
Model Selection
• Model parameters were fit to maximize the log likelihood: 

• Bayesian information criterion (BIC) used to «rank» models:

Selected  Model:
• 1st

• 2nd 

• 3rd

The task
Numbers are drawn from a normal distribution. With hazard rate H, 
the mean can abruptly change. The goal is to sequentially estimate 
the underlying mean from noisy observations. (Wilson et al, 2013)
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Abstract
Human learning in unstable environments can be modelled by 
change-point detection algorithms. We compare different existing 
algorithms and propose a new one. Our model is simple, solves the 
change-point problem with remarkable performance, fits well to 
experimental data, and has an intuitive interpretation. It combines 
three cognitive processes: Bayesian filtering, parallel memory traces 
at long and short timescales, and attentional selection by taking into 
account unexpected uncertainty.
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Conclusion

• The combined model closely matches optimal performance and fits 
well to human behaviour.

• The combined model allows a competing hypothesis to accumulate 
evidence. This seems to be a strategy also implemented by 
humans.

• 9 of 28 subjects take estimation uncertainty into account (best fit 
by either Payzan-LeNestour or Combined model).

• Humans do modulate the learning rate. Yet the models fail to 
explain those variations for 14 of 28 subjects. TD learning with 
constant learning rate best explains the data. What are the 
models missing?

Characteristic Features
• The better an algorithm detects a change-point, the better it can 

modulate the learning rate. Data before a change point should not 
influence the current estimate.

• Models that take into account estimation uncertainty detect 
change points more reliably (e.g. Full, Payzan, Combined)

• Without taking estimation uncertainty into account, an outlier 
«looks the same» as a change point. (e.g. Nassar Model)

Algorithms
• Temporal difference learning with constant learning rate (TD α)

• Keeps only a single running average.

• Full Bayesian model (Adams/MacKay 2007) 
• Considers all past data. 
• Keeps one distribution over θ per run length

• Wilson et al. 2013
• Reduces the full Bayesian model by i) considering only a (fixed) subset 

of N possible runlengths and ii) computing a running weighted average
µr per runlength (one constant learning rate αr per runlength)

• Nassar et al. 2010
• Considers two possible run lengths: rt=0 (change point) and a longer 

runlength that either increases or decreases depending on the 
probability Ω of a change point (cp).

• Payzan-LeNestour, Bossaerts 2011
• Considers two possible distributions over θ, one «prior» and one for a 

runlength rt. 
• computes a subjective likelihood λ that no jump has occurred.

� Combined Model (new)

i. for some prior P(xt|0) and hazard rate H, recursively compute the 
likelihood of three hypotheses:

ii. Keep the two most likely runlenths only (pruning), and compute a 
generalized change point probability: Ωt = P(changepoint rshort timesteps ago):

iii. The distribution over θt is a weighted sum of two Bayesian posterior 
distributions:

Overview of Algorithms
• The algorithms differ by the information they keep about the past. 
• They integrate available (stored) information optimally.

For the Nassar model, 
the value of the fitted λ
is shown.
0 means «pure» TD,
1 means «pure» 
Nassar


