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The molecular chaperone Hsp70 plays a central role in the import of cytoplasmic

proteins into organelles, driving their translocation by binding them from the organellar

interior. Starting from the experimentally-determined structure of the E. coli Hsp70,

we computed, by means of molecular simulations, the effective free-energy profile for

substrate translocation upon chaperone binding. We then used the resulting free energy

to quantitatively characterize the kinetics of the import process, whose comparison

with unassisted translocation highlights the essential role played by Hsp70 in importing

cytoplasmic proteins.
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1. Introduction

Molecular chaperones are protein machines that assist other proteins in various cellular processes.
70-kDa Heat Shock Proteins (Hsp70s) are possibly the most versatile chaperones, supervising a
wide variety of cellular tasks (Mayer and Bukau, 2005) that range from disaggregation of stable
protein aggregates (Diamant et al., 2000) to driving post-translational import of cytoplasmic pro-
teins into organelles (Matlack et al., 1999; Neupert and Brunner, 2002; Liu et al., 2014). Notably,
Hsp70s play a fundamental role in the import of proteins into mitochondria because the major-
ity of mitochondrial proteins are actually encoded in nuclear DNA, synthesized in the cytosol and
only post-translationally imported into the organelles. Protein import takes place through a pro-
teinaceous pore that spans the two mitochondrial membranes by way of the outer (TOM) and
inner (TIM) membrane pore complexes (Neupert and Brunner, 2002). According to the current
view, an ATP-consuming import motor located into the mitochondrial matrix drives the inward
translocation of nuclear-encoded proteins. Mitochondrial Hsp70 (mtHsp70) is the central element
of this motor: it is recruited by the TIM complex on the matrix side through interactions with the
TIM44 protein, which is part of the pore, and with the pore-associated PAM16/18 proteins. The
latter contain a J domain, whose role is to dramatically enhance the ATP-hydrolysis rate of Hsp70,
thus increasing by orders of magnitude its affinity for substrates. The ATP-driven binding of the
chaperones to incoming proteins ultimately drives their translocation.

The structure of Hsp70 is highly conserved (Zuiderweg et al., 2013) and consists of two large
domains connected by a small flexible linker (see Figure 1). Specifically, the Nucleotide Binding
Domain (NBD) is the ATPase unit of the chaperone, while the Substrate Binding Domain (SBD)
directly interacts with specific sites on the incoming protein. These binding sites are frequently
found in protein sequences, so that multiple chaperones are likely to bind the same substrate.

The precise mechanism by which Hsp70 exerts its pulling action has been debated in the lit-
erature and several models have been proposed (Glick, 1995; Neupert and Brunner, 2002; De Los
Rios et al., 2006). The Brownian ratchet (Neupert and Brunner, 2002) assumes that, thanks to the
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FIGURE 1 | Cartoon representation of the Hsp70 chaperone at the

secondary-structure level (top) and corresponding coarse-grained

model considered in this work (bottom).

chaperone large size, Hsp70 binding prevents the retrotranslo-
cation of the substrate into the pore, thus biasing the random
fluctuations toward the matrix. Alternatively, according to the
power stroke (Glick, 1995) the chaperone actively pulls the incom-
ing protein by using TIM as a fulcrum. Later, according to the
entropic pulling model (De Los Rios et al., 2006), it was shown
that an active force naturally emerges from a realistic physical
description of the Brownian ratchet, thus reconciling the two
views (Goloubinoff and De Los Rios, 2007). Indeed, the excluded
volume of the chaperone, besides preventing retrotranslocation,
reduces the conformational space available to the incoming pro-
tein, thus decreasing its entropy. This reduction depends on
the length of the imported fragment of the substrate, therefore
resulting in a free-energy gradient which favors the import.

In the present work, we evaluate this thermodynamic force in
an effective one-dimensional space where the state of the system
is represented by the number n of imported residues. In order to
do so, for each value of n we compute the effect of chaperone
binding on the free energy of the system by means of coarse-
grained Molecular Dynamics (MD) simulations. This result is
then used to devise a simplified yet quantitative analysis of the
import, described as a one-dimensional diffusion process on the
computed free-energy landscape.

2. Materials and Methods

2.1. Details of MD Simulations
We coarse-grained both the substrate and the chaperone by con-
sidering one interaction site per residue centered on the Cα

atom. Residue-residue excluded-volume interactions were mod-
eled with a repulsive Lennard-Jones potential with parameters
σ = 3.8Å and ε = 3kBT. The substrate was modeled by using
the local flexible potential introduced in Ghavami et al. (2013).
Within this force field, the elastic properties of a coarse-grained
unfolded protein are described by means of harmonic Cα - Cα

bonds and sequence-specific bending and torsional potentials.
Particularly, the sequence dependence is introduced by consid-
ering a simplified three-letters description, where the eventual
presence of glycine or proline amino acids is explicitly accounted
for, while all the other residues are considered equivalent. In the
present work, for simplicity we focus on glycine- and proline-free
substrates, thus making use of the functions denoted as O-X-Y
and X-X in Ghavami et al. (2013) for the bending and torsional
contributions, respectively. The experimental structure of ADP-
bound Hsp70 (Bertelsen et al., 2009) (PDB: 2KHO) was used to
model the chaperone. In particular, the NBD (residue 4–387) and
SBD (residue 397–603) were treated as rigid bodies, while the
flexibility of the interdomain linker was accounted for by means
of the potential described above. In order to reproduce a cor-
rect chaperone-substrate arrangement, we took advantage of the
substrate-bound X-ray structure of DnaK SBD (PDB: 1DKX Zhu
et al., 1996). MD simulations were performed using LAMMPS
code (Plimpton, 1995) at constant temperature (T = 300K) by
means of a Langevin thermostat with damping parameter equal
to 100 fs and using an integration timestep of 10 fs. For each
value of n in the range 8 ≤ n ≤ 26 we performed a MD sim-
ulation of 5 · 1010 timesteps (examples of the convergence of the
ratioZ70(n)/Z(n) are reported in the Figure S1—Supplementary
Material), and the error on the free-energy profile was estimated
by block averaging (Frenkel and Smith, 2002).

2.2. Details of the Stochastic Simulations
The import process was simulated by means of a Monte Carlo
(MC) algorithm driven by the free-energy landscape Fimport,
as determined from the sum of the chaperones pulling con-
tribution computed by means of the MD simulations and the
unfolding free energy Fu. The latter is modeled as a sigmoidal
function

Fu(nin)=
Fmax
u

1+ exp
[

5− 10(nin − 10)/δn
] ,

where nin is the total number of imported residues, and Fmax
u and

δn are tunable parameters representing the total free energy of
unfolding and the cooperativity of the unfolding process, respec-
tively (see Figure 4 top). For a system at position nin, a trial move
was attempted to either nin + 1 or nin − 1 with equal proba-
bility and accepted according to the Metropolis criterion based
on the free energy Fimport. To capture the sequence heterogene-
ity of the proteome, for each choice of Fmax

u and δn we gen-
erated 25 independent binding-site distributions, with the sole
prescription that the average distance between consecutive bind-
ing sites was 35 residues as indicated by experiments (Rüdiger
et al., 1997). For every distribution we performed 10 independent
realizations of the import process. Average import times were
estimated by counting the total number of MC timesteps needed
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for the translocation process to be completed. This protocol is
justified by the fact that MC simulations correspond to over-
damped Langevin dynamics when only local moves are con-
sidered (van Kampen, 1992; Tiana et al., 2007). Rescaling the
obtained import times by the acceptance rate, as proposed in Sanz
and Marenduzzo (2010), did not affect the results, because of the
large fraction of accepted moves observed in all the simulations
(> 95%).

3. Results

Protein import into organelles has been previously modeled
as a one-dimensional stochastic process in the space of the
imported residues (Elston, 2000, 2002; Liebermeister et al., 2001).
In the present context, this protocol is justified by the timescale
separation among substrate conformational dynamics, chaper-
one binding/unbinding and overall import. Indeed, the typical
reconfiguration time of an unfolded protein (∼ 100 ns Soranno
et al., 2012) is extremely fast compared to the experimentally-
determined timescale for protein import into mitochondria
(order of minutes Lim et al., 2001). Effects arising from sub-
strate conformational dynamics, such as the chaperone-induced
entropy reduction, can be thus conveniently represented as
effective free-energy profiles influencing the import dynamics.
Moreover, the import timescale is also significantly slower than
chaperone binding but faster than chaperone unbinding at phys-
iological conditions. Indeed, according to the current under-
standing of the biochemical cycle of Hsp70 (Zuiderweg et al.,
2013; De Los Rios and Barducci, 2014), ATP-bound chaperones
associate with the substrate with a timescale equal to ∼ 10−2

s (as estimated from a Hsp70-peptide association rate equal to
4.5 × 105 M−1s−1 Schmid et al., 1994 and a chaperone concen-
tration of 70 µM in mitochondria Liu et al., 2003), while disso-
ciation takes place from the ADP-bound state, over timescales
∼ 103 s (Mayer et al., 2000). In the mitochondrial matrix
chaperone-substrate dissociation is accelerated by the presence
of nucleotide exchange factors, that catalyze the release of ADP
and the ensuing rebinding of ATP. However, ATP hydroly-
sis is greatly enhanced in the proximity of the pore by pore-
associated J-domain proteins, resulting into ultra-affinity for the
substrate (De Los Rios and Barducci, 2014) and thus into an
immediate replacement of the dissociated chaperone. This sug-
gests that, to our purposes, we can assume that a chaperone
immediately and irreversibly binds each exposed binding site
as soon as it is imported. As a consequence, for the present
purposes the number n of substrate residues that have been
imported into the mitochondrial matrix is a convenient coor-
dinate to describe the system, whose dynamics can be mod-
eled as a diffusion process on the corresponding free-energy
landscape.

3.1. Free Energy Calculation
The effect of the size of the chaperone is two-fold. On the one
hand, bound Hsp70 prevents the retrotranslocation of the sub-
strate beyond its binding point (Brownian ratchet model Neupert
and Brunner, 2002). On the other hand, the size of the chaper-
one leads also to a reduced number of sampled conformations

(entropic pulling De Los Rios et al., 2006), an effect not accounted
for by the Brownian ratchet as it was originally conceived, but
nonetheless intimately related to the same physical mechanism.
For example, in the absence of Hsp70 the two substrate confor-
mations shown in the top panel of Figure 2 are both sterically
allowed. However, upon chaperone binding the conformation
on the right would result into an overlap between the mem-
brane and Hsp70 (bottom panel in Figure 2), and it is therefore
never sampled by the substrate when the chaperone is present.
The free energy difference due to the loss of entropy is given
by 1Fc(n)= −kBT log

(

Z70(n)/Z(n)
)

, where Z70(n) and Z(n)
are the partition functions of the substrate with and without
a bound chaperone, kB is the Boltzmann constant and T the
temperature (when enthalpic contributions are not taken into
account, the partition functions reduce to the number of sam-
pled conformations, thus falling back to the original formu-
lation of the entropic-pulling free energy De Los Rios et al.,
2006). Here, we computed the free energy difference 1Fc(n)
by estimating the ratio Z70(n)/Z(n) for n in 8 ≤ n ≤ 26
with multiple coarse-grained MD simulations. The substrate was
modeled as a n-residues flexible chain with the position of the
nth residue constrained on the inner mithocondrial membrane,
represented here as a flat wall acting only on the substrate
residues (see Materials and Methods for additional details). As
a consequence, the system could sample configurations involv-
ing an overlap between the membrane and the chaperone (see
bottom-right panel in Figure 2). With this strategy, we could
estimate the ratio Z70(n)/Z(n) as the fraction of time spent by
the system in physically-acceptable, i.e., non-overlapping, con-
figurations. Particularly, we focused on n ≥ 8 in order to
allow the exposure of a complete binding site. From the com-
puted values of Z70(n)/Z(n), we could retrieve the free energy
1Fc(n) as a function of n, as reported in Figure 3. As expected,
shorter imported fragments resulted into a larger fraction of
rejected conformations, i.e., larger values of 1Fc, thus leading
to a free-energy gradient favoring the import of the protein.
The slope of the entropic-pulling free-energy profile corresponds
to the thermodynamic pulling force exerted by a bound chap-
erone along n (Figure 3 inset). This force is in the piconew-
ton range, starting from around 15 pN and decreasing as n
increases. Remarkably, these results agree qualitatively with pre-
vious estimates based on strongly simplified representations of
the system (De Los Rios et al., 2006), thus suggesting that
comparable thermodynamic forces could be obtained by the
same entropic pulling mechanism for macromolecules of similar
size.

3.2. Stochastic Simulations of the Import Process
We modeled the import of cytoplasmic proteins as a one-
dimensional stochastic process depending on the number nin
of imported amino acids. The effective free-energy profile guid-
ing the system evolution results from protein unfolding (Eil-
ers and Schatz, 1986) and active chaperone pulling (Lim et al.,
2001). Assuming a two-states folding behavior, a convenient
choice to model the unfolding contribution to the free-energy
landscape is a tunable sigmoidal function Fu(nin) (see Materials
and Methods), depending on two parameters that measure the
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FIGURE 2 | Two representative conformations of the substrate without

(top) and with (bottom) bound chaperone. While in the absence of Hsp70s

both conformations contribute to Z (n), upon chaperone binding the one on

the right is not taken into account in Z70 (n) due to sterical clash with the wall.

The nth residue of the substrate, which is constrained on the wall, is colored in

cyan. The shaded beads inside the channel are here drawn only for

representative purposes.

total unfolding free energy (Fmax
u ) and the cooperativity of the

unfolding process (δn), with smaller values of δn correspond-
ing to higher cooperativity (top panel in Figure 4). By tuning
these parameters, the formula can account for the wide variety
of imported proteins (Wilcox et al., 2005). The pulling action
of the chaperone was modeled taking advantage of the free-
energy profile determined from molecular simulations. Partic-
ularly, we assumed here that: (i) Hsp70s associate with each
binding site as soon as it emerges from the pore, since they are
targeted at the TIM pore exit by specific interactions (Neupert
and Brunner, 2002); (ii) we considered only the contribution
arising from the Hsp70 closest to the pore, taking into account
the relatively fast decrease of the slope of 1Fc (see Figure 3)
and the average frequency of binding sites (one every 35 amino
acids Rüdiger et al., 1997). Therefore, we added to the unfold-
ing free-energy Fu(nin) the chaperone contribution 1Fc(nin −

nB), with nB corresponding to the position of the binding site
closest to the pore, measured from the matrix terminus of the
substrate.

As an example, in the bottom panel of Figure 4 we illustrate
the evolution of the free-energy landscape during the import pro-
cess of a protein with Fmax

u = 5kBT, δn = 100 and two binding
sites at nB = 0 (i.e., at the matrix terminus) and nB = 28.
At the beginning of the import process, no chaperone is bound
to the substrate and the import free energy is simply given by
Fimport(nin)= Fu(nin) (red dashed curve). As soon as the first
binding site is imported, a chaperone molecule binds the sub-
strate and its contribution 1Fc is added to Fu(nin) starting from

FIGURE 3 | Free-energy profile due to chaperone binding as a function

of n (red circles). Error bars are smaller than the size of the symbols. The

dashed blue line depicts the free-energy landscape predicted by the original

Brownian ratchet, where the only effect of the chaperone is to prevent

retrotranslocation beyond the binding site (infinite wall). In the inset we report

the thermodynamic force corresponding to the computed free-energy

landscape.

the binding site nB = 0: Fimport(nin)= Fu(nin)+1Fc(nin) (pur-
ple continuous curve). Finally, after the second binding site
(nB = 28) is imported, another chaperone binds and the resulting
free energy is Fimport(nin)= Fu(nin)+1Fc(nin − 28) (orange
dot-dashed curve).

Following this approach, we computed the average import
time (see Materials and Methods) of 300-residue proteins for dif-
ferent values of δn and a range of Fmax

u corresponding to the
stability of a large fraction of the proteome (Ghosh and Dill,
2010). In absence of Hsp70 assistance, the system must invari-
ably overcome a free-energy barrier, and the average import time
τ0 increases exponentially with Fmax

u , independently of cooper-
ativity (Figure 5 top). In all the considered cases, the average
import time for the chaperone-assisted process, τC, is sensibly
smaller than τ0 (Figure 5 center). The chaperone pulling force
reduces but does not completely eliminate the unfolding free-
energy difference for stable proteins (large Fmax

u ), as in the case of
the representative process shown in the bottom panel of Figure 4.
In this regime, the import is still an activated process, and the
average times increase exponentially with Fmax

u . Conversely, the
pulling action of Hsp70 dominates over the unfolding contribu-
tion for marginally stable proteins (small Fmax

u ), thus resulting
in values of τC comparable to what found for the extreme case
Fmax
u = 0. The import kinetics is further modulated by δn, with

high cooperativity (small δn) resulting in longer translocation
times.

In the bottom panel in Figure 5 we illustrate the chaperone-
induced kinetic advantage by reporting the ratio τ0/τC. This
ratio ranges from a 10-fold gain for marginally stable pro-
teins to 103 for extremely stable and non-cooperative substrates,
with the majority of the proteome (Fmax

u ≥ 8kBT Ghosh
and Dill, 2010) accelerated at least 100 times. If we take into
account that protein import into mithocondria has been mea-
sured to happen in the timescale of several minutes (Lim et al.,
2001), our model indicates that the translocation process in
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FIGURE 4 | Top: Influence of the parameters Fmax
u and δn on the unfolding

free-energy. Bottom: Evolution of the total free-energy Fimport in a

representative import process.

the absence of chaperones would probably extend to hours or
days. Since such a slow process would clearly be incompati-
ble with the average lifespan of proteins and the duration of
the cell cycle, our results provide a molecular basis to sup-
port the essential role of chaperones in the in vivo import
process.

4. Conclusions

To summarize, in this work we derived a free-energy profile
for the import process based on a molecular description of
Hsp70 that rationalizes the requirement for chaperone assis-
tance in mitochondrial protein import observed in experi-
ments. Naturally, a more precise quantitative estimation could
be obtained by considering a more refined representation of
the system, i.e., going beyond the coarse-grained model at
residue level resolution employed in this work and consid-
ering also other interactions than the excluded volume. The

FIGURE 5 | Top: Average import times in the absence of chaperone (τ0) as a

function of Fmax
u for different cooperativities (values for Fmax

u ≥ 12kBT were

extrapolated by fitting the data in the range 4kBT ≤ Fmax
u ≤ 11kBT with

exponential functions). Center: Average import times in the presence of

Hsp70 (τC) for the same cases as in the top panel. Bottom: Acceleration of

the process due to the assistance of Hsp70, expressed as the ratio τ0/τC.

present results can be applied to other cases of Hsp70-driven
translocation, namely protein import into ER (Matlack et al.,
1999) and chloroplasts (Liu et al., 2014). In the ER case, in
particular, the pore is much simpler than in mitochondria,
as it spans just a single membrane. The presence of Sec63,
a pore-associated protein containing a J domain, ensures also
in this context that the extended ATP-driven Hsp70 ultraf-
finity prevails in the competition against other translocation
counterproductive interactions (Scidmore et al., 1993). More-
over, this approach based on the combination of molecular
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simulations and kinetic modeling can be easily extended to
other Hsp70-mediated cell processes. In particular, this free-
energy picture could help to understand some recent results
pointing toward a fundamental role of Hsp70 in preventing the
stalling of translation at ribosomes (Liu et al., 2013; Shalgi et al.,
2013). Owing to the universality of the interaction responsi-
ble for the effects studied here, namely excluded volume, the
same principles could apply to similar processes driven by other
biomolecules.
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