

Hebbian and non-Hebbian plasticity orchestrated to form and retrieve memories in spiking networks

F. Zenke, E. J. Agnes, W. Gerstner

Classic learning rules fail to maintain memories

Learning rule: Triplet STDP (Pfister & Gerstner, 2006).

Problems: Run-away activity and crosstalk between memories.

Orchestrated plasticity

Interplay of firing rate and weight dynamics

Induction timescales of plasticity

Online learning of repeating stimuli

Spiking network model

Network details: 4096 excitatory adapting integrate and fire neurons, 1024 inhibitory integrate and fire neurons, conductance based synapses with short-term plasticity, random sparse recurrent connections, pre-structured input connections (yellow circle above), spiking input from 4096 Poisson neurons, asynchronous irregular activity **Plasticity:** Triplet STDP Pfister & Gerstner (2006) with heterosynaptic and transmitter induced non-Hebbian plasticity.

Funding: This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no 237955 (FACETS-ITN), no 269921 (BrainScales) and the European Research Council under grant agreement no. 268689 (MultiRules).

Memory recall and working memory

Stable selective delay activity despite ongoing plasticity

Associative memory recall

High trial-by-trial variability

Synaptic consolidation

With consolidation

No consolidation

Consolidation model

$$au^{\mathrm{cons}} \frac{d}{dt} \tilde{w}_{ij}(t) = w_{ij}(t) - \tilde{w}_{ij}(t) + f(\tilde{w}_{ij})$$

Reference weight \tilde{w} follows w on long timescale τ^{cons} under the influence of the gradient f. Here we used a shallow double well potential for shown simulations, but other (and more complex) forms are possible.

Plasticity induction

Model qualitatively reproduces results from postsynaptic tetanization protocols in Chen *et al.* (2013). Effect on pairing protocols is small.

Summary

- Local Hebbian and non-Hebbian learning rules interact on a short timescale to stabilize plasticity
- Multiple stable equilibrium points stabilize background and recall states respectively
- Consolidation key to heterosynaptic plasticity without overwriting of memories
- Homeostasis acts on much longer timescales and establishes finetuning