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Hebbian and non-Hebbian plasticity orchestrated to form and retrieve memories in spiking networks
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Hebbian and non-Hebbian plasticity orchestrated to form and retrieve memories in spiking networks

F. Zenke, E. J. Agnes, W. GerstnerSimulated using the
Auryn simulator
github.com/fzenke/auryn

Classic learning rules fail to maintain memories

näıve cell assembly
experience

pre

post

400 cells
w

[1
]Non-plastic

pre

post

400 cells

w
[1
]

Triplet

0
10
20

0 20 40 60 80 100

R
at

e
[H

z]

Time [s]

stimulus

0
20
40

0 20 40 60 80 100

R
at

e
[H

z]

Time [s]
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Learning rule: Triplet STDP (Pfister & Gerstner, 2006).

Problems: Run-away activity and crosstalk between memories.

Orchestrated plasticity

Problem:
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∆wij(t) = A (pre)j × (post)2
i

−Bi (pre)j × (post)i
−β × (wij − w̃ij) × (post)4

i

+δ × (pre)j

Solution:
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Interplay of firing rate and weight dynamics
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Self-tuning of learning rule
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Bistability of firing rates
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Emergence of selectivity

Induction timescales of plasticity

dayshours daysminutessecondsms

Short term plasticity Long-term plasticity

Priming experiments
Huang et al. 1992
Christie & Abraham 1992

Synaptic scaling
Turrigiano et al. 1998

LTP, STDP, etc
Bliss & Lomo 1973
Markram et al. 1997
Zhang et al. 1998

Homeostatic plasticity

Rapid scaling
Ibata et al. 2008

Need fast compensatory mechanisms.

Online learning of repeating stimuli

Receptive field formation
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Spiking network model
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Network details: 4096 excitatory adapting integrate and fire neurons, 1024 inhibitory integrate and fire neurons, con-
ductance based synapses with short-term plasticity, random sparse recurrent connections, pre-structured input connections
(yellow circle above), spiking input from 4096 Poisson neurons, asynchronous irregular activity Plasticity: Triplet STDP
Pfister & Gerstner (2006) with heterosynaptic and transmitter induced non-Hebbian plasticity.
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Memory recall and working memory

Stable selective delay activity despite ongoing plasticity
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Associative memory recall
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High trial-by-trial variability
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Synaptic
consolidation

With consolidation
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Consolidation model

τ cons d

dt
w̃ij(t) = wij(t)−w̃ij(t)+f (w̃ij)

Reference weight w̃ follows w on long timescale τ cons

under the influence of the gradient f . Here we used
a shallow double well potential for shown simulations,
but other (and more complex) forms are possible.

Plasticity induction
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Model qualitatively reproduces results from postsy-
naptic tetanization protocols in Chen et al. (2013).
Effect on pairing protocols is small.

Summary

• Local Hebbian and non-Hebbian
learning rules interact on a short
timescale to stabilize plasticity

•Multiple stable equilibrium points
stabilize background and recall
states respectively

•Consolidation key to heterosynap-
tic plasticity without overwriting of
memories

•Homeostasis acts on much longer
timescales and establishes fine-
tuning
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