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Abstract
The group testing problem consists of determining a
sparse subset of a set of items that are “defective” based
on a set of possibly noisy tests, and arises in areas
such as medical testing, fault detection, communication
protocols, pattern matching, and database systems.
We study the fundamental limits of any group testing
procedure regardless of its computational complexity.
In the noiseless case with the number of defective items
k scaling with the total number of items p as O(pθ) (θ ∈
(0, 1)), we show that the probability of reconstruction
error tends to one when n ≤ k log2

p
k (1 + o(1)), but

vanishes when n ≥ c(θ)k log2
p
k (1 + o(1)), for some

explicit constant c(θ). For θ ≤ 1
3 , we show that

c(θ) = 1, thus providing an exact threshold on the
required number measurements, i.e. a phase transition,
which was previously known only in the limit as θ →
0. Analogous necessary and sufficient conditions are
derived for the noisy setting, and also for a relaxed
partial recovery criterion.

1 Introduction
The group testing problem consists of determining a
small subset S of “defective” items within a larger set
of items {1, . . . , p}. This problem has a history in
areas such as medical testing and fault detection, but
has regained significant attention with following new
applications in areas such as communication protocols
[1], pattern matching [2], and database systems [3],
and new connections with compressive sensing [4, 5].
Formally, the goal is to determine S via a number of
tests, each taking the form

Y = 1

{ ⋃
i∈S
{Xi = 1}

}
⊕ Z, (1.1)
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where the measurement vector X = (X1, . . . , Xp) ∈
{0, 1}p indicates which items are included in the test,
Z is a noise term, Y is the resulting observation, and
⊕ denotes modulo-2 addition. In words, the output
indicates, in a possibly noisy fashion, whether at least
one defective item is present in the items corresponding
to Xi = 1. One wishes to minimize the total number of
tests n while still ensuring the reliable recovery of S.

The above model is simple but highly powerful, and
itself comes with a variety of variations:

• The measurement vectors may be designed deter-
ministically [6–8], or one may seek to character-
ize the behavior when they are generated randomly
[9–12]. Among the latter class, the prevalent distri-
bution is that in which the entries ofX are indepen-
dent and identically distributed (i.i.d.) Bernoulli
variables; these have the best known theoretical
guarantees in terms of the number of measure-
ments.

• One may seek practical decoding techniques hav-
ing low computational complexity and storage [10,
11, 13], whereas a complementary line of research
considers measurement-optimal fundamental limits
that hold regardless of such considerations. Such
studies help to assess practical methods and deter-
mine the level of further improvement possible.

In this paper, we develop phase transitions, i.e., ex-
act asymptotic thresholds on the required number of
measurements including constant factors, for Bernoulli
designs and measurement-optimal recovery algorithms.
Early studies of this type were performed by Malyu-
tov [9], and more recent studies include those of Atia and
Saligrama [12], Aldridge et al. [11, 14], and Laarhoven
[15]. In the case that the number of defective items
k does not scale with p, the fundamental limits are
well-understood for both the noiseless and noisy set-
tings [9, 12, 15]; for example, in the noiseless case, the
smallest possible number of measurements with vanish-
ing error probability behaves as

(
k log2

p
k

)
(1 + o(1)),

which is in fact the same threshold as that for opti-
mal adaptive measurements [16] (i.e., designs for which
each test may depend on previous outcomes).



Surprisingly, there remain significant gaps in the
best known upper and lower bounds on n when k scales
with p, which is of considerable interest in applications
where the number of defective items is “not too small”.
In this paper, we close these gaps in several regimes of
interest. Our main contributions are as follows:

• We develop novel analysis techniques providing
a significant departure from existing approaches
based on tools such as maximum-likelihood decod-
ing and Fano’s inequality [9,12]. Specifically, we in-
troduce information densities of the form ı(x; y) :=

log
PY |X(y|x)
PY (y) (defined formally in the sequel), and

develop upper and lower bounds showing that the
error probability of a measurement-optimal recov-
ery algorithm (or “decoder”) is precisely character-
ized by tail probabilities involving i.i.d. summations
of these quantities, thus permitting the derivation
of sample complexity bounds via concentration in-
equalities.

• Using these techniques, we show that the error
probability (defined formally in the sequel) under-
goes a phase transition, approaching one when n is
slightly below a threshold, while approaching zero
when n is slightly above the same threshold. Specif-
ically, in the noiseless case, we prove the above-
mentioned tightness of the threshold

(
k log2

p
k

)
(1+

o(1)) whenever k = pθ for some θ ∈
(
0, 13
)
, thus im-

proving significantly on the previously-known con-
dition θ → 0. Similarly, with additive modulo-2
Bernoulli noise, we obtain an analogous threshold
for sufficiently small θ. In each of these settings,
it immediately follows that non-adaptive Bernoulli
measurements yield the same phase transition as
that of optimal adaptive measurements. Moreover,
we show that even when only a proportion 1 − α∗
of the entries in S needs to be recovered, the cor-
responding threshold decreases by at most a factor
of 1− α∗, and hence there is little to be gained by
considering this relaxed criterion. This is in stark
contrast with compressive sensing problems, where
moving to partial recovery can lead to immense sav-
ings [17].

We note that the condition P[error] → 1 improves
on the usual condition P[error] 6→ 0 arising from Fano’s
inequality; while the stronger statement was previously
given in [18] for Bernoulli designs, our approach has the
key advantage of extending immediately to other spar-
sity problems in which the observations are continuous
(cf. [19]).

Another particularly related work is that of Mézard
et al. [20], who derived phase transitions for various
random measurement designs in the noiseless setting,

for certain scaling regimes. However, some of the
arguments therein are based on a “no short loops”
assumption that is only verified rigorously for θ ≥ 5

6 ,
1

and non-rigorously for θ ≥ 2
3 . In contrast, in this

paper we obtain phase transitions for θ ≤ 1
3 , which does

not overlap with the range of interest in [20]. In fact,
it is verified numerically in [20] that the assumption
regarding short loops is invalid for θ = 1

3 .
Finally, we briefly comment on practical decoders.

In the noiseless setting with adaptive measurements, an
algorithm by Hwang [7] is known to achieve the optimal
phase transition. In the non-adaptive setting, several
techniques have been shown to be optimal in terms of
scaling laws [10, 11, 13], requiring O(k log p) measure-
ments and polynomial space and time. However, the
implied constants in the number of measurements are
generally suboptimal. The results of this paper provide
key insights into which of these gaps are fundamental;
see Section 2 for details, as well as Figures 1–2.

1.1 Problem Statement We consider both a noise-
less and noisy variant of the model in (1.1). In the
noiseless case we have Z = 0 deterministically, whereas
in the noisy case we consider Z ∼ Bernoulli(ρ) for some
ρ ∈ (0, 12 ) not varying with p; i.e., each measurement is
independently flipped with probability ρ.

We let S be uniform on S, defined to contain
the the

(
p
k

)
subsets of {1, . . . , p} of cardinality k. We

consider Bernoulli measurements, where each entry ofX
is distributed as Bernoulli

(
ν
k

)
for some constant ν > 0.

The vector of n observations is denoted by Y ∈ {0, 1}n,
and the corresponding measurement matrix (each row
of which contains a single measurement vector X) is
denoted by X ∈ {0, 1}n×p. Given X and Y, a decoder
forms an estimate Ŝ of S. We consider two related
performance measures. In the case of exact recovery,
the error probability is given by

Pe := P[Ŝ 6= S], (1.2)

and is taken over the realizations of S, X, and Y
(the decoder is assumed to be deterministic). We
assume that the decoder knows the system model,
including k := |S|. This assumption is standard in
the development of fundamental limits of the type
considered in this paper [9, 12].

We also consider a less stringent performance crite-
rion requiring that only k−dmax entries of S are success-
fully recovered, for some dmax ∈ {1, . . . , k − 1}. Follow-
ing the study of an analogous criterion in compressive

1The quantity β in [20] corresponds to 1 − θ in our own
notation.



sensing [17,21], the error probability is given by

Pe(dmax) := P
[
|S\Ŝ| > dmax ∪ |Ŝ\S| > dmax

]
. (1.3)

Notation We write XS to denote the submatrix of
X containing the columns indexed by S. The comple-
ment with respect to the set {1, . . . , p} is denoted by (·)c.
For a given joint distribution PXY , the corresponding
marginal distributions are denoted by PX and PY , and
similarly for conditional marginals (e.g., PY |X). We use
usual notations for the entropy and mutual information
(e.g. H(X), I(X;Y |Z)). We define the binary entropy
function in nats, H2(ρ) := −ρ log ρ− (1− ρ) log(1− ρ).
We make use of the standard asymptotic notations
O(·), o(·), Θ(·), Ω(·) and ω(·). We define the function
[·]+ = max{0, ·}, and write the floor function as b·c.
The function log has base e.

2 Main Results
2.1 Noiseless Case with Exact Recovery Our
main result for the noiseless case is as follows.

Theorem 1. For the noiseless group testing problem
with k = Θ(pθ) (θ ∈ (0, 1)) and an optimized measure-
ment matrix parameter ν, there exists a decoder such
that Pe → 0 as p→∞ provided that

n ≥ inf
ν>0

max

{ θ
1−θk log p

k

e−νν
,
k log p

k

H2(e−ν)

}
(1 + η)

(Achievability) (2.4)

for some η > 0. Conversely, we have Pe → 1 as p→∞
whenever

n ≤
k log p

k

log 2
(1− η) (Converse) (2.5)

for some η > 0.

Proof. See Section 3.4.

By setting ν = log 2 in (2.4), it is readily verified
that the condition coincides with (2.5) whenever θ ≤
1
3 , and we thus have an exact threshold indicating a
phase transition. The converse bound shown has been
proved (using significantly different techniques) even for
optimal adaptive measurements [16], and hence a key
implication is that adaptivity provides no asymptotic
gain over non-adaptive Bernoulli measurements when
k = O(p

1
3 ).

Our upper bound improves on existing bounds in
the literature, including those developed using Combi-
natorial Optimal Matching Pursuit (COMP) [10], Def-
inite Defectives (DD) [11], and Almost-Separable Ma-
trices (ASM) [14]; see Figure 1 for an illustration. For

fairness, we note that the COMP and DD algorithms are
computationally tractable and do not require knowledge
of k. While the optimal threshold for θ > 1

3 remains un-
clear, it has been suggested that the DD curve in Figure
1 cannot be improved for θ > 0.5 using Bernoulli mea-
surements [11].

2.2 Noisy Case with Exact Recovery We now
consider the noisy group testing problem. We do not
attempt to provide results with constants that are
optimized to the same extent as the noiseless case, and
we thus set ν = log 2, i.e., PX ∼ Bernoulli

(
log 2
k

)
.

Theorem 2. For the noisy group testing problem with
ρ ∈ (0, 0.5), ν = log 2, and k = Θ(pθ) (θ ∈ (0, 1)), we
have Pe → 0 as p→∞ provided that

n ≥ inf
δ2∈(0,1)

max

{
ζ(ρ, δ2, θ),

1

log 2−H2(ρ)

}
×
(
k log

p

k

)
(1 + η) (Achievability) (2.6)

for some η > 0, where

ζ(ρ, δ2, θ) :=
2

log 2
max

{
2(1 + 1

3δ2(1− 2ρ)) θ
1−θ

δ22(1− 2ρ)2
,

1+2θ
1−θ

(1− 2ρ) log 1−ρ
ρ (1− δ2)

}
. (2.7)

Conversely, we have Pe → 1 as p→∞ whenever

n ≤
k log p

k

log 2−H2(ρ)
(1− η) (Converse) (2.8)

for some η > 0.

Proof. The proof follows similar steps to Theorem 1; the
differences are detailed in Appendix C.

The second term in the maximum in (2.6) is dom-
inant (thus matching (2.8)) for sufficiently small θ. To
see this, we first note that the first term in the max-
imum in (2.7) tends to zero as θ → 0, and cannot be
dominant in this limit. This implies that δ2 may be
arbitrarily close to zero when θ is sufficiently small.
Assuming then that δ2 and θ are small and the max-
imum in (2.7) is achieved by the second term, we have
ζ(ρ, δ2, θ) ≈ 2

log 2
1

(1−2ρ) log 1−ρ
ρ

. This is strictly smaller

than 1
log 2−H2(ρ)

; see Proposition 8 in Appendix C.
Once again, the converse is known to hold (at least

in terms of the “weak” converse Pe 6→ 0) even in the
adaptive setting [10], and we have thus provided cases
where non-adaptive Bernoulli measurements yield the
same asymptotics as optimal adaptive measurements.
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Figure 1: Asymptotic thresholds on the number of measure-
ments required for noiseless group testing, with k = Θ(pθ) for
some θ > 0. The vertical axis represents the constant c(θ) such
that the asymptotic number of measurements is 1

c(θ)
k log2

p
k
.

Our upper bound improves on that of the COMP
algorithm [10], and appears to be the first to provide
a phase transition for small θ, or even in the limit as
θ → 0. See Figure 2 for an illustration.

2.3 Partial Recovery Next, we present our main
result regarding the partial recovery criterion in (1.3).

Theorem 3. For the group testing problem with ρ ∈
[0, 0.5) (i.e., possibly noiseless), ν = log 2, k → ∞,
k = o(p), and dmax = bα∗kc for some α∗ ∈ (0, 1), we
have Pe(dmax)→ 0 as p→∞ provided that

n ≥
k log p

k

log 2−H2(ρ)
(1 + η) (Achievability) (2.9)

for some η > 0. Conversely, Pe(dmax) → 1 as p → ∞
whenever

n ≤
(1− α∗)

(
k log p

k

)
log 2−H2(ρ)

(1− η) (Converse) (2.10)

for some η > 0.

Proof. The proof follows similar steps to Theorems 1–2,
but is much simpler. See Appendix D for details.

Theorem 3 shows that at least for sufficiently small
θ (e.g., k = O

(
p

1
3

)
in the noiseless case), there is

not much to be saved by moving from exact recovery
to partial recovery: Allowing for a fraction α∗ of
errors leads to at most a reduction in the number of
measurements of a multiplicative factor 1− α∗.

It may be tempting to take α∗ → 0 in (2.9)–(2.10)
to infer an exact threshold for all θ ∈ (0, 1) with exact
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Figure 2: Asymptotic thresholds on the number of measure-
ments required for noisy group testing, with k = Θ(pθ) for some
θ > 0. The vertical axis represents the constant c(θ) such that
the asymptotic number of measurements is 1

c(θ)
k log2

p
k
.

recovery. However, such a limit would be of the form
limα∗→0 limp→∞, whereas a valid result for the exact
recovery requires the opposite order limp→∞ limα∗→0.

3 Proofs
While our focus in this section is primarily on the noise-
less case, we begin with some general definitions and
non-asymptotic bounds on Pe that apply to both the
noiseless and noisy cases. To this end, we let X be
i.i.d. on some general distribution PX , and let the ob-
servation vector Y be generated from the measurement
matrix X and defective set S according to the n-fold
product of some general distribution PY |XS . All that
we assume of this distribution is that it is the same for
any realization of S, and that it is unchanged when the
corresponding columns of XS are permuted. Thus, our
initial bounds will also apply to other noise models.

It will prove convenient to work with random vari-
ables that are implicitly conditioned on a fixed value of
S, say s = {1, . . . , k}. We write PY |Xs in place of PY |XS
to emphasize that S = s, and we define

PXsY (xs, y) := P kX(xs)PY |Xs(y|xs) (3.11)

PXsY(xs,y) := Pn×kX (xs)P
n
Y |Xs(y|xs), (3.12)

where PnY |Xs(·|·) is the n-fold product of PY |Xs(·|·).
If it is not stated otherwise, the random variables

(Xs, Y ) and (Xs,Y) are distributed as

(Xs, Y ) ∼ PXsY (3.13)
(Xs,Y) ∼ PXsY, (3.14)



with the remaining entries of the measurement matrix
being distributed as Xsc ∼ P

n×(p−k)
X . That is, we con-

dition on a fixed S = s except where stated otherwise.

3.1 Preliminary Definitions As in [12,22], we con-
sider partitions of the defective set s ∈ S into two sets
sdif 6= ∅ and seq. One can think of seq as correspond-
ing to an overlap s∩ s between the true set s and some
incorrect set s, with sdif corresponding to the indices
s\s in one set but not the other. There are 2k − 1 ways
of performing such a partition (the subtraction of one
being due to the condition that sdif is non-empty).

For fixed s ∈ S and a corresponding pair (sdif , seq),
we introduce the notation

PY |Xsdif
Xseq

(y|xsdif
, xseq) := PY |Xs(y|xs), (3.15)

where PY |Xs is the marginal distribution of (3.12).
While the left-hand side of (3.15) represents the same
quantity for any such (sdif , seq), it will still prove
convenient to work with this form in place of the right-
hand side. In particular, this allows us to introduce the
marginal distribution

PY |Xseq (y|xseq)

:=
∑
xsdif

P `X(xsdif
)PY |Xsdif

Xseq
(y|xsdif

, xseq), (3.16)

where ` := |sdif |. Using the preceding definitions, we
introduce the information density [23]

ın(xsdif
;y|xseq) :=

n∑
i=1

ı(x(i)sdif
; y(i)|x(i)seq) (3.17)

ı(xsdif
; y|xseq) := log

PY |Xsdif
Xseq

(y|xsdif
, xseq)

PY |Xseq (y|xseq)
(3.18)

where (·)(i) denotes the i-th entry (respectively, row) of
a vector (respectively, matrix). Averaging (3.18) with
respect to (Xs, Y ) in (3.13) yields a conditional mutual
information, which we denote by

I(`) := I(Xsdif
;Y |Xseq), (3.19)

where ` := |sdif | (by symmetry, the mutual information
for each (sdif , seq) depends only on this quantity). As
in [12], these mutual informations will play a key role
in our analysis.

We are not aware of previous statistical works us-
ing techniques based on bounding information densi-
ties; however, these have proved to be highly power-
ful in communication problems, and are the basis of
information-spectrum methods [24]. Roughly speaking,
the information densities can be used to characterize
how likely it is for (Y|Xs) to appear as if it was gener-
ated conditioned on Xseq alone, or vice versa.

3.2 Non-Asymptotic Bounds on the Error
Probability Our initial non-asymptotic bounds build
on threshold-based techniques from the channel coding
literature [24–27], but with suitable modifications lead-
ing to the partitions of s into (sdif , seq).

Theorem 4. For any δ1 > 0, there exists a decoder
such that

Pe ≤ P
[ ⋃
(sdif ,seq) : sdif 6=∅

{
ın(Xsdif ;Y|Xseq)

≤ log

(
p− k
|sdif |

)
+ log

(
k

δ1

(
k

|sdif |

))}]
+ δ1. (3.20)

Proof. We fix the constants γ1, . . . , γk in R arbitrarily,
and consider a decoder that searches for the unique set
s ∈ S such that

ın(xsdif ;y|xseq) > γ|sdif | (3.21)

for all 2k − 1 partitions (sdif , seq) of s with sdif 6= ∅. An
error occurs if no such s exists, if multiple exist, or if
such a set differs from the true value.

Since the joint distribution of (Xs,Ys |S = s) is the
same for all s in our setup, and the decoder that we have
chosen exhibits a similar symmetry, we can condition on
a fixed and arbitrary value of S, say s = {1, . . . , k}. By
the union bound, the error probability is upper bounded
by

Pe ≤ P
[ ⋃
(sdif ,seq)

{
ın(Xsdif ;Y|Xseq) ≤ γ|sdif |

}]
+

∑
s∈S\{s}

P
[
ın(Xs\s;Y|Xs∩s) > γ|sdif |

]
, (3.22)

where here and subsequently we let the condition sdif 6=
∅ remain implicit. The first term corresponds to the
true set failing the threshold test, and the second
term corresponds to some incorrect set s passing the
threshold test. In the summand of the second term, we
have upper bounded the probability of an intersection
of 2k − 1 events by just one such event, namely, the one
corresponding to sdif = s\s and seq = s ∩ s.

Using the shorthand ` := |s\s|, we can weaken the



second probability in (3.22) as follows:

P
[
ın(Xs\s;Y|Xs∩s) > γ`

]
=

∑
xs∩s,xs\s,y

P
n×(k−`)
X (xs∩s)P

n
Y |Xseq (y|xs∩s)

× Pn×`X (xs\s)1

{
log

PnY |Xsdif
Xseq

(y|xs\s,xs∩s)
PnY |Xseq

(y|xs∩s)
> γ`

}
(3.23)

≤
∑

xs∩s,xs\s,y

P
n×(k−`)
X (xs∩s)P

n×`
X (xs\s)

× PnY |Xsdif
Xseq

(y|xs\s,xs∩s)e−γ` (3.24)

= e−γ` , (3.25)

where in (3.23) we used the fact that the output vec-
tor depends only on the columns of xs corresponding
to entries of s that are also in s, and (3.24) follows by
bounding PY|Xseq

using the event within the indicator
function, and then upper bounding the indicator func-
tion by one. Substituting (3.25) into (3.22) gives

Pe ≤ P
[ ⋃
(sdif ,seq)

{
ın(Xsdif

;Y|Xseq) ≤ γ`
}]

+

k∑
`=1

(
p− k
`

)(
k

`

)
e−γ` , (3.26)

where the combinatorial terms arise from a standard
counting argument [28]. Finally, the choice γ` =
log
(
k
δ1

(
p−k
`

)(
k
`

))
makes the second term in (3.26) be

upper bounded by δ1, thus completing the proof.

Theorem 4 bears some resemblance to a bound of
Malyutov [9]; the latter can be obtained by applying
the union bound and Chebyshev’s inequality to (3.20).
However, the key to obtaining Theorem 4 is using a
more powerful concentration inequality; Chebyshev’s
inequality appears to be insufficient when k = Θ(pθ).

Theorem 5. Fix δ1 > 0, and let (sdif , seq) be an
arbitrary partition of s = {1, . . . , k} with sdif 6= ∅. For
any decoder, we have

Pe ≥ P
[
ın(Xsdif

;Y|Xseq)

≤ log

(
p− k + |sdif |
|sdif |

)
+ log δ1

]
− δ1. (3.27)

Proof. As in [12], we consider an argument based on a
genie. Letting ` denote the cardinality of sdif in the
theorem statement, the genie-aided setup is described
as follows:

1. Generate Seq uniformly on Seq(`), defined to con-
tain the

(
p
k−`
)
subsets of {1, . . . , p} having cardi-

nality k − `.

2. Generate Sdif uniformly on Sdif(Seq), defined to
contain the

(
p−k+`
`

)
subsets of {1, . . . , p}\Seq hav-

ing cardinality `.

3. Set S = Sdif ∪ Seq. The measurement matrix X is
i.i.d. on PX , and the observation vector Y is gen-
erated from S and X conditionally independently
according to PY |XS , as in the original setup.

4. Reveal the indices Seq to the decoder (along with
X and Y). The decoder forms an estimate Ŝdif of
Sdif , and an error occurs if Ŝdif 6= Sdif .

Clearly the distribution of S in this setup is uniform on
S, and hence the only difference compared to the orig-
inal setup is that the decoder has additional informa-
tion. It follows that any converse for this setup implies
the same converse for the original setup.

Throughout the proof, we make use of the random
variables defined in the preceding steps, departing from
the notation implicitly conditioned on S equaling a fixed
value s (see (3.14)) until the final step in obtaining
(3.27).

We first study the error probability for the genie-
aided setting conditioned on Seq = seq, which we denote
by Pe(seq). By the simple identity P[A] = P[A ∩ E ] +
P[A ∩ Ec], we have for any event A(seq) that

Pe(seq) ≥ P[A(seq)]− P[A(seq) ∩ no error]. (3.28)

We fix a constant γ ∈ R (different in general from
γ1, . . . , γk above) and choose

A(seq) =
{
ın(XSdif

;Y|Xseq) ≤ γ
}
. (3.29)

Using the definitions in (3.17)–(3.18), and defining
D(sdif |seq) to be the set of pairs (x,y) such that the
decoder outputs sdif given seq, we obtain

P[A(seq) ∩ no error]

=
∑

sdif∈Sdif (seq)

1(
p−k+`
`

) ∑
(x,y)∈D(sdif |seq)

Pn×pX (x)

× PnY |XsdifXseq (y|xsdif ,xseq)

× 1
{

log
PnY |XsdifXseq

(y|xsdif ,xseq)

PnY |Xseq
(y|xseq)

≤ γ
}

(3.30)

≤ 1(
p−k+`
`

) ∑
sdif∈Sdif (seq)

∑
(x,y)∈D(sdif |seq)

Pn×pX (x)

× PnY |Xseq (y|xseq)eγ (3.31)

=
eγ(

p−k+`
`

) , (3.32)



where (3.30) follows since an error occurs if and only if
(x,y) /∈ D(sdif |seq), (3.31) follows by upper bounding
PnY |Xseq

using the event in the indicator function, and
(3.32) follows since the sets D(sdif |seq) are disjoint, and
their union (over sdif) is the entire space of (x,y) pairs.

Averaging (3.28) over Seq and applying (3.32), we
obtain

Pe ≥
∑

seq∈Seq(`)

∑
sdif∈Sdif (seq)

1(
p
k−`
) 1(

p−k+`
`

)
×
(
P
[
ın(Xsdif

;Y|Xseq) ≤ γ`
∣∣Sdif = sdif , Seq = seq

]
− eγ(

p−k+`
`

)). (3.33)

Finally, we claim that this bound recovers (3.27) (which
is written in terms of the joint distribution in (3.14) with
a fixed S = s) upon setting γ` = log

(
p−k+`
`

)
+ log δ1.

This immediately follows from the fact that all of the
terms in the summations over sdif and seq in (3.33) are
equal, due to the symmetry of PY |XS with respect to
S assumed in our setup (as well as the fact that X is
i.i.d. and hence exhibits a similar symmetry).

While we will use (sdif , seq) = (s, ∅) in Theorem
5 when obtaining (2.5) and (2.8), we have presented
the more general form since (i) it provides a natural
counterpart to Theorem 4, (ii) it is useful for comparison
with [12], and (iii) the more general form is crucial in
the extension to other support recovery problems [19].

3.3 Procedure for Applying Theorems 4 and
5 The bounds presented in the preceding theorems
do not directly reveal the number of measurements
required to achieving a vanishing error probability.
In this subsection, we present the steps that can be
used to obtain such conditions. The idea is to use
a concentration inequality to bound the first term in
(3.20) (or (3.27)), which is possible due to the fact that
each ın is an i.i.d. summation. We provide the details of
these steps separately for the achievability and converse
(i.e., the upper and lower bound). We start with the
former.

1. Observe that the mean of ın(Xsdif
;Y|Xseq) is

nI(|sdif |), where I(`) is defined in (3.19).

2. Fix the constants δ2,1, . . . , δ2,k with δ2,` ∈ (0, 1),

and suppose that we have for all ` that

log

(
p− k
`

)
+ log

(
k

δ1

(
k

`

))
≤ n(1− δ2,`)I(`),

(3.34)

P
[
ın(Xsdif ;Y|Xseq) ≤ n(1− δ2,`)I(`)

]
≤ ψ`(n, δ2,`)

(3.35)

for some functions {ψ`}k`=1, and any (sdif , seq) with
|sdif | = `. Combining these conditions with the
union bound, we obtain

P
[ ⋃
(sdif ,seq) : sdif 6=∅

{
ın(Xsdif ;Y|Xseq)

≤ log

(
p− k
|sdif |

)
+ log

(
k

δ1

(
k

|sdif |

))}]
≤

k∑
`=1

(
k

`

)
ψ`(n, δ2,`). (3.36)

3. Observe that the condition in (3.34) can be written
as

n ≥
log
(
p−k
`

)
+ log

(
k
δ1

(
k
`

))
I(`)(1− δ2,`)

. (3.37)

We summarize the preceding findings in the following
theorem.

Theorem 6. For any constants δ1 > 0 and {δ2,`}k`=1

(δ2,` ∈ (0, 1)), and functions {ψ`}k`=1 (ψ` : Z× R→ R)
such that (3.35) and (3.37) hold for all ` = 1, . . . , k, we
have

Pe ≤
k∑
`=1

(
k

`

)
ψ`(n, δ2,`) + δ1. (3.38)

With this result, it only remains to use a concentration
inequality to characterize {ψ`}, and then choose n, δ1
and δ2,` (as functions of p) such that (3.37) holds and
the right-hand side of (3.38) vanishes.

The application of Theorem 5 is done using similar
steps, so we provide slightly less detail. Fix δ2 > 0, and
suppose that the pair (sdif , seq) and value ` := |sdif | are
such that

log

(
p− k + `

`

)
− log δ1 ≥ n(1 + δ2)I(`), (3.39)

P
[
ın(Xsdif ;Y|Xseq) ≤ n(1 + δ2)I(`)

]
≥ 1− ψ′(n, δ2)

(3.40)

for some function ψ′. Combining these, the first
probability in (3.27) is lower bounded by 1− ψ′(n, δ2).

Next, we observe that (3.39) holds if and only if

n ≤
log
(
p−k+`
`

)
− log δ1

I(`)(1 + δ2)
. (3.41)



Since the partition (sdif , seq) is arbitrary, we can choose
the pair that maximizes the right-hand side.

We summarize the preceding observations in the
following.

Theorem 7. For any constants δ1 > 0 and δ2 > 0,
partition (sdif , seq) (sdif 6= ∅), and function ψ′ : Z×R→
R such that (3.40) and (3.41) hold, we have

Pe ≥ 1− ψ′(n, δ2)− δ1. (3.42)

3.4 Proof of Theorem 1 We now use Theorems 6
and 7 to obtain (2.4) and (2.5) respectively. We focus
primarily on the former, which is considerably more
difficult.

Step 1: Auxiliary Results and Concentration
Inequalities We begin with the following proposition
characterizing the mutual information.

Proposition 1. For the noiseless group testing prob-
lem, consider arbitrary sequences of sparsity levels k →
∞ and ` ∈ {1, . . . , k} (both indexed by p). If `

k = o(1),
then

I(`) =

(
e−νν

`

k
log

k

`

)
(1 + o(1)). (3.43)

Moreover, if `
k → α ∈ (0, 1], then

I(`) = e−(1−α)νH2

(
e−αν

)
(1 + o(1)). (3.44)

Proof. The proof uses standard asymptotic expansions,
and is given in Appendix B.

Fix δ(1)2 ∈ (0, 1) and δ(2)2 ∈ (0, 1) and set δ2,` = δ
(1)
2

for ` ≤ b k
log k c, and δ2,` = δ

(2)
2 for ` > b k

log k c. In
Appendix A, we give two concentration inequalities
showing that we may fix ε > 0 and set

ψ`(n, δ2,`) =

exp

(
−n `k e

−νν

(
(1−δ(1)2 ) log(1−δ(1)2 )

+δ
(1)
2

)
(1−ε)

) ` ≤ b k
log k c

2 exp

(
− (δ

(2)
2 I(`))2n

4(8+δ
(2)
2 I(`))

)
` > b k

log k c

(3.45)

for sufficiently large p (depending on ε, δ(1)2 and δ
(2)
2 ).

For the converse, we only use one of the two con-
centration inequalities, setting ψ′(n, δ2,`) = 2 exp

(
−

(δ2,`I(`))
2n

4(8+δ2,`I(`))

)
.

Step 2: Control the Remainder Terms The next
step is to find conditions on n and the free parameters
(e.g., ε) such that the first term in (3.38) and the
second term in (3.42) vanish. For the latter, we set
(sdif , seq) = (s, ∅) in Theorem 7. From the above choice
of ψ′ and the growth of I(k) in (3.44), we immediately
obtain that ψ′(n, δ2,k)→ 0 whenever n→∞. The term
(3.38) requires more effort; we summarize the findings
in the following proposition.

Proposition 2. Let k = Θ(pθ) for some θ ∈ (0, 1).
(i) For any η > 0, there exists δ

(1)
2 ∈

(0, 1) and a choice of ε > 0 in (3.45) such that∑b k
log k c
`=1

(
k
`

)
ψ`(n, δ

(1)
2 )→ 0 provided that

n ≥
θ

1−θk log p
k

e−νν
(1 + η). (3.46)

(ii) For any δ
(2)
2 ∈ (0, 1), we have∑k

b k
log k c+1

(
k
`

)
ψ`(n, δ

(2)
2 ) → 0 provided that

n = Ω
(
k log p

k

)
.

Proof. These claims follow using (3.45) and simple
algebraic manipulations. See Appendix B for details.

The idea here is that for the smaller values of `, it
is the concentration inequality that dominates the final
bound, so we let δ2,` = δ

(1)
2 be closer to one to provide

better concentration behavior. For large values of `, the
opposite is true, so we let δ2,` = δ

(2)
2 be close to zero.

Step 3: Combine and Simplify We are now in a
position to prove Theorem 1. We immediately obtain
the first term in the maximum in (2.4) from (3.46), so
it remains to derive the second term. We start with
(3.37); by taking δ1 → 0 sufficiently slowly (so that the
second term in (3.38) vanishes), we obtain the condition

n ≥ max
`=1,...,k

log
(
p−k
`

)
+ 2 log

(
k
(
k
`

))
I(`)(1− δ2,`)

(
1 + o(1)

)
. (3.47)

Using (3.43)–(3.44) and the identity log
(
p−k
`

)
=

Θ
(
` log p

`

)
we see that the objective in (3.47) has growth

rate

Θ

(
k log p

`

1 + log k
`

)
(3.48)

whenever the constants {δ2,`} are bounded away from
one. This behaves as Θ

(
k log p

k

)
when `

k = Θ(1), and as
Θ
(k log p

k

log k`
+k
)
when `

k = o(1) (the latter of these is seen

by writing log p
` = log p

k + log k
` ). Thus, the maximum

in (3.47) can only be achieved by a sequence such that



`
k = Θ(1). Moreover, with `

k = Θ(1), we see from the
assumption k = o(p) that the term 2 log

(
k
(
k
`

))
= O(k)

is dominated by log
(
p−k
`

)
= Θ

(
k log p

k

)
, and can thus

be factored into the o(1) remainder term in (3.47). This
yields the condition

n ≥ max
`=1,...,k

` log p
`

I(`)(1− δ2,`)
(
1 + o(1)

)
. (3.49)

Since the maximum can only be achieved asymptotically
with `

k = Θ(1), we proceed by considering `
k → α for

some arbitrary α ∈ (0, 1]. Under this scaling, ` log p
`

behaves as
(
αk log p

k

)
(1 +o(1)). Moreover, according to

Proposition 2, we can choose δ2,` to be arbitrarily small
for all ` values except those below b k

log k c. Such values
behave as o(k), and thus do achieve the maximum in
(3.49). Combining these observations with (3.44), the
right-hand side of (3.49) yields the condition

n ≥ max
α∈(0,1]

αk log p
k

e−(1−α)νH2

(
e−αν

)(1 + η
)
, (3.50)

where η may be arbitrarily small. By a change of vari-
able λ = e−αν , the coefficient to k log p

k can be written

as 1
ν e
ν λ log 1

λ

H2(λ)
. This is easily verified to be decreasing in

λ ∈ [0, 1], which implies that the maximizing value of α
is one, and yields the second term in (2.4).

The proof of the converse is similar but considerably
simpler; setting (sdif , seq) = (s, ∅) in Theorem 6, we
obtain α = 1 immediately. The denominator log 2 in
(2.5) is obtained by maximizingH2(e−ν) over ν, and the
condition n→∞ stated before Proposition 2 is satisfied
when (2.5) holds with equality. Such equality can be
assumed without loss of generality, since the decoder
may always choose to ignore measurements.

4 Conclusion
We have provided new techniques for studying limits on
the required number of measurements for group testing,
building on thresholding methods from the information-
theoretic channel coding literature. In the noiseless
case, we have provided an exact asymptotic threshold
(phase transition) on the number of measurements for
k = O(p

1
3 ), matching the corresponding threshold for

adaptive measurements. In the noisy case, we have ob-
tained similar thresholds holding for sufficiently small θ.
Moreover, we have provided a new approach to devel-
oping strong converse results, stating that Pe → 1. An
important challenge for future work is to devise prac-
tical recovery algorithms yielding the phase transitions
developed in this paper.

Appendices

A Concentration Inequalities
Throughout this section, we make use of Bernstein’s
inequality, which is given as follows [29, Sec. 2.8].

Lemma 1. Let W1, . . . ,Wn be independent real-valued
random variables such that

n∑
i=1

E[W 2
i ] ≤ τ (A.1)

n∑
i=1

E[|Wi|q] ≤
q!

2
τcq−2 (q ≥ 3) (A.2)

for some τ, c > 0. Then

P
[ n∑
i=1

(
Wi − E[Wi]

)
≥ t
]
≤ exp

(
t2

2(τ + ct)

)
(A.3)

for all t > 0.

We proceed by presenting a concentration inequal-
ity that applies to both the noisy and noiseless cases,
and another that is specific to the noiseless case.

Proposition 3. For the noiseless and noisy group
testing problems, the following holds for all ` = 1, . . . , k
and δ > 0:

P
[∣∣ın(Xsdif ;Y|Xseq)− nI(`)

∣∣ ≥ nδ]
≤ 2 exp

(
− δ2n

4(8 + δ)

)
, (A.4)

where (sdif , seq) is an arbitrary partition of s with
|sdif | = `.

Proof. To bound the moments in Bernstein’s inequality,
we follow the arguments of [24, Rmk. 3.1.1] and [30,
App. D]. Recall the definition of the information density
in (3.18). For any q ≥ 2, we have from Minkowski’s
inequality that

E
[
|ı(Xsdif ;Y |Xseq)|q

]1/q
≤ E

[(
log

1

PY |XsdifXseq (Y |Xsdif , Xseq)

)q]1/q
+ E

[(
log

1

PY |Xseq (Y |Xseq)

)q]1/q
. (A.5)

For any given (xsdif , xseq), the remaining averaging over



Y in the first term has the form∑
y

PY |Xsdif
Xseq

(y|xsdif
, xseq)

×
(

log
1

PY |Xsdif
Xseq

(y|xsdif
, xseq)

)q
, (A.6)

and is thus upper bounded by 2
(
q
e

)1/q, since the obser-
vations are binary and the function f(z) = z logq 1

z has

a maximum value of
(
q
e

)1/q for z ∈ [0, 1]. By handling
the second term in (A.5) similarly, we obtain

E
[∣∣ı(Xsdif

;Y |Xseq)
∣∣q]1/q ≤ 2

(
2
(q
e

)q)1/q
, (A.7)

or equivalently

E
[∣∣ı(Xsdif ;Y |Xseq)

∣∣q] ≤ (q
e

)q
8 · 2q−2 (A.8)

≤ q!

2
16 · 2q−2, (A.9)

where (A.9) follows since
(
q
e

)q ≤ q!. We obtain
Proposition 3 using Lemma 1 with c = 2, τ = 16n,
and t = δn.

Proposition 4. For the noiseless group testing prob-
lem, consider sequences k → ∞ and ` (indexed by p)
such that `

k → 0. For any ε > 0 and δ2 > 0 (not de-
pending on p), the following holds for sufficiently large
p:

P
[
ın(Xsdif

;Y|Xseq) ≤ nI(`)(1− δ2)
]

≤ exp

(
−n `

k
e−νν

(
(1− δ2) log(1− δ2) + δ2

)
(1− ε)

)
(A.10)

for all (sdif , seq) with |sdif | = `.

Proof. We begin by evaluating the information density
in (3.18); for brevity, we write ı` := ı(Xsdif

;Y |Xseq)
and ın` := ın(Xsdif

;Y|Xseq). Recalling the system
model in (1.1) (with Z = 0) and the fact that X is
i.i.d. on PX ∼ Bernoulli

(
ν
k

)
and ` = o(k), we obtain the

following:

1. We have Xseq 6= 0 with probability 1−
(
1− ν

k

)k−`
=

(1−e−ν)(1+o(1)), and in this case we have ı` = 0.

2. GivenXseq = 0, we haveXsdif
6= 0 with probability

1−
(
1− ν

k

)`
= ν`

k (1+o(1)), and in this case we have
ı` = log 1

1−(1− νk )`
=
(

log k
`

)
(1 + o(1)).

3. GivenXseq = 0, we haveXsdif
= 0 with probability(

1 − ν
k

)`
= 1 + o(1), and in this case we have

ı` = log 1
(1− νk )`

= ν`
k (1 + o(1)).

Note that the asymptotic identities given here follow
from the assumption ` = o(k), along with standard
asymptotic expansions.

Let N1 (respectively, N0) be the random number
of measurements such that Xseq = 0 and Xsdif 6= 0
(respectively, Xseq = 0 and Xsdif = 0). For any
ε1 ∈ (0, 1), the above observations imply the following
with probability one when p is sufficiently large:

ın` ≥ N1

(
log

k

`

)
(1− ε1) +N0ν

`

k
(1− ε1) (A.11)

≥ N1

(
log

k

`

)
(1− ε1). (A.12)

We also have from (3.43) that I(`) ≤
(
e−νν `k log k

`

)
(1+

ε1) for sufficiently large p. Combining these, we con-
clude that

N1 > n
1 + ε1
1− ε1

e−νν
`

k
(1− δ2) =⇒ ın` > nI(`)(1− δ2).

(A.13)
By considering the contrapositive statement, we have
for any ε2 > 0 and sufficiently large p that

P
[
ın(Xsdif ;Y|Xseq) ≤ nI(`)(1− δ2)

]
≤ P

[
N1 ≤ ne−νν

`

k
(1− δ2)(1 + ε2)

]
. (A.14)

By the observations at the start of this subsection, we
have N1 ∼ Binomial(n, q) with q = e−νν `k (1 + o(1)).
We can thus further upper bound the right-hand side of
(A.14) by

P
[
N1 ≤ nq(1− δ2(1− ε3))

]
(A.15)

for any ε3 ∈ (0, 1) and sufficiently large p; here we have
used the fact that (1 − δ2)(1 + o(1)) = (1 − δ2(1 +
o(1)), since δ2 is fixed. It follows from a standard
Chernoff-based tail bound for Binomial random vari-
ables (e.g., see [31, Sec. 4.1]) that

P
[
ın(Xsdif ;Y|Xseq) ≤ nI(`)(1− δ2)

]
≤ e−nq

(
(1−δ2(1−ε3)) log(1−δ2(1−ε3))

)
+δ2(1−ε3). (A.16)

The proof is concluded by substituting q = e−νν `k (1 +
o(1)) and noting that ε3 may be arbitrarily small.

B Proofs of Auxiliary Results for the Noiseless
Case

B.1 Proof of Proposition 1 As stated in [12,
Eq. (36)], we have I(`) =

(
1− ν

k

)k−`
H2

((
1− ν

k

)`), where
H2(·) is the binary entropy function. For `

k → α (with
k →∞), we immediately obtain (3.44) using the limits



(
1− ν

k

)k−` → e−(1−α)ν and
(
1− ν

k

)` → e−αν , along with
the continuity of the binary entropy function. In the
case that `

k → 0, the analogous limits are
(
1− ν

k

)k−` →
e−ν and

(
1− ν

k

)`
= 1− ν`

k (1+o(1)), and we obtain (3.43)
using the fact that H2(1 − ε) = (−ε log ε)(1 + o(1)) as
ε → 0 (note also that log k

ν` =
(

log k
`

)
(1 + o(1)) since

k
` →∞).

B.2 Proof of Proposition 2 For the first part, we

write
∑b k

log k c
`=1

(
k
`

)
ψ`(n, δ

(1)
2 ) , T1 + T2, where T1 sums

the terms from 1 to blog kc, and T2 sums the terms
from blog kc+ 1 to b k

log k c. For each of these, we upper
bound the summation by the number of terms times the
maximum term.

For T1, there are at most log k terms, and we apply
the first case in (3.45), with δ2,` = δ

(1)
2 . The term

(1−δ(1)2 ) log(1−δ(1)2 )+δ
(1)
2 can be made arbitrarily close

to one by choosing δ(1)2 to be sufficiently small. Writing
log
(
k
`

)
=
(
` log k

`

)
(1+o(1)) and performing some simple

rearrangements, we obtain the following condition for
T1 → 0:

n ≥
k log k

` + k
` log log k

e−νν
(1 + η1), (B.17)

where η1 may be arbitrarily small. Note that log log k
arises as the logarithm of the number of terms in the
summation. We obtain (3.46) by noting that this
bound is minimized at ` = 1 and writing k log k =(

θ
1−θk log p

k

)
(1 + o(1)) (since k = Θ(pθ)).

For T2, a similar argument yields (B.17) with 1
` log k

in place of 1
` log log k (this follows by upper bounding

the number of terms in the summation by k). Since
` ≥ log k, we have 1

` log k = O(1), and we conclude that
T2 → 0 provided that (3.46) holds.

Finally, for the second part of the proposition, we
substitute the second of the cases in (3.45). By an
analogous argument to that leading to (B.17), along
with the scaling laws of I(`) in (3.43)–(3.44), it is readily
verified that it suffices that n = Ω

( ` log k`
1+( `k log k` )

2

)
with

a sufficiently large implied constant. Using the fact
that ` > k

log k for this part, this reduces to Ω
(
k log k
log log k

)
.

Thus, any Ω(k log k) scaling suffices, and the proof
is concluded by noting that log k = Θ

(
log p

k

)
(since

k = Θ(pθ)).

C Proof of Theorem 2 for the Noisy Case
Here we provide the relevant details for noisy group
testing, leading to Theorem 2. We focus our atten-
tion on the parts that differ from the noiseless case.
Throughout the section, we use the notation q1 ? q2 :=
q1q2 + (1 − q1)(1 − q2). We work with an arbitrary

Bernoulli distribution PX ∼ Bernoulli
(
ν
k

)
to begin, and

later substitute the specific value ν = log 2.
Before proceeding, we analyze the values taken by

the information density ı` := ı(Xsdif ;Y |Xseq) (with
` := |sdif |) given in (3.18), under the model in (1.1):

1. We have Xseq 6= 0 with probability 1−
(
1− ν

k

)k−`,
and in this case we have ı` = 0.

2. Given Xseq = 0, we have the following, where we
define ξ :=

(
1− ν

k

)`:
• Xsdif = 0 ∩ Y = 0 with probability (1 − ρ)ξ,

yielding ı` = log 1−ρ
(1−ρ)ξ+ρ(1−ξ) ;

• Xsdif = 0∩Y = 1 with probability ρξ, yielding
ı` = log ρ

ρξ+(1−ρ)(1−ξ) ;

• Xsdif 6= 0 ∩ Y = 0 with probability ρ(1 − ξ),
yielding ı` = log ρ

(1−ρ)ξ+ρ(1−ξ) ;

• Xsdif 6= 0∩Y = 1 with probability (1−ρ)(1−
ξ), yielding ı` = log 1−ρ

ρξ+(1−ρ)(1−ξ) .

In the case that ` = o(k), we can write ξ = 1 − ν`
k (1 +

o(1)), yielding the following simplifications:

1. The preceding four probabilities behave as (1 −
ρ)
(
1 − ν`

k (1 + o(1))
)
, ρ
(
1 − ν`

k (1 + o(1))
)
, ρν`k (1 +

o(1)), and (1− ρ)ν`k (1 + o(1)).

2. The corresponding information densities behave as
1−2ρ
1−ρ

ν`
k (1+o(1)), − 1−2ρ

ρ
ν`
k (1+o(1)), − log 1−ρ

ρ (1+

o(1)) and log 1−ρ
ρ (1 + o(1)). For example, the first

of these follows by writing log 1−ρ
(1−ρ)(1− ν`k )+ρ ν`k

=

log 1−ρ
1−ρ−(1−2ρ) ν`k

, dividing the numerator and de-
nominator by 1− ρ, and Taylor expanding the log-
arithm.

C.1 Analogs of Propositions 1–2 The analog of
Proposition 1 is as follows.

Proposition 5. For the noisy group testing problem,
consider arbitrary sequences of sparsity levels k → ∞
and ` ∈ {1, . . . , k} (both indexed by p). If `

k = o(1),
then

I(`) =

(
e−νν

`

k
(1− 2ρ) log

1− ρ
ρ

)
(1 + o(1)). (C.18)

Moreover, if `
k → α ∈ (0, 1], then

I(`) = e−(1−α)ν
(
H2

(
e−αν ? ρ

)
−H2(ρ)

)
(1 + o(1)).

(C.19)



Proof. We obtain (C.18) by recalling that the mutual
information is the average of the information density,
and applying the above-given asymptotic expansions
(along with 1−

(
1− ν

k

)k−` → e−ν).
To prove (C.19), we write I(Xsdif

;Y |Xseq) =
H(Y |Xseq)−H(Y |Xseq , Xsdif

). The system model (1.1)
immediately gives H(Y |Xseq , Xsdif

) = H2(ρ). More-
over, a direct calculation reveals that H(Y |Xseq = xseq)
equals H2(ρ) if xseq has an entry equal to one, and
H2

(
ξ ?ρ

)
otherwise, where we again write ξ :=

(
1− ν

k

)`.
The proof is concluded by noting that ξ → e−αν when
`
k → α, and by similarly noting that P[Xseq = 0] =(
1− ν

k

)k−` → e−(1−α)ν .

As in the noiseless case, we use Proposition 3 to
characterize ψ` for ` > b k

log k c (and ψ
′ with (sdif , seq) =

(s, ∅)). For ` ≤ b k
log k c, we instead use the following.

Proposition 6. For the noisy group testing problem,
consider sequences k → ∞ and ` (indexed by p) such
that `

k → 0. For any ε > 0 and δ2 > 0 (not depending
on p), the following holds for sufficiently large p:

P
[
ın(Xsdif

;Y|Xseq) ≤ nI(`)(1− δ2)
]

≤ exp

(
− n `

k
e−νν

( δ22(1− 2ρ)2

2(1 + 1
3δ2(1− 2ρ))

)
(1− ε)

)
.

(C.20)

for all (sdif , seq) with |sdif | = `.

Proof. We make use of the asymptotic identities for
ı` at the start of this appendix. We first note that
by simple averaging analogous to that used to obtain
(C.18), we have v := E[ı2` ] = e−νν `k

(
log2 1−ρ

ρ

)
(1 +

o(1)). Moreover, we have ı` ≤
(

log 1−ρ
ρ

)
(1 + o(1))

with probability one. Using the form of Bernstein’s
inequality based on Bennet’s inequality [29, Sec. 2.7], we
have P[ın ≤ n(I(`)−δ)] exp

(
−n δ2

2(v+ 1
3 δM)

)
(whereM is

any almost-sure upper bound on ı`). Setting δ = δ2I(`),
substituting (C.18) and the preceding expressions for
v and M , and canceling the common terms in the
numerator and denominator, we obtain (C.20).

Letting ψ` equal the right-hand side of (C.20) for
` ≤ b k

log k c (while being the same as in (3.45) for
` > b k

log k c), we obtain the following.

Proposition 7. Let k = Θ(pθ) for some θ ∈ (0, 1).
(i) For any η > 0 and δ2 ∈ (0, 1), there

exists a choice of ε > 0 in (3.45) such that∑b k
log k c
`=1

(
k
`

)
ψ`(n, δ2)→ 0 provided that

n ≥
2(1 + 1

3δ2(1− 2ρ)) θ
1−θ

e−ννδ22(1− 2ρ)2

(
k log

p

k

)
(1 + η). (C.21)

(ii) For any δ2 ∈ (0, 1), we have∑k
b k
log k c+1

(
k
`

)
ψ`(n, δ2) → 0 provided that

n = Ω
(
k log p

k

)
.

Proof. The proof is nearly identical to that of Proposi-
tion 2, except that (C.20) is used in place of (A.10), and
δ2 is kept arbitrary in the first part, rather than being
taken towards one.

Note that the choices of δ2 in the two cases above
need not coincide, since δ2,` can vary with `.

C.2 Completion of the Proof of Theorem 2
Recall that we have chosen ν = log 2. This yields e−νν
= log 2

2 , and thus the first term in (2.7) follows directly
from (C.21).

Next, we consider the condition in (3.37) with
` = |sdif | ≤ b k

log k c. Letting δ1 → 0 sufficiently
slowly, applying Stirling’s approximation, and substi-
tuting (C.18), we obtain the condition

n ≥
k log p

` + k log k + k
` log k

e−νν(1− 2ρ) log 1−ρ
ρ (1− δ2)

(1 + o(1)). (C.22)

This is maximized for ` = 1, thus yielding the second
term in (2.7) upon writing k log k = θ

1−θ
(
k log p

k

)
(1 +

o(1)) and k log p = 1
1−θ
(
k log p

k

)
(1 + o(1)) (since k =

Θ(pθ)).
Finally, we consider (3.37) with ` > b k

log k c. In this
case, the numerator is dominated by the first term, and
for the case that `

k → α ∈ (0, 1], we obtain the condition

n ≥
αk log p

k

e−(1−α)ν
(
H2(e−αν ? ρ)−H2(ρ)

)
(1− δ2)

(1 + o(1)),

(C.23)
where we have used (C.19). For the case that `

k → 0

with ` > b k
log k c, we obtain a condition of the form

(C.22) where only the first term of the numerator is
kept. Such a condition is clearly dominated by (C.22).

Using the result in [9, Thm. 3a] in the limiting case
that the number of defective items grows large, we have
for the worst-case choice of α ∈ [0, 1] and an optimized
choice of ν > 0 that the minimax threshold resulting
from (C.23) is obtained with α = 1 and ν = log 2.
Substituting these values yields the second term in (2.6).

C.3 An Auxiliary Result for Comparing the
Terms The following result allows us to compare the
terms appearing in the upper bound of Theorem 2.

Proposition 8. For all ρ ∈ (0, 0.5), we have

(1− 2ρ) log
1− ρ
ρ
≥ 4
(

log 2−H2(ρ)
)
. (C.24)



Proof. By some simple manipulations, the left-hand
side can be written as log 1

ρ(1−ρ) − 2H2(ρ), and we
may thus equivalently prove that log 1

ρ(1−ρ) + 2H2(ρ) ≥
4 log 2. This, in turn, can be verified by showing that the
minimum of the function log 1

ρ(1−ρ) + 2H2(ρ) occurs at
ρ = 0.5 (i.e., the point about which it is symmetric).

D Proof of Theorem 3 for Partial Recovery
The proof for partial recovery is similar to that of
exact recovery, but the steps following the analogues
of Theorems 6 and 7 become considerably simpler.
Intuitively, this is because the main difficulty for exact
recovery was handling “small” values of ` := |sdif |, which
need not be handled for partial recovery. We only
explain the key differences here; some additional details
can be found in [19].

The analysis in the derivation of (3.20) extends
immediately to handle the partial recovery criterion
in (1.3), since we have already split the error events
according to the amount of overlap between the true
set and the incorrect set. The only difference is that
the decoder searches for a set s such that (3.21) holds
whenever |sdif | > dmax (as opposed to sdif 6= ∅). It
follows that Theorem 4 remains true with Pe(dmax) in
place of Pe when the union in (3.20) is restricted to
|sdif | ∈ {dmax + 1, . . . , k}.

The extension of the analysis in the proof of The-
orem 5 is less immediate, but still straightforward. We
first recall the observation from [21] that the perfor-
mance metric in (1.3) allows us to focus without loss of
generality on decoders such that the estimated defec-
tive set Ŝ (or Ŝdif ∪ Seq in the genie-aided setting) has
cardinality k almost surely. For any such decoder, the
definition in (1.3) is unchanged when the second term
in the union is removed.

We restrict the partition (sdif , seq) of s to satisfy
|sdif | > dmax. In (3.30)–(3.31), we change the definition
of D(sdif |seq) to be the set of pairs (x,y) such that the
decoder outputs a sequence ŝdif such that |sdif\ŝdif | ≤
dmax. This means that the sets D(·|seq) are no longer
disjoint. However, we can easily count the number
of such sets that each (x,y) pair falls into. For
fixed (seq, sdif) and d ∈ {0, . . . , dmax}, the number of
sets ŝdif ⊆ {1, . . . , p}\seq such that |sdif\ŝdif | = d is(
p−k
d

)( |sdif |
|sdif |−d

)
=
(
p−k
d

)(|sdif |
d

)
. Thus, each (x,y) pair is

included in
∑dmax

d=0

(
p−k
d

)(|sdif |
d

)
of the sets D(·|seq), and

(3.32) is replaced by

P[A(seq) ∩ no error] ≤
∑dmax

d=0

(
p−k
d

)(
`
d

)(
p−k+`
`

) e−γ . (D.25)

Thus, Theorem 5 remains true when the pair (sdif , seq)
is constrained to satisfy |sdif | ∈ {dmax + 1, . . . , k},

and log
(
p−k+|sdif |
|sdif |

)
is replaced by log

(
p−k+|sdif |
|sdif |

)
−

log
∑dmax

d=0

(
p−k
d

)(|sdif |
d

)
.

The remainder of the analysis follows that of Section
3.4, except that the “small” values of ` need not be han-
dled. That is, we need only make use of the general con-
centration inequality in Proposition (3), and we end up
with the single condition in (2.9). For the converse part,
we again choose (sdif , seq) = (s, ∅) in the analog of The-
orem 7, and the steps are again similar, with the multi-
plicative factor 1 − α∗ arising showing that the above-
mentioned term log

∑dmax

d=0

(
p−k
d

)(|sdif |
d

)
(with dmax =

bα∗kc and |sdif | = k) behaves as
(
α∗k log p

k

)
(1 + o(1)),

in the same way that it was shown that log
(
p−k+|sdif |
|sdif |

)
(with |sdif | = k) behaves as

(
k log p

k

)
(1 + o(1)).
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