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Abstract
The stochastic nature of renewable energy resources has a significant impact on the balance

between energy generation and consumption in current power systems. The most typical

instances are solar and wind power, which are both heavily influenced by weather conditions.

Therefore, to enable the energy balancing process, it is necessary to ensure power plants

have enough storage capacity as well as primary and secondary grid control capabilities.

Pumped storage power plants are able to store large amounts of electricity with a full cycle

of pumping and generation, which may achieve unrivaled efficiencies above 80%. Addition-

ally, hydropower plants are offering the advantage of exploiting renewable primary source

energy with hardly any emission of greenhouse gas. Thus, in Europe, hydraulic turbines

and pump-turbines are key components in energy conversion technologies, achieving both

load balancing tasks, and primary and secondary power network control. Nevertheless, fre-

quent changes of power generation by the renewable energy resources is directly impacting

the required operating range of hydro units. During operation of hydraulic turbines and

pump-turbines over a large operating range, high levels of vibrations and large fluctuations

of pressure and power are likely to occur. As a consequence, life expectancy of the hydraulic

machinery may be significantly reduced, eventually leading to the loss of structural integrity.

Hydraulic machines subject to off-design operation involve the presence of cavitating flow

regimes in the draft tube. The cavitation vortex rope at part load conditions is described as an

excitation source for the hydraulic system, and interactions between this excitation source

and system eigenfrequency may result in resonance phenomena and induce a draft tube surge

and electrical power swings. To accurately predict and simulate a part load resonance, proper

modeling of the draft tube is critical. The presence of this cavitation vortex rope requires a

numerical pipe element taking into account the complexity of the two-phase flow. Among the

parameters describing the numerical model of the cavitating draft tube flow, three hydroa-

coustic parameters require a special attention. The first hydroacoustic parameter is called

cavitation compliance. This dynamic parameter represents the variation of the cavitation

volume with respect to a variation of pressure and implicitly defines the local wave speed

in the draft tube. The second parameter corresponds to the bulk viscosity and is related to

internal processes breaking a thermodynamic equilibrium between the cavitation volume and

the surrounding liquid. The third parameter is the excitation source induced by the precessing

vortex rope.
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The methodology to identify these hydroacoustic parameters is based on the direct link that

exists between the natural frequency of the hydraulic system and the wave speed in the draft

tube. First, the natural frequency is identified with the help of an external excitation system.

Then, the wave speed is determined thanks to an accurate numerical model of the experi-

mental hydraulic system. By applying this identification procedure for different values of

Thoma number, it is possible to quantify the cavitation compliance and the void fraction

of the cavitation vortex rope. In order to determine the energy dissipation induced by the

cavitation volume, the experimental hydraulic system is excited at the natural frequency. With

a Pressure-Time method, the amount of excitation energy is quantified and is injected into the

numerical model. A spectral analysis of the forced harmonic response is used to identify the

bulk viscosity and the pressure source induced by vortex rope precession.

Thus, the identification of the hydroacoustic parameters requires the development of a new

numerical draft tube model taking into account the divergent geometry and the convective

terms of the momentum equation. Different numerical draft tube models are compared

to determine the impact of convective and divergent geometry terms on identification of

the hydroacoustic parameters. Furthermore, to predict the hydroacoustic parameters for

non-studied operating conditions and to break free from the dependence upon the level

setting of the Francis turbine, dimensionless numbers are proposed. They have the advantage

of being independent from the selected numerical model and they define a behavior law

of hydroacoustic parameters when the cavitation volume oscillates at resonance operating

conditions.

Finally, to investigate the stability operation of the prototype, the hydroacoustic parame-

ters need to be transposed to the prototype conditions according to transposition laws. By

assuming both Thoma similitude and Froude similitude conditions, transposition laws are

developed and the hydroacoustic parameters are predicted for the prototype. This study is part

of the HYPERBOLE collaborative research project in association with the world major turbine

manufacturers. The transposition of the experimental measurements of the reduced-scale

physical model will be compared against the real generating unit located in a hydropower

plant in the Canadian province of British Columbia.

Keywords: Francis turbine, Draft tube flow, Cavitation vortex rope, Hydroacoustic modeling,

Experimental investigation
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Résumé
La nature stochastique des énergies renouvelables a un impact significatif sur la régulation des

réseaux électriques. Les énergies solaire et éolienne, largement influencées par les conditions

météorologiques, en sont des exemples éloquents. Ainsi, afin de garantir la stabilité du réseau

électrique soumis à des variations imprévisibles de puissance, il devient nécessaire de s’assurer

que certaines centrales électriques possèdent des capacités suffisantes de stockage d’énergie

et de réglage du réseau électrique. Pour exemple, les centrales de pompage-turbinage sont

en mesure de stocker une large quantité d’énergie électrique, tout en garantissant un rende-

ment de cycle de pompage-turbinage pouvant être supérieur à 80%. De plus, les centrales

hydrauliques offrent l’avantage d’exploiter une source d’énergie renouvelable, sans quasiment

émettre aucune émission de gaz à effet de serre. Par conséquent, en Europe, les machines

hydrauliques sont devenues des composants technologiques majeurs dans la conversion

d’énergie. Cependant, les fréquentes variations de puissance imposées par les énergies renou-

velables influencent directement la gamme de fonctionnement des centrales hydrauliques.

Ces nouvelles conditions d’exploitation hors-nominales peuvent engendrer de fortes vibra-

tions et de larges fluctuations de pression et de puissance pouvant réduire significativement

l’espérance de vie de la machine hydraulique.

Les machines hydrauliques sujettes à des conditions d’exploitation hors-nominales engendrent

l’apparition d’écoulements cavitants dans l’aspirateur. La torche de cavitation à charge par-

tielle peut être décrite comme une source d’excitation pour le système hydraulique et des

interactions entre cette source d’excitation et la fréquence propre du système peuvent induire

un phénomène de résonance et engendrer de grandes fluctuations de puissance sur le réseau

électrique. Pour prédire et simuler avec précision un phénomène de résonance à charge

partielle, la modélisation de l’aspirateur est critique. En effet, la présence d’une torche de

cavitation requiert un modèle numérique prenant en compte la complexité d’un écoulement

diphasique. Parmi les paramètres caractérisant la torche de cavitation, trois paramètres hy-

droacoustiques requièrent une attention toute particulière. Le premier modélise la variation

du volume de cavitation en fonction de la pression et définit implicitement la vitesse d’onde

locale dans l’aspirateur. Le deuxième décrit un amortissement représentant la dissipation

d’énergie lors d’un changement de phase entre le liquide et le gaz. Finalement, le troisième

modélise la source de pression induite par la précession de la torche de cavitation dans l’aspi-

rateur.
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La méthodologie pour identifier ces trois paramètres hydroacoustiques est fondée sur le lien

direct qui existe entre la fréquence propre du système hydraulique et la vitesse d’onde dans

l’aspirateur. Par conséquent, la première étape de cette méthodologie consiste à identifier la

fréquence propre à l’aide d’un système d’excitation externe. Puis, la vitesse d’onde est déter-

minée grâce à un modèle numérique précis modélisant le système hydraulique étudié. En

appliquant cette procédure d’identification pour plusieurs nombres de Thoma, il est possible

de quantifier le volume de la torche de cavitation et le taux de vide associé. La seconde étape

de cette méthodologie consiste à identifier la dissipation d’énergie induite par le volume

de cavitation en excitant le système hydraulique à sa fréquence propre. Avec une méthode

analytique, la quantité d’énergie excitant le système est quantifiée et injectée dans le modèle

numérique. Une analyse spectrale de la réponse forcée harmonique est finalement utilisée

pour identifier l’amortissement et la source de pression induite par la précession de la torche

de cavitation.

Ainsi, l’identification des paramètres hydroacoustiques requiert le développement d’un sys-

tème d’excitation externe et d’un modèle numérique précis du système hydraulique étudié.

Dans ce document, différents modèles numériques de l’aspirateur ont été comparés afin de

déterminer l’impact du terme convectif et de la géométrie divergente de l’aspirateur présent

dans l’équation de quantité de mouvement sur l’identification des paramètres hydroacous-

tiques. En outre, pour prédire ces paramètres pour des conditions d’exploitation non-étudiées

et pour outrepasser la dépendance intrinsèque des résultats avec l’implémentation de la

turbine hydraulique, des nombres adimensionnels sont proposés pour chaque paramètre. Ces

nombres adimensionnels possèdent l’avantage d’être indépendants du modèle numérique

choisi. De plus, ils permettent de définir des lois de comportement des paramètres hydroa-

coustiques nécessaires pour la simulation dynamique de phénomènes non-linéaires.

Finalement, pour déterminer la stabilité du prototype, les paramètres hydroacoustiques

doivent être transposés à l’aide de lois de similitudes. En admettant des valeurs du nombre

de Thoma et du nombre de Froude similaires entre le prototype et le modèle réduit, des lois

de similitude sont développées et les paramètres hydroacoustiques sont prédits à l’échelle

prototype. En outre, cette étude a été développée dans le cadre d’un projet européen, nommé

HYPERBOLE, en collaboration avec les grands constructeurs de turbines hydrauliques. La

transposition des mesures expérimentales obtenues en laboratoire pourra alors être comparée

avec les données réelles d’une centrale hydraulique localisée dans la province de Colombie

britannique au Canada afin de valider les lois de similitude.

Mots clefs : Turbine Francis, Écoulement diphasique, Torche de cavitation, Modélisation

hydroacoustique, Étude expérimentale
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ỹ Fluctuating part
M Referred to reduced-scale physical model
P Referred to full-scale prototype

xxi



Nomenclature

Non-dimensional variables

Fr Froude number F r =
√

E
g Dr e f

M” Dimensionless bulk viscosity M” = µ′′ fnatur al

pOutlet−pv

nED Speed factor nED = nDr e fp
E

QED Discharge factor QED = Q
D2

r e f

p
E

Re Reynolds number Re = C Dr e f

ν

β Void fraction β= Vc
Vtot

ν Specific speed ν= ω
p

Q
p
π(2E)

3
4

χE Cavitation factor χE = p1̄x−pv

ρw E

Π Dimensionless wave speed Π= ρw a2

pOutlet−pv

xxii



1 Introduction

1.1 Current energy context

In recent years, energy policies have led to a transition where a massive penetration of alter-

native renewable energies and a broad deployment of energy efficiency technologies have

occurred. For instance, the European Union (EU) has recently defined three major goals under

the 2020 climate and energy package [1] set of legislations:

• A 20% reduction in EU greenhouse gas emissions from 1990 levels,

• Raising the share of EU energy consumption produced from renewable resources to

20%,

• A 20% improvement in the EU’s energy efficiency.

Political will has therefore increased gross electricity production from renewable sources by

1739 TWh between 2002 and 2012, and passed the threshold of 20 % share of the total output

in 2012. Fossil energy remained the baseload of global electricity production with more than

two-thirds of the total output, see Figure 1.1 [2]. Hydropower aside, renewable electricity

increased by 3 percentage points in its share of global electricity production, rising from a

1.6% contribution in 2002 to 4.6% in 2012. A detailed bar chart illustrated in Figure 1.2 reveals

that the best mean annual growth over the same period was performed by the solar sector

(50.6%).

However, the stochastic nature of the renewable energy production directly impacts the energy

balance between generation and consumption. The most typical instances are solar and wind

power, which are both heavily influenced by weather conditions. In order to maintain balanced

production at any time, it has to be ensured the grid has sufficient reserve capacity, as well as

primary and secondary control capabilities. Both gas-fired and hydropower plants present

the abilities for flexible generation of peak power and regulation ancillary services at a large

scale. Still, hydropower plants can boast of harnessing a primary source of renewable energy
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Chapter 1. Introduction

Figure 1.1: Structure of electricity production in 2012.

Figure 1.2: Mean annual growth rates 2002-2012.

with comparatively low specific emissions of greenhouse gases. Additionally, pumped storage

power plants act as energy reservoir systems able to store and later release large amounts of

electricity thanks to cycles of pumping and generation, which regularly achieve unrivaled

efficiencies above 80%. Thus, in Europe, hydraulic turbines and pump-turbines are the key

components in energy conversion technologies, achieving both load balancing and primary

and secondary control over the power network. However, the frequent power transients to be

met in production by hydropower plants and imposed by other renewable energy producers

require hydraulic units to have their operating range widened. During operation of hydraulic

turbines and pump-turbines over a large operating range, high levels of vibration and large

fluctuations of pressure and power are likely to occur. As a consequence, life expectancy of

pump-turbine machinery is sometimes significantly reduced, eventually leading in the worst

occurrences to the accidental loss of structural integrity.

1.2 Off-design operating condition of hydraulic machines

Extreme operating points lead the water turbine to experience complex two-phase flow phe-

nomena, which are sources of dynamic loading of the turbine components as well as of the

complete hydraulic system. Examples of the development of dynamic vortex rope in the draft

2



1.2. Off-design operating condition of hydraulic machines

tube at part load and full load are shown in Figure 1.3 in the case of a reduced-scale physical

model testing of a Francis turbine.

(a) Part load operating point (b) Full load operating point

Figure 1.3: Cavitation vortex rope in a Francis turbine.

The decrease in tailrace pressure level makes the vortex core visible as a gaseous vortex

rope. This phenomenon, referred to as cavitation, corresponds to vaporization at constant

temperature due to pressure decrease. The occurrence of the cavitation may induce a drop

in efficiency, a risk of erosion, and mechanical vibrations that could jeopardize the safety of

mechanical and hydraulic systems [27]. In order to avoid cavitation development at the runner

outlet for the best operating condition, the notion of Net Positive Suction Energy (NPSE) is

introduced, defining the maximum setting level of a turbine:

N PSE = pB̄

ρw
− pv

ρw
− g hs +

C 2
Ī

2
(1.1)

where pv is the vaporization pressure, ρw represents the water density and C Ī defines the

flow velocity at the turbine outlet. The level setting hs , defined in Figure 1.4 is decisive in

characterizing the onset of cavitation phenomena. A dimensionless number called the Thoma

number σ and defined by the IEC is described as:

σ= N PSE

E
(1.2)

Thus, the higher the setting level, the lower the Thoma number. A low value of the Thoma

number indicates high risks of cavitation. In turbine mode, E represents the specific energy of

the turbine and is defined as a difference of specific hydraulic energies between the inlet I
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and the outlet Ī of the turbine, see Figure 1.4.

E = g HI − g H Ī = g

(
p

ρw
+ g Z + C 2

2

)
I
− g

(
p

ρw
+ g Z + C 2

2

)
Ī

(1.3)

Figure 1.4: Reference altitudes on a Francis turbine outline.

Using the Thoma number, it is possible to define a local cavitation factor χE [27]:

χE = p1̄x −pv

ρw E
=σ+ 1

F r 2

Zr e f −Z1̄x

D 1̄
−

C 2
1̄x

2E
− Er Ī÷x

E
(1.4)

This factor indicates that the local pressure p1̄x in the draft tube depends on the Thoma

number, the Froude number F r , the energy losses Er Ī÷x and the operating condition of the

hydraulic machine defined by the speed factor nED and the discharge factor QED . Physically,

the Froude number determines the pressure gradient with respect to the size of the machine

and affects the distribution of cavitation in the flow.

F r =
√

E

g Dr e f
(1.5)

1.2.1 Part load condition

The part load condition is characterized by a lower discharge factor than the best efficiency

point (BEP). The velocity triangle for the part load condition defined in Figure 1.5 illustrates

the relative and the absolute flow velocity vectors ~W1̄ and ~C1̄ at the runner outlet as well as

the peripheral velocity ~U1̄. The angle β1̄ is set by the geometry of the runner blade. The

direction of swirl is defined by the peripheral component of the absolute flow velocity ~Cu1̄.
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For partial load operation, a positive value of this parameter indicates a positive swirling

flow, defined as revolving in the same direction as the runner. Qualitatively, the vortex rope

features a helical shape and is described as an excitation source for the hydraulic system with

a frequency ranging from 0.2 to 0.4 times the rotational frequency [44]. Eigenfrequencies of

the hydraulic system decrease with the Thoma number σ and resonance is to be expected if

precession frequency matches one of the system’s eigenfrequencies, which are linked to the

amount of cavitation, i.e. the volume of the vortex rope [45, 26]. Finally, at resonance, pressure

oscillations will prematurely damage mechanical and hydraulic systems.

1.2.2 Full load condition

The full load condition is characterized by a higher discharge factor than the BEP. As illustrated

in Figure 1.5, the flow at the runner outlet is defined by a negative swirling flow motion in the

opposite direction of the runner revolution. Qualitatively, the cavitation vortex rope features

an axisymmetric shape. As opposed to the part load conditions, self-oscillations may occur

in full load conditions, implying independence of the phenomenon from a periodic external

excitation. These self-oscillations are experienced as an axial pulsation of the cavitation

volume corresponding to the one of the eigenfrequency of the system. Finally, self-oscillations

may cause negative damping, feeding oscillations with more energy [33].

C1

Cu1 > 0 U1

W1
Cm1

β1α1

C1

U1

W1Cm1

β1

=

α1 = 90°

Cu1 = 0 U1

W1Cm1

β1

Cu1 < 0

C1

α1

Q < QBEP Q = QBEP Q > QBEP

Figure 1.5: Velocity triangles at turbine outlet for partial, BEP and full load operations.

1.3 State of the art

Hydraulic machines are increasingly subject to off-design operation, involving the presence of

cavitating flow regimes in the draft tube. The cavitation vortex rope at part load conditions

is described as an excitation source for the hydraulic system and interactions between this

excitation source and a system’s eigenfrequency may result in resonance phenomena and

induce a draft tube surge and electrical power swings. To predict and simulate a part load

resonance, the method of the transfer matrices was extensively used. Eigenfrequencies and

eigenmodes shapes of the pressurized piping systems inclined to reach resonance by excitation

from the vortex rope can be derived with this method, see Zielke et al. [65]. However, different

hydroacoustic parameters have to be added to predict cavitation surge phenomena.
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The first hydroacoustic parameter is called cavitation compliance. This dynamic parameter

represents the variation of the cavitation volume with respect to a variation of pressure, and

it implicitly defines the local wave speed in the draft tube influencing the traveling time of

pressure waves. In 1973, Brennen and Acosta [13] presented theoretical calculations of this

parameter and showed influence from blade angle, blade thickness and Thoma number. In

1982, Dörfler [19] was one of the first to measure the cavitation compliance for a Francis

turbine vortex rope as a function of the Thoma number. However, his transfer-matrix model

[17, 19] for the prediction of pressure and torque fluctuations is restricted to low frequency

phenomena [15, 49]. The new model proposed by Couston and Philibert requires the experi-

mental measurement of two parameters: the wave speed, assumed constant along the draft

tube, and the vortex rope length. Arpe et al. [7] extended this distributed approach by defining

a wave speed depending on the curvilinear abscissa in the draft tube.

Several numerical models were developed to define the wave speed for hydraulic systems

with a bubbly air-water mixture. A review about one-dimensional bubbly flow is given by

van Wijngaarden [58]. The simplest model described by Wood [62] assumes a homogeneous

mixture containing small, isothermal, non-diffusing gas bubbles of uniform radii and devoid

of surface tension effects. The isothermal assumption was investigated by Hsieh - Plesset[31]

who, always assuming equal pressure in mixture and gas phase, included the equations

for conservation of momentum and energy in their analysis, however leaving aside viscous

dissipation and viscous forces as well as the velocity difference between the phases. Several

investigations about a single oscillating bubble in a liquid have shown that the influence of

both the fluid and the gas compressibility and the surface tension can be strong. Thus, Rath

[50] developed a theoretical definition linking the wave speed with the void fraction, taking

into account these influences for a homogeneous air-water bubbly mixture flow. However,

experimental and theoretical wave speeds published by Henry et al. [30] showed significant

differences between bubbly flow, slug flow and stratified flow. Consequently, these theoretical

models were only validated for homogeneous bubbly flow and cannot be directly transposed

to a cavitation vortex rope without validation.

The second hydroacoustic parameter is related to the dissipation due to the cavitation. Alligné

[3] assumed that most of the energy dissipation is associated with the cavitation compliance

and it represents internal processes breaking a thermodynamic equilibrium between the cavi-

tation volume and the surrounding liquid. A bulk viscosity was used to model this dissipation.

Many authors tried to set up a mathematical model to quantify this bulk viscosity for cavitating

pipe flows. Bartolini and Siccardi [9] considered the formulation of an additional dissipation

term in unsteady cavitating flows taking into account local relaxation processes. Later, Ewing

[24] derived an analytical bulk viscosity considering small variations of temperature of gas

bubbles due to heat exchange between gas and surrounding liquid. It has been shown that

this thermodynamic approach does not always systematically explain the energy dissipations

observed in cavitating water hammer flows. Pezzinga [48] used the same approach as Ewing

and validated his model by reproducing results of experimental measurements of water ham-

mer transients with cavitation. This model indicates that the bulk viscosity depends on the
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wave speed and the pressure. However, this model is only validated for homogeneous bubbly

flow and cannot be directly transposed to a cavitation vortex rope without validation.

The third hydroacoustic parameter is the excitation source induced by the precessing vor-

tex rope. The pressure fluctuations measured in the cone are composed of two different

components: a rotating part due to the transit of the cavitation vortex rope near the wall,

and a synchronous part with an equal phase and amplitude for all locations in the same

cross-section. Nishi et al. [44] introduced this distinction and devised an analytical method

for the separation of the two components. Experimental computation of the rotating and

synchronous parts of pressure fluctuations was confirmed by Angelico et al. [6] by using three

pressure sensors located in a same cross-section of the cone. Dörfler [19] assumed that this

synchronous part is a component resulting from the excitation source and is transmitted to

the hydraulic circuit. Thus, Dörfler experimentally identified this pressure source without

cavitation vortex rope and assumed that the excitation source is independent of the Thoma

number. Finally, recent numerical flow simulations of the helical vortex rope [51, 52, 54, 66]

computed the synchronous component of the pressure fluctuations. Alligné [3] in 2011 de-

scribed a methodology to predict part load resonance and full load instability induced by the

Francis turbine excitation. The identification of the excitation sources was performed with

numerical simulations based on a three dimensional incompressible model. Finally, Dörfler

et al. [21] introduced a new stochastic component for the excitation source and developed a

statistical method to separate it from the two others components.

At full load condition, an additional parameter is introduced: the mass flow gain factor. This

parameter represents the rate of change of the cavitation volume as a function of the change in

discharge. Koutnik and Pulpitel [36] applied this modeling approach to Francis turbines and

derived a stability diagram to explain a full load surge occurring on a power plant. A similar

approach was also successfully applied to explain inducer instabilities by Tsujimoto et al. in

1993 [56]. The model assumed a mass flow gain factor linked to a downstream flow rate of the

cavitation volume. Chen et al. [14] derived a more general model taking into account both

upstream and downstream flow rates of the cavity. They analyzed the influence of the swirl

intensity related to the upstream flow rate and the diffuser factor related to the downstream

flow rate on the system stability. Dörfler [20] showed that the choice between the upstream or

the downstream flow rate is decisive to predict the stability limit of the system. He proposed

a new model [22] by using a weight function between the upstream and the downstream

flow rates. He also introduced a time delay on the upstream flow rate. This time delay effect

has been also introduced by Tsujimoto et al. [57] for the analysis of rotating cavitation in

the inducers. They found out that this parameter allows for the accurate determination of

the amplitude of the rotating modes. Finally, extensive experimental investigations were

performed by Müller [40] to increase the understanding of its underlying causes and key

sustaining mechanisms. Müller [39] concluded in 2014 that the modification of the flow

swirl in the draft tube inlet through the appearance of cavitation on the runner blade plays

an important role in the feedback mechanism of the self-excited pressure and vortex rope

oscillation.
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Chapter 1. Introduction

1.4 Thesis objective

It was noted above that the numerical models for identification of wave speed and bulk

viscosity of a bubbly flow cannot be directly transposed to a cavitation vortex rope without

validation. Additionally, the modeling of the pressure source induced by the precession of the

cavitation vortex rope is still unknown and its connection with the Thoma number and the

Froude number is not well defined yet.

The main purpose of the current thesis is to establish a methodology to determine the various

hydroacoustic parameters necessary for numerical simulation. Using these parameters, the

numerical model will be able to predict the unsteady pressure and torque fluctuations of a

hydraulic power plant in operation.

The methodology is based on the direct link between the natural frequency of the hydraulic

system and the wave speed in the draft tube. With the identification of the natural frequency,

it is possible to quantify the wave speed, the cavitation compliance and the void fraction of

the cavitation vortex rope with an accurate numerical model. In order to determine the energy

dissipation induced by the cavitation volume, it is important to experimentally inject a known

amount of energy in the hydraulic system at the natural frequency. A spectral analysis of

the forced harmonic response is used to identify the bulk viscosity and the pressure source

induced by the vortex rope precession.

However, the methodology presented in this thesis is only applicable to an off-resonance

system to avoid any energy exchange between the excitation frequency and the vortex rope

frequency. Therefore, the method has only been applied to part load operating conditions.

Indeed, at full load operating conditions, the system may be self-excited and the volume of

cavitation may oscillate at the natural frequency of the hydraulic system. Additionally, it is

assumed that the mass flow gain factor is negligible for an off-resonance system at part load

operating condition and it will not be taken into account in this methodology.

Identification of hydroacoustic parameters requires the development of a numerical model

of the studied hydraulic system, as well as an experimental excitation system for identifying

the natural frequency of the hydraulic system. With the help of several pressure sensors

located along the hydraulic system, hydroacoustic parameters of the numerical model are

calibrated to reproduce the forced harmonic response measured in experiments. Afterward,

the numerical results are generalized through the use of dimensionless relations in order to

predict the hydroacoustic parameters for different Thoma and Froude numbers, and then to

predict the pressure and torque fluctuations of a reduced scale model of a Francis turbine.

Finally, the dimensionless relations are transposed to the prototype in order to predict the

dynamic behavior of a hydropower plant. The current study is part of the HYPERBOLE

collaborative research project in association with the world major turbine manufacturers. The

transposition of the hydroacoustic parameters will be compared against the real generating

unit located in a hydropower plant in the Canadian province of British Columbia.
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1.5 Document structure

Chapter 2 introduces and expands the fundamental equations used for the hydroacoustic

modeling of the cavitation vortex rope. The discretization of these equations produces a

system of nonlinear ordinary equations. An equivalent electrical scheme representation of the

equations provides a high level of abstraction and allows for a rigorous formalism to model

the dynamic behavior of a hydraulic power system. Among the parameters modeling the

cavitation vortex rope, the wave speed, the bulk viscosity and the pressure source are the three

hydroacoustic parameters requiring a special methodology to determine their value.

Chapter 3 presents a simple and inexpensive method to identify the three unknown hydroa-

coustic parameters. This methodology is based on the direct link that exists between the

natural frequency of the hydraulic system and the wave speed in the draft tube. To highlight

this important link, an analytical analysis of a simplified hydraulic system is presented. Then,

the experimental identification of the natural frequency and the three hydroacoustic parame-

ters are described. A sensibility analysis finally justifies the existence of one or several local

minimum and therefore the type of algorithm used for the identification.

Chapter 4 concerns the description of the experimental instrumentation setup. First, the test

rig and the reduced-scale physical model of a Francis turbine are described. Then, the design

of the excitation system and the location of all flush-mounted piezoresistive pressure sensors

are presented. After the characterization of the rotating valve and a detailed description of

the measurement techniques and post-processing tools, the eigenfrequencies for several

operating conditions are identified. Finally, this chapter also contains a validation of the

Pressure-Time method necessary to identify the bulk viscosity.

Chapter 5 presents the modeling of the test rig with EPFL SIMSEN software. All hydraulic

components of the test rig such as viscoelastic pipes, Francis turbine and spiral casing are

described. A comparison between the numerical and experimental results suggests very good

accuracy of the numerical model for a steady flow.

Chapter 6 applies the methodology described in Chapter 3 to the reduced-scale physical

model of a Francis turbine presented in Chapter 4. The three hydroacoustic parameters are

identified for different operating conditions and the influence of the Thoma and the Froude

numbers is analyzed. It is shown that the formulation to describe the wave speed in bubbly

flows can be used in a cavitation vortex rope by dividing the obtained values by an empirical

constant. An analytical equation is also developed to predict the bulk viscosity as a function of

the void fraction. Furthermore, a sensitivity analysis determines the location and the shape of

the pressure source. Different numerical draft tube models are also compared to determine

the impact of convective and divergent geometry terms of the momentum equation on the

identification of the hydroacoustic parameters. Finally, to investigate the stability operation

of the prototype, the hydroacoustic parameters are transposed to the prototype conditions

according to similitude laws.
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Chapter 1. Introduction

Chapter 7 provides a simplified methodology to identify the hydroacoustic parameters. Using

the dimensionless curves and sensitivity analyzes developed in Chapter 6, the methodology

presented in Chapter 3 can be simplified and applied to any type of hydraulic test rig.
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2 Cavitation vortex rope modeling

Extreme operating conditions lead the water turbine to experience complex two-phase flow

phenomena, which are sources of dynamic loading of the turbine components as well as of the

complete hydraulic system. At part load operation, the flow at the runner outlet is animated

by a positive swirling flow in the same direction as the runner revolution. Qualitatively, the

vortex rope features a helical shape and is described as an excitation source for the hydraulic

system. Interactions between this excitation source and eigenfrequencies of the system may

result in resonance phenomena and induce a draft tube surge and electrical power swings.

To precisely predict and simulate a part load resonance, proper modeling of the draft tube is

critical. The presence in it of a cavitation vortex rope requires a numerical pipe element taking

into account the complexity of the two-phase flow [5].

The present chapter introduces and expands the momentum and continuity equations de-

scribing a cavitating draft tube flow. The discretization of these equations produces a system

of nonlinear ordinary differential equations that can be represented as a T-shaped equivalent

scheme. Among the parameters describing the numerical model of the cavitating draft tube

flow, three hydroacoustic parameters require a special attention: the wave speed, the bulk

viscosity and the pressure source.

2.1 One-dimensional hydroacoustic equations

A mathematical model based on mass and momentum conservation is well suited to describ-

ing the dynamic behavior of a cavitating draft tube flow. Since wave lengths are greater than

cross-sectional dimensions, it is justified to use a one-dimensional approach. The model

assumes a flow normal to the cross-section A, and uniform distributions of pressure p and

velocity C in the cross-section.
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Chapter 2. Cavitation vortex rope modeling

2.1.1 The axial momentum equation

The momentum equation states that the resultant component of forces acting on a control

volume, described in Figure 2.1 (Left), is equal to the material derivative.

Due to the cavitation development in the draft tube, a homogeneous fluid model is assumed

and a density mixture ρ is considered.

ρ
D
−→
C

Dt
=−−→∇p +−→∇ ·τ+−→

f (2.1)

The pressure gradient
−→∇p arises from the isotropic part of the Cauchy stress tensor. The

deviatoric stress τ is straightforwardly defined as the difference between the pressure and the

total stress tensor. The vector field
−→
f represents body forces.

Q1

Q2

Q3

Q4

h1+1/2

h2+1/2

h3+1/2

Momentum control volumes
Continuity control volumes

V

∂V

Aτxx

Aτxx+

pA

pA+

Aτrx

∂(Aτxx)
∂x δx

∂(pA)
∂x δx

A=A1+
∂A
∂x

x

A1

x

x

Figure 2.1: Balances of forces for the momentum equation (Left) and overlapping of momen-
tum and continuity control volumes (Right)

Assuming cylindrical coordinates, projection along the pipe axis x prompts the following

formulation:

ρ
DC

Dt
=−∂p

∂x
+ 1

r

∂

∂r
(rτr x )+ ∂

∂x
(τxx ) (2.2)

where τr x are the tangential viscous stresses and τxx are the normal viscous stresses. In the

case of Newtonian fluids, components of the stress tensor depend linearly on components of
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2.1. One-dimensional hydroacoustic equations

the tensor of strain rate e:

ei j = 1

2

(
∂C j

∂xi
+ ∂Ci

∂x j

)
where tr

(
ei j

)=−→∇ ·−→C (2.3)

For isotropic fluid, i.e. fluids whose mechanical properties are direction-invariant, the tangen-

tial viscous stresses and the normal stresses can be rewritten as:

τr x =µ∂C

∂r
and τxx = (

2µ+µ′) ∂C

∂x
(2.4)

µ is the dynamic viscosity and µ′ is the second viscosity. These two viscosity coefficients

are similar to the Lamé parameters in linear elasticity. According to the equation 2.4, the

momentum equation can be defined as:

ρ
DC

Dt
=−∂p

∂x
+ 1

r

∂

∂r

(
rµ

∂C

∂r

)
+ ∂

∂x

((
2µ+µ′) ∂C

∂x

)
(2.5)

Integration of Equation 2.5 over the control volume V of length dx yields:

∫
V

ρ
DC

Dt
dV =−

∫
V

∂p

∂x
dV +

∫
V

1

r

∂

∂r

(
rµ

∂C

∂r

)
dV +

∫
V

∂

∂x

((
2µ+µ′) ∂C

∂x

)
dV (2.6)

Regarding the tangential component of the stress tensor, the Darcy-Weisbach formulation is

used with τ0 = ρλ|C |C
8 . The simplification of the last equation by

(
ρg Ad x

)
yields:

1

g

∂C

∂t
+ C

g

∂C

∂x
=− 1

ρg

∂p

∂x
− πDτ0

ρAg
+ 1

ρg

∂

∂x

((
2µ+µ′) ∂C

∂x

)
(2.7)

Equation 2.7 can be rewritten by using the flow rate Q and the piezometric head h as state

variables. Kx = ∂A
∂x is the cross-section expansion rate along the x axis of the draft tube

geometry and the divergent geometry is assumed to be constant, ∂
2 A
∂x2 = 0. Moreover, since the

draft tube wall is solid, ∂A
∂t = 0, hence:

1

g A

∂Q

∂t
+ Q

g A2

∂Q

∂x
− KxQ2

g A3 =−∂h

∂x
− πDτ0

ρg A
+

(
2µ+µ′)
ρg

(−2Kx

A2

∂Q

∂x
+ 1

A

∂2Q

∂x2 + 2K 2
x

A3 Q

)
(2.8)

13



Chapter 2. Cavitation vortex rope modeling

The homogeneous bulk viscosity µ′′ is then introduced and defined as:

µ′′ =µ′+ 2

3
µ (2.9)

Finally, swapping the terms and assuming only a distribution of the bulk viscosity µ′′ in the

normal stress component [48], Equation 2.8 can be rewritten as:

1

g A

∂Q

∂t
+

(
Q

g A2 − 2Kx ·µ′′

ρg A2

)
∂Q

∂x
+

(
λ|Q|

2g D A2 − KxQ

g A3 + 2K 2
xµ

′′

ρg A3

)
Q + ∂h

∂x
− µ′′

ρg A

∂2Q

∂x2 = 0 (2.10)

In the model developed by Alligné et al. [5], only the dissipation due to the velocity gradient

induced by the compressibility of the cavitation volume is taken into account. He assumed

that the dissipation induced by the variation of the cross-section is negligible and therefore

the momentum equation becomes:

1

g A

∂Q

∂t
+

(
Q

g A2

)
∂Q

∂x
+

(
λ|Q|

2g D A2 − KxQ

g A3

)
Q + ∂h

∂x
− µ′′

ρg A

∂2Q

∂x2 = 0 (2.11)

In order to verify the assumption proposed by Alligné et al., results obtained from both the

general equation 2.10 and the simplified equation 2.11 will be compared in Chapter 6.

2.1.2 The continuity equation

The continuity balance is performed on a control volume V of length dx including a fluctuating

cavitation volume Vc . The control volume is defined as the sum of the cavitation volume and

the liquid phase volume VL :

V =Vc +VL (2.12)

Additionally, the mass variation of the liquid phase volume mL can be described as:

dmL

d t
=VL

dρL

d t
+ρL

dVL

d t
(2.13)
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2.1. One-dimensional hydroacoustic equations

where ρL is the density of the liquid phase. The variation rate of the liquid mass corresponds

to the difference between the mass inflow and the mass outflow. Using Equation 2.12, the

variation rate of mass of the liquid phase volume becomes:

dmL

d t
= ρL (Q1 −Q2) =VL

dρL

d t
+ρL

dV

d t
−ρL

dVc

d t
(2.14)

Introducing the void fraction β defined as the fraction of a reference volume V that is occupied

by the gas phase volume Vc , the previous equation can be rewritten as:

ρL (Q1 −Q2) = (
1−β)

V
dρL

d t
+ρL

dV

d t
−ρL

dVc

d t
where β= Vc

V
(2.15)

The liquid phase is assumed to have a barotropic behavior, i.e. liquid phase density is a

function of only pressure ρL = ρL
(
p

)
. From this assumption, it results:

1

ρL

dρL

d t
= 1

EL

d p

d t
(2.16)

with EL as the liquid phase bulk modulus. The elastic behavior of the pipe wall sets a relation

between the cross-section variation and the pressure variation with e, D and Ep defined as the

thickness, the diameter and the Young modulus of the elastic pipe wall, respectively.

1

A

d A

d t
= D

eEp

d p

d t
(2.17)

Combining Equations 2.16 and 2.17 in Equation 2.15 and defining the volume V = Ad x, it

results:

(Q1 −Q2) = (
1−β) Ad x

EL

d p

d t
+ Ad xD

eEp

d p

d t
− dVc

d t
(2.18)

For a pipe free of cavitation, the wave speed a0 is defined as:

a2
0 =

1

ρL

(
1

EL
+ D

eEp

) (2.19)
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Chapter 2. Cavitation vortex rope modeling

Using the definition of the wave speed in a cavitation-free flow, the wave speed in the liquid

phase can be written as:

a2
β =

1

ρL

(
1−β
EL

+ D
eEp

) (2.20)

With the help of equation 2.20 and by using the piezometric head h as state variable, Equation

2.18 becomes:

(Q1 −Q2) = g Ad x

a2
β

dh

d t
− dVc

d t
(2.21)

Besides, the dynamic behavior of the cavitation volume fluctuations dVc
d t can be described

with the help of three parameters as follows [5]:

• The cavitation compliance : Cc =−∂Vc
∂h

• The mass flow gain factor : χ=− ∂Vc
∂Q1

• The rotational speed gain factor : ε=− ∂Vc
∂U1

Hence:

−dVc

d t
= εdU1

d t
+χdQ1

d t
+Cc

dh

d t
(2.22)

By assuming a constant rotational speed of the turbine, the previous equation becomes:

−dVc

d t
=χdQ1

d t
+Cc

dh

d t
(2.23)

Merging Equations 2.21 and 2.23 produces the new continuity equation:

(Q1 −Q2) =
(

g Ad x

a2
β

+Cc

)
dh

d t
+χdQ1

d t
(2.24)
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2.2. Equivalent electrical scheme representation

2.2 Equivalent electrical scheme representation

The hydroacoustic draft tube model is implemented with the help of SIMSEN, an EPFL soft-

ware that was initially developed for transient simulations of electrical power systems [53]. The

software was extended to hydraulic components in order to simulate the transient behavior

of a complete hydroelectric power plants. An exhaustive description of the most common

hydraulic components are described in reference [41]. The modeling of the hydraulic com-

ponents is based on T-shaped equivalent electrical scheme representation. The terms in

the momentum equation 2.11 and the continuity equation 2.24 can be represented by the

following electric components:

• The terms of fluid inertia and the energy losses present in the momentum equation can

be represented by a hydraulic inductance L and a hydraulic resistance Rλ, respectively.

R ′
λ =

λ|Q|
2g D A2 L′ = 1

g A
(2.25)

• The divergent geometry of the draft tube has a destabilizing effect and is modeled

through a negative resistance −R ′
d .

R ′
d = KxQ

g A3 (2.26)

• The occurrence of cavitation volumes in the draft tube strongly decreases the wave

speed and therefore the convective terms of the Navier-Stokes equations have to be

taken into account. The modeling of this effect is represented by an electrical source

and is described by the parameter J’.

J ′ = Q

g A2 (2.27)

• The dissipation representing internal processes breaking a thermodynamic equilibrium

between the cavitation volume and the surrounding liquid is described by a hydraulic

resistance defined as R ′
µ, where µ′′ represents the bulk viscosity.

R ′
µ =

µ′′

ρg A
(2.28)

• At part load conditions, the cavitation vortex rope is considered as an external forcing

function for the hydraulic system. The equivalent electrical scheme is modified by
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Chapter 2. Cavitation vortex rope modeling

integrating an additional pressure source Sh corresponding to the forced induced by

the helical vortex rope precession on the draft tube walls. Dörfler [19] experimentally

identified this pressure source in cavitation-free conditions for vortex rope and assumed

that the excitation source is independent of the Thoma number.

• Finally, the storage effects can be represented by the equivalent hydraulic capacitance

Cequ defined in the continuity equation:

Cequ =
(

g Ad x

a2
β

+Cc

)
=Cβ+Cc (2.29)

The first term corresponds to the storage effects due to wall deflection and fluid com-

pressibility. In the case of cavitation-free conditions, the void fraction β= 0, and this

term defines the general hydraulic capacitance C for a pipe:

C =
(

g Ad x

a2
0

)
(2.30)

The second term of Equation 2.29 is defined as a cavitation compliance Cc and repre-

sents the variation of the cavitation volume Vc with respect to a variation of pressure.

Moreover, according to the general definition of the hydraulic capacitance, an equivalent

wave speed can be introduced:

Cequ =
(

g Ad x

a2
β

+Cc

)
= g Ad x

a2
equ

(2.31)

It will be proven in Chapter 6 that the most of the energy dissipation is due to the

cavitation compliance rather than the wall deflection or the compressibility of the liquid.

Therefore, the dissipation due to the wall deflection is neglected and an homogeneous

approach of the fluid including the liquid and cavitation is considered [48]. Thus, the

equivalent capacitance indirectly defines the wave speed in the cavitation draft tube.

Using these definitions, the momentum and the continuity equations can be rewritten as:

L′ ∂Q
∂t + J ′ ∂Q

∂x + (
R ′
λ
−R ′

d

)
Q + ∂h

∂x −R ′
µ
∂2Q
∂x2 +Sh = 0

(Q1 −Q2) =Cequ
dh
d t +χdQ1

d t

(2.32)
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2.2. Equivalent electrical scheme representation

The momentum and the continuity equations are solved using the Finite Difference Method

with 1st order centered scheme discretization in space and a Lax scheme for the discharge state

variable. This discretization produces a system of nonlinear ordinary differential equations

that can be represented as a T-shaped equivalent scheme [42], see Figure 2.2. It is important

to note that the control volumes for the continuity and the momentum balances overlap in

space as illustrated in Figure 2.1 (Right) on a straight divergent pipe in order to allow for the

spatial discretization of both the state variables Q and h. Considering the above-mentioned

spatial discretization, the Navier-Stokes equations expressed for a lumped draft tube model

are expressed as follows:

L/2 0 0

0 L/2 0

χ 0 Cequ

 · d

d t

 Q1

Q2

h1+ 1
2

+


1
2 (Rλ−Rd − J1)+Rµ 1 J1

2 −Rµ
J2
2 −Rµ

1
2 (Rλ−Rd − J2)+Rµ −1

−1 1 0

 ·

 Q1

Q2

h1+ 1
2

=

 h1 −Sh1

−h2 +Sh2

0

 (2.33)

This set of equations is written using the hydroacoustic parameters obtained for an element

of length dx given by:

L = L′d x, Rλ = R ′
λd x, J = J ′, Rd = R ′

d d x, Rµ =
R ′
µ

d x
(2.34)

The first and the second equations of 2.33 correspond to the two momentum equations of

the T-shaped equivalent electrical scheme while the third equation describes the continuity

equation. This set of equations can be rewritten as:

A
dX

d t
+ [B (X)]X = V (X) (2.35)

where A and B are the global state matrices, X and V (X) are the state vector and the boundary

conditions vector with n components, respectively.

Among the parameters modeling the cavitation vortex rope, only three parameters are difficult

to quantify: the cavitation compliance Cc depending only on the wave speed a, the bulk

viscosity µ′′ and the pressure source Sh . The other parameters mainly depend on the geometry

of the draft tube and state variables. To quantify the wave speed, the bulk viscosity and the

pressure source, a methodology will be applied in resonance-free conditions at part load
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Rλ/2 Rλ/2L/2L/2

CC
h1+1/2

h2
h1 Q1

Q2
Rμ

(Q2-Q1)
J1

2

-Rd/2 -Rd/2

(Q1-Q2)
J2

2

χ Sh2Sh1

Figure 2.2: Representation of the draft tube with a cavitation vortex rope and its equivalent
circuit

condition in order to prevent interactions between the vortex rope frequency and the natural

frequency. Therefore, it is assumed that the mass flow gain factor χ is negligible and it will not

be taken into account in the methodology presented in Chapter 3.

2.3 Summary and discussion

The proposed mathematical model based on mass and momentum conservations was ex-

posed in this chapter to describe the dynamic behavior of a cavitating flow in a draft tube.

This model assumes an isotropic fluid with liquid phase having a barotropic behavior. The

dissipation induced by the compressibility of the cavitation volume is the only dissipation

term being taken into account. The dissipation due to the wall deflection is neglected and

an homogeneous approach of the fluid embodying both the liquid and cavitation volumes is

considered.

With a 1st order centered scheme discretization in space and a Lax scheme for the discharge

state variable, the discretization produces a system of nonlinear ordinary differential equations

that can be represented as a T-shaped equivalent scheme. Among the parameters modeling

the cavitation vortex rope, only three parameters are difficult to quantify: the wave speed a,

the bulk viscosity µ′′ and the pressure source Sh . To identify these hydroacoustic parameters,

a methodology based on spectral analysis was developed and is presented in the next chapter.
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3 Methodology for identification of
hydroacoustic parameters

A simple and inexpensive method has been developed to identify physical parameters such

as wave speed, bulk viscosity and pressure source induced by the cavitation vortex rope in

complex unsteady flows of a draft tube. The methodology is based on the direct link that

exists between the natural frequency of the hydraulic system and the wave speed in the

draft tube. This identification requires the development of a numerical model of the studied

hydraulic system including the modeling of a draft tube with the SIMSEN software, as well as

an external excitation system for identifying the natural frequency of the hydraulic system.

After a detailed description of the experimental equipment in Chapter 4, the numerical model

will be presented in Chapter 5.

First, the natural frequency is identified with the help of an external excitation system. Then

the wave speed is determined thanks to an accurate numerical model of the experimental

hydraulic system. By applying this identification procedure for different values of Thoma

number, it is possible to quantify the cavitation compliance and the void fraction of the

cavitation vortex rope. In order to determine the energy dissipation induced by the cavitation

volume, the experimental hydraulic system is excited at the natural frequency. With a Pressure-

Time method, the amount of excitation energy is quantified and is injected in the numerical

model. A spectral analysis of the forced harmonic response is used to identify the bulk viscosity

and the pressure source induced by the vortex rope precession.

In order to precisely determine the amount of energy exiting the system, this methodology

is only applicable to an off-resonance system to avoid any energy exchange between the

excitation frequency and the vortex rope frequency. Therefore, the method has only been

applied to partial operating conditions. Indeed, at full load operating conditions, the system

may be self-excited and the volume of cavitation may oscillate at the natural frequency of the

hydraulic system. Finally, the hydroacoustic parameters are generalized with dimensionless

relations in order to predict their values for different operating points and to predict the

pressure and torque fluctuations on the reduced-scale physical model.
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Chapter 3. Methodology for identification of hydroacoustic parameters

3.1 Analytical analysis of a simplified hydraulic system

To identify the link between the wave speed and the natural frequency, an analytical analysis

is applied to a simplified hydraulic system. It is composed of a Francis turbine and a draft tube

connected between two reservoirs, as illustrated in Figure 3.1. The cavitation development is

modeled using the equation 2.24.

Flow direction Upstream 
reservoir

Downstream 
reservoir

Figure 3.1: Representation of the simplified hydraulic system.

To simplify the analytical development, the geometric characteristics and the materials of the

pipes are considered as similar. According to the definition of the hydraulic capacitance, it is

now possible to rewrite the equation 2.31 as:

Cc =
(

g Ad x

a2
equ

− g Ad x

a2
β

)
≈ g Ad x

a2
equ

(3.1)

The wave speed for cavitating flow described in the literature indicates values dropping below

100m/s for a pressure in the vicinity of 1 bar [50]. Thus, it is assumed that the compressibility

of the pipe is negligible compared to a capacitance related to the cavitation compliance. Thus,

the equivalent model of the pipe is made of a resistance R and an inductance L. For sufficient

guide vane openings, the Francis turbine is modeled as a pressure source driven by the turbine

characteristics and also as a function of the rotational speed N, the discharge Q and the guide

vane opening y [3]. The equivalent model of the simplified hydraulic system is presented in

Figure 3.2.

R/2 RLL/2

C h2
h1 Q1

Q2

R/2 L/2 Hturb
χ

hc

Figure 3.2: Equivalent circuit of the simplified hydraulic system.
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3.1. Analytical analysis of a simplified hydraulic system

The system of differential equations of the equivalent scheme for the hydraulic system is given

by the following set of equations:


χ
∂Q2
∂t +C ∂hc

∂t =Q1 −Q2

Htur b +RQ1 +L ∂Q1
∂t +hc = h1

hc = L ∂Q2
∂t +RQ2 +h2

(3.2)

Eigenvalues extraction from this set of differential equations is provided after a linearization

around a solution point [3], [37].

C 0 χ

0 L 0

0 0 L

 · d

d t

δhc

δQ1

δQ2

+

 0 −1 1

1 2R + δHtur b
δQ 0

−1 0 2R

 ·

δhc

δQ1

δQ2

=

 0

h1

−h2

 (3.3)

The determinant of this set of equations leads to the characteristic equation 3.4, where s is the

eigenvalue.

(
2R

L
+ s

)(
s2 + s

(
χ

LC
+ 1

L

(
2R + δHtur b

δQ

))
+ 2

LC
+ χ

L2C

δHtur b

δQ

)
+ 1

L2C

δHtur b

δQ

(
1− 2Rχ

L

)
= 0

(3.4)

Since for operating conditions at part load, it can be assumed that the mass flow gain factor is

equal to zero, and the previous equation can be rewritten as:

 2R

L︸︷︷︸
1
τ

+s


s2 + s

(
1

L

(
2R + δHtur b

δQ

))
︸ ︷︷ ︸

2µ

+ 2

LC︸︷︷︸
ω2

0

+ 1

L2C

δHtur b

δQ
= 0 (3.5)

τ corresponds to a free motion time constant. The stability criterion of the system is given by

2µ> 0 and depends on the hydraulic resistance, the hydraulic inductance and the gradient

of the turbine characteristic. The frictionless eigenpulsation is function of the hydraulic

inductance and hydraulic capacitance. From this relation, the frictionless natural frequency
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Chapter 3. Methodology for identification of hydroacoustic parameters

can be inferred:

f0 = 1

2π

√
2

LC
= 1

2π

√
2a2

l 2 = ap
2πl

(3.6)

There is therefore, for this simplified case, a direct link between the frictionless natural fre-

quency and wave speed [32]. It is consequently possible to derive an approximation of the

wave speed by identifying the natural frequency of the simplified hydraulic system.

3.2 Experimental identification of the natural frequency

To experimentally identify the natural frequency of a hydraulic system, an excitation system

was designed, engineered and constructed to inject or extract a periodical discharge at a given

frequency. The excitation frequency is generated by the rotation of a cylindrical valve and the

amplitude is controlled by a feeding pump. For each excitation frequency, the forced harmonic

response of the hydraulic system is measured with pressure sensors densely located along

the hydraulic circuit. A spectral analysis of the forced harmonic response for all excitation

frequencies is used to identify the eigenfrequencies of the system.

However, with the excitation system and the dissipation induced by the cavitation vortex

rope, the system can be considered as excited and damped. Thus, the experimental frequency

fexp is slightly different than the undamped case defined by f0 . Therefore, it is important

to calculate the wave speed related to the natural frequency and the dissipation parameter

simultaneously.

fexp = f0

√
1−ζ2 (3.7)

3.3 Experimental identification of wave speed

Instead of using Equation 3.6, a numerical model of the hydraulic system was developed and

the wave speed is adjusted in the distributed draft tube modeling to obtain a numerical natural

frequency similar to the experimental natural frequency. To identify the natural frequency of

the numerical model, an eigenvalue study of the non-linear hydraulic system is conducted.

The hydroacoustic modeling of the hydraulic system dynamics model is cast as a first order

differential equation system in the following matrix form:

[A]
d~x

d t
+ [B (~x)] ·~x = ~V (~x) (3.8)
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3.3. Experimental identification of wave speed

where [A] and
[
B

(−→x )]
are the global state matrices of dimension [n ×n] , −→x and

−→
V

(−→x )
are

the state vector and the boundary conditions vector with n components, respectively. The

eigenvalues are based on the linearization of the set of equations around the operating point

[4]. Damping and oscillation frequency of the eigenmodes are given by the real part and the

imaginary part of the eigenvalues, respectively.

Additionally, by injecting the value of the wave speed in Equation 3.1, the cavitation compli-

ance can be determined:

Cc = −∂Vc

∂h1̄
= g Ad x

a2
equ

(3.9)

By using the definition of the NPSE, see Equation 1.1, the previous equation can be rewritten

as:

Cc = −∂Vc

∂h1̄
= −∂Vc

∂N PSE

∂N PSE

∂h1̄
≈−g

∂Vc

∂σE
(3.10)

For a given operating condition, E is considered as constant and the cavitation compliance

can be defined as:

Cc = g Ad x

a2
equ

≈− 1

Htur b

∂Vc

∂σ
(3.11)

Thus, identifying the wave speed for several Thoma numbers for a constant operating condi-

tion and by integrating the previous equation, the volume of cavitation can be deduced:

Vc =−E
∫

Ad x

a2
equ

dσ (3.12)

Now, dividing the volume of cavitation Vc by the total volume of the draft tube Vtot leads to

the mean void fraction:

β= Vc

Vtot
=−E

∫
1

a2
equ

dσ (3.13)
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Chapter 3. Methodology for identification of hydroacoustic parameters

This value can be confirmed by analyzing the visualization of the cavitation vortex rope with a

high speed camera, see Figure 3.3. The Plexiglas cone provides an optical access to the flow in

the draft tube of the reduced scale physical model. Moreover, a highly uniform LED screen is

installed as a backlight to produce good contrast between the gaseous and the liquid phases.

To minimize the optical distortion effect, water-filled compartments with a flat surface are

installed perpendicularly to the camera axis.

Water Box

Pressure sensor

High speed 
camera

Conditioning
electronic

PXI Acquisition system

Trigger

Video

Backlight LED screen

Figure 3.3: Setup for the visualisation of the cavitation vortex rope, synchronized with acquisi-
tion from pressure sensors.

Finally, this method allows to link the wave speed to the natural frequency, the Thoma number

and the void fraction. This link also appears in the theoretical development of Rath [50] for

bubbly flows. A comparison between the theoretical and experimental values will confirm

whether the model for bubbly flows can be applied to a cavitation vortex rope in a Francis

turbine or not.

3.4 Experimental identification of bulk viscosity

The bulk viscosity represents internal processes breaking a thermodynamic equilibrium

between the cavitation volume and the surrounding liquid. To identify the energy dissipation

induced by the bulk viscosity, it is essential to quantify the amount of energy injected in the

hydraulic system at a given frequency. This measurement is performed with a Pressure-Time

method using two pressure sensors located before the injection flow [28] and is described in

the next subsection.

By injecting the same amount of energy in the numerical model, the bulk viscosity is simply

adjusted in the draft tube modeling to obtain the same forced harmonic response measured ex-

perimentally. This comparison is focused on circular pipes connecting the upstream reservoir

to the Francis turbine to reduce the uncertainty related to the experimental measurements.

Indeed, on the one hand, without a draft tube, and therefore without vortex rope, it is not nec-

essary to separate the synchronous from the convective part in experimental measurements.
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3.4. Experimental identification of bulk viscosity

On the other hand, without a Francis turbine, the pressure gradient associated with the hy-

draulic machine is not taken into account. It is also worth noting that for each calculated bulk

viscosity, the wave speed is also adapted to retain a correct natural frequency, in accordance

with Equation 3.7.

Moreover, the shape of the forced harmonic response depends essentially on the wave speed

in the hydraulic pipes. This wave speed is related to the amount of gas dissolved in the water

and therefore depends on the quality of the degassing procedure. By knowing the amount of

gas dissolved in water, the wave speed is calculated using Rath’s equation [50].

Finally, this method is applied to an off-resonance system to avoid energy transfer between

the precession of the vortex rope and the excitation source. Therefore, this method can only

be applied to partial load conditions. At full load operating conditions, the system may be

self-excited and the volume of cavitation may oscillate at the natural frequency of the hydraulic

system. However, the numerical results will be generalized with dimensionless relations in

Chapter 6 in order to predict the hydroacoustic parameters for different Thoma and Froude

numbers and thus predict the pressure and torque fluctuations of a reduced scale model of a

Francis turbine.

3.4.1 Pressure-Time method

This procedure uses the conservation of momentum for inviscid, irrotational and incom-

pressible pipe flows [28]. Neglecting the friction in a horizontal pipe without cavitation, the

equation 2.7 can be rewritten as:

∂C

∂t
+C

∂C

∂x
+ 1

ρw

∂p

∂x
= 0 (3.14)

The integration of Equation 3.14 between two arbitrary points 1 and 2, distant of L meters

from one another, for a constant cross-section A produces:

∂Q

∂t
= A

ρw L

(
p1 −p2

)
(3.15)

Pressure and discharge variables can be represented as the sum of their mean and fluctuating

parts:

Q = Q̄ +Q̃ p = p̄ + p̃ (3.16)
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Chapter 3. Methodology for identification of hydroacoustic parameters

With equations 3.15 and 3.16, the fluctuation part of the discharge is obtained by calculating

the following integral:

Q̃ = A

ρL

∫ (
p̃1 − p̃2

)
d t (3.17)

Then, a spectral analysis of Q̃ is used to define the amount of energy injected into the hydraulic

system for each excitation frequency. The accuracy of this method is discussed by Kashima et

al. [34] and will be proven in Chapter 4.

3.5 Experimental identification of the pressure source

The methodology used to identify the pressure source is based on the excitation generated by

the precession of the vortex rope. The excitation results from a strong interaction between the

vortex rope and the elbow, leading to the pressure source located in the inner part of the elbow

[7]. The use of an external excitation source is therefore not required for the identification of

this hydroacoustic parameter. As the location of the pressure source is not perfectly defined,

several locations along the draft tube will be tested. Moreover, the pressure source is modeled

as a distributed source to reduce the impact of the discretization on the forced harmonic

response. To reduce the number of dimensions of the problem and ease the optimization

process, the pressure source Sh is modeled by a Gaussian curve.

Sh = Ae

(
− (x−L)2

2e2

)
(3.18)

This source, distributed in the cone and the elbow of the draft tube, is described by three

mathematical parameters along the x-axis, see Figure 3.4.

• L represents the location of the center of the pressure source

• e corresponds to the standard deviation of the Gaussian curve

• A defines the amplitude of the Gaussian curve

To determine these three parameters, the experimental forced harmonic response of the

hydraulic system excited by the precession of the vortex rope is compared with the response

of the numerical model. The comparison is quantified for three different objectives to be met:

• The first objective compares the experimental forced response with the response of

the numerical model with a specific focus on circular pipes connecting the upstream
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3.5. Experimental identification of the pressure source

Figure 3.4: Representation of the Gaussian curve (Left) and the axis along the draft tube (Right).

reservoir to the Francis turbine. The advantage of focusing on this subset of the hydraulic

system reduces the uncertainty related to the experimental measurements and thus

increases the weight of this objective. Indeed, on the one hand, without a draft tube, and

therefore without vortex rope, it is not necessary to separate the synchronous from the

convective part in experimental measurements. On the other hand, without a Francis

turbine, the pressure gradient associated to the hydraulic machine is not taken into

account.

• With four pressure sensors in a section of the cone, it is possible to separate the syn-

chronous part from the convective part and to compare the synchronous value with

the numerical model. The weight of this objective is significant because of its low

uncertainty.

• The pressure sensors located in the elbow and the diffuser of the draft tube can also be

used as a benchmark to identify the pressure source induced by the vortex rope. Due to

the non-circular sections, the uncertainty of the pressure measurements is high and the

weight of this objective is reduced.

Given the number of objectives and the number of unknown parameters, several local minima

may exist and a dichotomy or a multigrid algorithm is not guaranteed to converge to the

global minimum. Therefore, a multi-objective genetic algorithm has been implemented to

quantify the pressure source. In a genetic algorithm, a population of candidate solutions to

an optimization problem is evolved towards better solutions. The evolution usually starts

from a population of randomly generated individuals and in each generation, the suitability of

every individual in the population is evaluated with the objectives defined above. The most

relevant individuals are selected from the current population and form a new generation.

The new generation of candidate solutions is then used in the next iteration of the algorithm.

Commonly, the algorithm comes to an end when a satisfactory acceptability level has been

reached for the population.

This algorithm is applied to different discharge factors QED and Thoma and Froude numbers

to study their impact. However, to decrease the number of solution satisfying the different
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Chapter 3. Methodology for identification of hydroacoustic parameters

objectives, it is assumed that the shape of the pressure source is independent of the Thoma

number. In other words, the precession of the flow is not affected by the pressure level at the

turbine outlet. This assumption is coherent because, for a constant QED and Froude numbers,

the outlet velocity triangle is not affected by the setting level hs . Therefore, the location of the

pressure source L and the standard deviation e will be evaluated by minimizing the error on

all Thoma numbers, for a constant pair of discharge factor and Froude number.

Moreover, the analysis of the amplitude A as a function of Thoma number will validate or dis-

prove the Dörfler’s assumption whereby the amplitude of the pressure source is independent

of the Thoma number. He assumes that the swirl momentum induced by the runner is only

slightly affected by the cavitation [46].

Finally, the study of the standard deviation e will determine whether the pressure source must

be lumped or distributed in the draft tube to better simulate the vortex rope.

3.6 Description of the identification algorithm

The identification of the hydroacoustic parameters is performed in the frequency domain

by using two different excitation systems. In the first of them, the wave speed and the bulk

viscosity are identified using an external excitation system generated by the rotation of a

cylindrical valve. In the second of them, the pressure source characterized by three parameters

is determined using the excitation generated by the precession of the vortex rope. As the

methodology is applied to an off-resonance system to avoid energy transfer between the

precession of the vortex rope and the external excitation source, there is no interaction between

the vortex rope and the natural frequency in the frequency domain. Hence, the wave speed

and the bulk viscosity can be identified separately from the pressure source.

3.6.1 Algorithm for wave speed and bulk viscosity

For a given operating condition, an external excitation system is designed to identify the

experimental natural frequency. The hydraulic system being excited and damped, the natural

frequency and the dissipation are coupled and must be calculated simultaneously. Thus, the

algorithm minimizes two different objectives:

• Identification of the wave speed value in the distributed draft tube modeling to obtain a

numerical natural frequency similar to the experimental natural frequency.

• Identification of the bulk viscosity value in the draft tube modeling to obtain the same

forced harmonic response measured experimentally.
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3.6. Description of the identification algorithm

Algorithm for wave speed

The first objective is to identify a couple
(
a,µ′′) for which the numerical model exhibits a

natural frequency similar to that of experimental measurements. To choose the most efficient

algorithm, a sensitivity analysis is required.

The behavior of the natural frequency as a function of the wave speed for a non-dissipative

system is shown in Figure 3.5 (Left). As highlighted in equation 3.6 for low wave speeds, the

natural frequency changes linearly. However, for high wave speed, assumption 3.1 is no longer

valid, the hydraulic capacitance of the pipes is no longer negligible and the curve approaches a

horizontal asymptote. Thus, the function between the wave speed and the natural frequency is

strictly increasing for cavitating flow. It exists a unique global minimum and therefore a unique

wave speed for a given natural frequency. Moreover, knowing neither the analytical function

nor its derivative, simple and robust algorithms such as the dichotomy or the multi-grid

algorithms can be used to determine the global minimum for a non-dissipative system.

The behavior of the natural frequency as a function of the bulk viscosity for a constant wave

speed is described in Figure 3.5 (Right). The quadratic behavior of this curve is related to the

equation 3.7. It exists a unique global minimum and therefore a unique bulk viscosity for

a given wave speed. Simple and robust algorithms such as the dichotomy or the multi-grid

algorithms can also be used to identify the unique global minimum.
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Figure 3.5: Behavior of the natural frequency as a function of wave speed (Left) and bulk
viscosity (Right).

The error on the numerical natural frequency fnum as a function of the wave speed and the

bulk viscosity is defined by Equation 3.19 and is shown in Figure 3.6 (Left).

Er r or = | fnum − fexp |
fexp

(3.19)
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Chapter 3. Methodology for identification of hydroacoustic parameters

Thus, the increase in bulk viscosity is accompanied with an increase in wave speed to maintain

a constant natural frequency. Moreover, for a given bulk viscosity, the behavior of the error is

similar to the case without dissipation and therefore there is a unique wave speed to minimize

the error on the natural frequency. The use of a dichotomy algorithm is, thus, justified. Finally,

the coupling between the wave speed and the bulk viscosity is highlighted by the red curve in

Figure 3.6 (Right), illustrating the minimum error for each bulk viscosity.

(a) 3D view of the error on natural frequency (b) View in the XY Plane

Figure 3.6: Error on the natural frequency as a function of wave speed and bulk viscosity.

Algorithm for bulk viscosity

The second objective of this algorithm is to determine the bulk viscosity to obtain a forced

harmonic response of the numerical model similar to the experimental forced harmonic

response. The amount of energy exciting the hydraulic system is quantified with the Pressure-

Time method, see Equation 3.17, and is injected into the numerical model. This identification

is applied out of resonance to avoid any exchange of energy between the vortex rope excitation

and the external excitation system. The error on the forced harmonic response (FHR) for a

pressure sensor at the turbine inlet is defined by the equation 3.20 and shown in Figure 3.7.

Er r or = |F HRnum −F HRexp |
F HRexp

(3.20)

At high bulk viscosity, all the injected energy is dissipated and the function approaches a

horizontal asymptote. For low bulk viscosities, the function is convex and has therefore a

unique global minimum. Then, this second objective can be minimized with a simple and

robust algorithm such as the dichotomy.
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Figure 3.7: Error on the forced harmonic response as a function of bulk viscosity.

Description of the procedure

The algorithm to identify the wave speed and the bulk viscosity is illustrated in Figure 3.8 and

described by the following procedure:

1. Identification of the experimental natural frequency fexp with an external excitation

system for a given operating condition.

2. Calculation of the amount of energy Sexp exciting the hydraulic system with the Pressure-

Time method.

3. Selection of an initial bulk viscosity µ′′. The numerical value of this parameter is small

for large cavitation volumes.

4. Selection of an initial wave speed with Equation 3.7.

5. Application of a dichotomy algorithm to identify the wave speed for a given bulk vis-

cosity µ′′ and a given frequency fexp . The error must be less than the frequency resolu-

tion required for the spectral analysis.

6. Application of a dichotomy algorithm to identify the bulk viscosity. The error on the

forced harmonic response must be less than a tolerance defined according to the studied

hydraulic system.

7. Identification of the wave speed and the bulk viscosity. The procedure described in

points 1 to 6 can be reapplied to a different Thoma number.

8. Calculation of the mean cavitation volume and the void fraction for different Thoma

number with Equations 3.12 and 3.13.
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1. fexp

2. Sexp

3. µ’’ initial

4. a initial

µ’’  and a in the 
draft tube modeling

5.| fexp - fnum| < ∆f

6.| FHRexp - FHRnum| < tol

7. Identification of µ’’  and a

8. Identification of Vc and β
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For a new 
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True
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False
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Figure 3.8: Synoptic scheme of the algorithm to identify wave speed and bulk viscosity.

3.6.2 Algorithm for the pressure source

The pressure source is modeled by a Gaussian curve characterized by three linearly dependent

parameters. Therefore, several local minima may exist and simple algorithms such as the

dichotomy cannot be used because of their strong dependence on the initial point provided.

To locate the global minimum, the three parameters are identified with a multi-objectives

genetic algorithm. This method of numerical analysis can be summarized in five steps, see

Figure 3.9 :

1. Initially, many individual solutions are randomly generated to form an initial popula-

tion. Population size and search space are defined by the nature of the problem (length

of the cone and the elbow, amplitude of the excitation induced by the vortex rope, ...)

2. The suitability of every individual in the population is evaluated with the objective

functions. In this context, the objective functions depend on the forced harmonic

response measured by pressure sensors located throughout the hydraulic system. De-

pending on the location of the pressure sensors and thus their quality measurement,

the objectives are given more or less weight in the evaluation.

3. A proportion of the existing population is selected to breed a new generation.

4. A new population of solutions is generated from those selected. The solutions of the

new generation, named “children”, share many characteristics with the previous gen-
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eration, named “parents”. Thus, new parents are selected for each new child and this

process continues until the new generation of solutions reaches the appropriate size.

5. This generational process is repeated until a solution is found that satisfies minimum

criteria, or until the maximum number of generations is reached.

1. Initial Population

2. Evaluation

3. Selection

4. Mutation

5. Termination

6. Results

True
False

Figure 3.9: Synoptic scheme of the genetic algorithm used to identify the pressure source.

3.7 Summary and discussion

The methodology to identify the hydroacoustic parameters at part load conditions was pre-

sented in this chapter. The wave speed and the bulk viscosity are determined in the frequency

domain and need the development of an external excitation source and the characterization

of the experimental natural frequency. A sensibility analysis justified the existence of a global

minimum and therefore the use of a simple and robust algorithm such as the dichotomy.

The pressure source is modeled by a Gaussian curve characterized by three linearly dependent

parameters. Therefore, several local minima may exist and simple algorithms such as the

dichotomy cannot be used because of their strong dependence on the initial point. To iden-

tify the global minimum, the three parameters are identified with a multi-objective genetic

algorithm. However, to decrease the number of solutions satisfying the different objectives,

it is assumed that the location of the pressure source L and the standard deviation e are

independent of the Thoma number.
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Chapter 3. Methodology for identification of hydroacoustic parameters

Finally, this methodology can be applied to any hydraulic system comprised of a Francis

turbine and a draft tube. Using a rotating valve and a few pressure sensors located along the

hydraulic system, the harmonic forced response and the natural frequency are measured.

Then, with an accurate numerical model, the wave speed, the bulk viscosity, the cavitation

volume, the void fraction and the pressure source induced by the vortex rope can be identified.

A generalization of these hydroacoustic parameters with dimensionless relations will allow

predicting the hydroacoustic parameters for different Thoma and Froude numbers and thus

allow predicting the pressure and torque fluctuations of a reduced-scale physical model of a

Francis turbine for different operating conditions.
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4 Experimental Instrumentation Setup

4.1 Model Testing Facilities

A reduced-scale physical model of a Francis turbine with a specific speed of ν= 0.27 was in-

stalled on the EPFL test rig PF3 of the Laboratory for Hydraulic Machines, shown in Figure 4.1.

The prototype generating unit, featuring a rated power of 444 MW, is located in a power plant

in the Canadian province of British Columbia. The test rig allows for performance assessments

within an accuracy of 0.2 %, complying with the IEC standards [55]; these performance as-

sessments are usually performed to predict and evaluate the behavior of hydraulic prototypes.

The test rig is operated in a closed loop configuration driven by two 400 kW centrifugal pumps

connected in series and applying a maximum head of 100 m. The rotating speed of the runner

is regulated by a generator and the discharge is controlled by the guide vane opening. Finally,

the pressure level in the draft tube is set by adjusting the pressure in the downstream reservoir

with a vacuum pump.

Figure 4.1: EPFL test rig PF3 drawn with the excitation system and locations of dynamic
pressure sensors.
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4.2 Pressure Measurements Instrumentation

Dynamic wall pressure measurements are carried out by making use of flush-mounted piezore-

sistive pressure sensors [25]. Their main characteristics are summarized in Table 4.1. Output

signals of the pressure sensors are amplified with a gain of either 10 or 100 depending on the

pressure measurements range, and then are simultaneously acquired during three-minute

runs on a NI PXI-1033 acquisition device. The sampling frequency is set to 1000 Hz to capture

all physical phenomena that could influence hydroacoustic parameters. Finally, since pressure

signals for a part load operating condition are not perfectly periodic, a Hamming window

is applied to the spectral analysis. This window is commonly used in practice to eliminate

the discontinuities at the beginning and end of records. Overlapped processing techniques

are also used to counteract the increase in variability caused by the time history tapering for

side-lobe suppression [10]. A common selection in overlapped processing is a 50% overlap.

Table 4.1: Piezoresistive pressure sensors characteristics.

Characteristic Value

Measurement range 0 ÷ 5 bars
Maximum measurement uncertainty 0.7 %%

Bandwidth 0 ÷ 25 kHz

Wall pressure measurements are performed in the draft tube, in the turbine, and in the test

rig. The location of the dynamic pressure sensors on the EPFL test rig PF3 are summarized in

Appendix B. Twelve pressure sensors are located along the test rig pipe (P1-P12), 8 pressure

sensors are located in the cone on two different sections turned 90◦ from one another, 2

pressure sensors are installed in the elbow (E1-E2) and finally 4 pressure sensors are located in

the diffuser (D1-D4), see Figure 4.2. The two last pressure sensors (GV-NE and GV-SW ) are

located between the guide vanes. The pressure sensor P1 at the turbine inlet will be considered

thereafter as the reference sensor for all analyzes in the frequency domain. It is interesting

to note that the location of the sensors is deliberately concentrated in the draft tube and

on the first part of the test rig to reduce the error of the eigenshape measurements. These

measurements are synchronized with the test rig parameters measurement, such as Thoma

number, head, discharge and torque.

4.3 Overview of pressure fluctuations

A waterfall diagram with a cross spectral density function of the P1 and C1N pressure sensors

at plant value of Thoma number is illustrated in Figure 4.3. The discharge factor QED is

divided by the QED at the best efficiency point (BEP). The resonance phenomenon observed

at QED = 77.6% of the discharge at the BEP occurs when the frequency of the vortex rope

precession matches the first eigenfrequency of the test rig, as reported by Favrel et al. [26].
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Figure 4.2: Close view of the draft tube.
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Figure 4.3: Cross spectral density function of the P1 and C1N pressure sensors at σ= 0.11 and
Fr = 8.75 over loads ranging from of 40% to 120%.
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Globally, the discharge factor reduction imposes an almost linear increase of vortex rope

precession frequency for a constant rotating speed, see Figure 4.4. Nevertheless, a first level

occurs between 45 and 55 % of QED at BEP. A second level is also present near BEP. Finally,

according to Yamamoto et al. [64], a linear increase in vortex rope frequency also occurs

at deep part load with a steeper slope. Because of this change in behavior from the vortex

rope frequency, the study is conducted in two different operating ranges: the first operating

condition PL1 is located at 80% of the QED at BEP, the second operating condition PL2 is

located at 64% of the QED at BEP. The analysis of these two operating conditions is realized in

both cavitation-free and cavitating conditions for different Froude number. A summary of the

operating conditions is described in the Table 4.2.
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Figure 4.4: Evolution of vortex rope precession as a function of discharge factor QED for a
Froude number Fr = 8.75.

Table 4.2: Selected Francis turbine operating conditions.

nED /nED,BEP QED /QED,BEP Fr σ

PL1 Part Load 1 0.80 [6.56, 7.66, 8.75, 9.85] [0.06 - 0.15]
PL2 Part Load 1 0.64 [7.66, 8.75, 9.85] [0.11 - 0.20]

By studying data from pressure sensors in the frequency domain, it is possible to identify the

natural frequency of the hydraulic system if the measurements are carried out near resonance.

Indeed, under these conditions, the energy present at vortex rope frequency is sufficient to

excite the first eigenmode of the test rig. Away from resonance, it becomes impossible to

determine with certainty the natural frequency of the test rig. Thus, as this information is

essential to identify hydroacoustic parameters, an excitation system is set up.
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4.4. Excitation system

4.4 Excitation system

4.4.1 Design of the excitation system

Characterization of test rig eigenmodes is determined in a spectral analysis with an external

excitation source. This excitation source is designed and constructed to inject or extract

a periodical discharge at a given frequency in the upstream pipe, see Figure 4.5. A similar

excitation system with the same rotating valve has been studied by Blommaert in 2000 [11]

to actively reduce hydraulic fluctuations at a precise frequency. The excitation system uses

a variable speed pump KSB Movichrom G 15/5 which allows to control the amplitude of

excitation. This pump features a rated power of 5.5 kW and a rated rotating speed of 2’900 rpm.

The pump location is 4 m below the reservoir to prevent local occurrence of cavitation and

respect the NPSH value imposed by the manufacturer. This particularity is not represented

in Figure 4.5 for simplicity. The modulation of the discharge is achieved through a custom-

made rotating valve. This valve is driven by a variable speed motor enabling to excite the

hydraulic test rig at frequencies ranging from 1 Hz to 15 Hz. Moreover, an air vessel ensures

hydroacoustic decoupling between the injection pump and the entire hydraulic circuit. Finally,

two pressure sensors (ES1 and ES2) are installed on the excitation system pipe to measure

the fluctuating discharge with a Pressure-Time method. This excitation system is mainly

composed of simple elements and may be easily modeled. Only the custom-made rotating

valve is difficult to characterize and requires further study.

Accumulator
Pressure max. = 6 bars

Variable speed pump
Flow meter
[2-70 m3/h]

Pressure sensors ES1 
and ES2

P1 P2 P3

Rotating valve
Range : [1-15 Hz]

Figure 4.5: CAD model of the excitation system.
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4.4.2 Characterization of the rotating valve

To model the rotating valve illustrated in Figure 4.7, the characteristic curve is determined

on the EPFL test rig PF4 of the Laboratory for Hydraulic Machines, shown in Figure 4.6 [29].

Different components constitute this independent close hydraulic loop:

Figure 4.6: Side view of EPFL test rig PF4.

• The variable speed pump of test rig is of type “Sulzer G7 200-500” with a maximum

rotating speed of 1000 rpm. The pump is controlled by an electrical drive with a manual

potentiometer for rotating speed adjustments.

• The supply reservoir is made of steel and has a cylindrical shape of 2.8 m in height and

1.6 m in diameter. Its capacity is equal to 5.1 m3.

• The pressurized air vessel is a cylindrical tank having a water capacity of 1 m3. The max-

imum admissible internal pressure inside the vessel is limited to 2 bars. It dynamically

decouples the injection pump from the entire hydraulic circuit.

• A 10 m long PVC supply pipe of internal diameter 0.15 m connects the pump to the

pressurized air vessel.

• Integrated in the PVC supply is a “Proline Promag 50 W ” electromagnetic flow meter,

providing a mean value of the discharge.

• Steel pipes connect the pressurized air vessel to the supply reservoir. A reduced section

is imposed 0.65 m before the rotating valve to prevent recirculation close to the valve.

For steady flow, measurements of mean discharge and mean pressure upstream and down-

stream of the valve are used to quantify the energy loss coefficient for different opening angles

of the valve. Five measurement sections are used to determine energy losses imposed by the

valve for different opening angles, see Figure 4.8. Each section is composed of 4 pressure taps

connected together to a dynamic pressure sensor. This configuration allows for mean pressure
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4.4. Excitation system

Figure 4.7: Rotating valve of the excitation system.

measurement for each instrumented section. For several opening angles, the mean discharge

and the mean pressure are measured for five rotating speed of the pump: 300, 350, 400, 450,

and 500 rpm.

Upstream measurement section Downstream measurement sections

1997

Ø
15

0

111150150 150100130527

Ø
15

0

Ø
80

[mm]Flow direction

Figure 4.8: Location of measurement sections on EPFL test rig PF4.

Using different measurement sections located downstream of the valve, it is possible to

verify that the energy loss for a stationary homogeneous flow in a circular steel pipe can be

approximated with the Darcy-Weisbach friction equation 4.1 [63] and the Moody chart to

compute the friction factor λ.

g Hr = λQ|Q|
2g D A2 (4.1)

where D is the diameter of the pipe and A defines pipe area. By applying this formulation, the

pressures at inlet and outlet of the valve are computed and therefore specific energy losses

of the valve ∆g Hv are determined. According to Avellan [8], the singular specific energy loss
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coefficient between inlet and outlet of the valve is defined as:

Kv =
(

Pi nlet
ρw

+ g Zi nlet

)
−

(
Poutlet
ρw

+ g Zoutlet

)
Q2

2A2

= ∆g Hv

Q2

2A2

(4.2)

The results obtained are presented in Figure 4.9a for five rotating speeds of the pump and

several opening angles between 0 and 60 ◦. For larger openings, discharge falls to zero and the

valve is considered closed. Thus, discharge fluctuations imposed by the rotating valve will not

be sinusoidal and will certainly generate harmonics.
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Figure 4.9: Experimental characteristic curve of the rotating valve.

Thus, as mentioned in equation 4.2, the relation between Q2 and the specific energy loss is

constant, whatever the rotating speed of the pump. These relatively clear results confirm

the method used to determine the energy loss coefficient as a function of opening angle.

Finally, numerical values of the energy loss coefficient for different opening angles may be

approximated by an exponential curve defined in Figure 4.9b. With this characteristic curve,

the rotating valve behavior can be modeled.

Finally, to validate the characteristic curve of the rotating valve, the methodology is to compare

the experimental dynamic behavior with a numerical model of EPFL test rig PF4. To obtain

an unsteady flow, the valve is driven by a variable speed motor at a given frequency and the

dynamic pressure and discharge are measured. To describe the unsteady flow, eight dynamic

pressure sensors are this time flush-mounted on the steel pipes, see Figure 4.10. For each

section, two pressure sensors are placed turned 180◦ from one another. The measurement

section downstream of the valve is located farther than seven times the pipe diameter in order

to avoid recirculation zones.

44



4.4. Excitation system

1997

Ø
15

0

Ø
15

0

Ø
80

[mm]Flow direction

50L = 150L = 150120

S1R, S1L S2R, S2L S3R, S3L S4R, S4L

Figure 4.10: Location of the flush-mounted pressure sensors on EPFL test rig PF4.

In addition to instantaneous pressure, three sections upstream of the valve determine the

fluctuating discharge of the pipe. This computation can be determined with the Pressure-Time

method derived from the Navier-Stokes equations and defined by Equation 3.17. Thus, with

the two pressure sensors, the fluctuating discharge and fluctuating pressure can be measured

experimentally.

A numerical model of the PF4 test rig is derived by using the software SIMSEN. The model

simply consists of two infinite tanks connected by steel pipes; the difference of water level is

defined by the head of the pump. The modeling of pipes and tanks are widely described in the

next chapter. Pressure losses caused by the rotating valve are modeled by the characteristic

curve defined by the static study. A comparison of fluctuating pressure and fluctuating

discharge experimentally and numerically obtained with a rotating valve are presented in

Figure 4.11 in the frequency domain.
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Figure 4.11: Comparison of cross spectral density functions from experimental data and
numerical values, at excitation frequency equal to 2.75 Hz.

The good agreement between experimental and numerical Gxx for the pressure sensor S1R in-

dicates a good characterization of the rotating valve. Moreover, as previously pointed out, the
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fact that no flow can pass through the valve at an opening angle greater than 60 degrees, gener-

ates the occurrence of harmonic. It will therefore be important to excite the first eigenmode of

EPFL test rig PF3 with a frequency close to the first natural mode to avoid any interaction with

the harmonics originating from the valve. Finally, the good agreement between experimental

and numerical Gxx discharge indicates that the presented method to experimentally compute

the fluctuating discharge provides good results. Thus, the assumptions described in Subsec-

tion 3.4.1 do not influence the computation of the fluctuating discharge much. Therefore, this

Pressure-Time method will be used to calculate the discharge source injected in the PF3 test

rig by using two experimental signals of the dynamic pressure sensors.

Since the modeling of the rotating valve is now known and validated, it is possible to excite

the EPFL test rig PF3 with the subsystem described in subsection 4.4.1 to determine the

eigenmodes of the hydraulic system.

4.4.3 Test rig excitation

With the excitation system, it is possible to determine the first eigenfrequencies for all op-

erating conditions of the Francis turbine. For instance, for given QED , Froude and Thoma

numbers, the hydraulic system is experimentally excited in a frequency range to determine

the eigenmode of the test rig. For each excitation frequency, the forced harmonic response

is measured with 27 pressure sensors located on the test rig. The number of channels in the

acquisition system being limited to 28 pressure sensors, the use of sensors ES1 and ES2 to

quantify the fluctuating discharge injected by the excitation system requires the disconnection

of two other pressure sensors: E2 and D4. Moreover, the use of a flowmeter to determine the

mean flow injected by the excitation system requires the disconnection of a sensor from the

turbine: GW-NE.
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Figure 4.12: Cross spectral density function of P1 and ES1 pressure sensors, divided by the
one-sided autospectral density function of the reference sensor P1 located at the turbine inlet.
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4.5. Summary and discussion

The cross spectral density function Gx y of the two pressure sensors, named P1 and ES1, is

computed and divided by the one-sided autospectral density function Gxx of the reference

sensor P1, located at turbine inlet. For instance, Figure 4.12a shows the hydraulic test rig

response for 21 excitation frequencies for the PL1 operating condition with a Froude number

equal to 8.75 and a Thoma number equal to 0.15. The amplitude obtained for each given

excitation frequency is plotted in Figure 4.12b. The two peaks highlighted by the red arrows

indicate the first and second eigenfrequencies of the hydraulic system.

Figure 4.13 described the shape of the hydraulic EPFL test rig PF3 response for the first and

the second eigenfrequencies. Each value represents the cross spectral density function Gx y of

a pressure sensor with the reference sensor P1, divided by the one-sided autospectral density

function Gxx of the reference sensor.
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Figure 4.13: The hydraulic response on EPFL test rig PF3 for first and second eigenmodes.

Figure 4.14 shows the relation between the Thoma number and the first eigenfrequency of

the hydraulic system obtained by applying the same methodology for all Thoma numbers,

Froude numbers and QED values. Globally, the natural frequency increases relatively linearly

as a function of Thoma number when the volume of cavitation decreases. In addition, Froude

number influence remains small and its decrease causes a slight reduction in eigenfrequency.

Physically, the Froude number affects the distribution of cavitation in the flow as it determines

the pressure gradient relatively to the size of the machine. Finally, the difference between the

two operating conditions PL1 and PL2 is related to the pressure level in the draft tube.

4.5 Summary and discussion

A reduced-scale physical model of a Francis turbine was installed on EPFL test rig PF3 of the

Laboratory for Hydraulic Machines. This test rig allows for performance assessments within

an accuracy of 0.2 %, complying with the IEC standards. A waterfall diagram at Thoma number

of the power plant indicates a resonance phenomenon at QED = 77.6% of discharge at BEP.

Evolution of vortex rope precession frequency as a function of QED is linear at part load and
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Figure 4.14: Evolution of natural frequency as a function of Thoma number for operating
conditions PL1 and PL2.

deep part load conditions. Two levels are nevertheless present: the first one near BEP and the

second one between 45 and 55 % of the QED at BEP. Because of this change in behavior from

the vortex rope frequency, the study is conducted in two different operating ranges: the first

operating condition PL1 is located at 80% of the QED at BEP, the second operating condition

PL2 is located at 64 % of the QED at BEP. The analysis of these two operating conditions is

realized in both cavitation-free and cavitating conditions for different Froude numbers.

Identification of eigenfrequencies is essential to the determination of hydroacoustic param-

eters of cavitation vortex rope. Thus, an excitation system is set up to define the natural

frequency for every operating condition. The forced harmonic response of the hydraulic

system is measured with 27 pressure sensors and a spectral analysis identifies the shape and

the frequency of the first eigenfrequency. It is important to excite the first eigenmode of EPFL

test rig PF3 with a frequency close to the first natural mode to avoid any interaction with

the harmonics originating from the valve. It was demonstrated that the natural frequency

increases relatively linearly as a function of Thoma number when the volume of cavitation de-

creases. Froude number influence remains small and the difference between the two operating

conditions PL1 and PL2 is related to the pressure level in the draft tube.

These systematic measurements for different operating conditions will help in knowing the

influence of the QED , Thoma and Froude numbers on the hydroacoustic parameters of cavita-

tion vortex rope. Thus, it will be possible to predict these hydroacoustic parameters for every

operating condition of a reduced-scale physical model. Finally, according to the methodology

presented in Chapter 3, it is necessary to develop a one-dimensional numerical model of the

hydraulic circuit.

48



5 Test rig hydroacoustic model

In accordance with the methodology presented in Chapter 3, a modeling of the EPFL test

rig PF3 is necessary to identify the hydroacoustic parameters of the draft tube model. The

one-dimensional model of the hydraulic system is setup with the EPFL SIMSEN software.

The most common hydraulic and electrical components are implemented in this software to

simulate the transient behavior of a complete hydroelectric power plant. The modeling of

the hydraulic components is based on equivalent electrical scheme representation which is

widely described by Nicolet [41].

This chapter is focused on the modeling of the hydraulic components of EPFL test rig PF3

such as viscoelastic pipes, Francis turbine and spiral casing. Finally, a validation of the model

is presented for a steady flow.

5.1 Viscoelastic pipe model without cavitation

The viscoelastic model is derived from momentum and continuity equations with a one-

dimensional approach. As for the cavitation vortex rope modeling, the model assumes an

isotropic fluid, a flow normal to the cross-section A and uniform distributions of pressure p

and velocity C in the cross-section. Without a cavitation vortex rope, the set of equations 2.32

can be simplified:

• Without vortex rope, the pressure source Sh corresponding to the force induced by the

helical vortex rope precession on the draft tube wall disappears.

• Cavitation-free flow induces a significantly higher wave speed, on the order of 1000 m/s.

Thus, convective terms present in the momentum equation can be simplified.

• Test rig pipes do not have a divergent geometry and, therefore, the parameter R ′
d can be

removed.

• Without cavitation, dissipation induced by the compressibility of the cavitation volume
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Chapter 5. Test rig hydroacoustic model

disappears and only wall deflection and compressibility of the liquid is taken into

account.

Additionally, the dissipation induced by both the fluid and pipe material cannot be defined

with quasi-steady state one-dimensional model, such as the Darcy–Weisbach friction equa-

tion. This model is known for underestimating friction forces and overestimating pressure

oscillations during fast transient events [63]. Indeed, velocity profiles in unsteady-flow con-

ditions show greater gradients, and thus greater shear stresses, than the corresponding val-

ues in steady-flow conditions [60]. To compensate for this lack of damping, the unsteady

friction model Ju is introduced. The basic hyperbolic partial differential equations for one-

dimensional unsteady pipe flow for an elementary pipe of length dx, and wave speed a0 can

be rewritten as:

L′ ∂Q
∂t +R ′

λ
Q + ∂h

∂x + Ju = 0
∂h
∂t +

a2
0

g A
∂Q
∂x = 0

(5.1)

The RLC parameters of the equivalent scheme are given by:

Rλ =
λ|Q̄|d x

2g D A2 L = d x

g A
C = g Ad x

a2
0

(5.2)

where λ is the local loss coefficient and D is the diameter of the elementary pipe. The hydraulic

resistance Rλ, the hydraulic inductance L and the hydraulic capacitance C correspond to

energy losses, inertia and storage effects, respectively.

From the normal viscous stresses τxx definition in cylindrical coordinates, the diffusion term

Ju is derived:

Ju,v = µ′

ρAD

∂2Q

∂x2 (5.3)

This additional dissipation leads to a resistance in series with the capacitance. This viscoelastic

resistance is accounting for both fluid and pipe material viscoelasticity and can be expressed

as:

Rve = µ′

ρAg d x
(5.4)
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5.1. Viscoelastic pipe model without cavitation

with µ′ the equivalent viscoelastic damping of both the fluid and the wall. Currently, this

viscoelastic parameter is difficult to quantify and comparison with experimental data is often

essential to define its numerical value.

This new viscoelastic parameter has a direct impact on the damping, but it does not take into

account the complete physics of the flow. Wave passage induces significant flow reversal near

the wall. This flow reversal induces a large velocity gradient and thus a significant unsteady

shear at pipe wall. It is widely recognized that the treatment of the wall friction as a static

function of the mean velocity underestimates the wave attenuation at moderate and high

frequencies. Inasmuch as the wall shear stress is not in phase with the mean velocity in

pulsatile flow, the inertia term is modified by a factor ζ which is dependent on Reynolds

number. A first approximation of the ζ parameter is given by Wylie and Streeter [63]. Another

definition of this parameter is developed by Landry et al. [38] and is described as:

Lv = ζ

g A
∼= 1+k

g A
(5.5)

where k is the Vítkovský friction coefficient [61]. This coefficient is defined using the Vardy

analytically deduced shear decay coefficient C* [59] defined as:

k =
p

C∗/2 (5.6)

where

• for laminar flow: C∗ = 0.00476

• for turbulent flow: C∗ = 12.86

Re log10(15.29/Re0.0567)

Finally, the unsteady friction Ju may be represented by a viscoelastic resistance Rve taking

into account the fluid and pipe material viscoelasticity, and by an inertia term Lv induced

by the phase difference between wall shear stress and mean velocity in pulsatile flow, see

Figure 5.1. Experimentally, according to Covas et al. [16], it is very difficult to make the

distinction between the frictional and viscoelastic behaviors. According to Duan et al. [23], the

contribution of unsteady friction damping is important for small-scale (laboratories systems)

but not for large-scale water supply and transmission lines. Clearly, the relaxation of the

velocity gradient diminishes the role of unsteady shear. Indeed, the faster is the relaxation

time, the less important is unsteady shear. Nevertheless, even when unsteady friction is not

important for the wave envelope, it still imposes its signature on the wave shape.
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Figure 5.1: Viscoelastic pipe model without cavitation.

5.2 Francis turbine runner model

Francis turbines essentially behave as pressure sources converting hydraulic energy into

mechanical work. A hydraulic inductance Ltur b related to the inertia effects of the water

and the hydraulic resistance Rtur b modeling the head losses through the guide vanes closure

complete the numerical model. This hydraulic resistance is only effective for small discharges,

below 5 % of the nominal value. Pressure source Htur b and mechanical torque Ttur b are driven

by turbine characteristics which are nonlinear functions of guide vane opening y , rotational

speed ω and discharge Q. The resulting equivalent model of the Francis turbine runner is

described with an inductance, a resistance and a pressure source in series and is represented

in Figure 5.2

Rturb

h1
h1 Qi

Lturb Hturb(y,Qi,ω)

Figure 5.2: Francis turbine runner model.

The resulting differential equation is defined as:

Ltur b
dQi

d t
+Rtur bQi =−Htur b +h1 −h1̄ (5.7)

where h1 and h1̄ are piezometric heads at the runner inlet and runner outlet, respectively.
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5.3. Spiral casing model

Finally, the rotational speed ω is obtained with the momentum equation applied to the

rotational inertia Jtur b :

Jtur b
dω

d t
= Ttur b −Tel ect (5.8)

Tel ect represents the electromagnetic torque of the generator.

To improve the model of the Francis turbine, the dynamic behavior of the spiral casing is taken

into account. Such an approach is suitable for transient purposes and has been successfully

validated by Bolleter in the case of a pump [12].

5.3 Spiral casing model

The spiral casing consists in a composite material made of fiberglass in an Epoxy resin matrix.

The hydroacoustic model of the spiral casing is composed of seven different viscoelastic pipes,

represented in Figure 5.3. The star connection models the flow distribution on the runner.

Q

25% Q

25% Q

25% Q

25% Q

Q

Figure 5.3: Spiral casing modeled by seven viscoelastic pipes.

For the determination of RLC terms of the hydroacoustic model of the viscoelastic pipes, the

length Lsc , the cross-section Asc , the friction coefficient λsc and the wave speed asc must be

determined. The determination of the length and the cross-section is done using the structural

characteristics of the reduced-scale physical model of the Francis turbine. Friction coefficient

of pipes are evaluated with the Darcy-Weisbach equation. Wave speed is defined for a circular

pipe as:

a2 = 1

ρ
(

1
Ew

+ 1
A

d A
d p

) ' 1

ρ
(

1
Ew

+ 2
R0

dR
d p

) (5.9)
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The Ew parameter represents the bulk modulus of water and 1
A

d A
d p is the rated area increase

due to pressure increase. The second term is experimentally determined for each pipe.

To identify wave speed in the spiral casing, internal pressure of the water is successively

increased from 0 to 3 bars by increments of 0.5 bar. For each section shown in Figure 5.4(a),

four indicators are installed to measure the deformation of the composite when internal

pressure changes, see Figure 5.4(b). Then, internal pressure is decreased in order to verify the

effect of hysteresis.

Section A

Section B

Section C

Section D

(a) Measurement section in the spiral casing. (b) Indicator locations for a spiral casing sec-
tion.

Figure 5.4: Measurement locations in the spiral casing.

For each section, the deformation of the spiral casing wall is carried out four times to check

the repeatability of the experiment and to determine measurement error. The values obtained

for every section are presented in Figure 5.5.

Finally, with Equation 5.9, the wave speed can be determined for different locations in the

spiral casing. Generally, wave speed is increasing from inlet up to the tongue as the cross-

section decreases. This result demonstrates a stiffening of the structure where cross-section

decreases. Moreover, results indicate that the lower part of the spiral casing undergoes greater

deformation than the upper part.

5.4 Energy losses model

Since the one-dimensional model does not take into account geometric variations of the cir-

cuit, every elbow is described as a singular specific energy loss and represented by a hydraulic

resistance. The singular energy loss coefficient Kv is computed with the Weisbach formulation
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Figure 5.5: Wave speed evolution along the angular position of the spiral casing.

for an elbow [8]:

Kv =
[

0.131+1.847

(
D

2r

)3.5] θ

90
(5.10)

where D is the internal diameter of the elbow, r corresponds to the radius of curvature, and θ

defines the elbow angle in degrees.

5.5 Validation of the test rig hydroacoustic model for a steady flow

By using the numerical model of the hydraulic components, the EPFL test rig PF3 model is

carried out, as illustrated in Figure 5.6. The numerical model is operated in a closed loop

configuration, driven by two centrifugal pumps connected in series. The characteristic curves

of the pumps and the reduced-scale physical model of the Francis turbine are experimentally

measured and implemented in the numerical model. Moreover, every elbow in the test rig is

modeled with a discrete loss and every hydraulic pipe is represented by a viscoelastic pipe.

The star connection of the spiral casing model is introduced to model the flow distribution

on the runner. Finally, the draft tube is divided into three parts: the cone, the elbow and the

diffuser. Each component of the draft tube is modeled by a cavitation vortex rope modeling to

take into account the complexity of the two-phase flow.

To validate the accuracy of the model, the numerical values of the torque T, the head H of the

Francis turbine and the discharge Q are compared with experimental measurements for a

steady flow.
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Chapter 5. Test rig hydroacoustic model

Figure 5.6: Layout of EPFL test rig PF3 modeled with the SIMSEN software.

Experimentally, the torque is directly measured with a torque meter. The mean value of the

discharge is measured using an eletromagnetic flow meter. Finally, the specific hydraulic

energy E = g H available to the turbine is given by subtracting the specific energies between

the high pressure and low pressure sections of the hydraulic machine. Using a differential

pressure measurement, Equation 1.3 can be simplified as:

E = ∆p

ρw
+

(
C 2

1

2
−

C 2
1̄

2

)
= ∆p

ρw
+ Q2

2

(
1

A2
1

− 1

A2
1̄

)
(5.11)

where A1 and A1̄ correspond to high pressure and low pressure cross-sections.

Experimental and numerical values are compared at operating point PL2 without cavitation

flow with a Froude number equal to 7.66. To stabilize the system to the desired operating

condition, guide vane opening, rotational speed of the Francis turbine and hydraulic pumps

are indicated. Results presented in Table 5.1 suggest a very good accuracy of the numerical

model for a steady flow.

Table 5.1: Comparison of experimental and numerical results for a steady flow.

Units Experimental value Numerical value Relative error

H/HBEP [-] 0.7653 0.7768 + 1.50 %
Q/QBEP [-] 0.5608 0.5592 - 0.28 %
T /TBEP [-] 0.4550 0.4586 + 0.79 %
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5.6 Summary and discussion

A modeling of EPFL test rig PF3 is developed to identify the hydroacoustic parameters of

the draft tube model. All hydraulic components of EPFL test rig PF3 are described and their

numerical model are presented.

For a cavitation-free pipe, a viscoelastic model is derived from momentum and continu-

ity equations. Unsteady friction induced by significant flow reversal near the wall may be

represented by a viscoelastic resistance taking into account both fluid and pipe material vis-

coelasticity and by an inertia term induced by the phase difference between wall shear stress

and mean velocity in pulsatile flow.

For the Francis turbine runner, an equivalent model is described with an inductance, a

resistance and a pressure source in series.

The spiral casing consists in a composite material made of fiberglass in an Epoxy resin matrix.

The hydroacoustic model of the spiral casing is composed of seven different viscoelastic pipes.

The star connection models the flow distribution on the runner. For the determination of RLC

terms of the hydroacoustic model of the viscoelastic pipes, the wave speed must be evaluated

with Equation 5.9. Since the Young modulus is difficult to quantify for a composite material,

experimental measurements of the deformation of the spiral casing wall are performed for

different internal pressure. The results demonstrate an increase in the wave speed from inlet

up to the tongue as the cross-section decreases.

Moreover, as the one-dimensional model does not take into account the geometric variations

of the circuit, every elbow is described as a singular specific energy loss and represented by a

hydraulic resistance.

The comparison between the numerical and experimental results suggests very good accuracy

of the numerical model for a steady flow. Finally, this accurate numerical model being vali-

dated, it can be used to identify the hydroacoustic parameters of the cavitation vortex rope

modeling.
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6 Identification of the hydroacoustic
parameters

The methodology described in Chapter 3 is applied to identify wave speed, bulk viscosity

and pressure source for several operating conditions described in Table 4.2. The draft tube is

modeled from the general momentum equation 2.10 to have a numerical simulation as close

as possible to the physical flow. Values for hydroacoustic parameters will be validated in the

frequency domain. Additionally, by knowing the wave speed for different Thoma numbers, the

void fraction of the cavitation vortex rope will be computed. This parameter will be compared

with the void fraction estimated with high-speed visualization of the cavitation vortex rope in

the Plexiglas cone.

Four different numerical draft tube models will be compared to determine the impact of

convective and divergent geometry terms of the momentum equation on the identification

of the hydroacoustic parameters. Furthermore, to predict the hydroacoustic parameters for

non-studied operating conditions and to break free from the dependence upon the level

setting of the Francis turbine, dimensionless numbers will be proposed. They will have the

advantage of being independent of the selected numerical model and define a behavior law

of hydroacoustic parameters when the cavitation volume oscillates at resonance operating

conditions.

Finally, to investigate the stability operation of the prototype, the hydroacoustic parameters

need to be transposed to the prototype conditions according to similitude laws. By assuming

both Thoma similitude and Froude similitude conditions, transposition laws will be developed

and hydroacoustic parameters will be predicted for the prototype.

6.1 Identification of wave speed

Identification of eigenvalues is obtained with an excitation system and shown in Figure 4.14.

With a numerical model and a dichotomy algorithm, the wave speed value is identified for two

discharge factors QED and presented in Figure 6.1 (Left) as a function of the Thoma number.
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Figure 6.1: Evolution of wave speed as a function of Thoma number (Left) or void fraction
(Right) for different Froude numbers.

Thus, it can be observed that wave speeds drop to values in the range from 10 to 60 m/s

when the cavitation vortex rope is present, while the wave speed value is around 400 m/s in

cavitation-free conditions in a Plexiglas cone. Such low wave speeds imply that the convec-

tive part of the Navier-Stokes equation cannot be simplified anymore when the cavitation

vortex rope occurs, and the assumption described by Equation 3.1 is only valid for the simpli-

fied model. Moreover, wave speed value increases almost linearly with Thoma number. To

break free from this dependence upon the level setting of the Francis turbine, dimensionless

numbers will be proposed afterward.

6.1.1 Computation of cavitation volume

By knowing the wave speed for different Thoma numbers, the volume of the cavitation vortex

rope Vc , defined as the volume limited by the vapor pressure iso-surface, can be computed.

• First, according to Equation 3.11, the cavitation compliance can be computed and

represented in Figure 6.2 (Left) as a function of the Thoma number.

• Then, the values of the cavitation compliance can be interpolated with a power law

regression [35]. The quality of the selected mathematical law is reinforced with a regres-

sion coefficient R-square close to 1. This feature is applicable to all operating points, see

Figure 6.2 (Right), and Equation 3.11 can be rewritten as:

Cc = g Ad x

a2
equ

≈− 1

HTur b

∂Vc

∂σ
= AσB (6.1)

where A and B are the constants of power law regression.
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Figure 6.2: Evolution of cavitation compliance as a function of the Thoma number for different
Froude numbers.

• Finally, by integrating Equation 6.1, a relation between cavitation volume and Thoma

number can be defined as:

Vc =−HTur b
A

B +1
σB+1 (6.2)

By performing integration of Equation 6.2 for all operating points, it becomes possible to

express the wave speed as a function of void fraction β, defined as the fraction of the cone

volume that is occupied by the gas phase, see Equation 3.13. Thus, with the help of the void

fraction parameter β, the wave speed is determined independently of the Thoma number and,

therefore, independently of the setting level of the turbine, see Figure 6.1 (Right). However, a

dependence upon the pressure level in the draft tube is still observed and a dimensionless

parameter should be introduced to remove this dependence.

6.1.2 Validation of void fraction

In this section, the mean void fraction analytically obtained is compared with the void fraction

estimated with a high-speed visualization of the cavitation vortex rope in the Plexiglas cone.

The experimental estimation of the vortex rope volume is based on the detection of the edges

of the cavity. The accuracy of this analysis relies on proper lighting conditions and, therefore,

accuracy depends on sharp contrast between the liquid and the gaseous phase of the flow.

The device described in Figure 3.3 produces a good contrast and the vortex rope edge can be

therefore simply determined by identifying the black and white pixels.

Thus, for each frame of the video, the image is converted into a black and white frame with

an ideal threshold value according to Otsu [47] and Müller [39]. A region of interest in the

Plexiglas cone is defined by the vertices of a polygon and is highlighted in Figure 6.3. This

region is used to define a binary mask in the image and analyze the part of the flow where the
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vortex rope is located. Finally, to estimate the volume of the vortex rope Vc,local in the region

of interest, the local radius for each pixel row Rx (z) is identified. It is assumed that for each

pixel row, the local volume of the cavitation vortex rope is delimited by a surface revolution of

the local radius around a symmetry axis. The volume in pixels is therefore the sum of the local

surfaces in the region of interest.

Vc,l ocal =
2π∫

0

Rx∫
0

z2∫
z1

r dθdr dz = 2π

z2∫
z1

1

2
Rx (z)2dz (6.3)

where the elevations z1 and z2 represent the upper and lower limits of the region of interest.

This experimental estimation of the vortex volume has a weakness. The cavitation vortex

rope continues well beyond the draft tube cone and only a fraction of the cavitation vortex

rope is taken into account. Thus, this result cannot be directly compared with the cavitation

volume calculated analytically. Therefore, the cavitation volume estimated with the high-speed

visualization is divided by the volume of the region of interest to obtain a local experimental

void fraction βlocal and is compared with the mean void fraction βmean computed analytically,

see Figure 6.3. This procedure is applied to several vortex rope revolutions and for different

operating conditions described in Table 6.1.

Table 6.1: Selected Francis turbine operating points for high-speed visualization analysis.

nED /nED,BEP QED /QED,BEP Fr σ

PL1 Part Load 1 0.80 8.75 [0.06 - 0.10]
PL2 Part Load 1 0.64 8.75 [0.11 - 0.17]

The error on experimental measurements is due to variation of cavitation volume during

vortex rope precession. The magnitude of the error is higher for a Thoma number equal to 0.17

because this operating condition corresponds to the hydroacoustic resonance of the hydraulic

test rig. Thus, the precession frequency matches the natural frequency of the hydraulic system,

induced by the cavitation volume. In this operating condition, all pressure sensors in the cone

are in phase, see Figure 6.4, and synchronous pressure pulsations are transmitted to the entire

hydraulic test rig, inducing pulsations of the cavitation volume at the natural frequency.

The error in the measurement of the cavitation volume is also higher for a Thoma number

equal to 0.11. This results from impacts on the draft tube wall of the vortex rope during its

precession [43]. This shock generates a pressure wave propagating in the draft tube and

therefore influencing the pressure field and the cavitation volume in the cone.

Generally, the local experimental void fraction is relatively similar to the mean values calcu-

lated analytically. However, for Thoma numbers outside the range 0.12 to 0.16, the experi-

mental method shows a local void fraction greater than the mean value calculated analytically.
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Figure 6.3: Comparison between mean void fraction computed analytically and local void
fraction determined with a high-speed visualization.

This difference comes from the local aspect of the measurement. Indeed, with the high speed

visualizations, only the part of the cavitation vortex rope visible in the Plexiglas cone is cap-

tured. However, observing the evolution of the cross-section of the vortex rope along the cone

in Figure 6.3, there is a progressive reduction of its radius. Thus, the mean void fraction in the

cone is greater than the mean void fraction along the whole draft tube.

Finally, the analytical method shows a good value of mean void fraction and cavitation volume.

In comparison, the experimental method indicates only a local value of the void fraction,

which may be slightly greater than the mean value in the draft tube.

6.1.3 Development of a dimensionless parameter for wave speed

A dependence upon the pressure level in the draft tube is still observed in Figure 6.1 (Right).

To overcome this characteristic, a dimensionless number is developed. By using the definition

of wave speed in a circular pipe without cavitation, see Equation 2.19, and applying the

Buckingham-Π theorem, the dimensionless numberΠ is defined as follows, where the pressure
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Figure 6.4: Evolution of pressure and vortex rope volume for QED = 0.128 and Fr = 8.75 at the
resonance operating condition.

pOutlet is the mean pressure at the turbine outlet and pv represents the saturated vapor

pressure:

Π= ρw a2

pOutlet −pv
(6.4)

This dimensionless term divides the squared wave speed by pressure energy. A similar dimen-

sionless term C ′
c was developed by Dörfler in 1982 [18] [19]. This dimensionless cavitation

compliance C ′
c is obtained from a reference volume D3

r e f and the velocity head HD,v used as

reference pressure, and it is defined as:

C ′
c =Cc

HD,v

D3
r e f

where HD,v = 1

2g

(
4Q

πD2
r e f

)2

(6.5)

Using the definition of hydraulic capacitance, see Equation 2.30, the dimensionless cavitation

compliance can be rewritten as:

C ′
c =

Ad x

a2D3
r e f

C 2

2
(6.6)
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This equation can be simplified by removing the terms with the same dimension.

C ′
c =

Ad x

D3
r e f

C 2

2a2 ≈ C 2

2a2 (6.7)

Thus, the dimensionless cavitation compliance developed by Dörfler defines a ratio between

the squared wave speed and the kinetic energy so that the dimensionless parameterΠ defines

a ratio between the squared wave speed and the pressure energy.

By using the dimensionless parameterΠ, each experimental data set can be approximated by

a power function, see Figure 6.5.
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Figure 6.5: Draft tube evolution of dimensionless wave speed as a function of void fraction β.

This trend is validated by comparing the results with a theoretical model developed by Rath in

1981 [50] including the compressibility of gas and liquid, the elasticity of the pipe wall and the

surface tension in bubbly air-water mixture. This theoretical model described by Equation 6.8

gives accurate results for wave speeds in a homogenous bubbly flow. ρc describes water vapor

density, Ew represents the bulk modulus of the liquid phase, Ep is the Young modulus of the

pipe wall, D describes the pipe diameter and finally e represents the thickness of the pipe wall.

a =
[(
βρc

p

p0
+ (

1−β)
ρw

(
1+

(
p −p0

)
Ew

))(
β

p
+ 1−β

Ew
+ D

eEp

)]− 1
2

(6.8)

Generally, the cavitation vortex rope does not satisfy bubbly flow assumption and imposes

lower wave speeds compared to the value of the theoretical model. The ratio between theo-

retical values and wave speed inferred from experimental data is a constant C Ad apt equal to
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1.761, see Figure 6.6. Thus, it is possible to use Rath’s equation by dividing the wave speed

value by the constant C Ad apt . However, the geometry of the machine could play a role and

this constant could be different for another hydraulic machine. Therefore, the methodology

presented in this thesis should be applied to other turbines to verify the impact of the turbine

and draft tube geometry on wave speed.
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Figure 6.6: Evolution of the dimensionless wave speed in the draft tube as a function of void
fraction β.

Moreover, it is also important to note that this power function reaches an upper limit when the

void fraction tends to zero. When cavitation disappears, Rath’s equation becomes similar to

the conventional formula for circular pipes and imposes a finite value on wave speed. Finally,

the development of a new law relating the void fraction to the dimensionless parameter Π

allows for the determination of wave speed in the draft tube with respect to the cavitation

volume and the pressure at turbine outlet. This law derived from Rath’s formula can be used

in numerical models and allows for simulation of non-linear phenomena such as pulsation of

cavitation volume at resonance.

6.2 Identification of bulk viscosity

Identification of bulk viscosity is obtained with an excitation system and a Pressure-Time

method. For each operating condition out of resonance, excitation energy is experimentally

quantified and is injected in the numerical model. Then, the dissipation term µ′′ is adjusted

with the dichotomy algorithm to obtain a numerical forced harmonic response equal to the

experimental forced harmonic response, see Figure 6.7.

This comparison is focused on circular pipes connecting the upstream reservoir to the Francis

turbine to diminish the uncertainty related to experimental measurements. In this case, on the

one hand, without draft tube, and therefore without vortex rope, it is not necessary to separate

the synchronous from the convective part in experimental measurements. On the other hand,
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Figure 6.7: Comparison of experimental and numerical responses to an excitation source for
different second viscosities at operating point PL1, Fr = 6.56 and σ = 0.08.

without Francis turbine, the pressure gradient associated to the hydraulic machine is not taken

into account. Finally, this methodology is applied to different Froude and Thoma numbers

described in Table 4.2.

6.2.1 Influence of the degassing procedure on harmonic response

The shape of the forced harmonic response essentially depends on wave speed aPF in the

hydraulic pipes. This wave speed is related to the amount of gas dissolved in the water and

therefore depends on the quality of the degassing procedure. By knowing the rate of gas

dissolved in water, the wave speed is calculated using Rath’s equation 6.8. The influence of the

gas dissolved in the water is presented in Figure 6.8 as an example for the operating condition

PL2 with Froude and Thoma numbers equal to 7.66 and 0.13, respectively. In this figure, the

forced harmonic response is made dimensionless in order to compare the influence of the

degassing procedure on the shape of the harmonic response.

Thus, for four different amount values of gas dissolved in the water, the wave speeds in the

upstream pipes are computed and the shape of the numerical harmonic response is modified.

Moreover, if the gas concentration is unknown, it can be deduced by comparing the numerical

dimensionless harmonic response with the experimental data. For low void fraction, the

evolution of the wave speed with Rath’s equation is strictly decreasing and a dichotomy

algorithm can be used.

6.2.2 Development of a dimensionless parameter for bulk viscosity

To compare bulk viscosity values for different Froude numbers, a dimensionless bulk viscosity

has to be defined with the Buckingham-Π theorem. In the literature, a bulk viscosity param-
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Figure 6.8: Comparison of forced harmonic response for different wave speeds aPF on the test
rig at the operating point PL2, Fr = 7.66 and σ = 0.13.

eter was developed by Pezzinga [48] in 2003. He validated his model showing that pressure

dependent on wave speed and bulk viscosity allows to reproduce results of experimental mea-

surements of water hammer transients with cavitation. The analytical formulation, described

by Equation 6.9, has been derived by considering homogeneous bubbly flow.

µ′′ = θ
((

1−β)
ρw +βρc

)2
βρc RTa4

p2 (6.9)

In this equation, θ represents a relaxation time, R is the ideal gas constant and T is the

temperature in Kelvin. The relation can be simplified for low void fraction as:

µ′′ ≈ θ
(
1−β)2

βρcρ
2
w RTa4

p2 (6.10)

By applying the Buckingham-Π theorem to the previous equation, a dimensionless parameter

is defined, where the pressure pOutlet is the mean pressure at the outlet of the turbine and pv

represents the saturated vapor pressure:

M ′′ = µ′′ fnatur al

pOutlet −pv
(6.11)

68



6.2. Identification of bulk viscosity

The dimensionless bulk viscosity values computed for different Froude and Thoma numbers

are represented in Figure 6.9 as a function of the Thoma number. Thus, it can be observed

that all experimental data for a given discharge factor QED can be approximated by a power

function and that the quality of the selected mathematical law is good with a regression

coefficient R-square equal to 0.889.
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Figure 6.9: Evolution of dimensionless bulk viscosity as a function of Thoma number.

Moreover, the dimensionless bulk viscosity can be represented in Figure 6.10 as a function of

the void fraction. The numerical results also follow a power law regression and it becomes

possible to extrapolate dissipation values for any operating condition. However, the geometry

of the machine could play a role and the constants of power law regression could be different

for another hydraulic machine. It would therefore be interesting to develop an analytical

formulation to connect the dimensionless bulk viscosity to the void fraction.
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Figure 6.10: Evolution of dimensionless bulk viscosity as a function of the void fraction.
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Using the Buckingham-Π theorem, an analytic equation is developed to define the dimension-

less bulk viscosity where p = pOutlet −pv .

M ′′ =Π2 (
1−β)2 ρc

ρw
=

(
ρw a2

p

)2 (
1−β)2 ρc

ρw
(6.12)

This equation can be compared with the dimensionless form of Pezzinga’s equation. Thus,

Equation 6.9 can be rewritten as:

M ′′ ≈ µ′′

θp
=

(
ρw a2

p

)2 (
1−β)2 βρc RT

p
(6.13)

First, it can be seen in Figure 6.11 that the new equation 6.12 is in perfect agreement with the

power law regression and it does not depend on specific constants related to the hydraulic

machine. Moreover, Equation 6.12 is directly related to the dimensionless number Π as

Pezzinga’s dimensionless formula suggested. Thus, this new equation depends on the wave

speed raised to the power of four and indicates that it is very important to accurately determine

the wave speed in the draft tube. Finally, it is important to note that Equation 6.12 does not tend

to zero when the void fraction tends to zero, but to a lower dissipation value. Pezzinga’s law

should therefore be preferred when the cavitation vortex rope disappears almost completely.
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Figure 6.11: Evolution of dimensionless bulk viscosity as a function of the void fraction.

Validation of wave speed and bulk viscosity is shown in Figures 6.12 and 6.13 for several

operating conditions. Generally, the forced harmonic response of the experimental system to

an external excitation is well reproduced by the numerical model in the frequency domain,

independently of the discharge factor, the Froude numbers and the Thoma numbers. The
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6.2. Identification of bulk viscosity

Francis turbine location is located at L = 0 m. The experimental values having a positive

location represent the 12 pressure sensors (P1-P12) distributed along EPFL test rig PF3. The

experimental values having a negative location represent the pressure sensors installed in the

cone, the elbow and the diffuser of the draft tube.
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Figure 6.12: Comparison between experimental and numerical forced harmonic responses for
the operating condition PL1 at natural frequency
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Figure 6.13: Comparison between experimental and numerical forced harmonic responses for
the operating condition PL2 at the natural frequency
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6.3 Identification of pressure source

Identification of the pressure source is based on the excitation generated by the precession

of the vortex rope and therefore the use of an external excitation source is not required. The

pressure source Sh is modeled by a Gaussian curve characterized by three mathematical

parameters: L representing the location of the center of the pressure source, e corresponding

to the standard deviation of the Gaussian curve and A defining the amplitude of the Gaussian

curve.

These three mathematical parameters are determined with a genetic algorithm minimizing

the following four criteria:

• The first objective compares the experimental forced response with the response of the

numerical model with a particular focus on circular pipes connecting the upstream

reservoir to the Francis turbine.

• The second objective uses four pressure sensors in the first measurement section in the

cone. Thus, it is possible to separate the synchronous part from the convective part and

compare the synchronous value with the numerical model.

• The third objective is similar to the previous one, but by using the second measurement

section in the cone.

• The last objective uses pressure sensors located in the elbow and the diffuser of the draft

tube. In the absence of circular sections, the uncertainty of these pressure measurements

is high and the weight of this objective is reduced.

This algorithm is applied for different discharge factors QED and for various Thoma and

Froude numbers to study their impact. However, in order to decrease the number of solutions

satisfying the four objectives, it is assumed that the shape of the pressure source is independent

of Thoma number. Therefore, the location of the pressure source L and the standard deviation

e will be evaluated by minimizing the global error Er r org l obal on all Thoma numbers, for

constant discharge factor and Froude number, see Equation 6.14.

Er r org l obal =
1

N b

∑
σ

Er r or (6.14)

where Nb defines the number of studied Thoma numbers at constant discharge factor and

constant Froude number. To define the search space and to ensure the convergence of the

algorithm to a global minimum, a 3D representation of solutions is performed in Figure 6.14.

Thus, for every location L between 0.01 and 0.95 m and for every standard deviation between

0.01 and 0.5 m, the optimal amplitude is computed so as to minimize the global error defined
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6.3. Identification of pressure source

by the previous objectives. The Z-axis represents the minimum global error that exists between

the experimental and the numerical values, for all Thoma numbers according to Equation

6.14. Finally, Figure 6.14 confirms the existence of many local minima for different operating

conditions and therefore the use of a genetic algorithm. To ensure proper identification of the

global minimum, a sensitivity analysis is performed to reduce the search space.

(a) PL1 Fr = 6.56 (b) PL1 Fr = 7.66

(c) PL1 Fr = 8.75 (d) PL1 Fr = 9.85

Figure 6.14: Global error as a function of pressure source location L and standard deviation e.

6.3.1 Study of standard deviation e of pressure source

According to Figure 6.14, the standard deviation e should be low to minimize the global

error, independently of Froude number. However, a low standard deviation would generate

a concentrated pressure source Sh , and a dependence of the pressure source to its relative

location. Indeed, according to Figure 6.15, for standard deviations equal to 0.01 and 0.02 m,

the optimal amplitude minimizing the global error is very dependent on the location of the

pressure source in the numerical model. For instance, when the pressure source is located on

a numerical pressure node described by a red circle, the optimal amplitude is minimum. Thus,
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Chapter 6. Identification of the hydroacoustic parameters

for this case study, it is appropriate to select higher standard deviations than 0.2 m. Generally,

the standard deviation e must be higher than the elementary pipe length dx.
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Figure 6.15: Amplitude of the pressure source as a function of pressure source location L.

Moreover, according to Figure 6.16, for a pressure source located in the elbow (L>0.4), a

minimum standard deviation significantly reduces the global error. In contrast, for a pressure

source located in the cone (L<0.4), the value of the standard deviation has no influence on

the global error. Finally, to minimize global error and ensure convergence of the genetic

algorithm to an optimal solution, the standard deviation should be as low as possible, without

introducing a dependency on the discretization.
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Figure 6.16: Error for all Thoma numbers as a function of pressure source location L.
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6.3. Identification of pressure source

6.3.2 Study of pressure source location L

Comparing evolution of global error as a function of the pressure source location L in Figure

6.17 for a standard deviation e = 0.03 m, the influence of the Froude number is relatively small.

Indeed, for a constant discharge factor QED , the global error is minimal for a location L = 0.38

m for the operating condition PL1 and for a location L = 0.43 m for the operating condition PL2,

independently of the Froude number. Thus, for this case study, the pressure source should

be at the entrance of the elbow to minimize the global error, as suggested by Arpe et al. [7]

and illustrated in Figure 6.18. Of course, this conclusion is not applicable to other study cases

and can under no circumstances be generalized. The application of multi-objectives genetic

algorithm in a restricted search space confirms identical solutions to minimize the error on all

Thoma numbers.
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Figure 6.17: Global error for e = 0.03 m as a function of pressure source location L.
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Figure 6.18: Representation of the Gaussian curve (Left) and x-axis along the draft tube (Right).
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Chapter 6. Identification of the hydroacoustic parameters

6.3.3 Study of pressure source amplitude A

Sensitivity analysis of the parameter A indicates a dependence of the pressure source am-

plitude relative to its location. Evolution of this amplitude as a function of its location L is

presented in Figure 6.19. This dependence is very significant for low Thoma numbers, i.e.

for large cavitation volumes. By contrast, for high Thoma numbers, the amplitude remains

relatively constant for locations L > 0.4 m. Therefore, Dörfler’s assumption is incorrect and the

amplitude of the pressure source depends on the Thoma number, but also on the location of

the pressure source.
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Figure 6.19: Evolution of amplitude as a function of pressure source location L.

For our case study, the sensitivity analysis of parameters L and e has established the location

and standard deviation of the pressure source to minimize the global error, see Table 6.2. The

amplitude of the pressure source for this location as a function of the Thoma number is shown

in Figure 6.20. Generally, the amplitude increases when the Froude number increases and the

maximum amplitude is always met at the same Thoma number, independently of the Froude

number.

To reduce the impact of the Froude number, the amplitude is divided by the head of the

Francis turbine Htur b , see Figure 6.21. The dimensionless values of the amplitude for high

Thoma numbers are relatively similar. However, for Thoma numbers near resonance σr es , the

dimensionless parameter does not allow for a perfect superposition of curves. This difference

may result from the error associated with the bulk viscosity, which may have an impact on the

amplitude when the operating condition is close to the resonance.

Ultimately, the pressure source is difficult to generalize. A sensitivity analysis has determined

that the pressure source location is in the elbow and the standard deviation should be relatively

low to reduce the global error. However, the amplitude of the pressure source is very dependent

on its location. It then becomes difficult to extrapolate the pressure source to other operating

points.
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Figure 6.20: Evolution of amplitude A as a function of the Thoma number.
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Figure 6.21: Evolution of dimensionless amplitude as a function of Thoma number.

The validation of the pressure source in the frequency domain is shown in Figures 6.22 and 6.23

for two Froude numbers. The numerical model reproduces the experimental measurements

well, for every Thoma number. The highest uncertainties are exhibited in the elbow and the

diffuser, where the sections are not circular. The Francis turbine location is situated at L = 0

m. The experimental values having a positive location represent the 12 pressure sensors (P1-

P12) distributed along EPFL test rig PF3. The experimental values having a negative location

represent the pressure sensors installed in the cone, the elbow and the diffuser of the draft

tube.
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Figure 6.22: Comparison between experimental and numerical forced harmonic responses for
the operating condition PL1 at vortex rope frequency f Vortex rope = 2.563 Hz

80



6.3. Identification of pressure source

−10 0 10 20 30 40
0

0.05

0.1

0.15

0.2

0.25

0.3

 

 

Experimental values
Numerical simulation

Location
[m]

GxyHz
m2

(a) Froude number = 7.66, Thoma number = 0.10

−10 0 10 20 30 40
0

0.05

0.1

0.15

0.2

0.25

0.3

 

 

Experimental values
Numerical simulation

[m]

Gxy

Location

Hz
m2

(b) Froude number = 7.66, Thoma number = 0.11

−10 0 10 20 30 40
0

0.05

0.1

0.15

0.2

0.25

0.3

 

 

Experimental values
Numerical simulation

Location
[m]

GxyHz
m2

(c) Froude number = 7.66, Thoma number = 0.12

−10 0 10 20 30 40
0

0.05

0.1

0.15

0.2

0.25

0.3

 

 

Experimental values
Numerical simulation

Location
[m]

GxyHz
m2

(d) Froude number = 7.66, Thoma number = 0.13

−10 0 10 20 30 40
0

0.05

0.1

0.15

0.2

0.25

0.3

 

 

Experimental values
Numerical simulation

Location
[m]

GxyHz
m2

(e) Froude number = 7.66, Thoma number = 0.14

−10 0 10 20 30 40
0

0.05

0.1

0.15

0.2

0.25

0.3

 

 

Experimental values
Numerical simulation

Location
[m]

GxyHz
m2

(f) Froude number = 7.66, Thoma number = Atmosphere

Figure 6.23: Comparison between experimental and numerical forced harmonic responses for
the operating condition PL1 at vortex rope frequency f Vortex rope = 2.930 Hz
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Table 6.2: Summary of pressure source information.

L L/Dr e f e σr es
fr es

n
[m] [-] [m] [-] [-]

PL1 0.38 1.08 0.03 0.0975 0.256
PL2 0.43 1.23 0.03 0.17 0.325

6.4 Simulation at resonance operating condition

To validate the identified hydroacoustic parameters, a time simulation is performed at reso-

nance conditions and the numerical results are compared with experimental data. Thus, in

first step, the evolution of void fraction is estimated using high-speed visualizations presented

in Subsection 6.1.2. The evolution of the void fraction for discharge factor QED = 0.128 and

a Froude number F r = 8.75 at the resonance operating condition is presented in Figure 6.24

(Left). From these experimental data, a sine law is formulated and injected into the numerical

model of the EPFL test rig PF3. In a second step, the adjusted Rath’s equation for the wave

speed, the dimensionless bulk viscosity equation, see Equations 6.8 and 6.12, and the pressure

source are implemented in the draft tube model. The time evolution of the wave speed and

bulk viscosity are shown in Figure 6.24 (Left).
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Figure 6.24: Time evolution of the hydroacoustic parameters.

The comparison between the experimental data and the numerical model is performed in

two distinct locations. In figure 6.25 (Left), the numerical model is compared with four

pressure sensors located in the cone. In figure 6.25 (Right), the numerical results are compared

with the reference pressure sensor P1 at the turbine inlet. In both cases, the numerical

model is in perfect agreement with the experimental measurements. However, the numerical

model slightly overestimates the pressure fluctuations on the EPFL test rig PF3. This feature

comes from the local measurement of void fraction. As noted in Subsection 6.1.2, the local
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6.4. Simulation at resonance operating condition

experimental void fraction measurement slightly overestimates the mean value of the void

fraction in the draft tube. Therefore, this error is reflected in the computation of the wave

speed and the bulk viscosity, and leads to an underestimation of the damping. Finally, this

analysis in time domain validates the dimensionless laws of the hydroacoustic parameters,

and certifies the ability of the numerical model to simulate the behavior of the hydraulic

turbine in resonance conditions.
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Figure 6.25: Comparison between the experimental data and the numerical values at reso-
nance operating condition.
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6.5 Comparison of different draft tube models

In this section, the various terms of the momentum equation will be analyzed to determine

their impact on the identification of hydroacoustic parameters (the wave speed, bulk viscosity

and pressure source) and on the dimensionless parameters (void fraction, dimensionless

wave speed and dimensionless bulk viscosity). Thus, the draft tube has been modeled using 4

different models:

1. Viscolelastic pipes: The various components of the draft tube are modeled with the

viscoelastic pipes described in Section 5.1. Thus, the convective term and the divergent

geometry are not taken into account. The momentum equation can be rewritten as:

1

g A

∂Q

∂t
+ λ|Q|

2g D A2 Q + ∂h

∂x
− µ′′

ρg A

∂2Q

∂x2 = 0 (6.15)

2. Convective terms: The various components of the draft tube are modeled with the draft

tube modeling described in Chapter 2. In this specific case, the divergent geometry of

the draft tube is not taken into account and the section of each element is defined as

constant. Thus, the impact of the convective term can be studied. The momentum

equation can be rewritten as:

1

g A

∂Q

∂t
+

(
Q

g A2

)
∂Q

∂x
+ λ|Q|

2g D A2 Q + ∂h

∂x
− µ′′

ρg A

∂2Q

∂x2 = 0 (6.16)

3. Draft tube Model S: The various components of the draft tube are modeled with the draft

tube modeling described in Equation 2.11. Alligné et al. assumed that the dissipation

induced by the variation of the cross-section is negligible. Thus, the impact of the

divergent geometry can be analyzed.

1

g A

∂Q

∂t
+

(
Q

g A2

)
∂Q

∂x
+

(
λ|Q|

2g D A2 − KxQ

g A3

)
Q + ∂h

∂x
− µ′′

ρg A

∂2Q

∂x2 = 0 (6.17)

4. Draft tube Model G: The various components of the draft tube are modeled with the

draft tube modeling described in Equation 2.10. Thus, Alligné’s assumption is analyzed

and its impact on the identification of hydroacoustic parameters is quantified.

1

g A

∂Q

∂t
+

(
Q

g A2 − 2Kx ·µ′′

ρg A2

)
∂Q

∂x
+

(
λ|Q|

2g D A2 − KxQ

g A3 + 2K 2
xµ

′′

ρg A3

)
Q+∂h

∂x
− µ′′

ρg A

∂2Q

∂x2 = 0 (6.18)
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6.5. Comparison of different draft tube models

The methodology and algorithms presented in Chapter 3 have been applied to these 4 different

models to highlight the impact of the convective term, the divergent geometry and Alligné’s

assumption on the hydroacoustic parameters and the dimensionless parameters.

6.5.1 Model influence on wave speed

The wave speed is adjusted in the distributed draft tube model to obtain a similar experimental

natural frequency. According the results in Figure 6.26, taking into account the convective

term does not influence the wave speed value. However, the divergent geometry imposes a

reduction of wave speed of 16%. Indeed, since this term tends to destabilize the system [14],

the dissipative term in Equation 3.7 decreases and the natural frequency of the numerical

model increases. To compensate for this effect, the wave speed value must decrease so that

the natural frequency of the numerical model matches the experimental frequency. It is to be

noted that the terms neglected by Alligné et al. do not influence the identification of the wave

speed.
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Figure 6.26: Model influence on wave speed.

6.5.2 Model influence on bulk viscosity

The bulk viscosity is adjusted in the draft tube model to obtain the same forced harmonic

response measured experimentally. As was observed for the wave speed, the impact of the

convective term is also negligible here. Only the divergent geometry has a large impact on the

bulk viscosity and requires a reduction in the value of 45 %. Since the divergent geometry is

represented by a hydraulic resistance, the dissipation of the energy injected into the numerical

model is increased. To compensate for this hydraulic resistance and still maintain a forced

harmonic response in good agreement with the experimental results, the dissipation induced

by µ′′ must be reduced. Finally, Alligné’s assumption imposes a significant modification of

the dissipation. Since the two additional terms in the Draft tube model G depend linearly on
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Chapter 6. Identification of the hydroacoustic parameters

the bulk viscosity µ′′, the impact is low when the Thoma number is low and increases when

the cavitation volume decreases. A sensitivity analysis of these two new terms indicates that

the new source term tends to reduce the bulk viscosity while the new hydraulic resistance

greatly increases the bulk viscosity. Therefore, Alligné’s assumption cannot be taken into

account for the identification of the bulk viscosity since it induces an underestimation of this

hydroacoustic parameter.
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Figure 6.27: Model influence on bulk viscosity.

6.5.3 Model influence on the pressure source

The genetic algorithm applied to the numerical models always converges to the same min-

imum. This is due to the application of the genetic algorithm to the off-resonance system.

Since the frequency of the vortex rope precession does not match the first eigenfrequency of

the test rig, the wave speed and bulk viscosity have no direct impact on the pressure source.

Thus, as shown in Figure 6.28, the amplitude and location of the pressure source are almost

identical, independently of the chosen numerical model.

6.5.4 Model influence on void fraction

The void fraction is analytically computed using the definition of the cavitation compliance

and is directly linked with the wave speed, see Equation 3.13. Therefore, similar conclusions

than those drawn for wave speed are applicable to the void fraction. The divergent geometry

induces an increased of the void fraction of 43 %.

6.5.5 Model influence on dimensionless wave speed

Dimensionless wave speed is a term used to compare wave speeds for different operating

conditions and thus predict wave speed values for non-studied operating conditions. For four
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Figure 6.28: Model influence on the pressure source with a standard deviation e = 0.03 for the
operating condition PL1 and a Froude number Fr = 6.56.
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Figure 6.29: Model influence on void fraction.

different models studied, the same regression curve is obtained, indicating an independence

of the curve from the numerical model, see Figure 6.30. This observation has been validated by

studying the regression curve. The link between the void fraction βDT M and the dimensionless

wave speedΠDT M computed with the draft tube model (DTM) can be written as a function of

the regression coefficients p1 and p2:

ΠDT M = p1 ·βp2

DT M (6.19)

where p1 = 0.6201 and p2 =−0.8632. According to Equations 3.13 and 6.4, the dimensionless
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Chapter 6. Identification of the hydroacoustic parameters

parameters depend on wave speed squared. Moreover, according to previous studies, the

wave speed is reduced by 16% when the divergent geometry is taken into account. So there is

a linear relation between the wave speed calculated with viscoelastic model avi sco and the

wave speed calculated with the draft tube model aDT M .

avi sco =α ·aDT M (6.20)

Equation 6.19 can be rewritten as:

Πvi sco

α2 = p1α
(2p2) ·βp2

vi sco (6.21)

As the results obtained with the viscoelastic model follow a similar regression, the above

equation can be rewritten as:

α2p2+2 = 1 (6.22)

Thus, the superposition of the regression curves is intrinsically linked to the coefficient p2,

confirming independence of the regression curve from the numerical model.
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Figure 6.30: Model influence on dimensionless wave speed.

6.5.6 Model influence on dimensionless bulk viscosity

The different conclusions drawn for dimensionless wave speed can be applied to dimension-

less bulk viscosity. There is still a slight difference in the coefficients of the regression curves,

but it is to be considered as insignificant, see Figure 6.31.
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Figure 6.31: Model influence on the dimensionless bulk viscosity.

Finally, the choice of the numerical model for the draft tube influences hydroacoustic pa-

rameters. To ensure good accuracy of the hydroacoustic parameters, the draft tube model

must be chosen such as to take into account the destabilizing effect imposed by the divergent

geometry. Additionally, the convective term does not influence the results and Alligné’s as-

sumption induces an underestimation of the bulk viscosity. Finally, the dimensionless curves

are independent from the selected numerical model and can be used in every case to link the

void fraction to the dimensionless wave speed or the dimensionless bulk viscosity.

6.6 Transposition to the prototype

Using the methodology proposed in Chapter 3, hydroacoustic parameters required for draft

tube modeling have been identified. To investigate the stability operation of the prototype,

these hydroacoustic parameters need to be transposed to the prototype conditions according

to similitude laws.

First, the influence of the Reynolds number on the transposition is assumed to be negligible.

Secondly, by assuming both Thoma similitude and Froude similitude conditions, the void frac-

tion, the dimensionless wave speedΠ and the dimensionless bulk viscosity M ′′ are considered

identical between the reduced-scale physical model and the prototype. With a dimensionless

analysis, transposition relations for the wave speed, the bulk viscosity and the pressure source

are developed.

6.6.1 Similitude law of wave speed

By definition, the dimensionless wave speed depends on wave speed, water density and the

difference between pressure outlet and saturated vapor pressure. According to the definition

of the local cavitation factor χE , see Equation 1.4, the definition of the dimensionless wave
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speed can be rewritten as:

Π= ρw a2

pOutlet −pv
= a2

χE E
⇔ a2 =ΠχE E (6.23)

Expressing the definition of the speed factor nED , the specific energy E of the turbine is a

function of the reference diameter Dr e f and the runner frequency n. It is therefore possible to

write:

E ∼ D2
r e f ·n2 (6.24)

Hence, the similitude law for wave speed between the prototype and the reduced-scale physi-

cal model is:

aP = aM

(
DP

r e f

DM
r e f

)(
nP

nM

)
(6.25)

where the superscripts P and M represent values for the prototype and the model, respectively.

Additionally, it is important to note that the assumption stating that the compressibility of the

pipe is negligible in comparison with the cavitation compliance remains valid for the full-scale

turbine.

6.6.2 Similitude law of bulk viscosity

By definition, the dimensionless bulk viscosity depends on the bulk viscosity, the natural

frequency and the difference between the pressure outlet and the saturated vapor pressure.

According to the definition of the local cavitation factor χE , see Equation 1.4, the definition of

the dimensionless bulk viscosity can be rewritten as:

M ′′ = µ′′ fnatur al

pOutlet −pv
= µ′′ fnatur al

χEρw E
⇔ µ′′

ρw
= M ′′χE E

fnatur al
(6.26)

Expressing the dimensions of the specific energy of the turbine E as a function of the reference
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diameter and the runner frequency, it can be defined:

µ′′

ρw
∼

D2
r e f ·n2

fnatur al
(6.27)

Hence, the similitude law for bulk viscosity between the prototype and the reduced-scale

physical model is:

µ′′P =µ′′M
(

DP
r e f

DM
r e f

)2 (
nP

nM

)2 (
f M

natur al

f P
natur al

)
(6.28)

The natural frequency of the prototype is identified with a numerical model of the complete

hydroelectric power plant and the transposed wave speed.

6.6.3 Similitude law of the pressure source

Thoma and Froude similitudes provide an equivalent shape of cavitation vortex rope between

the reduced-scale physical model and the prototype. Thus, the interaction between the

cavitation vortex rope and draft tube elbow is identical and the location of the pressure source

is similar: L = 1.08 ·DP
r e f for the first operating condition PL1 and L = 1.23 ·DP

r e f for the second

operating condition PL2. Regarding the dimensionless amplitude of the pressure source, the

following similitude law can be defined:

AP = AM

(
DP

r e f

DM
r e f

)
(6.29)

By applying the similitude laws to the reduced-scale physical model presented in Chapter

4, hydroacoustic parameters values are obtained and shown in Table 6.3 for plant values of

Thoma and Froude numbers. To validate the similitude laws, transposed draft tube parameters

will be injected in a model of the complete hydroelectric power plant to simulate system

response. This study will be the second part of the HYPERBOLE collaborative research project

in association with the world major turbine manufacturers. The validation of the hydropower

plant model will be done by comparison of numerical results with experimental measurements

of the pressure sensors in time and frequency domains.
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Table 6.3: Transposition of the hydroacoustic parameters for operating condition PL1.

a µ′′ A
[ms−1] [Pa s] [m]

Model 28.86 10’700 0.172

Prototype 95.44 428′500
f P

natur al
2.654

6.7 Summary and discussion

The methodology was applied to identify wave speed, bulk viscosity and pressure source for

several operating conditions. Results indicate that wave speed value drops in the range from

10 m/s to 60 m/s when the cavitation vortex rope is present. Such low wave speed values

imply that the convective part of the Navier-Stokes equation cannot be neglected when the

cavitation vortex rope occurs. As a result, it is shown that the formulation developed by Rath

to describe the wave speed in bubbly flows can be used in a cavitation vortex rope by dividing

the obtained values by an empirical constant Cad apt . However, the value of said constant

might depend on the turbine design. Therefore, the methodology presented in the current

thesis should be applied to other turbines in order to verify the impact of the turbine and draft

tube design on wave speed.

An equation was developed to predict the bulk viscosity caused by the cavitation vortex rope.

This parameter depends on the wave speed raised to the power of four, as Pezzinga’s formula

suggests. Thus, it is crucial to accurately determine the wave speed in the draft tube in order to

estimate the dissipation. The presented relations for wave speed and bulk viscosity can be used

in numerical models in order to accurately quantify such non-linear resonance phenomena.

This will ultimately pave the way to more precise stability analysis of hydraulic machines and,

hence, mitigate the issues of draft tube surge and electrical power swings.

A sensitivity analysis has determined that the pressure source location is in the elbow and the

standard deviation should be relatively low to reduce the global error. However, the amplitude

of the pressure source is very dependent on its location. It then becomes difficult to extrapolate

the pressure source to other operating conditions.

The choice of the numerical model for the draft tube influences hydroacoustic parameters. To

ensure a good accuracy of the hydroacoustic parameters, the draft tube model must be chosen

to take into account the destabilizing effect imposed by the divergent geometry. By contrast,

the convective term does not influence the results. Alligné’s assumption imposes a significant

reduction of the dissipation. Moreover, it is important to note that the dimensionless curves

are independent of the selected numerical model and can be used in every case to link the

void fraction to the dimensionless wave speed or the dimensionless bulk viscosity.
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6.7. Summary and discussion

Finally, to investigate the stability operation of the prototype, the hydroacoustic parameters

need to be transposed to the prototype conditions according to similitude laws. By assuming

both Thoma similitude and Froude similitude conditions, similitude laws were developed and

the hydroacoustic parameters were predicted for the prototype. To validate the similitude

laws, transposed draft tube parameters will be injected into a model of the complete hydro-

electric power plant to simulate the system response. This study will be the second part of

the HYPERBOLE collaborative research project in association with the world major turbine

manufacturers. The validation of the hydropower plant model will be done by comparison of

numerical results with experimental measurements of pressure sensors in time and frequency

domains.
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7 Simplified methodology for identifica-
tion of the hydroacoustic parameters

The purpose of this chapter is to provide a simplified methodology to identify the hydroa-

coustic parameters. Using the dimensionless curves and sensitivity analyzes developed in

Chapter 6, the methodology presented in Chapter 3 can be simplified and applied to any type

of hydraulic test rig. Additionally, this chapter is independent of the rest of the document and,

therefore, the general context and assumptions are quickly described.

The hydraulic machines subject to off-design operation involve the presence of cavitating flow

regimes in the draft tube. The cavitation vortex rope at part load conditions is described as an

excitation source for the hydraulic system and interactions between this excitation source and

system eigenfrequency may result in resonance phenomena and induce a draft tube surge

and electrical power swings. The methodology proposed in the HYPERBOLE collaborative

research project for assessing pressure fluctuations experienced by the hydraulic turbine

or pump-turbine unit in a power plant is given in Figure 7.1. Instead of directly transposed

pressure fluctuations measured on the reduced-scale physical model, the purpose is to identify

hydroacoustic parameters describing the dynamic flow in a reduced-scale physical model and

transpose them to the full-scale turbine. Thus, the numerical simulations of the complete

hydroelectric power plant will predict more accurately the pressure fluctuations.

To precisely predict and simulate the pressure fluctuation, proper modeling of the draft tube is

critical. The presence of this cavitation vortex rope requires a numerical pipe element taking

into account the complexity of the two-phase flow. Among the parameters describing the

numerical model of the cavitating draft tube flow, three hydroacoustic parameters requires a

special attention: the wave speed, the bulk viscosity and the pressure source.

The simplified methodology still requires the development of a numerical model of the studied

hydraulic system, as well as an external excitation system for identifying the natural frequency

of the hydraulic system. However, the identification of the bulk viscosity can be directly

computed with Equation 6.12. Moreover, with the dimensionless numbers Π and M ′′, the

wave speed and the bulk viscosity can be extrapolated to all operating conditions if the void

fraction and the pressure at the turbine outlet are measured.
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Figure 7.1: Methodology developed for assessing pressure fluctuations experienced by hy-
draulic power plant.

First, the important parameters of the numerical model are presented. Then, the experimental

instrumentation setup is described to obtain the data necessary for the simplified methodology.

Finally, the procedure is presented to identify the wave speed, the bulk viscosity and the

pressure source.

7.1 Hydroacoustic model

• A modeling of the test rig is necessary to identify the hydroacoustic parameters of the

draft tube model. The one-dimensional model of the hydraulic system is setup with

EPFL SIMSEN software.

• The hydraulic pipes of the test rig are modeled with a viscoelastic pipe model. The

value of the wave speed is crucial to simulate a correct eigenshape and depends on

the degassing procedure. By knowing the rate of gas dissolved in water, the wave

speed is computed using Rath’s equation 6.8. If the gas concentration is unknown, it

can be deduced by comparing the numerical dimensionless harmonic response with

experimental data. Additionally, viscoelastic resistance does not influence the numerical

forced harmonic response and the second viscosity µ′ may be set to zero.
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7.2. Test installation

• The wave speed in the spiral casing has little influence on the numerical forced harmonic

response. An approximation of this value is more than enough if the length of the spiral

casing is small compared to the length of the studied test rig.

• The hydraulic turbine and the feeding pump are modeled with characteristic curves. A

good discretization of the hill chart reduces the risk of numerical instability.

• The draft tube should be modeled using the Draft tube Model G to take into account the

divergent geometry.

7.2 Test installation

• A minimum of five pressure sensors are located along the test rig pipe. The location of

the pressure sensors is deliberately concentrated on the first part of the test rig to reduce

the error of the eigenshape measurements. These measurements are synchronized with

the test rig parameters measurement, such as Thoma number, head, discharge and

torque.

• A minimum of three pressure sensors are located in the same cross-section of the cone

to separate the convective part from the synchronous part.

• An excitation system is necessary to inject or extract a periodical discharge at a given

frequency in the upstream pipe. This system is composed of a rotating valve, a variable

speed pump to control the amplitude of the excitation and an air-vessel to ensure

hydroacoustic decoupling between the injection pump and the entire hydraulic circuit.

• The rotating valve is driven by a variable speed motor to excite the hydraulic test rig at

frequencies ranging from 1 Hz to 15 Hz.

• Two optional pressure sensors can be installed on the excitation system pipe to measure

the fluctuating discharge with a Pressure-Time method. However, this information is

not necessary for this simplified method.

• Pressure sensors can be added to the elbow and the diffuser of the draft tube to improve

the spatial resolution of the eigenshape. However, due to the non-circular sections, the

uncertainty of the pressure measurements is high.

7.3 Acquisition and processing of the data

• Dynamic wall pressure measurements are carried out by making use of flush-mounted

piezoresistive pressure sensors.

• The sampling frequency is set to 1000 Hz to capture all physical phenomena that could

influence hydroacoustic parameters.
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• Output signals are simultaneously acquired during three-minute runs on a acquisition

device.

• Since pressure signals for a part load operating condition are not perfectly periodic, a

Hamming window is applied to the spectral analysis with a 50% overlap.

7.4 Test procedures

• For a given operating condition, the natural frequency is identified with the excitation

system. The excitation frequency is generated by the rotation of a cylindrical valve and

the amplitude is controlled by a feeding pump. For each excitation frequency, the forced

harmonic response of the hydraulic system is measured with pressure sensors densely

located along the hydraulic circuit. A spectral analysis of the forced harmonic response

for all excitation frequencies is used to identify the natural frequency of the hydraulic

system.

• The wave speed is adjusted in the distributed draft tube model to obtain a similar

experimental natural frequency. Injecting the value of the wave speed in Equation 3.1,

the cavitation compliance can be determined.

• By identifying the wave speed for five Thoma numbers, the value of the cavitation

volume and the void fraction can be deduced from a power law regression with Equation

6.1 and 6.2. By studying more than five Thoma numbers, the quality of the regression

can be improved.

• With the mean pressure at the turbine outlet, the dimensionless wave speed can be

computed. The ratio between the theoretical values given by Rath and the wave speed

inferred from experimental data is computed. With this constant, the value of the wave

speed can be extrapolated to different void fractions.

• With the void fraction, the wave speed and the pressure at the turbine outlet, the bulk

viscosity can be directly computed with Equation 6.12. For high value of bulk viscosity,

the natural frequency of the numerical model must be verified. If the natural frequency

is modified by the bulk viscosity, then the wave speed is adapted to match the natural

frequency measured experimentally.

• With the dimensionless numbers Π and M ′′, the wave speed and the bulk viscosity

can be extrapolated to all operating conditions if the void fraction and the pressure

at the turbine outlet are measured. An approximation of the cavitation volume of the

vortex rope can be achieved with a high-speed visualization of the cavitation vortex

rope in the Plexiglas cone. This non-intrusive method may slightly overestimated the

cavitation volume and therefore underestimated the wave speed and the bulk viscosity.

If this method is not possible, then the natural frequency has to be identified with

the excitation system for all required operating conditions and the wave speed will be

deduced with the numerical model.
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7.4. Test procedures

• The methodology used to identify the pressure source is based on the excitation gen-

erated by the precession of the vortex rope. The external excitation system is not

required. The three parameters describing the Gaussian curve are identified with a

multi-objectives algorithm. To reduce the search space, the standard deviation should

be low to reduce the global error, without causing a dependency of the numerical dis-

cretization. Thus, the standard deviation should be higher than the elementary pipe

length dx. Additionally, the pressure source is usually located in the draft tube elbow.

With these restrictions of the search space, the genetic algorithm can converge to a

global minimum. The algorithm compares the experimental forced harmonic response

of the hydraulic system excited by the precession of the vortex rope with the response of

the numerical model. The comparison is quantified according to the objectives defined

in Section 3.5.

This simplified method can be applied to any type of hydraulic test rig and requires little

additional resources. By assuming both Thoma similitude and Froude similitude conditions,

the hydroacoustic parameters can be transposed to the prototype conditions according to

similitude laws 6.25, 6.28 and 6.29. The natural frequency of the prototype is identified with a

numerical model of the complete hydroelectric power plant and the transposed wave speed.
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8 Conclusions and Perspectives

8.1 Conclusions

The present work contributes to the modeling of the draft tube of a Francis turbine at part load

conditions. The cavitation vortex rope is described as an excitation source for the hydraulic

system. Interactions between this excitation source and system eigenmodes may result in

resonance phenomena and induce a draft tube surge and electrical power swings. To precisely

predict and simulate a part load resonance, proper modeling of the draft tube is critical.

The presence in it of a cavitation vortex rope requires a numerical pipe element taking into

account the complexity of the two-phase flow. From the momentum and continuity equations

describing a cavitating draft tube flow, three hydroacoustic parameters require a special

methodology to be quantified: wave speed, bulk viscosity and pressure source.

Several numerical models have been developed in the past to identify wave speed and bulk

viscosity for bubbly air-water mixtures. However, significant differences between bubbly flow,

slug flow and stratified flow indicate that the theoretical formulations are inappropriate for

the case of a cavitation vortex rope. Therefore, an alternative method based on experimental

data from reduced-scale physical model testing of a Francis turbine and a one-dimensional

numerical model was developed to identify the three hydroacoustic parameters. The method-

ology is based on the direct link that exists between the natural frequency of the hydraulic

system and wave speed in the draft tube. Wave speed and bulk viscosity are identified in

the frequency domain and require the development of an external excitation source and

the characterization of the experimental natural frequency. A sensibility analysis justified

the existence of a global minimum and therefore the use of a simple and robust algorithm

such as the dichotomy. The pressure source is modeled by a Gaussian curve characterized by

three parameters. To identify the global minimum, the three parameters are identified with a

multi-objective genetic algorithm. However, to decrease the number of solutions satisfying the

different objectives, it is assumed that the location of the pressure source L and the standard

deviation e are independent from the Thoma number. The major results of the present work

can be summarized as follows:
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• Wave speed values drop in the range from 10 m/s to 60 m/s when the cavitation vortex

rope is present. With the dimensionless numberΠ, the dependence upon the pressure

level in the draft tube is removed and all experimental values of the wave speed follow the

same power law regression. The comparison with the theoretical formulation developed

by Rath for bubbly flows indicates that the bubbly flow equation can be used for a

cavitation vortex rope by dividing the obtained values by a constant Cad apt . Additionally,

by knowing the wave speed for different Thoma numbers, the mean void fraction of the

cavitation vortex rope Vc can be computed. The mean void fraction obtained analytically

was validated with the local experimental void fraction estimated with a high-speed

visualization of the cavitation vortex rope in the Plexiglas cone.

• A new equation was developed to predict the bulk viscosity caused by the cavitation

vortex rope. This parameter is directly related to the dimensionless numberΠ, as the

bubbly flow formula suggested. Thus, a fourth power dependence for the wave speed

indicates that it is important to accurately determine the wave speed in the draft tube.

• A sensitivity analysis has determined that the pressure source location is in the elbow of

the draft tube. This location depends on the discharge factor QED but not the Froude

number. Additionally, the amplitude of the pressure source is very dependent on its

location and change as a function of the Thoma number. Therefore it becomes difficult

to extrapolate the pressure source to other operating conditions. Dörfler’s statement

assuming that the pressure source is independent from the number of Thoma is thus

erroneous. Finally, to minimize the global error and ensure the convergence of the

genetic algorithm to an optimal solution, the standard deviation should be as low as

possible, without causing a dependency of the numerical discretization.

• Validation of the hydroacoustic parameters identification was performed in time and

frequency domains. Generally, the forced harmonic response of the experimental system

is well reproduced in the frequency domain by the numerical model, independently of

the discharge factor, the Froude number or Thoma number. Additionally, an analysis in

time domain validates the dimensionless laws of the hydroacoustic parameters, and

certifies the ability of the numerical model to simulate the behavior of the hydraulic

turbine under resonance conditions.

• The choice of the numerical model for the draft tube influences the identification of

hydroacoustic parameters. To ensure a good accuracy of the hydroacoustic parameters,

the draft tube model must be chosen to take into account all physic terms of the mo-

mentum equation, such as the destabilizing effect imposed by the divergent geometry

or the dissipation. Only the convective term does not influence the results. Alligné’s

assumption allows for a good identification of the wave speed, but underestimates

the bulk viscosity. Moreover, it is important to note that the dimensionless curves are

independent from the selected numerical model and can be used in every case to link

the void fraction to the dimensionless wave speed or the dimensionless bulk viscosity.
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8.2. Perspectives

• By assuming both Thoma similitude and Froude similitude conditions, transposition

laws were developed and the hydroacoustic parameters were predicted for the prototype.

8.2 Perspectives

The aim of this thesis was to develop a simple methodology to identify critical hydroacoustic

parameters for the numerical model. The influence of Froude and Thoma numbers, and

discharge factor were quantified. Moreover, sensitivity studies have allowed for generaliza-

tion and prediction of these parameters for any part load operating condition. For future

investigations, several strategies should be considered in light of the above findings.

• The dimensionless laws developed in Chapter 6 are independent from the numerical

model and the level setting of the Francis turbine. The influence of the speed factor

nED remains to be determined before using these dimensionless laws for all operating

conditions at part load. Thus, the methodology presented in this thesis should be

applied to different speed factors to quantify its impact.

• The dimensionless wave speed depends on the parameter Cad apt , which is experimen-

tally quantified. The application of the methodology presented in this thesis for other

Francis turbines would identify the impact of the hydraulic machine geometry on the

parameter Cad apt . The ultimate goal would be to predict the value of this parameter

from easily quantifiable data, without having to use an external excitation system.

• The methodology used to identify the pressure source has determined its location and

its amplitude. Nevertheless, the amplitude is very dependent on its location and this

location depends on the discharge factor QED . Therefore its prediction remains very

difficult to quantify.

• The mass flow gain factor has been neglected in this study because its importance is

minimal at part load operating conditions. However, to extrapolate the results to full

load operating conditions, it would be important to quantify this parameter. Currently,

the use of measurement techniques, such as Laser Doppler Velocimetry (LDV), fluores-

cent Particle Image Velocimetry (PIV) and high-speed flow visualization as well as the

development of appropriate signal processing tools grants access to the mass flow gain

factor value, but these experimental devices are expensive and of complex use. A new

goal would be to develop a simple and inexpensive method to quantify and predict this

hydroacoustic parameter.

• The similitude laws developed in this thesis have to be validated with experimental mea-

surements on prototype. In the HYPERBOLE collaborative research project, transposed

draft tube parameters will be injected into a numerical model of the complete hydro-

electric power plant to simulate system response. The validation of the hydropower

plant model will be done by comparison of numerical results with experimental mea-

surements of pressure sensors in time and frequency domains.
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Chapter 8. Conclusions and Perspectives

Globally, this thesis is part of a collaborative research project to develop powerful tools for a

holistic analysis of the interactions between the hydropower plant and its connected power

system. Thus, research in multiple areas of expertise such as hydrodynamics, power electronics

or mechanical structure dynamics are needed:

• Complementary three-dimensional unsteady numerical two-phase flow simulations are

carried out at full load, part load and deep part load to determine the driving parameters

of the transient behavior of the Francis turbine.

• Experimentally, a particular interest is focused on measurements of instantaneous

velocity field survey by means of PIV and LDV in order to derive the instantaneous

discharge in the draft tube cone.

• The modal characteristics of the Francis turbine are also calculated with the influence

of the surrounding water.

• The detailed representation and modeling of the dynamic behavior of hydro units is

also crucial to identify the most adequate control strategies to be included in this type

of units, regarding the provision of specific services to the electric power grid.

These multidisciplinary studies are widely supported by the main hydro equipment suppliers

in order to acquire detailed understanding of the dynamic loads experienced by the hydro-

electrical equipment during transient operation of a hydropower plant. The technological

developments that may emerge from such research may constitute a powerful tool in the grid

regulation and probably impact the 20-20-20 strategic energy policy adopted by the European

Union.
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A Hill chart of the reduced-scale model

1 Rope free zone 2 Interblade vortices limit 3 Lower limit part load 

PL2
PL1

Figure A.1: Hill chart of the reduced-scale Francis turbine physical model on the EPFL test rig
PF3 as a function of nED and QED
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B Dynamic pressure sensors location

Figure B.1: Location of the dynamic pressure sensors on the EPFL test rig PF3.
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