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Abstract—This paper addresses the path selection problem
arising in multi-hop sensor networks, e.g., for Smart Grids. In
such scenarios, a communication system consisting of multiple
multi-hop paths with time-varying hops connects a source and
destination. To avoid interference and keep energy consumption
low, the source can only send on one path and accrue a reward
determined by the state of the traversed hops.

We provide the first mathematical formulation to the problem
of optimal sequential path selection under partially observable
Markov decision processes. We unveil an intriguing behavior
of the myopic policy, arguably the most appealing known way
to tackle this problem. We specifically prove under positively
correlated hops, that this policy can get locked, i.e., permanently
ignores potentially good paths. We also generalize an empirically
proven good approach for the single hop case, the Whittle
index, and show its intractability for the problem at hand. We
propose a new metric, Harmonic Discounted Index (HDI), which
(i) circumvents the non-optimal myopic locking and (ii) can
be computed efficiently. We evaluate the performance of HDI
metric within an index policy in a variety of simulation scenarios
and show that routing decisions by the proposed HDI metric
outperform those based on alternative index policies.

I. INTRODUCTION

A Smart Grid is a power distribution system enhanced
with intelligent devices, such as sensors and actuators, com-
municating altogether to deliver new services unattainable over
the current power grid. Spread at multiple places along the
grid, e.g. at transformers, substations and residential premises,
sensors and sensor networks play an outstanding role in areas
of remote monitoring and smart metering!. Typical sensor
networks comprise communication links of which some might
be very unreliable [1], [2]. Particularly, parts of the sensor
network in Smart grids will employ low power and lossy
time-varying communication technologies, such as power line
and wireless communication [3]-[5]. Both wireless and power
line communication takes place over a shared medium and the
link quality can vary a lot, even in a very short time. Due to
the transmission ranges and the topologies of these networks,
there are typically several multi-hop paths to select from when
disseminating information.

This paper addresses the path selection problem arising in
source routing for multi-hop sensor networks in Smart Grids.
Some examples of existing source routing protocols for such

ISensors monitor the functioning of grid devices and temperature, provide
outage detection and detect power quality disturbances. Smart Meters allow
for real-time determination of energy consumption and for reading the current
consumption locally and remotely.
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Fig. 1. An example network for automated metering connecting a source S
to a destination D, by K independent n-hop paths.

networks (which decide on the whole path) are RPL non-
storing mode [6] and Dynamic Source Routing (DSR) [7]. To
keep the network load low and avoid collisions, the goal is
to minimize the number of retransmissions through ‘“smart”
routing decisions at the source, under constrained knowledge
of the states of the underlying lossy hops. More precisely,
we consider a network where a sender has access to multiple
independent multi-hop paths (see Fig. 1), but is restricted to
transmitting on one of them at any given point in time to
avoid interference and keep energy consumption low (energy
is not a focus in this work as we consider devices to be main-
powered and not battery-powered). We study how a sender
can intelligently utilize past observations and the knowledge
of the stochastic properties of individual hops to make routing
decisions that maximize the number of successfully delivered
messages. Existing routing metrics that account for retransmis-
sions, such as the expected transmission count (ETX) [8], may
require extra messages in the network by periodically broad-
casting “probe packets” to measure the delivery ratios of links.
In this prospect, optimizing retransmissions under constrained
knowledge on the network state reduces the overhead, be it
relative to retransmissions or to network state discovery.

We consider individual hops to be lossy time-varying
communication links. In most routing studies, the time-varying
behavior of hops is not explicitly modeled. In this paper
however, each hop is modeled as a 2-state discrete Markov
chain (Fig. 2) known as the Gilbert-Elliot (GE) [9], [10]. The
GE model has been widely used in [11]-[14] and is a simple
model of time-varying channel behavior [5], [15], [16]. The
reliable state, noted G, for each hop corresponds to a proba-
bility of successful transmission p = 1. The unreliable state,
noted B, corresponds to a transmission success probability of
p = 0. The transition probabilities between the reliable and
the unreliable state can accommodate for the relatively slow
processes affecting power line communication quality such
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Fig. 2. Gilbert-Elliot model: a communication hop is modeled with a 2-state
Markov chain.

as switching of the power grid and activation of electrical
equipment, hence level crossings or state transitions typically
occur only every few hours [17], [18]. In contrast, typical wire-
less devices in Smart Grid applications are fixed installations
and operate in a steady state. Time varying behavior occurs
due to occasional shadowing, but these effects are typically
measured in seconds or minutes, i.e., the wireless transition
probabilities are different from power line communication
links. Transition probabilities can be determined in practice
by techniques like [19].

Contributions. Previous path selection work has either
focused on single-hop decisions or simpler hop models with
constant transmission success probabilities. To the best of our
knowledge, our paper is the first to study multiple non-identical
hop sequences (paths). This allows for better optimization of
source routing decisions in Smart Grid networks where infor-
mation is most likely to be disseminated over multiple hops.
Accordingly, this paper presents the first formulation of the
problem at hand in the context of partially observable Markov
decision processes, where a successful message delivery is
associated with a unit reward. We first prove that the myopic
policy, arguably the most appealing known way to tackle the
problem, is optimal under memory-less hops. However, under
positively correlated hops where non-opitmality is expected,
we uncover, for the first time, an interesting locking behavior
of this policy. That being a behavior where it can permanently
stop selecting potentially good paths for transmission. We also
generalize an empirically proven good performing index in
single-hop cases [20]-[22], the Whittle index, and show its
intractability for multi-hop paths.

We present a new metric, Harmonic Discounted Index
(HDI), which (i) circumvents the non-optimal myopic locking
and (ii) can be computed efficiently. HDI measures the attrac-
tiveness of transmitting over a path, using Whittle indicies of
individual hops®>. We develop an index-based protocol using
our HDI metric, to establish a selection policy that governs
the routing decisions taken at the source. We empirically
evaluate the performance of our HDI-based policy in a variety
of simulation scenarios (i) illustrating HDI’s circumvention of
the non-optimality of the myopic performance in locking (a
performance gap between HDI and myopic of ~ 20%) and
(2) showing that the routing decisions relative to the proposed
HDI metric outperform all alternative index policies.

2Despite its wide use in the single hop case, the known theoretical
guarantees [21], [23] for the Whittle index (even in such simpler cases) are
very weak and theoretical analysis remains elusive and challenging, mainly
because of the highly-coupled and complex dynamics it possesses [24].

Road map. The rest of the paper is organized as follows:
Section II presents the related work. Section III defines the
model, the assumptions and the behavior of hops in more
precise terms. Section IV presents a detailed formulation of the
path selection problem. Section V presents and analyses two
index policies for n-hop paths: myopic and Whittle. Section VI
proposes the new path selection metric, HDI, and the HDI-
based index protocol. Section VII explains the experimental
setup, describes alternative index policies and performs per-
formance evaluations in various network scenarios. Finally
Section VIII concludes the paper and presents potential future
extensions of the path selection study.

II. RELATED WORK

Partially observable Markov decision processes (POMDPs)
are widely used in control theory [25]; however, they are in
general notoriously intractable [26], [27]. For single hop paths,
the path selection problem can be also considered as a special
case of the restless bandit problem first introduced by Whittle
in [28]. This has been proved by [29] to be PSPACE hard, even
in the special case where transition rules are deterministic.
Various POMDP and restless bandit formulations have been
broadly applied to several domains, of which we mention
some. Multichannel opportunistic access is one of these do-
mains. This problem has been studied in [22], [24], [30]-[32]
under different assumptions. In general, the multichannel op-
portunistic access problem considers a sender who has to sense
and transmit on one of multiple accessible channels, where
each evolves independently, regardless of being sensed or not.
In comparison with the path selection problem considered in
this paper, the sender in our case has access to n-hop paths,
where each hop along a path is an independent Markov process
that evolves at all times whether it was used for transmission
or not. The work in [30], [31] studied the mutlichannel access
problem with channels that are independent and identically
distributed (i.i.d.) Markov processes. In fact [30], [31] showed
that (a) the myopic policy under these assumptions admits
a simple universal structure, and (b) guarantees optimality
when channels are assumed to be positively correlated, i.e.
1 — 8 > « (Section III). The authors in [24], [32] studied the
same problem however without requiring channels to be i.i.d.
They formulated the problem as a special case of the restless
bandit problem and referred to it as FEEDBACK MAB. The
FEEDBACK MAB problem has been studied under the average
expected reward and an approximation algorithm is proposed
with a performance guarantee of 2. The work in [22] studied
a similar formulation of this problem for both positively and
negatively correlated channels which are not necessarily identi-
cally distributed. In particular, [22] established the indexability
of this class of restless bandits and obtained Whittle index in
closed form for both discounted and average reward criteria.
It was also shown [22] that the Whittle index is optimal under
certain conditions when the channels are i.i.d.

III. SYSTEM MODEL

We consider a network of X independent n-hop paths
connecting the source (sender) and the destination (Fig. 1). We
are interested in a simple non-trivial network where interesting
analytic results can be extracted. Specifically, for analytical
tractability reasons, paths are assumed independent and the



underlying hops are modeled as independent Markov chains
with only two states. At any point in time, the source is
restricted to choose exactly one path for transmission. Once
a decision is made and a path is selected, the message is
transmitted along the selected path going through each of the
underlying hops consecutively in 1 time unit. All hops along
all paths are assumed to evolve at every time unit, whether
they were used for transmission or not. In other words, If a
hop is currently in the reliable state (G), it will remain at the
next time unit in this reliable state with probability (1 — )
or will shift with probability 3 to the unreliable state (B)
(analogously the next state is determined by « if it currently
is in the unreliable state). In other words, all hops evolve at
discrete time units, i.e., at t = {0,1,2,3,...,00}. Decisions
at the source are based on the knowledge of the stochastic
properties of individual hops and on past observations. When
deciding about what path to use for transmission, the source is
assumed to know the o’s and /3’s of all hops® (no other node
is required to know these parameters) but not the current state
of any of the hops. Techniques such as those in [19] can be
used to determine these transition probabilities and make them
known to the source. Once a choice is made and a message
m is sent over the selected path, the following actions are
executed.

1. m goes sequentially through the underlying hops of the
selected path as long as they are reliable.

2. If m traverses an unreliable hop, it is entirely dropped.
All consecutive hops will not be traversed.

3. In case a message is dropped, a packet-drop detection
mechanism informs the source (before the source decides on a
new message) about the hop which led to the message loss®.
This assumption ensures that in case of message loss the source
can rightfully guess state information about the hops from the
source up to and including the lossy hop. Alternatively, the
source knows that m successfully reached the destination, if
nothing is heard from this detection mechanism after n time
units of sending m (which conveys state information about all
n hops).

4. The source decides on a message to be sent (be it a
new message or a retransmission) every n time units, i.e.,
after the previous message has had the chance to traverse all
hops. This essentially leads the decision times at the source,
T ={Ty,T1,Ts,... T}, to be deterministic, i.e. occurring at
t = {0,n,2n,3n,...,00}. This assumption is solely consid-
ered for “neater” mathematical illustration of results and to
avoid unneeded notation complexity. Our theoretical results
(sections V-A and V-B) hold under a relaxed version which
assumes that the source can transmit a new message either
after n time units (if the previous transmission is successful)
or in the time unit directly following a notification from the
packet-drop detection mechanism (if the previous transmission
failed).

3Cases where the link quality might change, e.g. due to daily variations
of interference on wireless hops, can be easily incorporated by changing the
system parameters, which can be determined [19].

4The exact nature of the packet-drop detection mechanism is not of interest
in this work, which is only a first step towards a solution of the general
problem. Delayed and incorrect detection for a more general problem are
beyond the scope of this work.

Fig. 3. Tllustration of message propagation in a single 3-hop path.
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Fig. 4. Flow diagram of the path selection problem for an n-hop path.

These steps are illustrated by a timing diagram showing
messages propagating over a 3-hop path (Fig. 3) and a flow
diagram (Fig. 4). The objective of the source, given this model,
is to maximize the discounted expected number of successfully
delivered messages (messages reaching the destination) over
infinite decision times, as we consider delay sensitive commu-
nication.

Model Variations. Illustrating the generality of our work,
we show in the following section how our formulation can
naturally extend to some variations, namely by relaxing some
assumptions. We examine particularly two possibilities: (1)
model 4: when a message is lost, the source does not have to
wait but can start a new message transmission directly in the
following time step and (2) model B: the available paths have
different number of hops. Our theoretical results about myopic
locking (Section V-A) and Whittle intractability (Section V-B)
extend as well to both of these models, but due to space
constraints we do not provide further analyses on this matter
in this work.

IV. PROBLEM FORMULATION
We denote by S(t) = [S1(t), S2(t),..., Sk(t)] the set of
states of the K available n-hop paths where:
Sk(t) = {Sk71(t), Sk72(t), veey Sk,n(t)}

such that s ;(t) € {G, B} is the state of i*" hop along path
k. Let a(Ty) = [a1(T}), a2(Ty),..., ax(T;)] € [0,1]* be the
vector of actions taken at decision time 7;, where a; (7)) = 1




(ax(T;) = 0) means transmitting (not transmitting resp.) over
the k' path at decision time 7}. Thus, ay(7};) = 1 implies:

ki (t)t=jntio1 =1 Vi e [1,n] (1)

subject to:

> akit)li= =1 )
i=1

and a(T;) = 0 implies:
ap,ir (8)[t=jntio1 = 0 Vi',i € [1,n] (3)

Equations (1) and (2) mean that, when path & is selected for
transmission at decision time 7}, every hop along path k is
used only once in the time interval [j-n, (4 1)-n — 1], such
that the first hop along path k is used first, then the second
hop, etc. Equation (3) means that when path £ is not selected
for transmission at decision time 7, none of its hops are used
in the time interval [j - n, (5 + 1) - n — 1]. The action vector
a(T;) corresponds to the routing decision taken at decision
time T7.

A. Path State Information

Since the source operates under partial information of the
state the hops are in, and since not all states can be observed,
this problem can be transformed into a partially observable
Markov decision process (POMDP) with all past and current
state information contained in a sufficient statistic known as the
belief [26]. This hop belief is the conditional probability over
the hop state space. In our problem, we assume independent
paths, with stochastically independent hops. Accordingly, we
maintain independently for each hop, a belief,

wg; () VE € [1,K],4 € [1,n]

where
Wi (t)

is the conditional probability that the relative hop is in the
reliable state, given all previous feedback obtained for that
hop. Initially, the hop belief is set to the stationary probability,
Wi (t)|t=0 = # Afterwards, and at every time unit,

this belief is updated independently for each hop as follows:

1—PBri ag,i(t) = 1,s1,:(t) = G,
wk7i(f + 1) = Qg ak,i(t) =1, Sk)i(t) = B,
T(wgi(t)) akq(t) =0.

where: 7(wy,i(t)) = (1 — Br,i)wi,i () + i (1 — wy 4(2)).

The source is the sole place deciding which path to use for
transmission. It should thus account for the states of the hops
that the message (to be sent) might see when this message
reaches these specific hops. We represent this information by
a belief vector :

Qk(f) = [wk,l(t), wk_rg(t + 1), wk,g(t + 2), ey wk,n(t +n— 1)}

= (w1 (t), T(wk2(t)), T(T(wk73(t))),...,Tnil(’wk’n(t)(zg),
where: 7% (wy ;(t)) = 7(7(...7(wk 4(t)))), and

T times

70(wp,i(t)) = wi,i(t).

The recursive call of function 7 is done relative to the
position of the hop on that path, as a message needs 1 time
unit to traverse a hop. The problem considers /C paths to select
from; the source node thus keeps belief vectors of all paths,
denoted by P(t) = [Q1(t), Qa(t), ..., Qc(?)].

B. Expected Discounted Reward

We assume that every successful message delivery corre-
sponds to a 1 unit of reward. The expected total discounted
reward averages the accumulated discounted rewards obtained
for a sequence of actions/decisions over time. The maximiza-
tion of this function thus constitutes the objective sought.
Denote by m the set of all actions vectors, i.e., a(T) VT.
Consequently, 7 constitutes the routing policy. Let Ry (1)
be the reward obtained relative to the action vector a(Tj)
at decision time 7). The expected total discounted reward
over infinite decision times, given an initial belief vector P
is expressed by:

Ty
B | Y v 5 Raqy| P (5)

T;eT

subject to the constraint: Zle ax(T;) = 1, where v : 0 <
v < 1 is the discounted factor. The constraint implies that, at
any decision time, exactly one path is used for transmission.

Value Function. Denote by V., (P) the value function, i.e.
the maximum expected total discounted reward obtained by
the optimal policy under the set of initial belief vectors P.
Then:

V,(P) = m]?X{VA/(P;CLk =1)} Vkek

where V,(P;a; = 1) denotes the total expected discounted
reward from selecting path k for transmission at first followed
by the optimal policy in future decision times. The expression
for V,,(P;ar = 1) can be obtained according to Bellman’s
equation [5], [33]. For clearer illustration, we develop the
expression of V,(P;a, = 1) for the case of K = 2 and
n = 2, where P = [Q, (2] is the set of belief vectors such
that ), = [wk,l,T(wk,Q)].

Vy(P(t);ar = 1) = wy,17(w1,2)
+ w17 (w1 2)Vy (11 = Br1), 7(1 = B12), 7 (w2,1), 72 (w2 2))
+wi (1= 7(wr,2)) Vo (T(1 = B11), T(a1,2), T2 (wa,1), T3 (w2,2))
+ (L= wi )Va(r(an1), 7 (wr2), 72 (wa,1), 78 (w2,2))]
(6)

Vy(P(t);as = 1) = wa17(w2,2)
+ y[wz 17 (wa,2) Vo (72 (wr 1), 78 (w1 ,2), T(1 = B2,1), (1 — B22))
+wa1 (1 — T(w2,0)) Vs (T3 (w1,1), 73 (w1 ,2), T(1 — Ba1), T(az,2))
+ (L= w2, ) V4 (7P (wi 1), 7w 2), T(@2,1), 78 (w2,2))]
7

The derivation details for (6) and (7) can be found in Ap-
pendix A. Following similar steps (without the need to show
more details), we illustrate the formulation of V,(P;ay = 1)
under the two model variants A and . We assume that the
discounted factor is applied per decision, i.e., the power of the
discounted factor increased by 1 with every new transmission
regardless of the elapsed transmission time.

Model A: We also consider the case of £ = 2 and n = 2,
where P = [Q,(s] is the set of belief vectors such that



Qe = [wp,1, T(wp,2)]-

Vy(P(t);a1 = 1) = wy17(w1,2)
+ [wi a7 (w1 2)Vy (71 = Bra), 7(1 = Br2), 72 (w2,1), 7 (w2 2))
+ w11 (1 = 7(w1,2))Va(T(1 = B11), (a,2), 7> (w21), 72 (wa,2))
+ (1= w1 1)Vy(on1, 7> (wr2), T(w21), 7 (w2,2))]

Vo (P(t);ag = 1) = wa 17(w2,2)
+ ywa, 1 7(wa,2) Vo (T3 (wr,1), 73 (w1,2), T(1 — Ba,1), (1 — Bay2))
+wa (1 — T(U?ztg))VW(T2<’LU1‘1), (w1 9), (1 — Ba1), T(a2,2))
+ (1 = wa 1) V5 (T(wr 1), T2 (wi2), a1, T2 (w2,2))]

Model B: We develop the expression of V,(P;a, = 1) for
K = 2. We consider the first path to have one hop and the
other to have two hops. P = [Q,{)5] is thus the set of belief
vectors such that Oy = [wy 1] and Qo = [wa 1, T(w2 2)].

Vy(P(t);ar = 1) = w1,
+ y[wi 2 Vo (1= Bra), T(wa,1), 7 (w2,2))
+ (1= w1 )Va(ar1, 7 (w1 2), T(w2,1), 7% (w2,2))]
Vy(P(t);a2 = 1) = wa 17(w2,2)
+ Y [wa 17 (w2,2) V(72 (w11), 7(1 = B2,1), 7(1 = Ba.2))
+ w1 (1= 7(ws,2)) Vs (3 (wi 1), 7(1 = B21), T(a2,2))
+ (1= wa ) Va(T(wi ), 21, 7 (w2 ,2))]

V,(P;ar = 1) can be split into two main components:
one which represents the expected immediate reward relative
to selecting path k£ and a second representing the discounted
future reward resulting from to choosing path %k at the first
decision.

Vy(Piap=1) =

waT(wr2)  + ~[--]
—_————— ~—~—

immediate expected reward  discounted future reward

Each term (V,), in the future reward, is a function of a
joint set of beliefs each spanning the set of real values in
the interval [0, 1]. The dimensions of V, grow with n/C and
thus the required computations increase immensely as K and
n increase. Solving the Bellman equation pertaining to prob-
lem (5), and hence obtaining the optimal policy, with a general
purpose solver for POMDP, becomes rapidly intractable (even
for the simpler case when increasing /C for n = 1 ). Therefore,
efficient near-optimal solution methods are sought.

V. INDEX POLICIES: FORMULATION AND ANALYSIS

Index policies are selection protocols that assign an index,
to each of the /C paths. This index evaluates how rewarding it is
to select a path under a particular state. At every decision time,
an index policy selects the path with the highest index. Some
path indices are strongly decomposable, i.e. can be computed
separately for each path, without regard of the states of other
paths. This reduces the complexity of the problem as compared
to a full POMDP solution. We examine two such index policies
for multi-hop paths: (i) Myopic policy and (ii) Whittle index.

A. Myopic Performance

The myopic policy assigns the immediate expected reward
of a path as its index. This significantly reduces the amount
of computation required as any possible effect of the future
discounted reward on decision making is disregarded. It has
been shown for stochastically identical single hop paths (see

Section II) that such a myopic strategy guarantees an optimal
solution [30], [31]. However, to the best of our knowledge,
not much has been said about this policy for the case of non-
identical hops with equal rewards, and more importantly, for
multi-hop paths.

1) Entirely Memory-less Hops: We first show a case of
non-identical hops, where future rewards do not contribute to
decision making in multi-hop paths: in this case the myopic
policy is optimal. The Markovian process governing the evo-
Iution of the state of hops (described in Section I) becomes
entirely memory-less when the probability of being in a state
at time ¢ is the same, regardless whether the state at ¢ — 1 was
reliable or unreliable, ie., 1 — B, ; = ;. The belief as a
result remains constant at all times

wa’ =1- 5k,j = ak,j = T(’wk,j). (8)

Proposition 1. For a set of K paths, each consisting of n
entirely memory-less hops, the myopic policy is optimal.

Proof: The value function of the corresponding general
case can be written as follows:
V,(P) = maXaea(r) [R(P,a) + 7Y p, Pr(P'la, PV, (P,
where P’ is the belief vector at the following decision time.
Regardless of what action is chosen, the value of P’ will
always be the same. This follows directly from (8) since all
hop beliefs will remain constant. Hence V,(P’) = V,,(P) and

Pr(P'|a,P) = 1 and therefore V,(P) = %&R(W.
This proves that the myopic policy is indeed optimal. ]

Furthermore, we can conclude from (8) that a single path
may have the highest expected immediate reward at all times.
The optimal policy in this case transmits over one path only
at all decision times.

2) Positively Correlated Hops: We study now a more gen-
eral case where hops are positively correlated, i.e. 1 — 55 ; >
oy Yk € K. We show that the optimality of the myopic
performance is not guaranteed. More importantly, we identify a
condition under which the myopic policy gets locked, meaning
that it avoids the selection of certain paths regardless of how
reliable they could be. We first consider single hop paths only,
i.e., one transmission hop per path (the hop notation will be
omitted). The results are generalized later in this section to
include n-hop paths. The belief of a single hop path has the
following two important characteristics [22], [34]:

a < 7(wg) < 1— P
A

————— ast — oo.
ar + B

©))

Lemma 1. The stationary probability of a positively correlated
single hop path satisfies oy, < wk < 1 — B.

7t (wy,) monotonically converges to wh =

Proof: This follows directly from the positive correlation
assumption (o + S < 1). [ |

Theorem 1. If a single hop path, k, exists such that for any
other path k' € K, wk < ay, then the myopic policy will
never select path k for transmission after the first time k is
observed in the unreliable state.

Proof: When a path k is selected and observed to be
in an unreliable state, its belief takes the value w, = ay



(refer to the update function Section IV). Hops are positively
correlated, thus by Lemma 1 we have: o) < w§ < ap.
However min{wy } = as, so by (9) wgs > wy at all times,
hence concluding the proof. ]

Corollary 1. If the beliefs are initialized to their stationary
probabilities’, then path k will never be selected by the myopic
policy for transmission.

IMPORTANT: It is crucial to note that Theorem 1, on its
own, does not necessarily indicate that the myopic performance
is not good. In fact, Theorem 1 also applies to the entirely
memory-less case (Section V-A1l) where the myopic policy is
indeed optimal. The significance of Theorem 1 on the quality
of the myopic routing decisions is determined by the stochastic
properties of the neglected paths. In particular, hops with
a small o and [ are the most influential on the myopic
performance. Such hops have a low switching probability
and tend to stay in their current state for long periods, a
behavior which resembles that of power line communication
hops [5]. Missing transmission on these hops when their
current state is reliable is expected to affect the quality of
the routing decisions (this claim is confirmed in Section VII).
A simple example of two single hop paths, illustrated below,
conveys the effects. Consider a source with two paths: Path;:
a1 = 0.6; 1 — 81 = 0.65 (frequently switching resembling
wireless hops) and Paths: as = 0.1; 1 — B2 = 0.93 (slow
switching resembling power line hops). A source selecting
paths according to the myopic policy, will never transmit on
Pathsy after it observes it in an unreliable state for the first
time®. Therefore it does not make use of the fact that Paths
can return to the reliable state at a later time. Transmitting on
Path; which switches more frequently will be less rewarding
than transmitting on Pathe when it is in the reliable state. Thus
neglecting Pathy forever is expected to yield less reward.

Theorem 2. If an n-hop path k exists such that for any path
K eK:

f-1 n n
wel T 77 0= Bew) T 7770 =B < [ 7 awr )
h=1 r=1

I=f+1

for any f € [1,n], then path k will never be selected by the
myopic policy after the first time its f** hop is observed in an
unreliable state.

Details deriving Theorem 2 can be found in Appendix B.
We thus conclude that the myopic routing decisions could lead
to performances that are not optimal, where the significance of
the performance gap between the myopic and optimal solution
is determined by the stochastic properties of the available
paths.

B. Whittle Index: A Path Formulation

n this section we discuss the Whirtle index [28]. We
generalize and formulate this index for multi-hop paths. The
Whittle index of a path depends merely on the properties of
that particular path and not of other paths. Accordingly, it is
enough to consider a single n-hop path. Given a single path,

SThis initialization of beliefs to the their stationary value is assumed in
most of the previous literature [22], [30], [31].
6 Assuming the initial belief values allow it to be selected in the first place.

at each decision time the source can make one of two possible
actions (i) use that path for transmission (make it active) or idle
that path (make it passive). An optimal policy would partition
the path state space into a passive and an active set where it is
optimal to idle the path or use it for transmission respectively.
The Whittle index measures the attractiveness of transmitting
over a path under a subsidy, A. That is, we consider a multi-hop
path where a constant subsidy7, )\, is obtained whenever the
path is idled. Clearly this subsidy A affects how the state space
is optimally partitioned between the active and the passive set.
States which remain active under a larger subsidy are thus more
attractive to the source. Based on this intuition, the minimum
subsidy required to move a given state from the active set to
the passive set constitutes a measure of how attractive that
state is [22].

More precisely, we denote by V., »(P) the value function
corresponding to the maximum expected total discounted re-
ward that can be obtained from a single path with subsidy A
and belief vector P (we drop the path index from the notation).
Denote by V, »(P;a) the total expected discounted reward
from taking action a at the first decision time followed by the
optimal policy in the future. Thus:

Vya(P) =max{V, x(P;a =0),VyA(P;a=1)}. (10)

As an illustration we consider a 2-hop path under a given
subsidy A. The value functions relative to taking the active
and passive actions on this path in the first decision can be
derived as in Section V-A and are respectively written as:

Via(Pia=1) = wit(ws)
+y[wiT(w2) Vo (r(1 = B1), 7(1 = B2))
+wi(1 = 7(w2)) Vo a(T(1 = B1), 7(2))

+ (1= w)Vy (7 (), 7 (w2))].
(1)

Voa(Pya=0) = X +V, A (T3 (w1), 7% (w2)). (12)

Definition 1. The passive set P(\) is the set of path states for
which it is optimal to make the path passive under subsidy .

Following our belief formulation in Section IV-A, a path
state is represented through the belief vector (2. Accordingly,
we define the passive set for the 2-hop path as: P(\) =
{lwr, 7(w2] : Voua(Psa = 0) > Vya(Pja = 1)} and
generalize it for an n-hop path as:

PA) = {fwr, 7(w2), ., T Hwp)] : Voa(Pra = 0) >V, A (P;a = 1)}
13)
Whittle index for a path would be meaningful if it results in
some consistency when making paths passive. In other words,
a path made passive under subsidy A should also be made
passive under a subsidy A’ > \. We thus define indexability:

Definition 2. A path is said to be indexable if its passive set
P() increases from () to the whole state space of [0,1]™ as
A increases from —oo to +00.

If the path is indexable, the Whittle index is the infimum
subsidy A which makes the passive and active actions equally

"The subsidy, X, can be thought of as a counter reward for not using the
path for transmission.



rewarding and is expressed as:
W(P) = irif{)\ Via(Pra=0)=Vy\(P;a=1)} (14)

In other words, the Whittle index is the infimum value of
the subsidy A which makes the source indifferent between
using a path for transmission or idling it. A larger index
indicates that the path is more attractive, in the sense that
it requires a higher subsidy to be made passive. A source
can choose at every decision time the path with the highest
Whittle index for transmission. It is important to notice though,
that the dimensions of V, ) in (11) and (12) grow with the
number of hops n and the state space hence expands to [0, 1]™.
Consequently solving for Whittle index (14) as n increases
becomes intractable. This implies that computing the Whittle
index efficiently for an n-hop path may not be feasible.

VI. HARMONIC DISCOUNTED INDEX (HDI)

Given the intractability of the Whittle index for a multi-hop
path, the goal is to design a tractable path metric that reflects
the degree of attractiveness of transmitting over a path at a
given point in time. We first advocate the intuition behind our
path metric, after which we formally present it. A hop can be
correlated with a simple conducting wire. A poorly conducting
wire, which renders a propagating signal undetectable by a
receiver, is equivalent to a “poorly attractive” (unreliable) hop
which leads to the loss of the message being transmitted.
The attractiveness of a hop can thus be directly correlated
with a conductance measure. Recall that hops along a path
are assumed to be stochastically independent, i.e., every hop
independently exists in the good or bad state relative to its own
2-state Markov chain. Accordingly, every hop would constitute
an independent wire which has its own conductance. A multi-
hop path, in this prospect, becomes a sequence of multiple
conducting wires connected in series. The metric embodying
the attractiveness of transmitting over the path hence translates
to the equivalent conductance of the series combination. We
start first by determining the Hop Conductance.

A. Hop Conductance

We define the hop conductance as the measure of the
attractiveness of transmitting on a hop along a path. This
attractiveness entitles (i) the attractiveness of transmitting
on the medium constituting the hop and (ii) the feedback
attractiveness relative to the position of this hop of the path. We
explain in details these two factors in the following Sections.

1) Attractiveness of Hop Transmission Medium: We con-
sider each hop on its own regardless of all other hops. This
effectively transforms a single n-hop path to n separate 1-hop
paths. We consider that the source can transmit on these hops
independently, hence reducing the set of decision times 7' to
t={0,1,2,...,00}. The set of belief vectors of an n-hop path
Q = [wy, 7(wy), ...,7" " (w,)] transforms under this decom-
position to [Q4, s, ...,Q,] where ; = w; Vi € [1,n] since
every path now has only 1 hop. Given this decomposition, we
consider next a single hop under the subsidy concept and drop
the index ¢ from the notation. We measure the attractiveness
of transmitting on this hop by calculating its corresponding
Whittle index. Accordingly, V, x(w), the maximum expected
total discounted reward that can be obtained from a hop with

subsidy A is: V4 a(w) = max{V, \(w;a = 0),V, x(w;a =
1)}. V, x(w;a) denotes the total expected discounted reward
from taking action a as the first decision followed by the
optimal decisions in the future and can be written as

Via(wia=1) =w+y[wVyA(1—8) + (1 —w)V,y ()],
Via(w;a =0) = A+ y[Vya(7(w))].
The passive set P(\) for a single hop reduces to
PA) ={w: Vya(wis;a=0) >V, \(w;a=1)}.  (15)

The passive set in (13) describes a property for a whole n-hop
path, while in (15) it describes a property for a single hop and
thus constitutes a per-hop description. In other words, (15)
is a decomposition of (13) that follows naturally from the
decomposition of the belief vector 2 of the n-hop path. A
single hop is said to be indexable if P()) increases from () to
the state space of [0, 1] as A increases from —oo to +oo. If
the hop is indexable, then its corresponding Whittle index is
W(P) = irif{/\ Voa(wsa=0) =V, x(w;a=1)}.

Important: The Whittle index under this formulation
admits a very efficient way of being computed. In fact, a
closed form expression of Whittle index under this single hop
formulation is established in [22]. Thus, we obtain n measures
of attractiveness, W; Vi € [1,n], for each of the n mediums
constituting the individual hops with negligible overhead.

2) Attractiveness of Hop Feedback: The amount of infor-
mation revealed to the source relative to transmitting on a
path affects the source’s later decisions. When transmitting
over some path, losing a message at any of its underlying
hops will yield the same result of no immediate reward.
However the amount of information revealed to source is not
the same. Information about the states of the hops on a path
are obtained up to the hop leading to message loss (inclusive)
(refer to Section III). The amount of obtained information,
hence increases as a message traverses more hops of a path
even if it is destined to failure. It is important to note that
although this information is useless for the current reward,
it may be of fundamental value affecting the future rewards
(since the obtained information affects subsequent decisions).
Consider an example of two 3-hop paths, each decomposed
into three 1-hop paths with the following indices: Path;:
W1 = 0.2, W2 = 0.6, W3 = 0.94 and Pathgl W1 = 0.94,
Wy = 0.6, W3 = 0.2. Despite the fact that Path, and Paths
consist of hops with similar indices, the fact that these hops are
positioned differently along Path; and Paths, makes these
paths not equivalent. In fact, one can notice that the amount
of information revealed to the source is indeed different and
is expected to be higher if Paths is favored over Path;,
especially that we wait n time slots regardless of the destiny
of the transmission®. The feedback attractiveness of a hop
becomes less significant as the hop is further from the source,
as obtaining feedback relative to that hop is prone to more
uncertainty. We account for this feedback attractiveness by
embedding a discounting attractiveness index, which serves
to decrease the contribution of W;s of more distant hops:

8The only inefficiency of selecting Pathg over Pathi may be the extra
transmission energy. But as indicated in Section I, energy is not a focus in
this work as we assume main-powered devices.



Definition 3. Let DI; be an index measuring the hop conduc-
tance of it" hop within an n-hop path.

DI; = 6w,

where W; is the Whittle index of the i*" hop (not the Whittle
index of the whole path) and 0 < § < 1 is a discounting
factor®.

B. Path Conductance

Given an n-hop path with the associated hop conductances,
the metric measuring the attractiveness of transmitting over a
path reduces thus to the overall path conductance. The path
conductance in an n-hop path is the equivalent conductance
of a series combination of hop conductances.

Definition 4. The path conductance is equivalent to %th of the
harmonic mean of the n individual hop conductances (D1;)
associated with underlying hops.

The harmonic mean of a set of values tends strongly toward
the smallest values in that set. It has a tendency to increase
the impact of small values and alleviate the influence of large
outliers. In paths, the smaller the individual hop conductances
(DI;(s)) are, the less attractive they are for transmission.
Therefore the harmonic mean of these individual measures is
most influenced by the least attractive hops along a path. This
can be fairly justified by the fact that a single unreliable hop
across the whole path is enough to make the whole path bad
(yielding no reward) regardless of how many and how good
other hops on that path are. We formally define the path metric:

Definition 5. Ler Harmonic Discounted Index (HDI) be the
measure the attractiveness of transmitting over a path

n

-1
HDI = [Z( le )] : (16)

=1

Theorem 3. The HDI metric circumvents the non-optimal
myopic locking and can be computed in O (Kn).

Proof:

Computation Complexity. The O (Xn) computation follows
directly from (i) (16) and (ii) the fact that the DI indices can
be determined in O (1,) as a result of the established closed
expressions in [22], [35].

Circumvention. For better illustration, we show how HDI
circumvents the non-optimal myopic locking in the simple case
of 1-hop paths. Avoiding the myopic locking in this simple
case, leads Theorem 1 being not satisfied. As Theorem 2 is an
extension of Theorem 1, having the latter unsatisfied implies
that the former will not hold as well.

Under the simple case of 1-hop path, our HDI metric
reduces to the simple Whittle index of a hop, which admits
an known closed form [22], [35]. Theorem 1 says that if
wk < ay, then the myopic policy always selects path &’
as wyp < wy will be satisfied at all times. We alternatively
show that if wg < oy, then the Whittle index of &, noted

by Wi (w), is not always less than the Whittle index of path

°In Section VII-A, we specifically evaluate the impact of this discounting
attractiveness factor, J, showing the performance gain of HDI metric in (16)
over an HDI variant without ¢.

k', noted by Wy (w'). Consequently, if Wy (w) can be greater
than W,/ (w’), then path k can be selected by the source under
HDI: Thus circumventing the myopic locking.

From the closed forms of the Whittle inde>§c in [35] we

have: Wy (ag) = g and Wi(wf) = #}’W It is

k
clear that Wy, (wf) = L > w§. This implies that

1—y(1—Br—wk)
for wk < ajs the Whittle index may still allow path & to
selected for transmission circumventing the myopic locking.
|

VII. EXPERIMENTAL EVALUATION

This section describes the experimental setup and
illustrates performance evaluations of our HDI metric when
embedded within an index policy in a variety of simulation
scenarios. We evaluate an index policy which transmits at
every time on the path with the highest index, where we vary
this index between different alternatives such as the myopic
index, HDI index and other indices based on different ways of
combining hop conductances. The alternative index policies
are briefly listed below:

Mnlog index: This policy computes the log of the hop
conductances along a path and selects at every decision
time the path with the highest mean of logs, i.e.,
maxx{L > log (6" *W;)}. Such a policy, similar to
our HDI metric, reduces the impact of the good hops on the
overall path quality.

Min: The policy thus selects the path which has the highest
minimum hop conductance, i.e., maxy {min;ep ) 8° " W;}.
Sum: This policy selects the path which has the highest sum
of hop conductances, i.e., max{> ., ' ' W;}.

Prod: In this case, the overall path conductance is
determined by computing the product of individual hop
conductances. The path with the highest product is selected,
ie., maxc{[[;—, W;}.

HI: In this policy the feedback attractiveness factor, §;,
is disregarded. The hop conductance is thus equivalent
to the hop’s transmission attractiveness alone. The path
which has the highest harmonic mean is selected, i.e.,

maxy{ {2?21(14%)} *1}.

In all simulations, the transition probabilities of hops are
generated uniformly at random within given bounds (specified
per case) and obeying the positive correlation assumption. The
discounted parameters are fixed to the values v = 0.95 and
§ = 0.95. For every set of randomly generated paths, 10* runs
are repeated, where in each run the discounted reward repre-
senting the successful message transmissions is accumulated
for a horizon of 10* decision times. The reported reward is
the mean value of the accumulated discounted rewards over
all runs, scaled by 1 — ~.

A. Exploring the Transition Space of Hops

We first compare the performance of the HDI metric
against flooding, i.e., transmitting every message on all avail-
able paths. Flooding clearly is an upper bound on the optimal
solution. We run our simulations over a wide scope of transi-
tion probabilities. In particular, we divide the search space in
[0, 1] into eight categories {L1, L2, L3, L4, H1, H2, H3, H4},
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ranging from hops that slowly switch between the reliable
and unreliable state to those that switch very frequently. Our
Results, Fig. 5 (a — d), show performance evaluations in
networks consisting respectively of two 2—hop paths, three

2—hop paths, two 3—hop paths and three 3—hop paths.

L1 L2 L3 L4

a [0,4] 0.1, 7] 0.2, 3] [0.3, 8]

B [0.1,0.2] | [0.2,0.3] [0.3,04] [0.4,0.5]
HI1 H2 H3 H4

o [0,1—pB] | 0.2,1—p5] | [0.3,1—5] | [04,1— ]

T—3 | [06,1] [0.7,1] [0.8,1] [0.9,1]

The performance of our HDI metric is close to that of flooding
for the ranges L1 through L4, indicating a close to optimal
performance in these respective ranges. However for ranges
H1 through H4, it can be seen that the performance gap
grows bigger!®. This can be attributed to that fact that hops in
these ranges tend to switch rapidly between states, spending
more time in the reliable state. In these cases uncertainty
increases, making decisions between exploitation versus ex-
ploration prone to more randomness. Flooding, in comparison
with a policy which selects one path only, explores all other
potentials, who in this case, have a high probability of being
good. We also evaluate the performance of HDI versus the
alternative policies by separating the search space to L and H
intervals. It can be seen (Fig. 5 (e, f)) that HDI outperforms
all alternatives over all ranges. This improvement nonetheless
gradually decreases as hops go higher in the H interval.

B. Smart Grid Sensor Network with Frequent and Slow
Switching Hops.

Typical smart grid sensory networks contain heterogeneous
hops of wireless and power line communication hops [3]-[5].

10This gap is noticed to grow bigger as well when the number of available
paths increases, which is perfectly explainable by the nature of flooding.

We simulate such typical smart grid scenario by combining
frequent and slow switching hops [5], [17], [18]. We consider
a network having K independent 2-hop paths available for
transmission. Hops along a path are generated uniformly at
random as either slow switching (L1 range) or fast switching
(ranges H3 and H4). We illustrate the performance measures
for different number of available paths varying between I =
{2,3,4,...,10}. Our results, Fig. 6 (a), show that the HDI
selection policy outperforms the myopic policy for all numbers
of available paths. We further strengthen the significance of
the improvement obtained by our HDI metric by limiting the
number of available paths to 2 and comparing the performance
with that of flooding for a number of hops per path, spanning
n = {2,3,4}. Our results, Fig. 6 (b), show that despite the
narrow margin for improvement, our HDI metric succeeds in
making a positive improvement over the myopic performance,
showing a close-to-optimal performance.

For the two networking scenarios in this section, we also
show the performance gain relative to the feedback attrac-
tiveness factor §. The performance evaluations confirming its
benefit are shown in Fig 7.

C. Myopic Performance Under Locking.

n this section we confirm (i) the deterioration of myopic
performance under locking and (ii) the ability of HDI metric
to circumvent it. We generate a first set of K independent
n-hop paths where hops are randomly generated satisfying
0.7<1—-8<0.85and 0.6 < a < 1— . Such hops switch
frequently between states, representing a behavior similar to
that of wireless channels. A second set of X' n-hop paths
(of the same size as K) are also created. Every path in K’
satisfies Theorem 2 with some path k € K, i.e. these paths
will be neglected by the myopic policy. Paths in set K’
are chosen to be slow switching, similar to the behavior of
power line communication hops [5]. A source can transmit
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on any path within these two sets. Simulations are carried
for (K| + |K'|) = {4,6,8,...,20} available paths and for
n = {1,2,3,4} hops/path. Results in Fig. 8 (a-c) show a
noticeable deterioration in the myopic performance where our
HDI metric manages to reach an improvement of ~ 20% over
myopic.

Paths with different number of hops. We slightly mod-
ify our simulation to allow paths with different numbers of
hops. In particular, every path is generated with a size of
n = {2, 3,4}, chosen uniformly at random. Our results, Fig. 8
(d), show that the myopic deterioration extends to such cases
where our HDI metric benefits from any available “short” good
paths and maintains ~ 20% improvement over myopic.

We also run evaluate our HDI index against a per-hop
myopic (greedy) index. Results show that a per-hop technique
performs worse that source routing myopic (this is expected
as per-hop neglects the impact of hops further down a path).

VIII. CONCLUSION

This paper presents a formulation of the path selection
problem as a partially observable Markov decision process,
for optimizing source routing decisions over multiple time-
varying paths. We show that, while the greedy myopic policy
is easy to be computed and optimal for stochastically non-
identical paths with memory-less hops, the myopic policy
can lead to bad performances. More precisely, it might get
stuck in bad states where it avoids transmission on certain
potentially good paths. Furthermore we devise a generalization
of the Whittle index, known by previous literature for its
good performance. However, we show that this index becomes
intractable for multi-hop paths as the number of hops increases.
We present HDI, a new “efficient to compute” path selection
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metric that circumvents the non-optimality of myopic locking.
We evaluate experimentally the performance of an index-based
HDI policy in various simulation scenarios. We illustrate that
the HDI policy outperforms other alternatives index policies.
Some directions for future work involve addressing more
challenging versions of the path selection problem, e.g. under
delayed or unreliable packet-drop mechanisms.
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APPENDIX A
DERIVATION OF THE VALUE FUNCTION

The general Bellman equation can be written as:

V,(P) = max R(P,a)+~ > _ Pr(P'/a,P)V,(P')
aca P
a7
Activating first path

Activating the first path by taking action a = {a; =
1,aq = 0} is represented by:

V,Y(P;al = 1) :R(P,a1 :1)

+9) Pr(P'|ay = 1, P)V,(P')
P/

R(P,a; = 1) is the expected reward obtained from
activating the first path under belief vector P = [, Q5]. The
expected reward obtained from activating the first path with
hops beliefs 0 = [w,1,7(w1,2)] is the probability that all
hops of a path are reliable (since otherwise the reward is 0).
Hops along a path are stochastically independent. Therefore

R(P, a; = 1) = w1}1 -T(’wl’g)

Now we determine the set of elements in P’, where P’
is the updated belief vector relative activating the first path.
First we state the following fact that follows from the model
definition Section III:

Fact 1. A source can detect a maximum of one unreliable hop
per message transmission.

Based on Fact 1, a source can observe the path in a total
of n+1 states after being used for transmission (1 state where
all hops are reliable and n other states where in each 1 hop is
unreliable). P’ = [0}, 5] is updated relative to the observed
path state (refer to Section IV-A) and thus |P’'| = n+ 1 (in
this particular case |P’| = 3). The states that can be observed
by the source are:

1)  First hop reliable and second hop reliable. As-
suming the first decision is taken at decision time 77,
then at time ¢t = j + 1 the first hop is observed to be
reliable. At time ¢t = j+2 the second hop is observed
to be reliable while the first hop is idled. Knowing
that the hops of second path are idled for 2 time units,
the individual hop beliefs at the next decision time
Tjy1=j+2 are:

wip=71—-F11); wig=1—PF12



Therefore the updated belief vector
P =[wi, T(wi2); wa, T(wape)]
= [r(1 = Bia), T(1 = Br2); 7 (w2a), 7°(w2pe)]
and is observed with probability
Pr(P{/a; =1,P) = w1 - 7(wi,2)

2)  First hop reliable and second hop unreliable. This
is similar to first case, except that the second hop is
observed unreliable, So:

wyp =7(1—P11); wig =012

Therefore the updated belief vector

Py=[r(1—=B11), T(ar2); 7 (w21), 7°(wa2)]
and is observed with probability
P?‘(Pé/al = 1,P> = wi1,1 - (1 — T(’LULQ))

3)  First hop unreliable. Following a similar logic as
that of the previous two cases, at time ¢t = j + 1
the first hop is observed to be unreliable and the
message is lost revealing no information about the
second hop. Consequently at the next decision time
T;+1 (equivalent to ¢ = j + 2)the first hop would
have idled once while the second hop would have
idled twice. The individual hop beliefs at the next
decision time, T} are:

wy,1 = T(O¢1,1); W12 = 7'2(11)1,2)
Therefore the updated belief vector
Py =[wy1, T(wi1,2); wa1, T(wa2)]
= [r(a1), T (wi2); T (w2n), T (wae)]
and is observed with probability
Pr(Pj/ay =1,P)=1—w

Thus:

Vy(Piar = 1) = wy17(w1,2)
+ 4wy 17wy 2) Ve (T(1 = Bra), T(1 = Bu2), 72 (wa1), 73 (w2,2))
+ w1 (1= 7(wy2))Vo (T(1 = Bra), T(@r2), 72 (w2,1), 73 (w2,2))
+ (1 —wi, )V (T(an1), 73 (wi,2), 72 (wa,1), 78 (w2,2))]

The same logic can be applied to the obtain the expression of
V,Y(P; as = 1)

APPENDIX B
DERIVATION OF THEOREM 2

Consider an n-hop path &’. The smallest value of its myopic
index at any time is:

min {lj[l Trl(wk’,r)} = 1:[1 min{r" ! (wp )}

The minimum value of the belief of the it" hop on path k' that
the source can observe is 7! (s ;). This verifies the (RHS)
of the Theorem 2.

Observing the f*" hop in the unreliable state means:

1)  All hops before f were reliable and will have beliefs:
M1 = Brp) VhEL f—1]
2)  All hops after f where idled for n times, thus:
T wg,) Vlef+1,n]

3) the f*" hop is observed unreliable and idled for n— f
times:
7 (e, s)

Given that:

P = [wk,la T(w1€72)7 ceey Tnil(U)k,n)]

The myopic index of path k after its f** hop is observed
unreliable is thus:

f-1

Tn—l(ak’f) H Tn—l(l _ Bk,h) H Tn—H_l(wk:,l)

h=1 I=f+1

To guarantee that path k will never get selected after its f*"
hop is observed unreliable, it is sufficient that the maximum
value of myopic index of path k, after observing the f** hop

unreliable, is smaller than the minimum myopic index of path
K.

f—1 n n
max {T7ll(ak.7f) H Ml — Br.h) H ‘r"“l(wk,l)} < H Tril(aklﬂ.)

h=1 I=f+1 r=1
(18)
The LHS of (18) can be written as:

f-1 n
max {Tnfl(akjf)} max { H 1 - ﬁkh)} max { H TnHl(wk,l)}

h=1 I=f+1

Since hops are positively correlated, 7%(cvy,f) — wlg’f

t — oo:

as

max {T”_l(whf)} = wlg’f

F-1 F-1
max { Tn71(1 — ﬂk,h)} = H Tn71(1 — ﬂk,h)

h=1 h=1
and:

H max {T”H*l(wkyl)}

I=f+1

— H Tn_H_l(l—,BkJ)

I=f+1

n
max H T"H*l(wk,l) =
I=f+1



