and 2 (heavy construction) with the 3 and 4 (light weight 

construction), we can observe that the internal temperature tends to fluctuate in the later 

cases much more than it does in the first ones. This is of course due to the important 

thermal mass of the heavier building which is capable of smoothing out to a good degree 

the variations of weather disturbances. But, even in the case of a poorly designed building, 

the HMM-based control seems capable of partially reducing the amplitude of the fluctuations 

of the internal temperature (Figure 5-5 & Figure 5-6). 

However, it should be noted that the high temperatures observed in March and September 

are expected since neither cooling nor any form of ventilation is considered in the building 

model. In an actual case, users would mitigate the overheating risk can by simply opening 

the window during mid-season or summer. 
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Figure 5-3. Temperatures variation for Scenario 1 (LESO office-room with standard control). 

 

Figure 5-4. Temperatures variation for Scenario 2 (LESO office-room with HMM control). 
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Figure 5-5. Temperatures variation for Scenario 3 (Light-weight structure with standard control). 

 

Figure 5-6. Temperatures variation for Scenario 4 (Light-weight structure with HMM control). 
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Figure 5-7 displays a qualitative approach comparing the internal temperatures distribution 

for each of the four proposed simulation scenarios over the entire simulation period. All 

scenarios appear to have approximately the same 25th and 75th percentiles and exhibit 

satisfactory dispersion with an interquartile range of about only 4oC. Nonetheless, we 

observe that HHM-based control (scenarios 2 and 4) have less outliers and their whisker 

extremes are much closer to the median. However, this relatively good and uniform 

performance of all the simulated cases is not recurring when next we calculate the Predicted 

Percentages of Dissatisfied (PPD). 

 

 
Figure 5-7. Distribution of indoor air temperature values for the four different simulation scenarios for 
a period of one year. The blue bottom and top of the box represent the 25th and 75th percentile 
respectively; the red mark inside the box is the 50th percentile (the median); whiskers represent the 
minimum and maximum of data points not considered outliersn (the red points outside whiskers). 

 

                                                
n Points are drawn as outliers if they are larger than q3 + w(q3 – q1) or smaller than q1 – w(q3 – q1), where 
q1 and q3 are the 25th and 75th percentiles, respectively. The value w=1.5 used here corresponds 
approximately to +/–2.7σ and 99.3 coverage if the data are normally distributed. The plotted whisker 
extends to the adjacent value, which is the most extreme data value that is not an outlier [36]. 
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Predicted Percentages of Dissatisfied (PPD) 

In the same way as before in this thesis, the thermal comfort was analyzed with the use of 

Fanger’s model [12]. Using as input for every time step of the simulation the season, the 

radiant temperature in the room and the room’s air temperature, the Predicted Percentages 

of Dissatisfied (PPD) and the Predicted Mean Vote (PMV) were generated for every working 

hour in the year. The comfort parameters of air humidity, air velocity, clothing insulation and 

metabolic heat production are shown on Table 5-5; they were set to the same values as in 

the parametric study presented in Section 4.3.2, where the reader is referred to, should they 

need more details.  

 

Parameter Heating period  Non-heating period 

Clothing [clo] 1.0  0.50 

Activity [met] 1.2  1.2 

Air speed [m/s] 0.10  0.10 

Relative humidity [%] 50.0  50.0 

    

Operative temperature [°C] 19.2 - 23.8  23 - 26.3 

Table 5-5: Comfort parameters and calculated operative temperature used in Fanger’s model for a 
PPD<10%. 

 

The estimation of the thermal comfort for the entire period (1 year) was conducted to 

estimate the ability of the simulated case studies to keep the internal air temperature within 

the specified comfort limits (Table 5-5). The percentage of the working time when the air 

temperature is outside the range defined by the said limits was determined for all the 

simulation scenarios and it is presented separately for the heating and non-heating periods 

and it can be seen on Table 5-6 and Figure 5-8.  

The comparison between all different scenarios shows clearly that HMM-based control 

greatly improves thermal comfort for both heavy structures like LESO and poorly-designed 

buildings. In the heating period, it does not seem to affect heavy structures, while it does 

improve thermal comfort in light-weight ones by 27%. During the non-heating, period 

results are overwhelmingly positive for the HMM-based control where it ameliorates thermal 

comfort by approximately 50% in the case of LESO and by 37% in the case of the light-

weight building. 

When comparing the PPD percentages between these that are due to overheating and those 

that occur due to risk of feeling cold, during the heating period, the predicted percentages of 

dissatisfaction in all scenarios are all due to anticipated complaints of overheating 

(PMV>+0.5) and none for the contrary. This is expected, since the controller keeps the air 
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temperature at 20°C minimum during the entire heating season (see parts (b) on Figure 5-9 

& Figure 5-10). 

 
Simulation 
scenario 

Heating period [%] Non-heating period [%] Entire 
year 
[%] 

PMV < -0.5
(=feeling 

cold) 

PMV > +0.5
(=feeling 

warm) 

Total PMV < -0.5
(=feeling 

cold) 

PMV > +0.5 
(=feeling 

warm) 

Total 

1: LESO standard 
control 

0 
20 20 52.2 1.5 53.7 37.5 

2: LESO HMM 
control 

0 
21.4 21.4 27.6 0 27.6 24.4 

3: Lightweight 
standard  control 

0 
28.1 28.1 59.4 2.7 62 45.6 

4: Lightweight HMM  
control 

0 
20.4 20.4 36.1 2.8 38.9 29.6 

Table 5-6: Percentage of working time during the simulation period where temperature is outside 
comfort limits (PMV<-0.5 or PMV>+0.5; PPD>10%), for each of the four considered simulation cases. 

 

 

Figure 5-8. Percentage of working time during the simulation period where temperature is outside 
comfort limits (i.e. PPD is over 10%), for each of the four considered simulation cases. 
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It should be stressed that results presented in this analysis ought to be put in perspective of 

the absence of cooling and of any form of ventilation. Hence, higher-than-normal 

temperatures and thermal discomfort are expected during mid-season and – most notably – 

during summer (i.e. non-heating periods). But if that is true, then why during this period we 

expect occupants to be dissatisfied because they are feeling cold, as seen on Table 5-6? 

One possible explanation could be that the controllers somehow suffer from excessive 

rejection of solar heat gains during the non-heating period. On a different rationale, we 

should reflect on the fact that even if we consider three different “seasons” for the HMM-

based control, we present the results by distinguishing between a heating and a non-heating 

period to keep up with the presence of only heating in the tested scenarios. This binary 

distinction it’s quite likely to introduce some bias in favour of the results concerning the 

heating season: in fact, the mid-season comfort operative temperatures are lower than the 

ones of the non-heating period. However, mid-season occurrences in our study are judged 

by the highest, non-heating, limits. This may partially justify the high PDD values due to 

feeling cold in the non-heating period (PMV < -0.5). As also argued previously in Section 

4.3.2, these instances of high PPD during the non-heating season would be largely mitigated 

with the adaptation of user clothing (i.e. from 0.5 to 0.65 clo; see  Table 5-5). 

 

Air temperature distributions during working hours 

Figure 5-9 and Figure 5-10 conclude the results presentation regarding the estimation of 

thermal comfort providing some additional qualitative information about the indoor 

temperature during the simulation periods.  

In particular, the distribution of indoor temperature (values, median, mean and standard 

deviation) during working hours for both the non-heating and the heating period is displayed 

together with the limits of the operative temperatures (green and red lines) for all simulation 

scenarios. 
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(Scenario 1a) 
 

(Scenario 1b) 

 (Scenario 2a)  (Scenario 2b) 

Figure 5-9. Indoor temperature values distribution during working hours in (a) non-heating and (b) 
heating period for simulation scenarios 1-2. Displayed are the values (black points), median (orange 
line), mean (light blue dashed line) and standard deviation (σ) together with the limits of the operative 
temperatures (green and red lines). 
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(Scenario 4a)  (Scenario 4b) 

 
(Scenario 5a) 

 
(Scenario 5b) 

Figure 5-10. Indoor temperature values distribution during working hours in (a) non-heating and (b) 
heating period for simulation scenarios 2-4. Displayed are the values (black points), median (orange 
line), mean (light blue dashed line) and standard deviation (σ) together with the limits of the operative 
temperatures (green and red lines). 
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direction and, as such, several points for further discussion are raised that may lead to the 

model’s refinement: 

• The elaboration of the proposed methodology was based on the hypothesis that 3 

seasons exist when controlling building equipment for thermal comfort (Section 

5.1.1). While the definition of cooling and heating seasons is more or less crisp, the 

introduction and definition of the intermediate season is possible that could be 

debated from the scientific community or professionals. For instance, one could 

object to the ergodic character of the model (Section 5.3.1), according to which 

direct transitions between the heating and the cooling season are possible without 

switching first to the mid-season. Another point of consideration related to these 

definitions is whether they could also manage the visual comfort aspects of building 

control. 

 

• The inclusion of a building time constant ߬ seems an appropriate approach in order 

to account for each building’s thermo-physical characteristics in the control of HVAC 

systems and generalize the developed model so it can be useful in multiple buildings 

or unknown configurations. Even so, 	߬ in its present form is based partially on 

intuition and “expert’s knowledge” (correction coefficient of a0=0.5; see Section 

5.3.3). Although we strongly believe our methodology is correct in practice, further 

research, probably requiring extensive experimental validations, could be carried out 

as to accurately define the model’s coefficients and fine tune its final expression. 

 

• The required data mining and machine learning for the development of the season 

as an HMM was based on data recorded over a long period in LESO. While it is hard 

to find other databases to match the quality and (mainly) the length of the LESO 

database, it is safe to assume that the developed model would have performed 

better (especially in the cooling season) had it been developed with data originating 

from a building with a full HVAC system deployed (and not only with heating, as it is 

the case of LESO). 

 

• As reported in Sections 5.3.6 and 5.3.7, for obtaining satisfactory season 

identification results from the season HMM, the model requires training data that 

span several months (9 to 12). While this does not pose a problem when studying 

the model in a parametric study such as the performed simulations in 5.4, it may be 

problematic when attempted to use the elaborated model on a real-life building 

control application (especially on new buildings where data is not yet available). In 

this case, such a lengthy training period is hardly accepted nowadays where other 

smart control algorithms need much less time for adaptation and optimization. 

However, as demonstrated also in the simulations in Section 5.4, it seems as a very 
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promising approach to building control and it could be used in such framework if 

further explored and fine-tuned. 

 

• In the first attempt to build an HMM-based model we aspired to include in it 

parameters from all main factors that affect “season” (see 5.1.2 and 5.3.2). For 

practical reasons, we performed the simulation analysis with a simplified model 

which did not include the ‘use’ element (apart a simple occupancy feature which 

nonetheless did not influence the controller’s decisions; it was only used for thermal 

comfort estimation purposes). As a suggestion for future work, we believe that it 

would be worthwhile to simulate user actions like window openings and actions on 

shading devices or incorporating advanced occupancy and activity models, as 

discussed previously (5.3.7). Also discussed on the same Section, in the future the 

fine tuning of the model could be performed with a formalised approach of feature 

selection and elimination. However, even in that case, producing a generalized 

model with high portability (i.e. excluding features that cannot be easily made 

available in the majority of buildings) should remain a priority.   

Following a (possibly) improved version of the model which may be introduced after the 

points above are considered, we believe that the next topics are worth investigating in 

future research work:  

• After the decision to include the time constant of the buildings in the elaborated 

model, it would be interesting to study the performance of the model (i.e. the 

energy conservation potential) by comparing different building structures against 

different climate zones. The study should include a large number of buildings for 

better comparison. 

• Another interesting study would be to compare the energy, thermal and visual 

comfort performance of a controller that employs the season HMM against other 

intelligent algorithms (Fuzzy, ANN, Genetic, MPC, etc.). 

• In its present form, the HMM-based season algorithm outputs a crisp value of the 

season. It would be very interesting in our opinion to modify the algorithm, so it 

outputs season as a fuzzy variable. 

5.6. Conclusion 

In this chapter we propose a novel approach to building control through the elaboration of a 

season model using stochastic, data-driven, state-based approaches such as Hidden Markov 

Models. In the proposed model, the season variable is unique to every building (or even to 

every room if the building systems permit individual, room-based control) and it depends on 

meteorological conditions around the building, user behaviour and building construction. In 

this regard, three seasons are defined and identified in each building by the novel HMM 
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approach: heating, cooling and mid-season. Two HMM-based season models are considered. 

The first is a comprehensive one that includes the inputs of outside and indoor temperature, 

solar irradiation, HVAC and user actions on windows and shading devices. To reflect each 

building’s unique construction and thermal inertia, the time constant is calculated and it is 

likewise inserted in the model. The season identification accuracy was 91, 85 and 69% for 

the heating, cooling and intermediate season, respectively. The second model was a 

simplified one with only three inputs (outside temperature, solar irradiation and the time 

constant). It exhibited 10% lower prediction accuracy and it required a slightly longer 

training set compared to the comprehensive model; however, it can be used in buildings 

which possess only a limited sensor network and less-than-average infrastructure. 

The performance of the simplified model was evaluated through simulations that compared 

two different controllers (one incorporating the new HMM model and one that used as 

indication for the season variable the average outside temperature over the last 7 days) in 

two different building construction types (a building with important thermal mass storage 

and increased time constant and a poorly designed one with a low time constant). The 

results were very promising for the HMM-based controller, which manages to save energy 

for heating and at the same time improves thermal comfort for the occupants by keeping 

indoor temperatures inside comfort limits, even in the case of a poorly designed building. 
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6.  VISUAL COMFORT MODELLING BASED ON 
STOCHASTIC DATA-DRIVEN MODELS  

 

This section presents a novel approach to model visual comfort based on state-based 

stochastic data-driven models such as the Hidden Markov Models (HMMs). Proposed models 

are based on horizontal plane illuminance measurements already available in LESO database 

and on new monitoring of the vertical illuminance at the observer’s eye (pupillary 

illuminance) using wearable sensors. In specific, Section 6.1 introduces the notion of visual 

comfort and Section 6.2 attempts a state-of-the-art overview of the current tools that 

quantify or estimate it, identifying possibilities for improvement. Section 6.3 describes the 

development of the proposed models and discusses why finally only workplane 

measurements are employed in the HMM development. Finally, Section 6.4 presents the 

results of this new modelling approach which include comparison with other state-of-art 

classifiers (Bayesian and k-Nearest Neighbours) as well as an innovative analysis that 

demonstrates the model’s inherent capability to be seamlessly integrated and used in 

building control systems built on fuzzy logic. Other strong points of the proposed HMM are 

the perspectives of the model to improve greatly over the various existing discomfort glare 

indices and metrics.   

6.1. Introduction 

Light has important visual and non-visual effects on human beings [113] and the provision 

of proper lighting inside buildings is of paramount importance in shaping a healthy, 

productive and pleasant indoor environment [3; 5]. In this chapter, we focus on the visual 

effects of light and, in specific, on the estimation of the user’s visual discomfort probability 

inside their working environment. 

6.1.1. Definition of visual discomfort 

Although no universally accepted definition for visual comfort exists, we can attempt to 

define it as the situation where visual discomfort phenomena do not occur. As for visual 

discomfort, it is caused principally by three reasons: 
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• Insufficient illuminance 

• Discomfort glare 

• Excessive illuminance 

The first reason is quite straight-forward and it relates to situations where the available light 

is not enough to adequately lit the internal space. Building codes, norms and lighting 

handbooks generally provide the minimum values or the range of values for the different 

types of possible tasks. For instance, the International Commission on Illumination (CIEa) 

recommends workplane illuminances of 200 to 500 lx for task with simple visual 

requirements, 300 to 750 lx for tasks requiring medium visual requirements and 500 to 1000 

lx for visually-demanding tasks [114]. By discomfort glare, one defines the annoying 

sensation due to excessive luminous contrasts in the field of view, usually caused by bright 

surfaces perceived in a much darker environment (such as a patch of sunlight on the desk in 

an otherwise dim office). Except non-uniform distribution of illuminances on the workplane, 

disability glare can also be caused by saturation of the visual system when a large amount of 

light is oriented directly towards the user’s retina (such as direct sunlight beams hitting the 

eyes for instance) [81]b. The third reason of discomfort refers to the cases when our visual 

environment is generally over-lit.  

As we will see next, most models that try to assess objectively the visual discomfort, aim at 

estimating glare, which is undoubtedly the most subtle issue of the three. 

6.2. Previous research work 

6.2.1. Visual discomfort indices 

Today, a number of methods and indices are available for the estimation of discomfort glare 

due to daylight, although none is unanimously recognized as a standard at the international 

level [81]. However, as we will see next, most of them agree that visual comfort depends on 

the illuminance on the user’s pupillary plane and on the luminances of light sources and their 

position in the field of view of the user.  

One of the first efforts to quantify visual discomfort was made in the 1950 when 

Petherbridge and Hopkinson [115] developed the British Glare Index (BGI). In their model, 

glare was rated according to a four-point scale as just noticeable, just acceptable, just 

                                                
a From the French: Commission Internationale de l’Eclairage.  
b Glare is further divided into two types, discomfort glare and disability glare. Discomfort glare causes 

discomfort without necessarily impairing the vision of objects [124] (and usually results in an instinctive desire 
to look away from a bright light source or difficulty in seeing a task. Disability glare impairs the vision of 
objects without necessarily causing discomfort [123]. 
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uncomfortable and just intolerable. They developed empirically an equation, which however 

was limited to small glaring sources of and was not adapted to larger ones, such as day-lit 

windows. The Cornell equation or Daylight Glare Index (DGI) is a modification of the BGI 

and was adapted to predict glare from a large luminance source (i.e. a window) [116]. The 

equation is as follows: 

ܫܩܦ = 10 logଵ଴ 0.48 ෎ ௕,௜ܮ଼.௦,௜଴ߗ௦,௜ଵ.଺ܮ + 0.07߱௦,௜଴.ହܮ௦,௜
௡
௜ୀଵ , (6-1) 

where ܮ௕,௜ denotes the background luminance (cd/m2), ܮ௦,௜is the glare source luminance 

(cd/m2), ߗ௦,௜ is the solid angle subtended by the glare source (sr), ߱௦,௜ is the solid angle of 

the luminous parts of each source as viewed from the observer’s eye and n (-) is the number 

of luminous sources ݅ causing glare. This index uses a numeric scale from 16 to 28 to 

represent glare sensations that span as above from just noticeable (16) to just intolerable 

(28), with the DGI of 22 being on the Borderline between comfort and discomfort. 

Another index developed to overcome the limitation of the BGI regarding multiple glare 

sources and to compensate between different national systems was the CIE Glare Index 

(CGI) by the CIE, which was based on a formula proposed by Einhorn: 

ܫܩܥ = 8 logଵ଴ 2 [1 + ௗܧ[(ௗ/500ܧ) + ௜௡ܧ ෎ܮ௦,௜ଶ ߱௦,௜݌௜ଶ
௡
௜ୀଵ , (6-2) 

where ܧௗ is the direct vertical illuminance at the eye level due to all sources (lx), ܧ௜௡ is the 

indirect illuminance (lx) at the eye level (excluding the glare sources) and ݌௜ (-) is Guth’s 

position index, which attributes different weights to the luminous sources relative to their 

azimuth and elevation in the observer’s field of view [18 pp. 21-22]. Other annotations are 

as above. 

Later, in 1992, the CIE [117] proposed the Unified Glare Rating (UGR) to evaluate glare 

sensations for an artificial lighting system (restricted to sources within a solid angle of 3 ∙ 10ିସ to 0.1 sr). The UGR combines elements of both the CGI and the BGI and it is 

expressed with the following equation: 

ܴܩܷ = 8 logଵ଴ ௕ܮ0.25 ෎ܮ௦,௜ଶ ߱௦,௜݌௜ଶ
௡
௜ୀଵ , (6-3) 

Wienold and Christoffersen note that the equation-based glare indices presented above “try 

to estimate possible glare sensation of a so-called ‘standard observer’. Although this is not 

completely wrong, a word of warning is needed, since large variations of rating discomfort 

glare are normally found when comparing individual subjects” [116]. Subsequently, when 
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they compared the calculations of the DGI and the CGI in a real-life test environment 

against the responses of 349 real users, they reported that “these indices showed a weak 

correlation with how subjects reported discomfort glare in an experimental set-up with three 

different façade layouts, two different view directions and three different solar shading 

systems”. To deal with the limitations of existing models to properly reflect the truth, they 

subsequently proposed a new metric called Daylight Glare Probability (DGP): 

ܲܩܦ = 5.87 ∙ 10ିହܧ௩ + 9.18 ∙ 10ିଶ logଵ଴ ቌ1 +෎ ௅ೞ,೔మ ఠೞ,೔ாೡభ.ఴళ௣೔మ௜ ቍ + 0.16,  (6-4) 

where ܧ௩ is the vertical eye illuminance (lx); ܮ௦,௜ the luminance of the source ݅ (cd/m2); ߱௦,௜ 
the solid angle of the source ݅ and ݌௜(-) its position index. This metric has been validated for 

a range of DGP between 0.2 and 0.8 and has been derived from real tests in rooms with 

day-lit windows. Further, it promotes the vertical eye illuminance as a crucial glare 

evaluation parameter without ignoring at the same time the central sum of the glare sources 

term used in the CIE glare indices (UGR and CGI). 

6.2.2. Limitations of visual discomfort indices 

As Lindelöf [18] promptly pointed out, there are three principal inconveniences and/or 

limitations related to the aforementioned formulae.  

First, they require a detailed knowledge of luminance distributions in the field of view of the 

user. Usually, this knowledge entails the use of multiple illuminance sensors, scientific-grade 

CCD cameras and special lenses, the application of techniques for luminance mapping such 

as High Dynamic Range (HDR) photography as well as information on the photometric 

characteristics of the rooms (i.e. reflectances of internal surfaces) [81; 83; 116].  In 

practice, that level of needed detail would hinder their integration in automatic lighting 

controllers in other than experimental buildings, where the availability of the relevant 

information is limited.  

Secondly, the indices presented herein attempt to quantify numerically the visual discomfort 

experienced by an average user as a function of lighting stimuli. However, as noted already 

in the introduction of this thesis (Section 1.1.1), visual comfort is perception-based and as 

such, differences at preferred illuminance levels are to be expected between individuals [17; 

18]. Consequently, such methods do not take into account the individual preferences and 

behaviour of different users. 

Last, these formulas only estimate discomfort glare (which is of course the most delicate 

cause to cater to), without addressing discomfort caused by insufficient or excessive lighting 

conditions. 
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6.2.3. User-adaptive, data-driven approaches 

To overcome these limitations, Lindelöf [18] proposed a very interesting approach to model 

visual discomfort. In specific, he used a Bayesian method to calculate the user Visual 

Discomfort Probability (VisDP) as a function of a single variable (the horizontal workplane 

illuminance), by means of the following equation: 

Pr(ܥ = ܧ|ܨ = ݁) = Pr	(ܧ = ܥ|݁ = ܥ)Pr(ܨ = ܧ)Pr(ܨ = ܥ|݁ = (ܨ Pr(ܥ = (ܨ + Pr(ܧ = ܥ|݁ = ܶ) Pr(ܥ = ܶ), (6-5) 

where C the event user comfortable; E the horizontal workplane illuminance (lx); T=True 

and F=False the possible values of C; e a possible illuminance value of E (lx) and the terms Pr	(ܥ = ܥ)	and Pr (ܨ = ܶ), are the Bayesians’ priors, which in this study was set to 0.5c. 

Based on the assumption that: 

“The set of situations immediately preceding and immediately following a user action 
provides us with a data pool of transitions from uncomfortable to (presumably) 
comfortable situations for that user” d, 

he applied this equation on a large number (7273) of user actions on the blinds or on 

electric lighting recorded in the course of 26 months at the LESO solar experimental building 

(see Section 2.2). The outcome of the proposed model is the curve used previously in this 

thesis in Section 4.3.3 (and shown in Figure 4-20), where the VisDP reaches a global 

minimum (~0.3) at around 500 lx. Outside the 500 lx region, the probability of discomfort 

increases sharply for lower illuminance values while it increases more gradually for values 

between 500 and 2500 lx, after which VisDP increases sharply. 

On-site testing of a lighting controller based on the Bayesian modelling of visual comfort 

revealed good adaptation of the model to the user, where the user’s interactions with the 

blinds or the electric lighting have been reduced to half. Simulations also demonstrated very 

good performance of a controller integrating this model: the average yearly discomfort 

probability was reduced from 0.44 in manual mode to 0.33 in controller mode; the energy 

for artificial lighting has been reduced by 61.3% on average and the energy for 

heating/cooling in south-oriented rooms has been reduced by 9% at a central European 

office room and by 35% at a South European one. 

                                                
c The choice of a prior equal to 0.5 corresponds to a complete lack of information as to the occupant’s prior 
probability of being uncomfortable. As demonstrated by Lindelöf [18], “a different choice of priors does not 
affect the shape of the probability curve but tends to ‘squash’ it to higher or lower values”. 
d This assumption is only valid for single-occupant office rooms. 
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The main advantage of Lindelöf’s Bayesian approach over the discomfort metrics presented 

earlier is obviously the ability to adapt to each user’s behavioural patterns in a relatively 

short period of timee by using only a single variable (horizontal workplane illuminance), 

which in practice is not difficult to have access to. Further, and along with Wienold and 

Christoffersen’s DGP, the outcome of the model is an intuitive, readily interpretable 

probability and not a score on a numeric scale. 

However, despite the clear strengths of his model, Lindelöf [18] agrees that using additional 

variables and especially the eye-level pupilar illuminance is recommended and would likely 

improve the visual comfort modelling. In the same direction, Wienold and Christoffersen 

[116] observed after experimental measurements that “the correlation between the linear 

function of vertical eye illuminance and the probability of disturbed persons was stronger 

than all other tested functions”. Osterhaus [118] also suggests that direct vertical 

illuminance on the eye level should be taken under consideration when evaluating visual 

discomfort since it has been shown that calculations of glare based on CGI, UGR (and DGI to 

a lesser extent) showed reasonable correlation with the measured direct vertical illuminance 

values.  

From the above, we can conclude that visual comfort modelling using data driven 

approaches, which learn from and adapt to the user are promising. Nevertheless, since 

these approaches are not yet fully explored, there is still space for new ideas and 

improvement; this is what we attempt to pursue next in the models we propose. 

6.3. Methodology 

In this section, we discuss the development of a visual comfort model that correlates 

illuminances measured at the eye-level pupilar plane and on the task workplane with the use 

of electric lighting and external blinds and hence, the probability of visual discomfortf. 

Following the promising implementation of data mining and machine learning processes for 

the modelling of the season variable in Chapter 5, we attempt to apply these techniques for 

the modelling of visual comfort. In specific, our goal is to move from the Bayesian approach 

described above to a Hidden Markov Model (HMM) one, using data mining on historic as well 

as on newly collected data in the LESO building. As it was the case with the season 

modelling, to the best of the author’s knowledge, this is the first attempt to model visual 

                                                
e Assuming an average of four user events per day, five days per week, Lindelöf [18] estimated that 7–8 
weeks are sufficient for the optimal adaptation of his model to the user. 
f Actually, two different models are discussed in this Section: one with both parameters (Sections 6.3.1 – 
6.3.4) and one with workplane illuminance alone (Sections 6.3.5 – 6.4.4). As it is thoroughly explained next, 
only the later was pursued further into the development of the HMM. 
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comfort using HMMs. As a note, in this Section we try to avoid unnecessary repetition; for 

more details concerning HMM, the reader is kindly referred to Chapter 5. 

6.3.1. Initial model definition: A two-variable model 

By definition, in a HMM the system being modelled is assumed to be a Markov process with 

hidden states and visible output tokens, which are dependent on the (hidden) state. In this 

case, we propose to build a HMM where the visible output tokens are the illuminances 

measured (at the horizontal workplane and at the eye-level pupilar plane) while the “visual 

comfort” variable can take the value of one of the following three hidden states: 

• Comfort 

• Discomfort because of glare and/or low illuminances 

• Discomfort because of glare and/or high illuminances 

In Section 6.1.1 we attempted a definition of these states and as it becomes apparent, we 

have chosen to group glare with both low and excessive lighting conditions, as glare can 

occur in both situations. But, while it may be intuitive that glare phenomena can arise under 

high illuminance conditions, the contrary is probably not so evident. Let us consider the 

following situation: 

A user is working behind a desk which faces a west-looking window and the late evening 

sun is close to the horizon. The available daylight can be rather weak on his/her workplane 

(= “low illuminances” as may be detected by a ceiling-mounted sensor), despite the fact that 

blinds or other shading devices are not deployed. However, at the same time the user can 

sense glare, as the direct component of the sun’s irradiation is penetrating into the room 

and is falling against the user’s eyes. We argue that by using a second sensor measuring the 

illuminance at the eye-level pupilar plane we could more finely distinguish between different 

discomfort-generating situations.  

Nevertheless, as it will be illustrated in the next Sections, slight modifications to this 

definition will become necessary for the development of the HMM. 

6.3.2. Data sources 

Regarding the output tokens (the visible observations dependent on the state), we followed 

the recommendations of previous studies as presented in the Section 6.2 and thus we chose 

to include two variables in our observations vector: the illuminance measured on the vertical 

eye-level plane (ܧ௩) and the workplane illuminance (ܧௗ௘௦௞).  
Workplane illuminance data comes from the LESO management system (EIB/KNX) and 

database (see Sections 2.2 & 6.3.7 for details); data concerning the pupilar illuminance 

derived from the newly installed EnOcean sensor network (Section 2.4) and their acquisition 

is described below. 
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6.3.3. Monitoring procedure 

Pupilar plane illuminance measurements were carried out in six South-facing, single-

occupant offices in the LESO solar experimental building between 2 June and 18 July 2014 

(six weeks) under mostly clear and intermediate sky conditions. Four of the offices were 

situated on the first floor of the building and two on the second. The detailed description of 

the LESO building is provided in Section 2.1. The six subjects that participated in the study 

were LESO staff members with an average age of about 43 years (ranging in age from 35 to 

about 53). They were three scientists and three administrative staff; three female and three 

male persons.  

Measurements were carried out with the minimum possible interference on the regular 

workflow of the subjects. Each subject was given a lightweight, relatively small, autonomous 

wearable illuminance sensor (see Section 2.4.1), which they were told to hang around the 

neck (as seen in Figure 6-1) for as long as possible during their working day while they were 

carrying out their normal day-to-day work activities.  

 

 

Figure 6-1. Picture that shows one of the six users that participated in the field measurements of 
pupilar plane illuminance, bearing the autonomous EnOcean illuminance/motion sensor as a 
pendant. 
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Before the beginning of the monitoring campaign, they were briefly informed on practical 

matters concerning the measurements and the correct handling of the sensors and were 

given a short text with useful information that served as a “user guide” (provided in 

Appendix A.6).  

In parallel with the pupilar plane illuminance measurements, the building management 

system (EIB/KNX; Section 2.1) of the LESO building was also recording data regarding 

desktop illuminance, user presence, user interactions with the blinds and the electric 

lighting, etc. 

6.3.4. Evaluation and usability of the eye-level plane illuminance measurements taken 
during the monitoring procedure 

Following the commissioning of the EnOcean sensors network, we proceeded to calibration 

measurements to verify that the values provided by the sensors correspond to the ground 

truth. For that, multiple measurements were carried out including the six new illuminance 

sensors and a hand-held lux meterg (Figure 6-2). 

 

                                                
g This is not a precision instrument; from tests we performed against a high precision, reference lux meter, it 
was found that in the region of 200-800 lx, it constantly overestimates illuminance by a factor of ≈1.16. 
However, inaccuracies of this magnitude were not crucial, as it will be evident next. 

 
Figure 6-2. Chauvin Arnoux C.A 811 Light-Meter (Image: ©Chauvin Arnoux Group). 
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The sensors were repeatedly tested inside the LESO building, principally on horizontal 

surfaces against different illuminance levels (not under direct sunlight) and varying outside 

weather conditions. During the measurements, the sensors were all placed at the same spot; 

the sensor of the hand-held lux meter was placed among them to minimise the bias due to 

the positioning of the instrument.  

Figure 6-3 displays the results of the test measurements, where we can see that the sensors 

gave almost double or more of the actual illuminance value. Additionally, large dispersion is 

observed in the values of each sensor (coefficient of determination stays below 0.76 for the 

linear regressions of each of the sensors), which demonstrate almost random behaviour 

under the same lighting conditions (e.g. the sensor 3, for a real value at ~300 lx, one time 

provided a value at ~300 lx and another time gave a reading of ~1350 lx). 

 

Figure 6-3. Comparison of simultaneous illuminance measurements taken with the Chauvin Arnoux 
C.A 811 Light-Meter (corrected with a coefficient of 0.86 to reflect actual values and assuming an 
additional 5% measurement error [error bars]) and four of the EnOcean sensors. 
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Also, for the same illuminance level (e.g. ~400 or ~750 lx), there are large discrepancies 

between the illuminance values provided by the EnOcean sensors. Further, as described in 

Section 2.4.1, according to their specification sheet the effective range of the sensors is 

between 0 and 2000 lx. This is not verified by our measurements, where sensors saturated 

(gave a reading of 2000 lx) for illuminance values between ~600 and ~1100 lx and greater. 

After the first measurements, we suspected that an erroneous multiplier must have been 

inserted in the software on the gateway that handles the reception and the recording of the 

values. Nonetheless, after we consulted the persons responsible for the sensors deployment 

and commissioning, it seemed that no such error had occurred. Without ruling out the 

possibility of faulty hardware (for all the sensors), we assumed (and much later, verified 

from the technical specifications provided by the manufacturer) that these type of sensors 

are not destined for precision illuminance measurements but they are rather intended for 

simple automatic control applications (i.e. turning the lights on and off after an approximate 

threshold value has been reached). 

After this unexpected turn, we felt strongly against using these measurements of pupilar 

illuminance for an HMM development concerning visual comfort; hence, we considered 

alternative paths, such as: 

• Use only the workplane illuminance (ܧௗ௘௦௞) on the same data that Lindelöf [18] 

employed to develop an HMM approach with three hidden states as described in 

Section 6.3.1 but not for glare (in the LESO building, no ܧ௩ values are available 

globally for that period). 

• Use (test) the developed model by using only the ܧௗ௘௦௞ on the data collected during 

our experiments. 

• Repeat the measurements campaign using new, scientific-grade wearable sensors 

and use both the ܧ௩ and the ܧௗ௘௦௞ of the new data collected to develop a new model 

(as above but including estimation of glare probability) and then compare it with the 

previous one. 

As this is an ongoing study that continues well beyond the time frame of this thesish, it has 

been decided to proceed in the design of a new portable illuminance sensor using 

commercially available EnOcean sensor kits coupled with a reliable sensor which will be 

scientifically sound. Once such a prototype sensor is ready, we also envisage performing 

longer data acquisition campaigns which we believe they will result in a much better training 

data pool for machine learning algorithms. However, this decision is part of a future 

endeavour which is outside the scope of the current work. 

                                                
h The research presented in this chapter has been carried out in the framework of the Green-Mod project 
which will continue until March 2016. 
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Concerning the short term perspectives inside the scope of this thesis, we decided to pursue 

the HMM development independently from the EnOcean sensors’ present shortcomings and 

future improvements. Thus, this research continued following the first alternative path 

described above: Elaboration of a Hidden Markov Model approach for the estimation of 

visual comfort by using the same pool of data used in the past for the development of the 

VisDPi and by utilising only one variable: the horizontal workplane illuminance. 

6.3.5. New model definition: Observation vector with one variable 

As opposed to our initial aspirations (of using two features) as well as to the season HMM 

approach explained in the Section 5 (where 3 to 6 features have been used), this time an 

observations vector with only one feature is selected for the modelling and the identification 

of the visual comfort: ܺ =   ,(6-6) {ௗ௘௦௞ܧ}

where ܧௗ௘௦௞ is the horizontal workplane illuminance (lx) preceding and following the 

interaction of the user with any system that alters the luminous environment (in the case of 

LESO that is the blinds and the electric lights). The feature selection is limited by the lack of 

other relevant variables recorded at LESO solar experimental building and by the 

untrustworthiness of newly collected data, as explained in Section 6.3.4 above. 

The choice of only one variable imposes a slight modification to the initial model definition 

since the lack of illuminance information on the pupillary plane of the user seriously hinders 

any attempt to identify glare independently from the workplane illuminance levels (i.e. 

morning light can cause glare when directed on the user’s eyes but at the same time might 

not be sufficient to properly illuminate the user’s work plane). As a result, in the proposed 

HMM the “visual comfort” variable can take the value of one the following three hidden 

states: 

• Comfort 

• Discomfort-L (Discomfort because of Low illuminances) 

• Discomfort-H (Discomfort because of High illuminances) 

Last, concerning the possible transitions from one state to the other, we consider an ergodic 

model, where we consider that any state can be reached from any other state at any given 

step (i.e. Figure 5-1b). 

                                                
i See Section 6.2.3 for more details on VisDP. 
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6.3.6. Labelling the data sets 

In the presented implementation of HMMs it is important to indicate during the training 

phase of the algorithm which observations (of horizontal workplane illuminance) represent 

the “Comfort” state and which the two discomfort states (labelling processj). Building on the 

assumption mentioned in Section 6.2.3, where it is considered that the conditions before the 

user action(s) are indicative of an uncomfortable situation whereas those immediately after 

indicate a mostly comfortable environment, the following rules were applied to assign one of 

the 3 possible states to the observations: 

• Comfort: ܧௗ௘௦௞ recorded immediately after a user action. 

• Discomfort-L: ܧௗ௘௦௞ recorded before a user action which resulted in an increase of 

the workplane illuminance. 

• Discomfort-H: ܧௗ௘௦௞ recorded before a user action which resulted in a decrease of 

the workplane illuminance. 

It should be noted that even though originally the illuminance measurements we handle are 

continuous data ranging from 0 to about 3,500 lux measured in the course of time, the 

described labelling process results in data sets that are populated with discrete, non-

continuous illuminance values. For instance, a data set labelled “Comfort” with the following 

illuminance values (lx): (݂݉݋ܥ)1_ܽݐܽܦ = {403, 784, 399, 1201,… }, 
is not a continuous temporal sequence where the values have been recorded the one after 

the other. Rather, each of these is an illuminance value “recorded immediately after a user 

action” which means that in fact, between two consecutive values in this dataset there are 

an unknown number of values filtered out and the real elapsed time between two 

consecutive values in this example can be anything from a few minutes to hours or even 

days. 

6.3.7. User actions, data processing and verification 

To be able to compare and validate our model against one that had already been developed, 

we chose to use the same data employed by Lindelöf [18] for his VisDP model development. 

As such, data recorded between the January 2003 and mid-January 2005k were pulled from 

                                                
j The assignment of a state to a data set. 
k The data range of “mid-November 2002 to mid-January 2005” referred to by Lindelöf [18] did not contain 
complete information for all of 4 sensor/actuator data considered: blinds, electric lights, presence and 
desktop illuminance. 
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the LESO database (details in Section 2.2). In specific, the following sensor and actuator 

data were used to filter out and create our final ܧௗ௘௦௞ data sets: 

• Presence 

• Blinds: only actions performed by the user 

• Electric lighting data: only actions performed by the user 

To ensure our data match those employed by the aforementioned study, we filtered out 

successive user actions that occurred in a time window of one minute and considered them 

as part of the same action (where i.e. the user is fine-tuning the electric lighting level or the 

blinds position). Similarly, we excluded actions that took place two or less minutes before 

the user’s departure from the room (it is assumed that these do not relate to improving the 

visual comfort but to the user’s departure). The same study also showed that LESO office 

room ‘104’ has had the most user actions during the time period considered and thus it is a 

good starting point for the development of a model which is heavily dependent on user 

actions. Unless otherwise stated, all development mentioned hereafter concerns this single-

occupant room.  

Of a total of 736695 telegrams recorded in the LESO database during the considered period 

and concerned the blinds and the electric lights, only 11749 of them were user actions 

(representing 14 rooms) that met the selection criteria above. Finally, 1347 user actionsl that 

concerned the chosen office room were considered (11.5% of the actions in all the 14 LESO 

rooms during the same period). As explained in the previous Section, these 1347 user 

actions were employed to filter out, create and label the ܧௗ௘௦௞ data sets used in the model 

development. 

To verify the integrity and usability of the selected data, we implemented a simplified 

Bayesian approach to estimate the visual discomfort probability and then we compared our 

findings with Lindelöf’s [18] Bayesian discomfort model. First, we separated the illuminance 

values recorded before and after the user actions and presented them in histograms by 

selecting a bin of 100 lux (Figure 6-4).  Then, we applied the equation (6-5), where we 

considered: 

• Pr	(ܧ = ܥ|݁ =  ,The workplane illuminance distribution BEFORE the user actions :(ܨ

• Pr	(ܧ = ܥ|݁ = ܶ): The workplane illuminance distribution AFTER the user action 

(histograms of Figure 6-4). 

 

                                                
l As compared to 983 user actions selected by the previous study. 
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Figure 6-4. Illuminance distribution, before and after user action, in office room 104 (Histogram bin 
width: 100 lux). Combinations of user actions spaced apart not more than one minute in time are 
considered as part of the same user action. Actions performed less than two minutes before the user 
has left the office were excluded. A total of 1347 actions are considered for the period January 2003 
– January 2005. 

By selecting an equal value of 0.5 for the priors (the terms Pr	(ܥ = ܥ)	and Pr (ܨ = ܶ) of the 

equation (6-5)), we derived a simplified Bayesian approach of the discomfort probability as a 

function of the horizontal workplane illuminance as depicted in Figure 6-5. When comparing 

this result with the VisDP by Lindelöf [18 p. 100] (refer also to Figure 4-20), we observe the 

same general trend: a zone approximately between 300 and 1700 lx where the discomfort 

probability is equal or below 0.4. Outside this zone, the probability of discomfort increases 

sharply for lower illuminance values while it increases more gradually for values greater than 

1700 lx. 
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Figure 6-5. Simplified Bayesian estimation of discomfort probability as a function of the horizontal 
workplane illuminance with polynomial regression (red line). Data were collected in LESO office room 
104 between January 2003 and January 2005. 

 

This comparison exercise verified the integrity of the selected data which were subsequently 

used to develop the HMM Visual Comfort approach. Similarly to the process detailed in 

Section 5.3.4, observation data (ܧௗ௘௦௞) had to be structured in training and testing sets 

which are Matlab structure arrays. Considering the data quantity, we built 6 training and 

testing data sets for each of the 3 states (Comfort, Discomfort-L & Discomfort-H; see 

Section 6.3.6)m and each data set contained a sequence of illuminances that varied in length 

(T) from 97 to 271 values. As detailed earlier (Section 6.3.5) the observation vector 

contained only one feature, hence the dimension of the observations in this case is P=1. 

Following the data processing and preparation, multiple training and testing cycles of the 

model took place using the Matlab toolbox and procedure as detailed in Section 5.3.6. The 

results of the process and the model itself are presented in the next Section. 

                                                
m 6x3 = 18 data sets in total 
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6.4. Results 

This section presents the results acquired during the development of a Visual Comfort model 

using HMM approaches and based on horizontal plane illuminance measurements only (the 

second model defined in Section 6.3.5). 

6.4.1. Identification accuracy using the structured data sets: Confusion Matrices 

In the end of each training/testing campaign, we obtained a confusion matrix which 

summarizes the identification accuracy of the developed HMM-based Visual Comfort model. 

As we had 6 data sets in our disposition for each of the hidden states, we first kept 5 for 

training and the remaining for the testing (every time a different set of 5x3 was randomly 

picked for the training of the model). Then we started reducing one by one the number of 

training sets. For each training/testing cycle, a different number of Gaussian mixtures (k) 

were tried.  

 

k: 1-10 Discomfort-L Comfort Discomfort-H 

Discomfort-L 100 0 0 

Comfort 0 100 0 

Discomfort-H 0 0 100 

Table 6-1: Confusion matrix showing accuracy per state (in percentages). Results were obtained using 
2 to 5 training tests (equivalent to about 8 to 20 months of observations) for the GMMs with 1-10 
mixtures (k).  

 

k: 13 Discomfort-L Comfort Discomfort-H 

Discomfort-L 75 25 0 

Comfort 0 100 0 

Discomfort-H 0 0 100 

Table 6-2: Confusion matrix showing accuracy per state (in percentages). Results were obtained with 
only one training test (equivalent to about 4 months of observations) for the GMMs with 13 mixtures 
(k).  

 

The results are presented in Table 6-1 and demonstrate that a 100% identification accuracy 

of the visual comfort states can be achieved when tested against real data collected from 

the same office room. Multiple tests revealed that a training period of 4 to 8 months of 

recorded data is necessary to keep the model’s accuracy at this percentage, even when 

using a low number of k. As also shown in Table 6-2, when using only one training set 

(which roughly corresponds to using 4-month data) an overall 92% identification accuracy 

can be achieved (75% for the ‘Discomfort-L’ state). It should be noted that when using 
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higher values of k with less training tests then the algorithms fail to converge after a finite 

number of iterations (multiple iteration values were tested). 

6.4.2. Visual comfort identification using random illuminance values: The HMM as a 
classifier 

The above tests were performed against real illuminance data recorded in the specific LESO 

room and showed very promising results. Thinking of how we can implement an HMM visual 

comfort model in a real-life application, we asked the following questions: Once enough data 

is available to train and build a visual comfort model, how would this model then classify 

newly recorded illuminance values? Or, what visual comfort state would be assigned to 

different workplane illuminance values? 

To answer, we considered a base visual comfort HMM trained with all 6x3 available data sets 

(24 months) and tested against synthetic illuminance values that ranged from 0 to 3500 luxn 

and for different GMM mixtures (k) raising from 1 to 40. The results of the 1400 testing 

cycles are summarized in Figure 6-6. We observe that already for a k greater than 5, the 

“Comfort” state identification pattern is stabilised in the region between 500 and 1300 lux 

while illuminances below and above this zone are identified as Discomfort-L and Discomfort-

H, respectively. HMMs with higher number of k (greater than 15) start to produce more fine 

results and reveal subtleties that include a visual comfort zone on and slightly past the 1500 

lux mark (however, these are not prevailing hence they do not appear on the average state 

identification of all the models). Indeed, these patterns can also be observed in the results 

of discomfort probability for the office room 104 produced by Lindelöf [18 p. 100]. 

  

                                                
n In every test, the model was tested against 10 illuminance values randomly generated within a specific 
illuminance zone. The spectrum of 0-3500 lux was evenly distributed into 35 zones of 100 lux each.  
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Figure 6-6. Visual comfort state identification against different workplane illuminance values for 35 
different HMMs, each having (k) GMM mixtures ranging from 1 to 40 (models for k equal to 24-26, 34 
and 40 are omitted because of non-convergence). The mean values of state identification for all the 
models are presented on the bottom. 
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6.4.3. Comparison of the HMM with other classifiers: Simple Bayesian and k-Nearest 
Neighbors 

A first comparison of the developed HMM with other classifiers can be readily made with the 

simplified Bayesian approach presented in Section 6.3.7. Intuitively, we can decide on a 

threshold value for the discomfort probability, below which we assume the occupant’s state 

as “mostly comfortable” or “probably comfortable”.  For the applied value of 0.5 for the 

Bayesian priors, we can argue that a decision rule (threshold) of 0.4 for the VisDP would 

represent a sensible choice. Thus, by applying this arbitrary however intuitive and 

reasonable rule and considering those ܧௗ௘௦௞ illuminance levels where the discomfort 

probability is equal or lower than 0.4, we observe that a “Comfort” state is established 

between the 450 and 1600 lux region, with an additional “comfort island” at around 1800 

lux. By comparing this to the HMM developed, we notice the similarities with the principal 

500 – 1300 lux comfort zone, as well as with the narrower one at 1500 – 1600 lux of several 

high-k HMM (k>15). 

For a more formalised evaluation, we compare the developed HMM-based visual comfort 

models with k-Nearest Neighbor (k-NN) classifiers. K-NN classifiers are based on the 

calculation of the distance in the feature space between the test object (that we want to 

classify) and the training examples. The object is classified by performing a majority vote 

among the class labels of the k nearest neighbors that are closest to the test object. When 

k=1, the test object is simply assigned the class of its nearest neighbor. The distance 

computation depends on the nature of the feature space and includes distance metrics as 

Euclidean, City-block, Chebychev, Minkowski, Mahalanobis, etc. [107]. In our case, after 

testing several distance metrics, the Euclidean distance has been chosen. For the 

construction and the implementation of the k-NN classifiers, the Statistics Toolbox in Matlab 

has been used. As half of our data (training sets) concerned are labelled by definition as 

“Comfort” (the ܧௗ௘௦௞	immediately following a user action), a prior of 0.5 was attributed to 

this class. The classes “Discomfort-L” and “Discomfort-H” concern the other half of the data, 

32 and 18%, respectively. Following their classes’ frequencies, they have been attributed a 

prior of 0.32 and 0.18, respectively. 

Following multiple tests and iterations while changing several parameters (i.e. distance 

metrics, priors), we finally trained and tested the best 40 different k-NN classifiers, each 

having a k from 1 to 40.  Figure 6-7 provides a qualitative evaluation of the built classifiers 

as a function of the number of Nearest Neighbors (k) used in each model. The 

Resubstitution loss is the fraction of misclassifications that can occur when testing with 

known data (training data), while the Cross-validation loss is the lack of precision when 

classifying new data not used on training (assuming that the new data feature a distribution 

similar to that of the training data). The first thing we observe is that the classification 

accuracy quickly decreases (for k>1) and never gets better from about 70%, even when 

testing against known data. In comparison, the developed HMM-based model had an 
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accuracy of 100% even when using a part of the available data and 92% when only a sixth 

of the data were used to train the model.  

When testing against new data (synthetic illuminance values generated exactly as described 

previously in Section 6.4.2), the classification results for each of the 40 k-NN classifiers are 

presented in Figure 6-8. When comparing with the classification results from the HMM, it 

becomes immediately apparent (when focusing on models with k>20) that the “Comfort” 

class now occupies a much broader spectrum than before (especially towards the high end). 

We can argue that this is rather an improvement over the HMM models since we know that 

in this (identified) region between 300 to 2000 lux most people can perform their tasks 

comfortably, especially if the illuminances are due to natural daylight [14; 17]. Additionally, 

this is verified by the Bayesian analysis presented in Section 6.2.3 where we observed that 

below the 300 – 400 lx region “the probability of discomfort increases sharply for lower 

illuminance values while it increases more gradually for values between 500 and 2500 lx”. 

However, one should be cautious when building a k-NN classifier: as seen in the presented 

results, the classification for k<20 is much less stable and is on the borderline of being 

erratic for k<10. 

 

 
Figure 6-7. Quality of k-NN classifiers as a function of the number of Nearest Neighbors (k) used in 
each model. The Resubstitution loss is the fraction of misclassifications concerning the training data, 
while the  Cross-validation loss is the lack of precision when classifying data not used on training 
(assuming that the new data has about the same distribution as the training data). 
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Figure 6-8. Visual comfort state identification against different workplane illuminance values for 40 
different k-NN based classifiers, each having (k) Nearest Neighbors ranging from 1 to 40. The mean 
values of state identification for all the models are presented on the bottom. 
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6.4.4. State identification certainty of the HMM: Likelihood of selected states 

As we can see from the results presented in Section 6.4.2, our HMM-based model 

intrinsically does not output an index or a probability for the visual comfort. Instead, it 

processes a given set of illuminance observations and outputs the best state that matches 

them. Although this output of the model is a crisp state regarding the occupant’s visual 

comfort, it would be interesting to go beyond the crisp answer and see what does “best 

state” means in terms of quantifiable metrics or, in other words, to explore the certainty 

with which the model decides on one state over the other two. 

To do so, we use the output of the Viterbi algorithm (See 5.3.6), which tests every 

observation separately against each of the 3 possible states and finds the most likely state 

that this observation sequence belongs into. This is realised via a log-likelihood and it is 

computed on a one-to-one basis (each observation to one single state) so it cannot be 

directly employed for a likelihood comparison between the different states. Instead, we 

proceed in normalisation of the acquired log-likelihoods of the 3 states: We first subtract the 

biggest value (the one of the most probable state) from the values of all the states. If ଵܺ is 
the log likelihood representing the most probable state, we now have 3 values that look like:  Log	likelihoods = { ଵܺ, ܺଶ, ܺଷ} , ݁ݎℎ݁ݓ ଵܺ = 0 & ܺଶ, ܺଷ < 0 (6-7) 

Their normalised relative likelihoods for each state ݅ are then calculated as follows: 

Normalised likelihood௜ = ݁௑೔ ∑ ݁௑೔ଷ௜ୀଵ൘  (6-8) 

Figure 6-9 presents the results of the normalised relative likelihoods for each identified state 

in each of the 35 different HMM as a function of the horizontal workplane illuminance while 

Figure 6-10 gathers in one graph all the normalised relative likelihoods (scattered points) 

and their means (lines). The first point to notice is that the decision-making of the model 

does not always resemble a binary process. Despite the fact that the normalised values are 

often of the form {1,0,0} in the 0-3500 lx range (showing great decision confidence), the 

uncertainty becomes evident for the illuminance values close to the states transition. 

Great caution should be exercised in the interpretation of these results. That is because the 

visual comfort likelihoods presented in this context should not be confused with the 

probability of the occupant feeling comfortable or uncomfortable at a given desktop 

illuminance level; the discomfort probability is better reflected in other models, like the DGP 

or VisDP presented in Section 6.2. Instead, we should be constantly reminded that the 

proposed HMM approach identifies and outputs crisp states and the likelihoods presented 

here merely reflect the confidence (relative likelihood) with which the model took the 

decision to identify one of the three different states. 
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That being clarified, one could however safely deduce from these results and the ease or not 

of the model to decide between different states, that the comfort of the occupant of the 

room 104 is likely to be maximised between 600 – 1250 lx, where the normalised relative 

likelihood is close to one (and thus the model’s confidence is maximized) and it is likely to 

drop as the illuminances approach the limits of the “Comfort” state on Figure 6-6.  
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Figure 6-9. Normalised relative likellihood for each identified state in the 35 different HMM as a 
function of the horizontal workplane illuminance. Black colour represents Discomfort-L, green Comfort 
& red Discomfort-H. 
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This assumption is verified, when cross-checked once more with the results for the office 

room 104 produced by Lindelöf [18 p. 100], where the global minimum values of discomfort 

probability (less than 0.35) are achieved for exactly that range of desktop illuminances. 

6.5. Conclusion  

This chapter presents the development of a novel model for the estimation of visual comfort. 

As we have demonstrated, there exist today several metrics that evaluate discomfort glare; 

however they are met with important limitations. In the approach we suggest, we build on 

previously performed work to produce a model that is adapted to each user’s perception of 

comfort and that for the first time includes Hidden Markov Models with an innovative 

measurement method to measure pupilar illuminances on the eye-level plane of the user. 

The five main points that constitute the proposed approach an improvement in relation to 

the established indices in the field, are: 

• It does not require detailed knowledge of the user visual environment (the input 

variables are easily obtained with the minimum possible interference with the user). 

• It makes use of the vertical illuminance at the pupillary level, which all studies 

indicate as the variable that correlates the most with the visual comforto. 

• It takes into account the individual preferences and behaviour of different users. 

• It attempts to address discomfort caused also by insufficient or excessive lighting 

conditions (as opposed to only estimating glare). 

• When compared with other state-of-the art classifiers shows remarkably improved 

classification accuracy rates. 

What is more, the results of the developed model have been compared with a previous 

study performed using the same data and the conclusion is that the newly developed model 

successfully reproduces the findings of the older one while using the completely different 

and innovative HMM approach. 

Last, on the perspective of employing the proposed model in a building controller, we 

identify two clear advantages:  

• Firstly, the model makes a clear decision whether the occupant experiences or not 

visual discomfort and this decision could be directly passed on to a controller that 

would undertake the proper actions.  

• Secondly, the fine analysis performed in Section 6.4.4 concerning the normalised 

relative likelihoods of the identified states revealed that these metrics could be an 

                                                
o Not incorporated in the presently developed model but scheduled for inclusion in the future. 



NOVEL MODELS TOWARDS PREDICTIVE CONTROL OF ADVANCED BUILDING SYSTEMS AND OCCUPANT COMFORT IN BUILDINGS 

133 

ideal input to building automation systems based on fuzzy logic. Indeed, the forms 

of the normalised curves resemble (and could serve as) the membership functions of 

a fuzzy inference input i.e. for the control of electric lighting (see for example 

Appendix A.2). In this way, the crisp state decided by the HMM could be turned into 

a fuzzy one, which in some cases might be preferable. 
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7. CONCLUSION AND OUTLOOK  

 

7.1. Main achievements 

In this section we review and discuss the key contributions of this doctoral thesis, where we 

developed novel stochastic models and algorithms for predictive building control, which 

maintain the occupants’ comfort, while at the same time mitigate the energy demand taking 

into account the ever-changing outdoor conditions, the thermo-physical features of the 

building and the user preferences. More specific, in the framework of this research we 

achieved the following novelties: 

• A novel sky-scanner prediction algorithm for the automatic control of electrochromic 

windows which addresses for the first time the slow reaction which characterizes 

this type of advanced glazing. The developed algorithm does not regard the EC 

windows as an isolated building sub-system, as it is often the case. Instead, it 

integrates them in a holistic approach, where, together with the blinds and artificial 

lighting, are part of an advanced daylighting system. We demonstrated that this 

system can create a comfortable visual and thermal environment (without excessive 

energy consumption) and can be considered as a future replacement to standard 

window glazings with mobile solar shadings or to permanently tinted solar protection 

glazings.  

• A novel approach for building control based on the modelling of the “season” 

variable using Hidden Markov Models. Apart from the originality due to the use of 

HMMs, this model is innovative in that: (a) it addresses all parameters that influence 

the season variable (the building characteristics, the weather conditions and the 

user behaviour); (b) its elaboration does not require a thorough comprehension of 

the underlying physical processes; (c) it is building-independent and can be adapted 

to new or modified building configurations; (d) it demonstrated the ability to 

maintain the user’s thermal comfort while mitigating energy for space heating. 

• A novel approach for the estimation of visual comfort using HMMs, which, when 

compared with the current best practices, shows five clear improvements: (a) as it 

makes use of only two easily obtainable input variables (illuminance measured at the 

eye-level pupilar plane and on the task workplane), it does not entail complex 

calculations which require detailed knowledge of the visual environment of the user; 
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(b) it makes use of the vertical illuminance at the pupillary level, which all studies 

indicate as the variable that correlates the most with the visual comfort; (c) 

proposes a new method (EnOcean wireless autonomous sensors) for obtaining the 

vertical illuminance at the pupillary level, without much interference with the user’s 

normal day-to-day tasks; (d) it takes into account user preferences and behaviour; 

(e) it attempts to enlarge the notion of visual discomfort to also cover insufficient or 

excessive lighting conditions (as opposed to only estimating glare). 

 

From the summary of the above contributions brought about by this research, we can 

conclude (and thus confirm our constitutive hypothesis) that indeed “a sound automatic 

control which integrates successfully the different subsystems, respects user wishes and 

adapts to the building's own characteristics as well as to outdoor variations can reduce the 

energy consumption and provide for a better visual and thermal environment for the users”. 

7.2. Future outlook 

Nevertheless, the confirmation of a thesis’ hypothesis is almost never too exhaustive; as 

such, the perspectives for performing additional work that builds on the research presented 

herein or improving the novel concepts proposed seem almost endless. In this context, the 

following suggestions (alongside the ones discussed in detail at the end of each chapter) 

could constitute either points of improvement or of a new depart: 

• The novel sky-scanner prediction algorithm for the control of electrochromic 

windows has been evaluated via a statistical analysis and later through a 

comprehensive parametric study. In the future, it would be interesting to evaluate 

its on-site performance in a real-life, long term field study which will also include 

detailed evaluation by users. 

• On the technical side, it would also be interesting to slightly adapt the proposed sky-

scanner algorithm by adding a fish-eye camera, which will almost certainly allow for 

a wider prediction window. 

• Regarding the elaboration of the visual comfort model using Hidden Markov Models, 

it is very important to improve the quality (and time duration) of the vertical plane 

measurements by using a reliable sensor. However, this should not be on the 

expense of portability or the autonomous character of the sensor (two factors that 

were greatly appreciated by the subjects in this study). 

• Also concerning the state-based developed models, we believe the next logical step 

would be their integration into smart control algorithms for building services as well 

as performing extensive field testing and measurements. This has been partly done 

for the season model (at least on the simulation level), and it is proposed but is not 

yet explored for the visual comfort one. Both developed HMM should benefit 
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however from the future development of the innovative analysis discussed in Section 

6, which demonstrated the models’ intrinsic capability to be seamlessly integrated 

and used in building control systems built around the fuzzy logic concept. 

Last, it should be mentioned that the completion of the visual comfort modelling using HMMs 

and illuminance measurements at the eye-level pupilar plane has been kept on purpose 

outside this list of proposed future work, as it is currently the subject of an ongoing research 

in the framework of the Green-Mod research project which will carry on until March 2016. 
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APPENDIX 

 A.1. Communication protocol of “EControl-Glas” glazings 

(Information presented in this section is an English translation of a German EControl-Glas 
document written by Tobias Wesenberg; errors may exist) 

A.1.1. General description 

The EControl unit for an EControl glazing can be used either as standalone control for a 

single glazing (control unit with a manual control ESS/BT), or as integrated in an advanced 

automatic control system (control unit ESS without manual control capability, as a UP style 

unit), controlled by a EC-Group control unit (GSG). The GSG includes additionally an RS 485 

serial interface, which can be connected either to a PC or to a EIB/KNX, LonWorks, or 

Ethernet network through an interface. 

A.1.2. EC-Bus 

A protocol with variable data length is used for the communication between GSG and ESS. 

The tables below describe the protocol, the addresses, and the coding of commands and 

errors. For data and addresses including more than 1 byte, the most significant byte (High-

Byte) is transmitted first. 

Protocol format on the EC-Bus 
Address Command Length Data Checksum 

1 byte 1 byte 1 byte max 20 bytes 1 byte 

Serial transmission protocol: 19200 bauds, no parity, 1 stop-bit 

Addresses 
Address Function 

0 Feedback to GSG 

1-30 ESS 

200 Broadcast 

251-254 Not implemented 

255 Device not addressed (delivery status) 
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Commands 

Remark: the commands 1 and 2 can be sent as broadcast, since these commands are 

checked periodically by the GSG. For that, the periodic sending (command 13) must be 

activated. 
Number Length Description Broadcast Single Answer 

1 0 bytes Glazing initialization X X  

2 1 byte Start glazing transmission setting in % (18 
... 64) 

X X  

3 0 byte Request short info  X 60 

4 0 byte Request measured values for current 
glazing temperature and current glazing 

transmission 

 X 61 

7 1 byte Request error list (0 ... 4)  X 60/63 

8 0 byte Request HW and SWstatus  X 60/64 

9 0 byte Request number of cycles  X 60/65 

13 1 byte Cyclic request of all ESS on EC-bus by the 

GSG: 

0 = not active (reading of the individual 
ESS or ESS/BT by the GSG) 

1 = active (default) 

   

30 7 bytes Set clock: 
byte 1 = seconds (0 ... 59) 

byte 2 = minutes (0 ... 59) 

byte 3 = hours (0 ... 23) 
byte 4 = day of the month (1 ... 31) 

byte 5 = day of the week (0 ...6, 0 = 

Sunday) 

byte 6 = month (1 ... 12) 
byte 7 = year (0 ... 99) 

 X 60 

31 0 byte Read system time  X 60/69 

 

Feedback 

All feedback data take place at address 0 (GSG). 
Number Length Description Broadcast Single Answer 

60 1 byte General feedback 
negative --> error code 

positive: 0 = ready, 1= currently 

changing, 2 = init cycle 

Feedback "cyclic request" 
negative --> error code 

positive: 30 = not active, 31 = active 
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Feedback "set clock" 

negative --> error code 

positive: 40 = clock set 

61 20 bytes Feedback from command "request 

measured values": 

glazing temperature (hi-byte 14, low-byte 
15) 

glazing transmission (byte 18) 

   

63 10 bytes Feedback from command "request error 

list" 
last 5 errors with time stamp: error 

number (0-4), error code (1), cycle 

number (3, see below), timestamp (5 
bytes, see below) 

   

64 4 bytes Feedback from command "request HW 

and SW status": 

bytes 1and 2 --> hardware status xxxx 
bytes 3 and 4 --> software status yy.yy 

   

65 3 bytes Feedback from current cycle number (3 

bytes: lo, hi, LO) 

   

69 7 bytes Feedback from command "request current 
system time", coded BCD: 

byte 1 = seconds (0 ... 59) 

byte 2 = minutes (0 ... 59) 
byte 3 = hours (0 ... 23) 

byte 4 = day of the month (1 ... 31) 

byte 5 = day of the week (0 ...6, 0 = 
Sunday) 

byte 6 = month (1 ... 12) 

byte 7 = year (0 ... 99) 

   

Remark: the temperature is a signed (-/+) 16-bit number. 

Error codes 
Error number Description 

-15 checksum error EC-bus 

-16 checksum error building bus 

-30 temperature sensor broken or not connected 

-31 temperature sensor broken or short-circuited 

-38 glazing temperature too high (transmission coefficient adjustment stopped 
until T < Tmax - hysteresis) 
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-39 glazing temperature too low (transmission coefficient adjustment stopped 

until T > Tmin 

Explanation "feedback to": errors that stop the adjustment of transmission coefficient are 

stored in the error memory of the EEPROMs. The errors can be retrieved by the command 

"request short info" through the bus, until a reset takes place. Errors whose cause is a bus 

access (checksum errors, status errors) are directly fed-back. When errors with other codes 

take place, please contact EControl-Glas. 

 

Error memory organization 

(BCD coding) 
byte 1 error code 

byte 2 cycle number low byte 

byte 3 cycle number mid-byte 

byte 4 cycle number high byte 

byte 5 year 

byte 6 month 

byte 7 day of the month 

byte 8 hour 

byte 9 minute 

Error request by GSG 

The GSG polls cyclically every ESS on the EC-bus. By command number 3 ("request short 

info"), the current status (ready, currently adjusting transmission coefficient, initialized, or 

error code when an error happens) is provided. 

A.1.3. Interface for an automatic control system 

The RS485 interface of the GSG can be connected to a building bus through an additional 

interface, or to a PC. The telegrams on the EC-bus are directly transmitted to the RS485 

interface, without any change of protocol. 

A.1.4. Control of glazing transmission coefficient 

The transmission coefficient of the glazing can be adjusted between 18 % (dark) and 64 % 

(clear). 

A.1.5. Example: request short info from controller #2 

1. De-activate cyclic sending: 
Address Command Length Data Checksum 

0 13 1 0 14 

2. Wait answer from GSG: 
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Address Command Length Data Checksum 

0 60 1 30 91 

3. Request short info from controller #2: 
Address Command Length Data Checksum 

2 3 0 - 5 

 

4. Answer controller #2: 
Address Command Length Data Checksum 

0 60 1 1 62 

5. Re-activate cylic sending: 
Address Command Length Data Checksum 

0 13 1 1 15 

6. Answer from GSG: 
Address Command Length Data Checksum 

0 60 1 31 92 
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 A.2. Fuzzy logic controller of Electrochromic Windows 

A.2.1. User Present, “EC Tv” Fuzzy Rule Base 

Inputs (fuzzy values): 

 
Figure A-1. Fuzzy variable “Sun-obscured” (sky obscured probability) [min]. 

 

 
Figure A-2. Fuzzy variable “Season” (outdoor average temperature on the last 48 hours) [oC]. 

 

 
Figure A-3. Fuzzy variable “Roomtemp” (instantaneous air temperature) [oC]. 
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Figure A-4. Fuzzy variable “EC.user” (user interaction with EC windows) [min]. 

 

 
Figure A-5. Fuzzy variable “DeskLux” (minute-averaged workplane illuminance) [lx]. 

 

Output (crisp value): 

 

Low = 15% 

MediumLow = 24% 
Medium = 32.5% 

MediumHigh = 41% 

High = 50% 
C = Leave unchanged  

Table A-1. Output crisp value “EC-Tv” (EC windows visible light transmission) 
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Complete rule base (23 rules): 
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A.2.2. User Absent, “EC Tv” Fuzzy Rule Base 

Inputs (fuzzy values): 

 
Figure A-6. Fuzzy variable “Igh” (global horizontal solar irradiation) [W/m2]. 

 

 
Figure A-7. Fuzzy variable “Season” (outdoor average temperature on the last 48 hours) [oC]. 

 

 
Figure A-8. Fuzzy variable “RoomTemp” (instantaneous air temperature) [oC]. 
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Output (crisp value): 

 

Low = 15% 

MediumLow = 24% 
Medium = 32.5% 

MediumHigh = 41% 

High = 50% 

Table A-3. Output crisp value “EC-Tv” (EC windows visible light transmission) 
 

 

Complete rule base (10 rules): 

 

Fuzzy rules 

(1) If Season is "Summer" and RoomTemp is "Hot" then EC-Tv is "Low"
(2) If Igh is "High" and Season is "Summer" and RoomTemp is "Comfort" then EC-Tv is "MediumLow" 
(3) If Igh is "High" and Season is "Summer" and RoomTemp is "Cold" then EC-Tv is "Medium" 
(4) If Igh is "Low" and Season is "Summer" and RoomTemp is "Comfort" then EC-Tv is "Medium" 
(5) If Igh is "Low" and Season is "Summer" and RoomTemp is "Cold" then EC-Tv is "MediumHigh" 
(6) If Igh is "High" and Season is "Winter" and RoomTemp is "Hot" then EC-Tv is "Medium" 
(7) If Igh is "High" and Season is "Winter" and RoomTemp is "Comfort" then EC-Tv is "MediumHigh" 
(8) If Igh is "Low" and Season is "Winter" and RoomTemp is "Hot" then EC-Tv is "MediumHigh" 
(9) If Igh is "Low" and Season is "Winter" and RoomTemp is "Comfort" then EC-Tv is "High" 
(10) If Season is "Winter" and RoomTemp is "Cold" then EC-Tv is "High" 

Table A-4. Complete rule base of control scheme User Absent, “EC Tv” in verbose format. 

 

A.2.3. User Present, “Blinds” Fuzzy Rule Base 

Inputs (fuzzy & crisp values): 

 
Figure A-9. Fuzzy variable “BL.user” (user interaction with the blinds) [min]. 
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Figure A-10. Fuzzy variable “DeskLux” (minute-averaged workplane illuminance) [lx]. 

 

Low = 15% 

MediumLow = 24% 

Medium = 32.5% 
MediumHigh = 41% 

High = 50% 

Table A-5. Input crisp value “EC-Tv” (EC windows visible light transmission) 
 

 

Output (crisp value): 

 

0 

0.4 
0.6 

0.8 

1 

C (Leave unchanged) 

Table A-6. Output crisp value “αblind” (Blinds position: 1: completely open; 0: completely closed). 
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Complete rule base (8 rules): 

 

Fuzzy rules 

(1) If BL.user is "Acted" then alpha-blind is "C"
(2) If DeskLux is "Dark" and BL.user is "NotActed" then alpha-blind is "1" 
(3) If DeskLux is "Comfort" and BL.user is "NotActed" then alpha-blind is "C" 
(4) If DeskLux is "Too-Bright" and BL.user is "NotActed" and EC-Tv is "Low" then alpha-blind is "0.4" 
(5) If DeskLux is "Too-Bright" and BL.user is "NotActed" and EC-Tv is "MediumLow" then alpha-blind is "0.6" 
(6) If DeskLux is "Too-Bright" and BL.user is "NotActed" and EC-Tv is "Medium" then alpha-blind is "0.8" 
(7) If DeskLux is "Too-Bright" and BL.user is "NotActed" and EC-Tv is "MediumHigh" then alpha-blind is "1" 
(8) If DeskLux is "Too-Bright" and BL.user is "NotActed" and EC-Tv is "High" then alpha-blind is "1" 

Table A-7. Complete rule base of control scheme User Present, “Blinds” in verbose format. 

 

A.2.4. User Absent, “Blinds” Fuzzy Rule Base 

Inputs (fuzzy & crisp values): 

 
Figure A-11. Fuzzy variable “Igh” (global horizontal solar irradiation) [W/m2]. 

 

 
Figure A-12. Fuzzy variable “Season” (outdoor average temperature on the last 48 hours) [oC]. 
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Figure A-13. Fuzzy variable “RoomTemp” (instantaneous air temperature) [oC]. 

 
Low = 15% 

MediumLow = 24% 
Medium = 32.5% 

MediumHigh = 41% 

High = 50% 

Table A-8. Input crisp value “EC-Tv” (EC windows visible light transmission) 
 

Output (crisp value): 

 

0 
0.4 
0.6 
0.8 
1 

Table A-9. Output crisp value “αblind” (Blinds position: 1: completely open; 0: 
completely closed). 

 

Complete rule base (9 rules): 

Fuzzy rules 

(1) If EC-Tv is "Low" and Igh is "High" and Season is "Summer" and RoomTemp is "Hot" then alpha-blind is "0" 
(2) If EC-Tv is "MediumLow" then alpha-blind is "0.4" 
(3) If EC-Tv is "Medium" and Igh is "High" and Season is "Summer" and RoomTemp is "Cold" then alpha-blind is "0.4" 
(4) If EC-Tv is "Medium" and Igh is "Low" and Season is "Summer" and RoomTemp is "Comfort" then alpha-blind is "0.6" 
(5) If EC-Tv is "Medium" and Igh is "High" and Season is "Winter" and RoomTemp is "Hot" then alpha-blind is "0.8" 
(6) If EC-Tv is "MediumHigh" and Igh is "Low" and Season is "Summer" and RoomTemp is "Cold" then alpha-blind is "0.6" 
(7) If EC-Tv is "MediumHigh" and Igh is "High" and Season is "Winter" and RoomTemp is "Comfort" then alpha-blind is "1" 
(8) If EC-Tv is "MediumHigh" and Igh is "Low" and Season is "Winter" and RoomTemp is "Hot" then alpha-blind is "1" 
(9) If EC-Tv is "High" then alpha-blind is "1" 

Table A-10. Complete rule base of control scheme User Absent, “Blinds” in verbose format. 
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A.2.5. User Present, “Lights” Fuzzy Rule Base 

Inputs (fuzzy & crisp values): 

 
Figure A-14. Fuzzy variable “DeskLux” (minute-averaged workplane illuminance) [lx]. 

 

Figure A-15. Fuzzy variable “EL.user” (user interaction with the electric lights) [min]. 
 

Low = 15% 
MediumLow = 24% 
Medium = 32.5% 
MediumHigh = 41% 
High = 50% 

Table A-11. Input crisp value “EC-Tv” (EC windows visible light transmission) 

0 
0.4 
0.6 
0.8 
1 

Table A-12. Input crisp value “αblind” (Blinds position: 1: completely open; 0: completely closed). 
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Output (crisp value)a: 

 

0 
1 
C (LeaveUnchanged) 

Table A-13. Output crisp value “P.lights” (fraction of applied electric lighting power in dimmable 
luminaires; 1: fully on; 0: completely off). 

 

Complete rule base (8 rules): 

Fuzzy rules 

(1) If DeskLux is "Comfort" and EL.user is "Acted" then P.lights is "C" 
(2) If DeskLux is "Comfort" and EL.user is "NotActed" then P.lights is "C" 
(3) If DeskLux is "Too-Bright" and EL.user is "NotActed" then P.lights is "0" 
(4) If DeskLux is "Dark" and EL.user is "NotActed" and EC-Tv is "NOT High" and alpha-blind is "NOT 1" then P.lights is "0" 
(5) If DeskLux is "Dark" and EL.user is "NotActed" and EC-Tv is "NOT MediumHigh" and alpha-blind is "NOT 1" then 
P.lights is "0" 
(6) If DeskLux is "Dark" and EL.user is "NotActed" and EC-Tv is "High" and alpha-blind is "1" then P.lights is "1" 
(7) If DeskLux is "Dark" and EL.user is "NotActed" and EC-Tv is "MediumHigh" and alpha-blind is "1" then P.lights is "1" 
(8) If DeskLux is "ComfortBright" and EL.user is "NotActed" then P.lights is "0" 

Table A-14. Complete rule base of control scheme User Present, “Lights” in verbose format. 

  

                                                
a Although set to a crisp value, the output of the rules (as well as the one used for the control of electric 
lights) is a fraction in the region of [0,1]. 
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 A.4. Switching time curves of electrochromic windows 

Measurements have been performed as explained in Section 4.1.1 with EC reported 

temperature at about 26°C. 

A.4.1. From clear to tinted state 
Time [min] Tv EC [%] Tv IGU [%] SHGC [%] 

0 64 50.0 38.0 

1 58.8 46.3 35.8 

2 53.2 42.1 32.9 

3 48.2 38.4 30.3 

4 43.7 35.0 27.9 

5 39.7 32.0 25.7 

6 36.1 29.3 23.7 

7 33 27.0 22.0 

8 30.3 24.9 20.5 

9 28 23.2 19.1 

10 26 21.6 17.9 

11 24.3 20.3 16.9 

12 23 19.3 16.1 

13 21.9 18.5 15.3 

14 21 17.7 14.7 

15 20.3 17.2 14.2 

16 19.8 16.8 13.8 

17 19.5 16.5 13.5 

18 19.2 16.3 13.2 

19 19.1 16.2 13.1 

20 19 16.1 13.0 

21 18.9 16.0 12.9 

22 18.8 16.0 12.8 

23 18.7 15.9 12.8 

24 18.5 15.8 12.7 

25 18.3 15.7 12.7 

26 18 15.0 12.0 

A.4.2. From fully tinted to clear 
Time [min] Tv EC [%] Tv IGU [%] SHGC [%] 

0 18.0 15.0 12.0 

1 19.4 16.4 13.4 

2 20.4 17.5 14.5 

3 21.5 18.4 15.4 

4 22.7 19.4 16.3 
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5 24.0 20.6 17.2 

6 25.8 21.9 18.3 

7 27.8 23.6 19.5 

8 30.3 25.6 21.1 

9 33.2 27.9 22.9 

10 36.5 30.6 24.9 

11 40.2 33.5 27.2 

12 44.1 36.6 29.5 

13 48.1 39.7 31.9 

14 52.1 42.8 34.2 

15 56.0 45.6 36.1 

16 59.5 48.0 37.6 

17 62.4 49.7 37.9 

18 64.0 50.0 38.0 
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 A.5. Short survey questionnaire 

Electrochromic Windows short survey (LESO, Office LE003) 

Time required: ~10min 

Part A: Background information 

 

Date: ………………………… 

Start time: …………………   End Time: ………………… 

 

A1. What is your gender? 

o Male 

o Female 

 

A2. How old are you? 

o Under 30 

o  30-39 

o 40-49 

o  50-59 

o 60 and over 

 

A3. Are you colour blind? 

o No 

o Yes:  Red/Green; Blue/Yellow (please underline one pair) 

o I am not sure 

 

A4. On a scale from 1 to 5, how familiar you would say you are with the Electrochromic (EC) 

Windows applications in buildings? [1=Not at all, 5=Very familiar] 
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Part B: Survey 

B1. During this session, what percentage of your time was spent on each of the following 

tasks: 

a. Reading (from paper) :   % 

b. Computer:    % 

c. Writing by hand:  % 

d. Other:    %, please specify: ..………………………………………….. 

B2. During this session, what percent of your time were you facing the following directions: 

a. Side wall :    % 

b. Windows:    % 

c. Back wall/Door:   % 

a. Other:    %, please specify: …………………………………………….. 

B3. Please assign a rating of 1,2,3,4 or 5 with all the following lighting/thermal conditions 

during the time you spent in the test office. 

a. Room Temperature [1=Too cold, 3=Just right, 5=Too hot]:   ……… 

b. Light level [1=Too dark, 3=Just right, 5=Too bright]:    ……… 

c. Light distribution [1=Very bad, 5=Excellent]:     ……… 

d. Room colours [1=Very unnatural, 5=Natural]:    ……… 

e. Colours when looking outside [1=Very unnatural, 5=Natural]:  ……… 

f. Glare sensation [1=None, 3=Acceptable, 5=Intolerable]:   ……… 

B4. Please rate with 1,2,3,4 or 5 your satisfaction regarding all of the following aspects of 

the Electrochromic (EC) Windows during the time you spent in the test office. [1=Very 

Dissatisfied, 5=Very Satisfied] 

a. Ease of use of EC windows manual control panels:   ……… 

b. Time to switch to desired transmission level (lighten/darken):  ……… 

c. Other (Please specify):________________________________________  ……… 
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B5. During your stay in this office, did you use the blinds?  

o No 

o Yes, for the following reason(s): [Choose as many as appropriate] 

□ To deal with overheating issues 

□ To deal with glare issues 

□ To reduce illuminance levels 

□ EC windows were difficult to adjust to desired levels of light transmission 

□ EC windows took a lot of time to change their light transmission levels 

□ Privacy 

□ Other (Please specify):______________________________________________ 

B6. During your stay in this office, did you use the electric lighting?  

o No 

o Yes, for the following reason(s): [Choose as many as appropriate] 

□ To increase lighting level 

□ Other (Please specify):______________________________________________ 

B7. Regarding the natural light conditions, what did you appreciate during the time you 

spent working in this office? (e.g. you can compare with your usual workplace in LESO) 
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B8. Regarding the natural light conditions, what did you not like during the time you 

spent working in this office? (e.g. you can compare with your usual workplace in LESO) 

 

B9. Please freely add below any additional remarks, comments or suggestions you may 

have regarding the time you spent working in this office.  

Also, in the view of a thorough survey we are planning for the future on the subject of users’ 

satisfaction with an advanced automatic control system of Electrochromic Windows, you’re 

also kindly asked to comment on the survey itself and help us improve the questionnaire and 

research protocol.  
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 A.6. Useful information concerning the portable illuminance 

sensor ‘EnOcean’ 

(This text was handed out to the subjects that participated in the measurements campaign 
described in Section 6.3.3). 

To ensure the study’s success you are kindly requested to follow these simple guidelines concerning 
the portable illuminance sensor. If you have any questions whatsoever, please do not hesitate to 

contact us (turn over for details). Thank you for accepting to participate! 

• Please hang the sensor around your neck as soon as you start your working day in 
the office. If for any reason you omit it, just note down the time & date and inform us so we 
can exclude the time that you were in your office without wearing it from our analysis. (You 
can still put the sensor on at a later time during the day; it will just mean less useful data for 
the study). 

• Feel free to adjust the length of the belt (loose or tighten the knot as appropriate) to keep it 
as comfortable as possible for you. Just make sure the sensor is not (partly) hidden 
beneath your desk while you work, nor it is hindered by any garments (scarf, tie, 
jacket etc.). 

• Each sensor bears a name on the bottom side; this is for your convenience and to avoid 
accidental swaps of the sensors. Please also note that this study is about single-occupant 
offices; do not give the sensor to another person who might be working in your 
office. 

• If another person is present or working in your office while you’re there, there is not a 
problem; just carry on normally with your work! However, if another person is using your 
office while you’re not there for the whole day or a big part of it, then please tell 
us so we can exclude measured data from our study. 

• Please don’t change your habits, preferences or visual comfort levels because of study: Feel 
absolutely free to adjust the electric lights or the blinds in your office to match your 
preferences and comfort levels. However, please give priority to electrically powered devices 
(roller tissue blinds and dimmable lights) over manually controlled devices (i.e. vertical 
venetian blinds of the anidolic windows). 

• When not wearing the sensor (i.e. when out of office or at the end of the day), please leave 
it to a luminous spot with as much daylight as possible, face up (not upside down or 
under papers or other objects). This way the PV panel around the sensor will keep your 
sensor’s battery charged! 

• Keep the sensor on you as often as possible when inside your office. That being said, 
you don’t have to take it off each time you step outside your office: no data will be recorded 
or processed when you are out of office, even if you keep it on you. (Of course, you might 
want to take it off for your own comfort when out of office!). Similarly, feel free to work 
wherever/however you like inside your office: at your desk, at the round table, on 
your white board, arrange your files etc. 

…and the most important: 

 Carry on with your normal activities as if you were not wearing the sensor!
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NOMENCLATURE 

 

ADS Anidolic Daylighting System(s) 

ANN Artificial Neural Networks 

Ave Average 

BGI British Glare Index  

CCD Charge-coupled device (i.e. sensor in digital cameras) 

CGI CIE Glare Index 

CIE Commission Internationale de l’Eclairage (International Commission on 

Illumination) 

DC Direct Current 

DGI Daylight Glare Index 

DGP Daylight Glare Probability 

Discomfort-H Discomfort because of High illuminances 

Discomfort-L Discomfort because of Low illuminances 

EC Electrochromic 

Egh Global Horizontal Illuminance [lx] 

EIB European Installation Bus 

EM Expectation-Maximisation (algorithm) 

EPFL École Polytechnique Fédérale De Lausanne 

Evgs Global vertical South illuminance [lx] 

FOV Field-of-view 
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GMM Gaussian Mixture Models 

HMM Hidden Markov Model 

HTTP Hypertext Transfer Protocol 

HVAC Heating, Ventilation and Air Conditioning 

Igh Global horizontal solar irradiation [W/m2] 

IGU Insulating Glass Unit 

Igvs Global vertical south solar radiation [W/m2] 

LAN Local Area Network 

LC Liquid Crystal 

LED Light Emitting Diode 

LESO(-PB) Laboratoire d’Energie SOlaire et de Physique du Bâtiment (Solar Energy 

and Building Physics Laboratory) 

MPC Model Predictive Control 

PMV Predicted Mean Vote  

PPD Predicted Percentage of Dissatisfied  

SHGC Solar Heat Gain Coefficient 

SP Electrophoretic or Suspended-Particle 

Stdv Standard deviation 

Text Outside (external) temperature [oC] 

Tint Internal air temperature [oC] 

Tv Visible Transmittance 

UGR Unified Glare Rating 

VisDP Visual Discomfort Probability 

WoT Web-of-Things 
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