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ABSTRACT
Classical query optimization compares query plans accord-
ing to one cost metric and associates each plan with a con-
stant cost value. In this paper, we introduce the Multi-
Objective Parametric Query Optimization (MPQ) problem
where query plans are compared according to multiple cost
metrics and the cost of a given plan according to a given
metric is modeled as a function that depends on multiple
parameters. The cost metrics may for instance include ex-
ecution time or monetary fees; a parameter may represent
the selectivity of a query predicate that is unspecified at
optimization time.
MPQ generalizes parametric query optimization (which

allows multiple parameters but only one cost metric) and
multi-objective query optimization (which allows multiple
cost metrics but no parameters). We formally analyze the
novel MPQ problem and show why existing algorithms are
inapplicable. We present a generic algorithm for MPQ and a
specialized version for MPQ with piecewise-linear plan cost
functions. We prove that both algorithms find all relevant
query plans and experimentally evaluate the performance of
our second algorithm in a Cloud computing scenario.

1. INTRODUCTION
Classical Query Optimization (CQ) models the cost of a

query plan as a scalar cost value c ∈ R. The optimization
goal is to find the plan with minimal cost for a given query.
Multi-Objective Query Optimization (MQ) [14, 22, 31] gen-
eralizes the classical model and associates each query plan
with a cost vector c ∈ Rn describing the cost of the plan ac-
cording to multiple cost metrics. The optimization goal is to
find a set of query plans that are all Pareto-optimal, mean-
ing that no other plan has better cost according to all cost
metrics at the same time. Parametric Query Optimization
(PQ) [13, 17, 7] generalizes the classical model in a differ-
ent way and associates each query plan with a cost function
c : Rn → R describing the cost of the plan as function of mul-
tiple parameters whose values are not known at optimization

time. The optimization goal is to find a plan set that con-
tains an optimal plan for each possible combination of pa-
rameter values. In this paper, we introduce Multi-Objective
Parametric Query Optimization (MPQ) and describe and
analyze corresponding query optimization algorithms; MPQ
generalizes and unifies the cost models of MQ and of PQ at
the same time by representing the cost of a query plan as
vector-valued function c : Rn → Rm. This allows to model
multiple parameters as well as multiple cost metrics and is
required in the following example scenarios.

Scenario 1. A Cloud provider lets users query a large sci-
entific data set over a Web interface. Query processing takes
place in the Cloud. User queries correspond to query tem-
plates such as SELECT * FROM Table1 WHERE P1 AND P2

where P1 and P2 represent unspecified predicates; users sub-
mit queries by specifying those predicates in the Web in-
terface. Query processing time in the Cloud can often be
reduced when accepting higher monetary fees [22]. After
having submitted a query, users are therefore provided with
a visualization of possible tradeoffs between execution time
and monetary fees (that are realized by alternative query
plans) and can select their preferred tadeoff. To speed up
this process, the Cloud provider calculates all relevant query
plans for each query template in a preprocessing step. The
selectivities of the predicates are unknown at preprocessing
time and must be represented as parameters, execution time
and monetary fees are the two cost metrics. A query plan is
relevant if there is at least one point in the parameter space
for which its time-fees tradeoff is Pareto-optimal, meaning
that no alternative plan has both, lower fees and lower exe-
cution time. Figure 1 illustrates the preprocessing result in
this scenario (for a query with two unspecified predicates).

Scenario 2. Embedded SQL queries are a classical use
case for PQ [17, 7]: to avoid query optimization overhead at
run time, all potentially relevant query plans are calculated
in advance for a given query template. Parameters model
the selectivity of unspecified predicates or the amount of
buffer space that is available at run time. Execution time
is the only cost metric in the classical setting. In the con-
text of approximate query processing [3], execution time can
however be traded against result precision. In such a sce-
nario, the two metrics execution time and result precision
both must be considered during optimization. The optimal
query plan is selected at run time based not only on con-
crete parameter values but also on a policy that determines
the optimal tradeoff between result precision and execution
time, based for instance on the current system load or on
minimum precision requirements for one specific invocation.
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Figure 1: MPQ associates each point x in the pa-
rameter space with a set of Pareto-optimal query
plans {pi} (the illustration uses cost metrics and pa-
rameters from Scenario 1)

The kind of query optimization that is described in the
example scenarios requires to consider multiple parameters
and multiple cost metrics; this is a novel variant of query
optimization that we call MPQ. Figure 2 describes the con-
text of MPQ: MPQ takes place before run time; the input to
MPQ is a query associated with parameters. A parameter
may represent any quantity that influences the cost of query
plans and is unknown at optimization time. The goal of
MPQ is to generate a complete set of relevant plans, mean-
ing a set that contains a plan p∗ for each possible plan p
and each point in the parameter space x such that p∗ has at
most the same cost as p at x according to each cost metric.
Formulated differently, the goal is to find a set of Pareto-
optimal query plans for all points in the parameter space.
As in PQ [17], all relevant query plans are generated in ad-
vance so that no query optimization is required at run time.

1.1 StateoftheArt
MPQ is a generalization of MQ and of PQ; it is not pos-

sible to apply existing MQ or PQ algorithms to MPQ since
PQ algorithms support only one cost metric and MQ al-
gorithms do not support parameters. It may at first seem
possible to model cost metrics as parameters; if all but one
cost metric could be represented as parameters then PQ al-
gorithms could be applied. Trying to model for instance
monetary fees as a parameter in Scenario 1 (such that ex-
ecution time becomes a function of predicate selectivities
and monetary budget) leads however to the following prob-
lems: First, existing PQ algorithms [19, 13, 18, 5, 12, 9]
usually assume that the value domain of each parameter is
known in advance. This is realistic for predicate selectivity
or the available amount of buffer space but not for mone-
tary fees, as finding the minimal execution fees for a given
query is a hard optimization problem all by itself. Second,
cost metrics and parameters have different semantics: As-
sume for instance that alternative query plans for a given
query have execution fees between 1 and 10 USD and that
a plan p priced at 5 USD has lower execution time than all
plans with higher fees. The result set of MPQ should only
contain p but none of the more expensive plans since p is
always preferable over them. A PQ algorithm (e.g., [13, 17])
would however generate plans with minimal execution time
for each possible cost value between 6 and 10 USD, as the
goal in classical PQ is to cover the whole parameter space
by optimal plans (while the goal in MPQ is not to cover
the whole cost space). The result set of PQ can be larger
than the result set of MPQ by an arbitrary factor and result
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Figure 2: The context of MPQ

set size relates to optimization time. Additional problems
arise since parameter domains are usually assumed to be
connected intervals while cost values may be sparsely dis-
tributed in the total cost range. Altogether, transforming
a MPQ problem into a PQ problem by modeling cost met-
rics as parameters seems inappropriate. A popular branch
of PQ algorithms decomposes a PQ problem into multiple
non-parametric CQ problems; it is however impossible to
analogously decompose a MPQ problem into multiple non-
parametric MQ problems for reasons outlined in Section 4.
More related work is discussed in Section 3.

1.2 Contribution and Outline
We summarize our contributions before providing details:

• We formally analyze the MPQ problem with piece-
wise-linear (PWL) plan cost functions. We show in
particular that the MPQ problem has no equivalent
for certain fundamental properties of the PQ problem
that have inspired the design of a broad class of PQ
algorithms based on parameter space decomposition.

• We present the first algorithms for MPQ; those al-
gorithms can deal with multiple cost metrics and para-
metric cost functions together. We present a generic
MPQ algorithm that can deal with arbitrary plan cost
functions and a specialization for PWL cost functions.

• We formally analyze our algorithms and show that
both presented algorithms guarantee to generate all
relevant query plans. We experimentally evaluate
the algorithm for PWL cost functions in an example
scenario similar to the one introduced in Example 1.

Section 2 introduces the formal model, Section 3 discusses
related work. We analyze the MPQ problem in Section 4
and show that it differs from PQ in several important as-
pects. Section 5 presents and analyzes the Relevance Region
Pruning Algorithm (RRPA). This is a generic algorithm for
MPQ that can handle arbitrary plan cost functions. As
many algorithms for CQ, MQ, and PQ, it is based on dy-
namic programming and generates and prunes query plans
for joining table sets of increasing cardinality. The pruning
function differs from prior approaches: Every query plan is
associated with a region in the parameter space for which it
is relevant (the Relevance Region, abbreviated RR). During
pruning, this region is repeatedly reduced by comparisons
with alternative plans. Plans are pruned once their RR be-
comes empty. We prove that RRPA formally guarantees to
generate all relevant query plans for arbitrary queries.

The implementation of elementary RRPA operations such
as adding cost functions and intersecting RRs depends on



the considered class of cost functions. Most work on PQ fo-
cuses either on linear or on PWL cost functions which both
can be stored and manipulated efficiently. Linear functions
are however often a bad approximation for real plan cost
functions [25] while PWL functions can approximate arbi-
trary cost functions up to an arbitrary degree of detail [17].
We therefore focus on PWL cost functions and present PWL-
RRPA, a specialization of RRPA to PWL cost functions, in
Section 6. We prove that all RRs that occur during the exe-
cution of PWL-RRPA belong to a limited class of shapes and
propose data structures for representing cost functions and
RRs. We provide pseudo-code for implementing all elemen-
tary operations of PWL-RRPA efficiently on those data struc-
tures and analyze the resulting complexity. PWL-RRPA was
experimentally evaluated in a Cloud computing scenario; the
results are discussed in Section 7.

2. DEFINITIONS
A query is represented by a set Q of tables that need to

be joined. A query plan specifies the join order and the
operators executing scan and join operations. The symbol O
denotes the set of available operators. Let p1 and p2 be two
query plans that join disjoint sets of tables and o ∈ O a join
operator. The function Combine(p1, p2, o) designates the
query plan that joins the results of p1 and p2 using opera-
tor o. Plans p1 and p2 are called sub-plans of the resulting
plan. The function P(Q) denotes the set of all possible plans
for query Q. The execution cost of a query plan can depend
on parameters whose exact values are not known at query
optimization time. Parameters represent for instance pred-
icate selectivities or the amount of available buffer space at
query execution time. Parameter values for a fixed set of
parameters are represented as a vector x (bold font distin-
guishes vectors from scalar values in the following). The
parameter space X is the set of possible parameter vec-
tors. Query plans are compared according to a set M of cost
metrics for which analytic cost models are available. Let p
be a query plan and x a parameter vector. The cost function
c(p,x) estimates the cost of plan p under the circumstances
described by parameter vector x. The cost function yields
a vector c that contains one value for each cost metric. Let
m ∈ M be a cost metric, then cm denotes the cost value for
that metric. The notation c(p) designates the cost function
for a constant plan p such that c(p)(x) := c(p,x).

Example 1. This example is based on Scenario 1. Con-
sider a query template containing three predicates that are
specified at run time. The selectivities of those three pred-
icates are three parameters, the value domain of each pa-
rameter is the continuous interval [0, 1]. The selectivities
of all three predicates together can be described by a three-
dimensional vector (e.g., x = (0.1, 0.5, 0.2) if the first predi-
cate has selectivity 10%, the second predicate has selectivity
50%, and the third predicate has selectivity 20%). The pa-
rameter space containing all possible parameter vectors is the
three-dimensional space X = [0, 1]3 ⊆ R3. The cost of a fixed
query plan depends on the selectivities of the predicates and
is measured according to the two cost metrics execution time
and monetary fees, therefore M = {time, fees}. The value
domain for each of the two cost metrics is the set R+ ⊆ R of
non-negative real numbers. The cost function c(p) of a fixed
plan p therefore maps three-dimensional parameter vectors
to two-dimensional cost vectors: c(p) : X→ R2

+.

Plan quality metrics for which a higher value is better
(e.g., result precision in Scenario 2) can always be trans-
formed into cost metrics for which a lower value is better
(e.g., replace result precision θ ∈ [0, 1] by precision loss 1−θ).
Let p1 and p2 be two query plans that produce the same re-
sult. Plan p1 dominates plan p2 in all points of the param-
eter space in which p1 has at most the same cost as p2 ac-
cording to each cost metric. The function Dom(p1, p2) ⊆ X
yields the parameter space region where p1 dominates p2:

Dom(p1, p2) = {x ∈ X|∀m ∈ M : cm(p1,x) ≤ cm(p2,x)}

The plans p1 and p2 mutually dominate each other in param-
eter space regions where they have equivalent cost. Plan p1
strictly dominates plan p2 in all points of the parameter
space in which p1 dominates p2 without having equivalent
cost. The function StD(p1, p2) ⊆ Dom(p1, p2) yields the
parameter space region where p1 strictly dominates p2:

StD(p1, p2) = Dom(p1, p2) \ {x ∈ X|c(p1,x) = c(p2,x)}

A plan’s region of optimality is in PQ the parameter space
region where no alternative plan has lower cost [17]. The
multi-objective analogue to the region of optimality is the
Pareto region; the Pareto region pReg(p) ⊆ X of plan p is
the parameter space region where no alternative plan from
P(Q) producing the same result as p strictly dominates p:

pReg(p) = X \ ( ∪
p∗∈P(Q)

StD(p∗, p))

A parametric optimal set of plans is in PQ a plan set that
contains at least one cost-optimal plan for each point in
the parameter space [17]. The multi-objective analogue is a
Pareto plan set (PPS); P ⊆ P(Q) is a PPS iff it contains
for each possible plan p∗ ∈ P(Q) and each parameter vector
x ∈ X at least one plan plan that dominates p∗ for x:

∀p∗ ∈ P(Q) ∀x ∈ X ∃p ∈ P : x ∈ Dom(p, p∗)

Example 2. Let p1, p2, and p3 be three plans for the
same query. Assume there is only one parameter σ ∈ [0, 1]
(X = [0, 1]) that represents the selectivity of an unknown
predicate. The two cost metrics time and monetary fees
are considered: M = {time, fees}. The plans have the
following cost functions: ctime(p1) = 2σ, cfees(p1) = 3,
ctime(p2) = 0.5+σ, cfees(p2) = 2, and plan p3 has the same
cost as p2. The following relationships hold among others:
Plans p2 and p3 mutually dominate each other in the entire
parameter space: Dom(p2, p3) = Dom(p3, p2) = [0, 1]. Plan
p2 strictly dominates p1 for σ > 0.5. The Pareto region of
p1 is the selectivity interval [0, 0.5]. The Pareto regions of
p2 and p3 are the entire parameter space. The sets {p1, p2}
and {p1, p3} both form a PPS.

A Pareto plan designates in the following a plan in a
PPS. A relevance mapping (RM) for a PPS P maps each
Pareto plan to a relevance region (RR) in the parameter
space such that we can restrict our attention to the plans
whose RR includes x whenever we need to find the best
plans for a parameter space point x ∈ X:

∀p∗ ∈ P(Q) ∀x ∈ X ∃p ∈ P : x ∈ relM(p) ∩Dom(p, p∗)

The RR of a plan can be different from its Pareto region.
The algorithm presented in Section 5 uses RMs and discards
plans with empty RRs. The Multi-objective parametric
query optimization (MPQ) problem is the focus of this
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paper. An MPQ problem is defined by a query Q, a param-
eter space X, and a set of cost metrics M. Any PPS for Q
is a solution to the MPQ problem.
We introduce a restricted variant of MPQ, the next defi-

nitions are prerequisites. An m-dimensional convex poly-
tope is a set of points in Rm that i) is convex, meaning
that any two points in the convex polytope are connected
by a line segment that completely lies within the convex
polytope again, and ii) corresponds to the intersection of a
finite set of halfspaces, a halfspace being the set of solutions
to a linear inequality of the form wT ·x ≤ b with w,x ∈ Rm

and b ∈ R. Figure 3 illustrates how a convex polytope is
constructed by intersecting three halfspaces in R2. The cost
function c(p,x) of a plan p is linear in the entire parameter
space, if for each cost metric m ∈ M, there is a weight vector
wm and a constant bm ∈ R such that c(p,x) = wT

m · x+ bm
for each x ∈ X. The cost function is piecewise-linear
(PWL) if the parameter space can be partitioned into con-
vex polytopes such that c(p,x) is linear in each polytope.
Note that PWL cost functions may have discontinuities be-
tween regions in which they are linear. PWL functions are
of high practical relevance since they can approximate ar-
bitrary functions [18]. Most work on PQ (e.g., [13, 17])
restricts the PQ problem by assuming either linear or PWL
cost functions. In analogy to that, we introduce a restricted
variant of the MPQ problem: PWL-MPQ assumes that
all vector-valued cost functions are PWL and that the pa-
rameter space itself forms a convex polytope (which is a
standard assumption in PQ [17]). The PWL-MPQ problem
is analyzed in Section 4 and a corresponding optimization
algorithm is presented in Section 6. This algorithm exploits
that the parameter space in PWL-MPQ can be partitioned
into linear regions for a plan set P : a linear region is a
convex polytope in the parameter space for which all plans
in P have linear cost functions.

3. RELATED WORK
We introduced four different variants of query optimiza-

tion in Section 1.1 (CQ, PQ, MQ, and MPQ) and justified
why existing algorithms cannot be applied for MPQ. We
discuss related work in PQ and MQ in more detail now.
PQ algorithms associate query plans with cost functions

instead of cost values. The cost functions depend on param-
eters that represent for instance predicate selectivities. The
goal in PQ is usually to generate a plan set that contains
one optimal plan for each possible parameter value combi-
nation [13, 17, 18, 7]. Many approaches to PQ are based
on parameter space decomposition [13, 17, 18, 12, 7]. They
repeatedly invoke a standard optimizer to generate optimal
plans for fixed parameter values (if the parameter values
are fixed then the cost of a query plan can be modeled as a

constant value again) in order to decompose the parameter
space into regions in which a single plan is optimal. We will
see in Section 4 why similar approaches fail for MPQ. An-
other branch of PQ algorithms [16, 11, 17, 18, 5, 9] is based
on dynamic programming, similar to the CQ algorithm by
Selinger [26]. They are specific to PQ since they consider
only one cost metric during pruning (some approaches con-
sider robustness in addition to execution time [4, 1] but ro-
bustness is directly derived from execution time and not
an independent cost metric) and use data structures and
corresponding manipulation functions that are intrinsically
specific to assumptions that hold in PQ but not in MPQ
(e.g., many PQ algorithms model the parameter space re-
gion in which a plan is optimal as convex polytope which
works for PQ with PWL cost functions but not for MPQ
with PWL cost functions as shown in Section 4). Using PQ
algorithms for MPQ would require that the optimal plan
according to one cost metric is always guaranteed to be op-
timal according to all other cost metrics. This case is un-
realistic; even more so since many relevant cost metrics are
anti-correlated (e.g., result precision and processing time in
approximate query processing [3]). Ioannidis et al. [19] use
randomized algorithms for PQ; they do not support mul-
tiple cost metrics. Randomized algorithms can never offer
formal worst-case guarantees on generating complete plan
sets, unlike the algorithms presented in this paper. Classical
PQ deals with unknown parameter values by generating all
plans that could be relevant. Other approaches define prob-
ability distributions over parameter values with the goal to
generate one robust plan [4, 1] or one plan that minimizes
expected cost [10]. In contrast to that, classical PQ aims at
scenarios where new information becomes available at run
time that should be considered during plan selection.

MQ algorithms compare query plans according to sev-
eral cost metrics. The goal is to find a plan that represents
the best compromise between conflicting metrics according
to user preferences. The single-objective query optimization
algorithm by Selinger has been generalized to MQ [14, 31]:
plans producing the same result are compared according to
multiple cost metrics during pruning and plans that are not
Pareto-optimal are discarded. The latter approach can deal
with a broad range of cost metrics but does not support
parameters. Other MQ algorithms are tailored to specific
combinations of cost metrics and user preference functions
that allow efficient pruning [21, 32, 2, 3]. They allow for in-
stance only cost metrics for which the cost of a query plan is
calculated as weighted sum over the cost of its sub-plans [32];
this is however not possible in many relevant scenarios (e.g.,
the execution time of a plan equals the maximum over the
execution times of its sub-plans if they are executed in par-
allel). None of those approaches supports parameters. The
algorithms that we present in this paper place only minimal
restrictions on the cost metrics (see Section 5.2) and allow
parameters which is required to solve MPQ problems. Yet
another branch of MQ algorithms separate multi-objective
optimization from join ordering; they produce for instance
a time-optimal join tree first and configure operators within
that tree considering multiple cost metrics later [15, 24].
Such approaches are not applicable to MPQ since it is un-
realistic to find one join tree that is optimal for all parame-
ter values (parameters such as predicate selectivities clearly
have strong influence on the optimal join order). Algorithms
for multi-objective data flow optimization [27, 28, 22] are not



applicable to query optimization with join reordering.

4. PROBLEM ANALYSIS
We analyze the newly introduced MPQ problem. The PQ

problem (i.e., the MPQ problem with only one cost met-
ric) was already analyzed in prior work [13]. The MPQ
problem is a generalization of the PQ problem and the fol-
lowing analysis therefore focuses on pointing out differences
between the PQ problem and the MPQ problem. We will
see in Section 4.1 that having multiple cost metrics instead
of only one changes many fundamental problem properties.
This has important implications on the design of MPQ al-
gorithms that we discuss in Section 4.2.

4.1 Analysis
Most work on PQ assumes that cost functions are PWL [13,

17, 12]. We make the same assumption in the following. Our
comparison between PQ and MPQ focuses on three problem
properties that have been shown to hold for PQ. Those three
problem properties were already called the guiding princi-
ples of PQ [12] since many PQ algorithms exploit them in
one way or another [13, 17, 12], assuming that they hold
either over the whole parameter space [13, 17] or at least lo-
cally [12]. We will see that the guiding principles do not hold
anymore for MPQ which makes many successful approaches
to PQ inapplicable to MPQ. Table 1 summarizes the dif-
ferences between PQ and MPQ. The left column contains
statements about PQ that were proven by Ganguly [13]; the
right column contains the adapted statements for MPQ that
are proven next. All statements refer to linear regions (con-
vex polytopes in the parameter space in which all compared
cost functions are linear for each cost metric).

Theorem 1. The parameter space can be partitioned into
linear regions for an arbitrary set of cost functions.

Proof. Given only one cost metric, the parameter space
can always be partitioned into linear regions according to re-
sults from PQ [17]. Denote by Ci the partitioning according
to the i-th cost metric for 1 ≤ i ≤M (represented as a set of
polytopes). Then {c = c1 ∩ . . . ∩ cM |ci ∈ Ci} is a partition-
ing of the parameter space into linear regions according to
all cost metrics. The partitions are intersections of convex
polytopes and therefore convex polytopes themselves.

We refer to the three statements about PQ by S1, S2,
and S3 in the following, and to the three statements about
MPQ by M1, M2, and M3.

Theorem 2. Let p1 and p2 two arbitrary plans and X ⊆
X a linear region for {p1, p2}. Then the region D within X
in which p1 dominates p2 forms a convex polytope.

Proof. Denote by Dm ⊆ X the region in which p1 is
better or equivalent to p2 according to cost metric m ∈ M.
Each region Dm forms a convex polytope (see results on PQ
with linear cost functions [13]). Plan p1 dominates p2 in
the region in which it is better or equivalent to p2 according
to all cost metrics. Region D corresponds therefore to the
intersection of the Dm: D = ∩m∈MDm. A convex polytope
is an intersection of halfplanes. Therefore, the intersection
of convex polytopes is a convex polytope again.

The following series of counter-examples proves the state-
ments from Table 1. The multi-objective equivalent of an
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optimal plan is a Pareto-optimal plan. Statement S1 about
PQ does not generalize to the multi-objective case. Figure 4
shows a corresponding counter-example. The example shows
the two-dimensional cost function of two plans within a one-
dimensional parameter space. Plan 1 is Pareto-optimal in
the whole parameter space (parameter value range [0, 3]).
Plan 2 is however only Pareto-optimal for the parameter
value ranges [0, 1) and [2, 3] but not for parameter values
between 1 and 2. The example is minimal for MPQ since
having less than two cost metrics leads to PQ and having
less than one parameter leads to MQ. The negative result
therefore applies to MPQ in general.

This example shows at the same time that Pareto regions
are not necessarily connected (first part of M2). Figure 5
illustrates the second part of statement M2: the connected
parts of the Pareto region are not necessarily convex. The
example depicted in Figure 5 uses two plans and a two-
dimensional parameter space. The example requires a two-
dimensional parameter space since connected regions in a
one-dimensional parameter space always form convex poly-
topes. Let c1(x1, x2) = (x1, x2) be the two-dimensional cost
function of plan 1 (the two-dimensional identity function)
and c2(x1, x2) = (1, 1) the cost function of plan 2. The
region in which plan 1 dominates plan 2 forms a convex
polytope as depicted in Figure 5. The remaining region is
the Pareto region of plan 2. Figure 5 shows clearly that the
Pareto region is not convex.

The example in Figure 4 also proves M3a. The example
in Figure 6 proves M3b. Figure 6 shows cost functions of
three plans for two cost metrics and one parameter. Plan 3
is Pareto-optimal for the parameter range (0.5, 1.5) but nei-



Case of Single Cost Metric Case of Multiple Cost Metrics

(S1) If the same plan is optimal for two points in a linear
parameter space region, then that plan is also optimal on the
line connecting those two points.

(M1) If the same plan is Pareto-optimal for two points in a
linear parameter space region, then this plan is not necessar-
ily Pareto-optimal on the line connecting those two points.

(S2) Each plan has one connected region within a linear
parameter space region for which it is optimal. This region
is either empty or forms a convex polytope.

(M2) The Pareto region of a plan within a linear region is
not necessarily connected and the connected parts of it do
not form convex polytopes in general.

(S3) If the same plan is optimal for all vertices of a convex
polytope in a linear parameter space region, then that plan
is optimal for all points within the polytope.

(M3) If all vertices of a convex polytope in a linear param-
eter space region have the same set of Pareto plans, then
(M3a) those plans are not necessarily Pareto-optimal for
all points of the polytope, and (M3b) plans can be Pareto-
optimal within the polytope that are not Pareto-optimal on
the vertices.

Table 1: Comparing the case of one cost metric and the case of multiple cost metrics in parametric query
optimization; all statements refer to linear regions in the parameter space.

...
..

0

.

0.5

.

1

.

1.5

.

2

.0 .

1

.

2

.

Parameter 1

.

C
o
st

M
et
ri
c
1

..
..

0

.

0.5

.

1

.

1.5

.

2

.0 .

1

.

2

.

Parameter 1

.

C
o
st

M
et
ri
c
2

..

. ..Cost of Plan 1 . ..Cost of Plan 2 . ..Cost of Plan 3

Parameter Range Pareto Plans

[0, 0.5] Plan 1, Plan 2

(0.5, 1.5) Plan 1, Plan 2, Plan 3

[1.5, 2] Plan 1, Plan 2

Figure 6: If a plan is not Pareto-optimal for two
parameter values, it can still be Pareto-optimal for
the values in between.

ther for the range [0, 0.5] nor for the range [1.5, 2]. The cost
functions in our examples are not monotone but the exam-
ples can be adapted (just turn the figures counterclockwise
by 45 degrees). A common assumption in PQ is that plan
cost functions are monotone in the parameters [4]. We see
that this assumption does not change our negative results.

4.2 Implications on Algorithm Design
The three properties of the PQ problem that are listed in

the left column of Table 1 have allowed to design PQ algo-
rithms that split one PQ problem into several CQ problems.
This approach has the advantage that an existing query op-
timizer for CQ can be turned into an optimizer for PQ with
relatively low implementation overhead: the code of the ex-
isting CQ optimizer remains mostly unchanged (this is why
such approaches to PQ are called non-intrusive [17]) and
only a relatively small piece of code has to be added that
splits the PQ problem into several CQ problems. We will
see now, why such approaches fail for MPQ.
The Recursive Decomposition Algorithm proposed by Hul-

geri and Sudarshan [17] is a non-intrusive PQ algorithm and
works as follows: Given a convex polytope in the parame-

ter space, the algorithm calculates an optimal plan for each
vertex of that polytope (using a CQ query optimizer). If
the same plan is optimal for each vertex, then that plan is
optimal for every point within the polytope (according to
statement S3 from Table 1) and no further decomposition
is necessary. If different plans are optimal for different ver-
tices, then the polytope is decomposed into fragments and
the algorithm is recursively applied to each fragment.

The described algorithm is representative for other non-
intrusive approaches to PQ [13, 17, 18] since all of them
successively decompose the parameter space into fragments
in which only one plan is optimal. Statement S3 is crucial
for all those algorithms since it leads to a sufficient condi-
tion for checking whether further decomposition is unneces-
sary. Statement M3 shows that no analogue condition can
be found for MPQ: even if the same set of plans is Pareto-
optimal for all vertices of a convex polytope in the parameter
space, it may still be necessary to decompose that polytope
further in order to find all Pareto plans (according to State-
ment M3b). This means that it is not possible to generalize
non-intrusive algorithms for PQ to MPQ (which would al-
low to split one MPQ problem into several MQ problems to
which existing MQ algorithms could be applied [14]). Moti-
vated by this insight, we propose quite a different approach
to MPQ in the following section.

5. GENERIC ALGORITHM
In this section, we present the Relevance Region Pruning

Algorithm (RRPA) for MPQ. The algorithm associates each
query plan with a RR in the parameter space that is used
during pruning to detect irrelevant plans. The algorithm is
generic and not specific to PWL cost functions. Section 5.1
describes the algorithm and Section 5.2 proves that RRPA
finds complete PPSs for arbitrary MPQ problem instances.
We do not explicitly describe how to deal with nested queries
during optimization; techniques for decomposing complex
SQL statements into simple SPJ query blocks have been
proposed in prior work [26].

5.1 Outline of Algorithm
The analysis from the previous section has shown that

trying to adapt non-intrusive PQ algorithms to MPQ is not
a promising direction. We adopt a dynamic programming



(DP) based approach instead, calculating optimal plans for
joining table sets out of optimal plans for joining subsets.
Such an approach seems promising because DP has been
widely used for designing algorithms in CQ [26], MQ [14],
and PQ [17]. Algorithm 1 shows pseudo-code of RRPA. The
main function takes a query Q as input and returns a PPS
for Q. The algorithm uses two families of global variables:
For each sub-query q ⊆ Q, variable Pq will eventually con-
tain a PPS for q and variable Rq a corresponding RM (let
p ∈ Pq a plan for q, then Rq(p) designates the RR of p).
We assume that the plan sets are initially empty. RRPA first
calculates PPSs and RMs for each base table q ∈ Q; it con-
siders all possible scan plans for each base table and prunes
out plans that are dominated in the entire parameter space.
Details of the pruning function are discussed later. After
the base tables, RRPA treats table sets in ascending order
of cardinality. An auxiliary function generates the PPS for
joining a table set q ⊆ Q by considering all possible splits of
q into two non-empty subsets (each split represents one spe-
cific pair of operands for the last join), all possible operators
for the last join, and all pairs of plans for generating the in-
puts to the last join (those plans are selected out of the PPSs
that were calculated before). A tentative plan is generated
for every combination of operands, operator, and sub-plans.
This plan is compared pairwise against all other plans that
generate the same result and are already contained in Pq.
Those comparisons happen in the pruning function. The
goal is to identify and discard suboptimal plans that are not
required to form a PPS.
Pruning is based on the concept of RRs that was intro-

duced in Section 2. Every plan is associated with a RR in
the parameter space for which no alternative plan is known
that has equivalent or dominant cost. The RR of a newly
generated plan is initialized by the full parameter space. It
is reduced during a series of comparisons between the newly
generated plan and the old plans joining the same tables.
At every comparison, the RR of the new plan is reduced
by the points in the parameter space for which an old plan
dominates the new plan. If the RR of the new plan be-
comes empty, it is discarded. Otherwise, the new plan is
inserted. Before inserting the new plan, the RRs of the old
plans are reduced by regions in which they are dominated
by the new plan. Old plans with empty RRs are discarded.
The following example illustrates the pruning method.

Example 3. We revisit Scenario 1. Figure 7 shows the
cost functions of two query plans that join the same two ta-
bles. The amount of data that needs to be joined depends
linearly on the selectivity of one predicate; all cost functions
therefore depend on this parameter. Plan 1 uses a single-
node join while plan 2 uses a parallel join involving multiple
nodes. Plan 1 executes faster than plan 2 for small amounts
of input data since no data needs to be shuffled around in
the network (assuming that all required input data resides
initially on one node). Plan 2 executes faster for larger
amounts of input data due to parallelization. The mone-
tary fees of plan 2 are however always higher than the fees
for plan 1, since the fees are proportional to the total work
(summing up over different nodes) and the total amount of
work increases by parallelization.
Assume that plan 1 was generated before plan 2. The RR

of plan 2 directly after its creation is the entire parameter
space [0, 1]. Plan 2 is pruned with all previously generated
plans for joining the same tables, this is only plan 1 in our
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Figure 7: Illustration of pruning function

example. Plan 1 is preferable over plan 2 according to execu-
tion time and monetary fees at the same time as long as the
selectivity is smaller than 0.25. The RR of plan 2 is there-
fore reduced by the interval [0, 0.25] such that plan 2 remains
relevant for the interval [0.25, 1]. Note that this example uses
only linear cost functions that depend on only one parame-
ter while RRPA can work with arbitrary cost functions that
depend on an arbitrary number of parameters.

Algorithm 1 does not specify how elementary operations
such as adding cost functions or intersecting relevance re-
gions are implemented. The best way of implementing those
operations depends on the considered class of cost functions
(which also implicitly determines the class of RR shapes that
one needs to consider). It is therefore impossible to specify
an implementation for the generic case. For the same reason
it is not possible to analyze the time complexity of RRPA.
We will however present a specialized version of RRPA for
PWL cost functions in Section 6 and analyze its complexity.

5.2 Proof of Completeness
We prove that RRPA generates complete PPSs for arbi-

trary input queries. We make the common assumption that
the Principle of Optimality (POO) [14] holds for each cost
metric: replacing a sub-plan pS within a query plan p by an
alternative sub-plan p′S that has better or equivalent cost
than pS for a specific parameter vector x and according to
a specific cost metric m, can only lead to a plan whose cost
according to m is better than or equivalent to the one of p
for x. The POO restricts the cost function of a plan with
regards to the cost functions of its sub-plans but it does not
restrict the shapes of cost functions in general.

The proof that RRPA generates PPSs is an induction over
the number of tables to join. The following lemma will be
used for the inductive step.

Lemma 1. If RRPA generates PPSs and corresponding
RMs for all queries that join up to N tables then it also gen-
erates PPSs and corresponding RMs for queries that join up
to N + 1 tables.

Proof. Let Q be a query joining N + 1 tables (|Q| =
N + 1), vector x ⊆ X an arbitrary parameter vector, and



1: // Find a Pareto plan set for query Q
2: function GenericMPQ(Q)
3: // Initialize plan sets for base tables
4: for ⟨q, p⟩ : q ∈ Q, p is plan for q do
5: Prune(P, q, p)
6: end for
7: // Consider table sets of increasing cardinality
8: for k ∈ 2..|Q| do
9: // Iterate over table sets with given cardinality
10: for q ⊆ Q : |q| = k do
11: Pq ←GenerateParetoPlanSet(q)
12: end for
13: end for
14: return PQ

15: end function

16: // Generate Pareto plan set for joining q
17: function GenerateParetoPlanSet(q)
18: P ← ∅
19: // For all possible splits of table set q
20: for q1, q2 ⊂ q : q1∪̇q2 = q do
21: // For all sub-plans and operators
22: for p1 ∈ Pq1 , p2 ∈ Pq2 , o ∈ O do
23: // Construct new plan out of sub-plans
24: pN ←Combine(p1, p2, o)
25: // Accumulate cost of sub-plans
26: c(pN ) =AccumulateCost(o, p1, p2)
27: // Prune with new plan
28: Prune(P, q, pN )
29: end for
30: end for
31: return P
32: end function

33: // Prune plan set P for query q with new plan pN
34: procedure Prune(P, q, pN )
35: // Check whether the new plan is relevant
36: Rq(pN )← X
37: for p ∈ Pq do
38: // Update relevance region of new plan
39: Rq(pN )←Rq(pN )\Dom(p, pN )
40: // Check if relevance region became empty
41: if Rq(pN ) = ∅ then
42: return // Do not insert new plan
43: end if
44: end for
45: // If we arrive here, the new plan will be inserted
46: // Discard irrelevant old plans
47: for p ∈ Pq do
48: // Update relevance region of old plan
49: Rq(p)←Rq(p)\Dom(pN , p)
50: // Check if relevance region became empty
51: if Rq(p) = ∅ then
52: Pq ← Pq \ {p} // Discard old plan
53: end if
54: end for
55: // Insert new plan into Pareto plan set
56: Pq ← Pq ∪ {pN}
57: end procedure

Algorithm 1: The relevance region pruning algorithm for
generic multi-objective parametric query optimization

p an arbitrary plan for Q. Plan p has two sub-plans, p1
and p2, that join at most N tables each. Therefore, RRPA
generates a plan p∗1 that produces the same result as p1 and
dominates p1 for x. Additionally, x is included in the RR
of p∗1. RRPA also generates a plan p∗2 with the analogous
properties relative to p2. The plans p∗1 and p∗2 can be com-
bined into a plan p∗ that produces the same result as p and
dominates p for x (due to the POO).
RRPA will generate p∗ and initialize its RR with the full

parameter space. Plan p∗ is only pruned once its RR be-

Relevance
Region

Convex
Polytope

cutouts1 n

Figure 8: Representation of relevance regions if all
cost functions are piecewise-linear

comes empty during the pairwise comparisons with other
plans. This can only happen, if RRPA keeps another plan
that dominates p∗ for x and x will be included in that plan’s
RR. RRPA generates a PPS for query Q and the correspond-
ing RM since p and x were chosen arbitrarily.

The following theorem is the main result of this subsection.

Theorem 3. RRPA generates PPSs for arbitrary MPQ
problem instances.

Proof Sketch. The proof is an induction over the num-
ber of tables to join. Under the assumption that RRPA gen-
erates PPSs and corresponding RMs for single tables (the
induction start), it also generates PPSs and corresponding
RMs for arbitrary table sets according to Lemma 1 (the
induction step). RRPA considers all possible plans for each
base table and only discards plans that are dominated in the
entire parameter space. This proves the induction start.

6. ALGORITHM FOR PIECEWISELINEAR
COST FUNCTIONS

RRPA presented in the last section is generic since it can
deal with arbitrary cost functions. The pseudo-code of RRPA
(Algorithm 1) left certain questions open such as how to rep-
resent RRs and how to efficiently intersect and reduce them;
the answers to those questions depend on the considered
class of cost functions. In this section, we present a special-
ized version of RRPA for PWL cost functions: PWL-RRPA.
We propose data structures to represent cost functions and
RRs in Section 6.1, show how elementary operations can be
efficiently implemented on them in Section 6.2, and analyze
the complexity of PWL-RRPA in Section 6.3. PWL-RRPA
guarantees to generate PPSs for arbitrary PWL-MPQ prob-
lem instances as it is a specialization of RRPA.

6.1 Data Structures
Expressions of the form Rq(p) designate in Algorithm 1

the RR of a plan p joining a table set q. Figure 8 describes
the internal representation of RRs as entity-relationship di-
agram. A RR is represented by a set of convex polytopes,
called the cutouts, such that a parameter space vector is con-
tained in a RR if it is not contained in any of the cutouts.
The following theorem justifies this representation.

Theorem 4. Any relevance region that occurs during the
execution of PWL-RRPA can be represented as complement
of a set of convex polytopes.

Proof. The RR of a new plan is the entire parameter
space and can therefore be represented as the complement
of an empty set. After initialization, the RR can get re-
duced several times by regions in which a plan is dominated
by another. When comparing two plans with PWL cost
functions, the parameter space can be partitioned into lin-
ear regions according to Theorem 1. The region in which
one plan dominates another within a linear region forms a
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convex polytope according to Theorem 2. Therefore, the RR
can still be represented as complement of convex polytopes
after reduction.

The cost function of a plan p is represented by the ex-
pression c(p) in Algorithm 1. Figure 9 shows the internal
representation of cost functions as entity-relationship dia-
gram. A multi-objective PWL cost function is composed
out of one single-objective PWL cost function per cost met-
ric. The PWL cost function is linear within parameter space
regions that form convex polytopes. Each PWL function is
therefore represented as a set of linear functions; each linear
function is characterized by the parameter space region to
which it applies (attribute reg in Figure 9) and a weight vec-
tor (attribute w in Figure 9) with one weight per parameter
together with the scalar base cost (b in Figure 9) that de-
fine the linear function. The parameter space regions of the
linear pieces must not overlap; then the PWL function can
be evaluated for a specific parameter vector x by identifying
the unique piece whose region contains x and evaluating the
formula b+wT ·x to obtain the cost value. A multi-objective
PWL function is evaluated by evaluating all its components
according to the aforementioned method.
PWL cost functions can approximate the real cost func-

tions of single scan and join operations up to an arbitrary
precision [17]. The accumulated cost of an entire query plan
(using standard accumulation function such as minimum,
maximum, and weighted sum) can therefore be represented
as PWL function again; this fact has been used by prior PQ
algorithms [17]. Generalizing this reasoning to the multi-
objective case is trivial. Therefore, the representation pro-
posed in Figure 9 covers each cost function that occurs dur-
ing the execution of PWL-RRPA (assuming that the cost of
single operations is approximated by PWL functions).

6.2 Implementation of Elementary Operations
PWL-RRPA performs two operations on RRs: it reduces

the RR of a plan by the region in which it is dominated

1: // Input: relevance region rr, convex polytopes polys
2: // Effect: region rr is reduced by polys
3: procedure SubtractPolys(rr, polys)
4: // Add polytopes to cutouts
5: rr.cutouts← rr.cutout ∪ polys
6: end procedure

7: // Input: relevance region rr
8: // Output: true iff rr is empty
9: function IsEmpty(rr)
10: // Check whether union of cutouts is convex
11: if (∪C∈rr.cutoutsC) is convex then
12: // Calculate convex polytope covered by cutouts
13: CutPoly ← polytope formed by (∪C∈rr.cutoutsC)
14: // Check if cutouts cover whole parameter space
15: if X ⊆ CutPoly then
16: // Relevance region is empty
17: return true
18: end if
19: end if
20: // Cutouts do not cover whole parameter space
21: return false
22: end function
Algorithm 2: Elementary operations on relevance regions

by another (e.g., Algorithm 1, Line 39) and checks whether
a RR is empty (Algorithm 1, Line 41). Algorithm 2 shows
pseudo-code for both operations. The field specifier .cutouts
refers to Figure 8 and denotes the set of cutouts for a variable
representing a RR. Convex polytopes are subtracted from a
RR by adding them as cutouts, as illustrated in Figure 10.

Function IsEmpty is based on the following theorem.

Theorem 5. A relevance region is empty iff the union
of its cutouts forms a convex polytope that covers the entire
parameter space.

Proof. Let Ci ⊆ X be the set of cutouts. The RR is
empty iff ∀x ∈ X∃i : x ∈ Ci. This is the case iff X ⊆ ∪iCi

which is equivalent to X = ∪iCi since all cutouts are con-
tained within the parameter space X. As X forms a convex
polytope according to the definition of the PWL-MPQ prob-
lem (see Section 2), the union of the cutouts of an empty
RR is a convex polytope.

The union of the cutouts may not be convex and may
not form a polytope. Checking whether a region of arbi-
trary shape (the union of the cutouts) contains the param-
eter space is inefficient. It is therefore crucial to note that
the containment check is only necessary in the special case
that the union of cutouts forms a convex polytope. The
algorithm by Bemporad et al. [6] checks whether a union
of convex polytopes is a convex polytope again and con-
structs the corresponding polytope in that case. Checking
containment between two convex polytopes is a standard
problem [20].

PWL-RRPA performs two operations on cost functions: It
calculates the cost function of a new plan by accumulat-
ing the cost of its sub-plans (Algorithm 1, Line 26) and—
given two cost functions—it calculates the region in which
one dominates the other (e.g, Algorithm 1, Line 39). Algo-
rithm 3 shows pseudo-code for both operations. The comps
relationship (see Figure 9) associates a multi-objective cost
function with one single-objective function for each cost met-
ric. We treat the comps relationship as an array and refer
to the single-objective cost function for metric m by the no-
tation .[m]. The function AccumulateCost accumulates
the cost of a new plan out of the cost of its sub-plans. It



1: // Input: a join operator o and two plans p1 and p2
2: // Output: accumulated cost of executing p1 and p2
3: // and joining their results using o
4: function AccumulateCost(o, p1, p2)
5: // Create new cost function
6: acCost← new multi-obj. PWL cost func.
7: // Iterate over all cost metrics
8: for m ∈ M do
9: // Initialize pieces of new cost function
10: newPcs← ∅
11: // Iterate over cost function pieces of sub-plans
12: for fp1 ∈ c(p1).comps[m].pieces do
13: for fp2 ∈ c(p2).comps[m].pieces do
14: // Intersect regions of the two pieces
15: r ← fp1.reg ∩ fp2.reg
16: // Check if intersection is empty
17: if r ̸= ∅ then
18: // Add weight vectors
19: w← fp1.w + fp2.w + o.w
20: // Add base costs
21: b← fp1.b+ fp2.b+ o.b
22: // Construct new piece
23: newPc← new linear cost func. with

base cost b, weight w, and region r
24: // Add new piece
25: newPcs← newPcs ∪ {newPc}
26: end if
27: end for
28: end for
29: acCost.comps[m].pieces← newPcs
30: end for
31: return acCost
32: end function

33: // Input: two plans p1 and p2
34: // Output: a set of convex polytopes in the
35: // parameter space where p1 dominates p2
36: function Dom(p1, p2)
37: // Calculate p1’s dominant region for each metric
38: for m ∈ M do
39: // Initialize set of polytopes
40: polysm ← ∅
41: // For all pairs of cost function pieces
42: for fp1 ∈ c(p1).comps[m].pieces do
43: for fp2 ∈ c(p2).comps[m].pieces do
44: // Calculate intersection of regions
45: r ← fp1.reg ∩ fp2.reg
46: // Calculate part where p1 dominates p2
47: rDom← solutions to linear equations

(fp1.w − fp2.w)Tx ≤ fp2.b− fp1.b, x ∈ r
48: // Add polytope if not empty
49: if rDom ̸= ∅ then
50: polysm ← polysm ∪ {rDom}
51: end if
52: end for
53: end for
54: end for
55: // Combine results from different metrics
56: return {∩m∈Mpm|pm ∈ polysm}
57: end function

Algorithm 3: Elementary operations on cost functions

iterates over all cost metrics and calculates the cost function
for each metric separately. For each metric, it partitions the
parameter space into regions in which both sub-plans have
linear cost functions. Each nonempty linear region becomes
a piece in the cost function of the new plan. The weight
vector of the new piece corresponds to the component-wise
sum of the weight vectors of the two sub-plans and the join
cost vector (denoted by o.w in the pseudo-code) in the corre-
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sponding parameter space region1; Figure 11 illustrates this
step for a two-dimensional parameter space with parameters
σ1 and σ2, the two-dimensional weight vectors are shown at
the interior of their linear regions. The base cost of the new
piece is the sum over the join base cost (o.b) and the base
costs of the sub-plans. Cost is therefore accumulated by
adding the cost of the sub-plans. The function trivially gen-
eralizes to scenarios where cost is accumulated as weighted
sum, minimum, or maximum of two cost functions.

FunctionDom returns a set of convex polytopes represent-
ing the region in which plan p1 dominates plan p2. A plan
dominates another in regions in which it has better or equiv-
alent cost according to each cost metric. Function Dom ini-
tially calculates for each cost metric m the set DomPolysm
of convex polytopes in the parameter space in which p1 is
better than or equivalent to p2 according to m. In a sec-
ond step, the function intersects the polytope sets associ-
ated with specific cost metrics to obtain the region in which
p1 is better or equivalent according to all metrics.

We describe several refinements of the pseudo-code pre-
sented so far; those refinements led to significant perfor-
mance improvements in our experiments. First, we sim-
plify the internal representation of convex polytopes wher-
ever possible by deleting redundant linear constraints. A
linear constraint is redundant if it is implied by the other
constraints of the same polytope. Second, we simplify the in-
ternal representation of RRs by deleting redundant cutouts.
A cutout is redundant if it is covered by the other cutouts of
the same RR. Third, we avoid unnecessary emptiness checks
by associating each freshly created RR with a set of rele-
vance points that are distributed across the entire param-
eter space. Each time that a new cutout is added to the
RR, the relevance points that are contained within the new
cutout are deleted from the point list. As long as the point
list is not empty, the RR itself cannot be empty either and
executing function IsEmpty can be avoided.

6.3 Complexity Analysis
The complexity of PQ, MQ, and MPQ algorithms depends

heavily on the number of plans that are stored per table set.
Prior work analyzing the complexity of PQ and MQ algo-
rithms often considers the number of plans as random vari-
able and derives upper bounds on its expected value [14,

1To simplify the pseudo-code, we made the strong assump-
tion that the cost function of the final join is always linear
in parameter space regions in which the cost functions of
the two sub-plans are linear. This is not true in general but
the code can easily be generalized by first accumulating the
cost of the sub-plans, and then accumulating the resulting
cost and the join cost in a second step.



13]. We adopt the same approach for analyzing the com-
plexity of PWL-RRPA. We focus on the case of linear cost
functions; the analysis can easily be generalized to PWL
cost functions for a given number of pieces. Let nX be the
number of parameters. The linear cost function of a plan p
can be described by a set of real-valued weights wp

m,i ∈ R
for m ∈ M and i ∈ {0, . . . , nX}. The cost of p according
to metric m is given by the expression wp

m,0 +
∑

1≤i w
p
m,ixi

where xi designates the value of the i-th parameter. We say
that a plan p1 dominates a plan p2 parameter value indepen-
dently (p.v.i.) if wp1

m,i ≤ wp2
m,i for each metric m and for each

i ∈ {0, . . . , nX}. If p1 dominates p2 p.v.i. then p1 dominates
p2 (according to the definition in Section 2) for all possible
(positive) parameter values. Given a concrete parameter
space, a plan p1 dominating another plan p2 p.v.i. is a suffi-
cient (but not a necessary) condition for p1 dominating p2 in
the entire parameter space. We now derive an upper bound
on the expected number of Pareto plans assuming that plan
cost weights are chosen randomly; we assume that weights
of different plans and different weights for the same plan are
chosen independently. All those assumptions are common
in the complexity analysis of PQ and MQ algorithms [14,
13]. By nM = |M|, we designate the number of cost metrics.

Theorem 6. The expected number of Pareto plans per
table set is upper-bounded by 2((nX+1)·nM ).

Proof Sketch. The cost function of a plan is described
by (nX + 1) · nM cost weights. Hence, a cost function can
be thought of as a point in (nX +1) ·nM -dimensional space.
Ganguly et al. [14] derive an upper bound of 2l on the size
of the cover set when choosing an unspecified number of
points in l-dimensional space (see Theorem 3 in their pub-
lication). Setting l = (nX + 1) · nM , we can use that result
to obtain an upper bound on the number of plans that are
not dominated p.v.i. by any other plan. This is an upper
bound on the number of plans that PWL-RRPA is expected
to retain for any given table set after pruning (the bound is
pessimistic since a plan that is not dominated p.v.i. may still
be dominated in the entire concrete parameter space).

The upper bound derived in Theorem 6 is consistent with
prior results in the areas of PQ and MQ: the upper bound of
2nM on the expected number of plans derived for the case of
nM cost metrics and no parameters (MQ) [14] corresponds
to a specialization of our result. Our bound grows expo-
nentially in the number of parameters which is in line with
prior results on PQ [18] (tighter bounds require additional
assumptions [13]). We denote our bound on the number of
plans per table set by nP in the following, the number of
scan and join operators by nO = |O|, and the number of ta-
bles by nQ = |Q|. The function lp(a, b) represents the time
for solving a linear program with matrix dimensions a × b.
An upper bound on the number of plans that PWL-RRPA
generates per table set is given by nG = 2nQn2

PnO.

Lemma 2. Function IsEmpty has time complexity
O(nnG

M lp(nMnG, nX)).

Proof. A cutout is a region in which one plan dominates
another; a cutout is therefore defined by nM linear con-
straints. Comparing one plan to another one during prun-
ing adds at most one cutout to its RR. The total number
of cutouts per RR is therefore bounded by nG. The time
complexity of IsEmpty is dominated by the time for check-
ing whether the union of polytopes is convex; Bemporad et

al. [6] provide complexity results for their algorithm, we use
them with nG as bound on the number of polytopes and nM

as bound on the number of constraints per polytope.

We denote the time complexity of IsEmpty by Temp.

Theorem 7. PWL-RRPA has time complexity
O(3nQn3

PnOTemp).

Proof. The time for emptiness checks dominates. Each
newly generated plan is compared against O(nP ) alternative
plans which requires O(nP ) emptiness checks. PWL-RRPA
iterates over all subsets of Q. For a subset q ⊆ Q contain-
ing i = |q| tables, PWL-RRPA generates O(2in2

PnO) plans.
Using

∑nQ

i=1

(
nQ
i

)
2i = 3nQ yields the total complexity.

7. EXPERIMENTAL EVALUATION
We experimentally evaluate PWL-RRPA in a scenario sim-

ilar to Scenario 1. We first describe the experimental setup,
then present the results, and finally discuss them.

Experimental Setup. We consider a Cloud scenario
with two cost metrics, execution time and monetary fees.
A parallel hash join and a single-node hash join are avail-
able. The parallel hash join requires to shuffle the input
data in the network. Parallelization therefore increases the
total amount of work (which is proportional to monetary
cost) while it can decrease execution time in comparison
to a single-node join if the input relations are sufficiently
large. This shows that a tradeoff exists between execution
time and monetary fees and a query plan that minimizes one
does not necessarily minimize the other. Base tables are as-
sociated with equality predicates whose selectivites are rep-
resented by parameters; one parameter is required for each
table with a predicate. Indices are available for each column
with a predicate. This makes an index seek preferable for
low selectivity while a complete table scan is better for non-
selective predicates; as predicate selectivity is a parameter,
plans must often be kept for both cases which makes the
benchmark even more challenging. We evaluate the perfor-
mance of PWL-RRPA on randomly generated queries, using
the generation method proposed by Steinbrunn [29] (and
used recently in other publications [8]) to choose table car-
dinalities and join predicates; we assume that unique values
occupy up to 10% of a table column. We separately evalu-
ate the performance for star queries and for chain queries as
the structure of the join graph is known to have significant
impact on optimizer performance [29]. PWL-RRPA consid-
ers the full search space of bushy query plans but postpones
Cartesian product joins as much as possible; this heuristic
is commonly applied in state-of-the-art optimizers such as
the Postgres optimizer2. Standard formulas are used to es-
timate join time; monetary cost are calculated according to
the pricing system of Amazon EC23 and the properties of
the simulated cluster nodes such as main memory size cor-
respond to the ones of the general purpose medium instance
in EC2. PWL-RRPA was implemented in Java 1.7, using
Gurobi 5.64 as linear program solver. All experiments were
executed on a commodity iMac equipped with an i5-3470S
processor with 2.9 GhZ and 16 GB of RAM.

Experimental Results. The goal of the following
experiments is to show how optimization time depends on
2http://www.postgresql.org/
3http://aws.amazon.com/de/ec2/
4http://www.gurobi.com/
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Figure 12: Optimization time, number of generated
plans, and number of solved linear programs

query characteristics such as the number of tables, the num-
ber of parameters, and the join graph structure. We exper-
imented with up to 12 tables for one parameter and up to
10 tables for two parameters. Figure 12 shows optimization
time, the number of generated plans (including partial plans
and plans that were pruned during optimization), and the
number of solved linear programs (LPs). Each data point
corresponds to the median of 25 randomly generated test
cases. All three metrics are clearly correlated and increase in
the number of tables as well as in the number of parameters.
The number of solved LPs is much higher than the number
of generated plans since operations such as comparing plans
during pruning or checking emptiness of a plan’s RR all
require to solve several LPs. As in traditional query opti-
mization, optimizing chain queries is faster than optimizing
star queries when avoiding Cartesian product joins [23].
Discussion. MPQ is a generalization of MQ and PQ

and computationally expensive. MPQ happens however be-
fore run time and it pays off as it avoids run time query opti-
mization altogether. For same number of tables and param-
eters, our optimization times are higher but still comparable
to optimization times of single-objective PQ algorithms that
are often in the order of several seconds as well [18, 7].

8. CONCLUSION
We introduced MPQ, a novel variant of query optimiza-

tion that allows to consider multiple cost metrics and pa-
rameters. We presented a first algorithm for this problem
and evaluated it in a Cloud computing scenario. Our algo-
rithm is exhaustive and guarantees to generate all relevant
query plans.
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