Estimating Human Interactions with Electrical Appliances for Activity-based Energy Savings Recommendations

Motivation

Household Focus

- Smart Home:
 - Spread of communicating smart devices in the home
 - Future availability of appliance-level consumption data
- Household-level optimization for load shifting, peak shaving:
 - Accounting for the residents' lifestyle characteristics
- Ambient Intelligence System:
 - Combination of real-time grid status/prices, in-home states, etc.
 - Local (in-home) optimization → no privacy concerns

Activity-based Recommendations

- About 12% energy savings if personalized real-time feedback is employed [Carrie Armel et. all, Energy Policy, 2013]
- Relationship between human activities and succession of powered-on appliances
- Higher abstraction level for residents: activity vs. appliance-level feedback

Methodology

Appliances States

- User interaction incurs changes from idle state (stand-by/off) to active state (powered on/in use)
- Single appliance-level data:
 - Different operation modes (e.g. washing machine: soaking, spinning, etc.)
- Circuit-level data:
 - Power strip, room-level, etc.
- Challenges:
 - Different appliance types/models → different thresholds for idle/active
 - Unsupervised threshold detection

GMM

- Power measurements distribution shifted towards lower values
- Readings resampling: $C * \log(n_i + 1)$
- States: differently shaped peaks in the distribution
- Best configuration (no.
 Gaussians): lowest Bayesian
 Information Criterion (BIC) value
- Idle/active threshold: the first valley in the distribution

Experiment

- PecanStreet dataset
 - 239 households with 1-minute power measurements
 - January May 2014
 - 73 categories of readings collected
 - At most 22 appliances/circuits per households
- No ground truth
- Ignore:
 - Always-on devices (fridges)
 - Devices consuming less than 0.5 Wh per week

Results

Single appliance-level data (clotheswasher):

Power [W]

clotheswasher_dryg1 on 2014-01-29

350
300
Binary scaled plot
Original data

250
250
150
100
50
100
7
Time [h]

Active

Outlook

- Summary:
 - Modeling of appliance functioning through states
 - States detections via re-sampled power readings distribution modeling with GMM
 - Distinction between idle/active states based on the first valley between the first two Gaussians
- Future work:
 - Thresholding Evaluation
 - Ground truth acquisition
 - Activities detection:
 - Recurrent patterns of appliances usage
 - Temporal rules

