Beam propagation and stray radiation in the ITER EC H&CD Upper Launcher

The four ITER Electron Cyclotron Upper Launchers (UL) are designed to control Magneto-Hydrodynamic instabilities with the deposition of Electron Cyclotron power. According to the present design, each launcher comprises two rows of four input waveguides, whose output beam is focused and driven towards the plasma by four sets of mirrors. In order to study the beam-launcher interaction throughout quasi-optical propagation, with particular attention to straylight behaviour, and to verify analytical calculations, a 3D model of the UL optical system has been implemented with the electromagnetic code GRASP (R) and the Physical Optics method. Detailed description of the components are introduced: pure hybrid mode HE11 from cylindrical waveguide as input beams, real shapes of the mirror contours, semi-analytical description of the ellipsoidal surfaces of focussing mirrors. A conceptual calculation scheme has been developed in order to take into account not only the direct contribution of the single source on its next scatterer but also the first order indirect effects: crosstalk from different lines of the same row and crosstalk from different rows have been evaluated after reflection on the first and third set of mirrors. The evaluations presented have been performed on the preliminary UL design, the last major milestone before finalization; however, the numerical model is suitable to be applied to future evolutions of the setup and/or other configurations.


Editor(s):
Kubo, S.
Published in:
EPJ Web of Conferences, 87, 02018
Presented at:
18th Joint Workshop on Electron Cyclotron Emission and Electron Cyclotron Resonance Heating (EC-18), Nara, Japan, 22-25 April 2014
Year:
2015
Publisher:
EDP Sciences
Keywords:
Laboratories:




 Record created 2015-03-25, last modified 2018-11-14

External links:
Download fulltextURL
Download fulltextURL
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)