
Stochastic Day-ahead Optimal Scheduling of Active 
Distribution Networks with Dispersed Energy Storage 

and Renewable Resources 
 

M. Nick, Student Member, IEEE, R. Cherkaoui, Senior Member, IEEE, and M. Paolone, Senior Member, IEEE 
Distributed Electrical System Laboratory (DESL)

École Polytechnique Fédérale de Lausanne EPFL, Lausanne, Switzerland 
{mostafa.nick; rachid.cherkaoui; mario.paolone}@epfl.ch 

 
 

Abstract—This paper focuses on the problem of the 
probabilistic optimal day-ahead scheduling of energy resources in 
Active Distribution Networks (ADNs). These resources include 
both dispersed energy storage systems (DESSs) and volatile 
renewable embedded generators. Technical constraints related to 
both energy resources and electrical network are modeled and 
taken into account in the proposed optimization problem. The 
paper first proposes a convex formulation of a specific optimal 
power flow (OPF) used to compute the resources schedule. Its 
objective function aims at achieving the minimum of the following 
quantities: network and DESSs losses, energy cost imported from 
the external grid, and deviations from the day-ahead scheduled 
power flow with the same external grid. In addition, the ability of 
using the substation transformer tap-changer is incorporated into 
the problem with a suitable cost function. The initial OPF 
formulation is then enhanced thanks to the use of the Mixed 
Integer Second Order Cone Programming approach in order to 
formulate a stochastic AC-OPF. The uncertainties of the problem 
are due to the forecast errors of the PV generation, load 
consumption and energy prices. The applicability and the 
effectiveness of the proposed scheduling approach are tested by 
using a modified version of the IEEE 34 buses test feeder. 

 
Keywords—dispersed energy storage systems; active distribution 

networks; stochastic programming; convex optimization, optimal 
power flow. 

NOMENCLATURE 
A. Parameters 
𝐸𝑚𝑎𝑥 ,𝐸𝑚𝑖𝑛 Maximum/Minimum BESSs State-of-

Charge (SoC) 
𝑃𝑚𝑎𝑥  Maximum active power output of BESSs 
𝑣𝑚𝑎𝑥 , 𝑣𝑚𝑖𝑛  Maximum/Minimum limits of squared 

network nodal voltages 
𝑓𝑖𝑗,𝑚𝑎𝑥 Maximum limit of squared current flow 

rating between buses i, and j 
𝑧𝑖𝑗  Impedance of the line between buses i, 

and j 
𝑟𝑖𝑗  Longitudinal resistance of the line 

between buses i, and j 
𝑊𝑇𝑎𝑝, 𝑊𝐸 ,𝑊𝐿 ,𝑊𝐿𝐶  Weighting coefficient of the terms 

composing the objective function 
𝛾 Penalty factor for day-ahead scheduling 

deviation 
𝜌𝑆𝑐 Probability of scenario Sc 
𝐶𝑠   Maximum power rating of BESS s 
𝑟𝑠 Resistive loss factor of BESSs 
𝜋 Energy price from the external grid  
𝑠𝑖 Net apparent power injected/absorbed at 

bus i 
 

B. Variables 
𝑇𝐶 Cost associated to the changes of position 

of substation transformer tap-changer 
𝑇𝑃 Substation transformer tap position 
𝐸𝑆𝑐 Energy imported from the external grid in 

scenario Sc  
𝐸𝐷𝐴 Energy scheduled exchange with the 

external grid in day-ahead  
𝑓𝑖𝑗 Square of current flow over line ij 
𝐿𝑠 Resistive losses of BESS s 
𝑆𝑖𝑗  Apparent power flow over line ij 
𝑣𝑖 Square of nodal voltage at bus i (0 is the 

index of slack bus) 
𝐸𝑠 Energy stored in BESS s 
𝑃𝑠,𝑄𝑠 Active/Reactive power 

production/consumption of BESS s 
𝐿𝐶𝑖 Load curtailment at bus i 
𝑆𝑖
𝑔𝑒𝑟  Apparent power of BESS connected to 

bus i 
C. Indices 
t Index of time steps 

Sc Index of scenarios 

i, h Index of buses 
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ij Index of line between buses i and j 

s Index of BESSs 
 

D. Sets  

G Set of the lines 

ESS Set of BESSs 

N Set of the network buses 

I. INTRODUCTION 
As discussed in the recent literature, the control philosophies 

of the so-called Active Distribution Networks (ADNs) are 
rapidly evolving as a consequence of the envisioned optimal 
control of the dispersed energy resources connected to this layer 
of the electrical infrastructure (e.g., [1], [2]).  In this respect, one 
of the potential leverages is represented by the availability of 
Dispersed Energy Storage systems (DESSs). In general, these 
systems have the capability to provide ancillary services by 
controlling both active and reactive power in sub-second time 
intervals and on the four quadrants. Large Battery Energy 
Storage Systems (BESSs) are the nowadays most adopted 
DESSs. 

Within the context of optimal operation of ADNs, one of the 
approaches that have been proposed in the literature refers to the 
optimal day-ahead scheduling of embedded energy resources 
(e.g., [3]). In this respect, the optimal day-ahead scheduling can 
be approached by solving specific Optimal Power Flow (OPF) 
problems. The category of OPF-problems can be formulated 
with different objective functions, like minimization of: voltage 
deviations, line congestions, network losses, or energy-cost. As 
known, OPF-problems are inherently non-convex and, when 
accounting for the possibilities to control resources with discrete 
states (e.g., transformer tap-changers), they become Mixed 
Integer Non Linear Problems (MINLP). As known, MINLP are 
hard to solve and computationally expensive where, 
additionally, the finding of the global optimal solution is not 
guaranteed. At the same time, the presence of volatile 
renewable resources introduces uncertainties due to the errors in 
their day-ahead production forecasts. This aspect makes the 
problem even more complex as it includes stochastic processes.

In this respect, it is worth mentioning that, since 
uncertainties may cause financial losses to the Distribution 
Network Operators (DNOs), they should be considered in the 
day-ahead scheduling. Indeed, DESSs, in addition to the 
network supports capabilities and energy arbitrage benefits, can 
be used to reduce the power flow deviations with the external 
grid with respect to the day-ahead schedule. 

Several approaches have been used to solve the problem of 
day-ahead scheduling of ADNs. The Authors of [4] proposed a 
stochastic day-ahead scheduling that considers the uncertainties 
of the renewable energy resources. A two stage optimal 
scheduling procedure for distribution networks is proposed in 
[3] where the optimal set-points of the distributed resources are 
determined in a dedicated day-ahead scheduler where an intra-
day controller solves, each 15 minutes, another optimization 
problem aiming at satisfying specific operation objectives (i.e., 
voltage profiles, losses minimization etc.). A day-ahead 

resource scheduling in ADNs with high penetration of electrical 
vehicles and embedded generation is presented in [5] where the 
problem is solved by taking advantage of a heuristic technique 
based on the Particle Swarm Optimization (PSO). A specifically 
defined active-reactive power flow optimization is proposed in 
[6]. It aims at minimizing the total cost of the supplied 
electricity and the total network losses. The problem is 
formulated for a given ADNs assuming the presence of 
embedded generation and battery energy storage systems. 

The above-mentioned papers either propose partially non-
convex formulation of the OPF problem (requiring the use of 
heuristic techniques) or address only the economic dispatch 
problem without considering the technical constraints of the 
network. In distribution networks characterized by a purely 
radial structure, some relaxations have been proposed in order 
to make the problem convex. A convex relaxation for OPF 
problem is proposed in [7] and it is proven to be exact with the 
over-satisfaction of supplied load. In [8] a sufficient condition is 
proposed for checking the exactness of the relaxed OPF 
problem solution. In this last paper, the Authors suggested a 
relaxation with more conservative constraints for the voltage. 
An exact convex relaxation of optimal power flow problem is 
proposed in [9] for radial distribution networks.  

By using the method of [9], in this paper we propose a 
stochastic method to solve the day-ahead optimal scheduling 
problem of radial ADNs in presence of BESSs and volatile 
renewable resources. BESSs are modeled by representing their 
State-of-Charge (SoC) and resistive losses, as well as their 
capabilities, to support the network by variable 
injected/absorbed active/reactive powers on the four quadrants. 
The stochastic daily optimal power flow scheduling is 
formulated as a stochastic Mixed Integer Quadratically 
Constrained Quadratic Program (MIQCQP). The possibility to 
control the substation transformer tap-changer is also accounted 
for. 

The rest of the paper is structured as follows: the complete 
formulation of the problem is described in section II. An 
exhaustive analysis of the algorithm performances is presented 
in Section III with reference to a modified IEEE 34 bus test 
feeder. A discussion concerning DNOs benefits associated to 
the use of the proposed method concludes the paper. 

II. PROBLEM DESCRIPTION 
As anticipated above, the exact convex relaxation of OPF 

problem for radial distribution networks proposed in [9] is used 
in this paper. The lines are modeled using the classical two-port 
 equivalents. Thus, the reactive power associated to shunt 
impedance of the lines is also considered. 

Concerning the BESSs, since they are normally interfaced to 
the grid by means of power electronic converters, we have 
assumed their ability to support the network by controlling both 
active and reactive powers. BESS capability curves are included 
in the model by a cone constraint. The losses taking place into 
the BESSs converter are also considered. They are considered 
by a relaxed second order cone constraint.  
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A. Uncertainties of the model 
The sources of uncertainties are associated to the forecasted 

photovoltaic (PV) production, load and price profiles from the 
day-ahead market. To deal with these uncertainties, various 
scenarios are considered for load, price and PV productions. A 
stochastic scenario tree is built based on these inputs. Then, a 
two stage stochastic programming approach is used to find the 
optimal scheduling [10, 11]. The decision of the first stage is 
made when the random variables are unknown (in the day-
ahead). Then, the second stage decision (in real time) is 
performed. The random variables of this second stage are the 
PV production, load consumption and energy price. It is worth 
noting that an inherent coupling between the two stages exists 
since this last one is influenced by the decisions made in the 
former stage. 

We assume that the first-stage decision declares the amount 
of import/export energy from the external grid at each hour in 
the day-ahead market. The operation and control of the grid for 
various scenarios compose the second stage where the decision 
variables are the amount of active and reactive power that 
BESSs produce at each time step.  
B. Mathematical formulation of the problem 

The objective function of the problem (as it is shown in (1)) 
accounts for the minimization of different aims: (i) energy cost 
from the external grid, (ii) penalty deviations from the day-
ahead schedule of the energy import/export from/to external 
grid, (iii) cost of changing the transformer tap-changer position 
and (iv) total network and BESSs losses. It is worth noting that 
objectives (i) and (ii) might compete. However, the inclusion of 
both of these two objectives allow the DNOs to enable 
conditions for which the economical losses associated to large 
deviations from the day-ahead schedule are largely 
compensated by the exported power towards the external grid. 

The voltage deviations are incorporated into the model by a 
set of constraints that limit its variation to 5%. The 
mathematical formulation of the optimization problem is as 
follow: 

min 𝜌𝑆𝑐∑∑{𝑊𝑇𝑎𝑝𝑇𝐶𝑆𝑐(𝑡) + 𝑊𝐸(𝐸𝑆𝑐(𝑡)
𝑡𝑆𝑐

𝜋𝑆𝑐(𝑡)

+ 𝛾𝑆𝑐,𝑡|𝐸
𝐷𝐴(𝑡) − 𝐸𝑆𝑐(𝑡)|)

+ 𝑊𝐿[(∑ 𝑟𝑖𝑗𝑓𝑖𝑗,𝑆𝑐(𝑡)
𝑖𝑗𝜖𝐺

)+  ∑𝐿𝑠,𝑆𝑐(𝑡)
𝑠

]

+ 𝑊𝐿𝐶∑𝐿𝐶𝑖,𝑆𝑐}
𝑖

 

  (1) 

Subject to: 

𝑆𝑖𝑗,𝑆𝑐(𝑡) = 𝑠𝑖,𝑆𝑐(𝑡)

+ ∑ (𝑆ℎ𝑖,𝑆𝑐(𝑡) − 𝑧ℎ𝑖𝑓ℎ𝑖,𝑆𝑐(𝑡))
ℎ:ℎ→𝑖

− 𝑆𝑖,𝑆𝑐
𝑔𝑒𝑟(𝑡) − 𝐿𝐶𝑖,𝑆𝑐  ∀(𝑖, 𝑗) ∈ 𝐺 

(2) 

𝑣𝑖,𝑆𝑐(𝑡) = 𝑣𝑗,𝑆𝑐(𝑡) +  2𝑅𝑒 (𝑧𝑖̅𝑗𝑆𝑖𝑗,𝑆𝑐(𝑡)) − |𝑧𝑖𝑗|
2
𝑓𝑖𝑗,𝑆𝑐(𝑡)   

(3) 

∀(𝑖, 𝑗) ∈ 𝐺 

0 = 𝑠0,𝑆𝑐 + ∑ (𝑆ℎ0,𝑆𝑐 − 𝑧ℎ0𝑓ℎ0,𝑆𝑐)
ℎ:ℎ→0

 (4) 

𝑓𝑖𝑗,𝑆𝑐(𝑡) ≥
|𝑆𝑖𝑗 ,𝑆𝑐(𝑡)|

2

𝑣𝑖,𝑆𝑐(𝑡)
         ∀(𝑖, 𝑗) ∈ 𝐺 

(5) 

𝑓𝑖𝑗,𝑆𝑐(𝑡) ≤ 𝑓𝑖𝑗,𝑚𝑎𝑥       ∀(𝑖, 𝑗) ∈ 𝐺 (6) 

𝑣𝑚𝑖𝑛 ≤ 𝑣𝑖,𝑆𝑐(𝑡) ≤ 𝑣𝑚𝑎𝑥        𝑖 ∈ 𝑁 (7) 

𝐸𝑠,𝑆𝑐(𝑡 + 1) = 𝐸𝑠,𝑆𝑐(𝑡)− 𝑃𝑠,𝑆𝑐(𝑡) − 𝐿𝑠,𝑆𝑐(𝑡)  ∀𝑠
∈ 𝐸𝑆𝑆 

(8) 

−𝑃𝑠,𝑚𝑎𝑥 ≤ 𝑃𝑠,𝑆𝑐(𝑡) ≤ 𝑃𝑠,𝑚𝑎𝑥       ∀𝑠 ∈ 𝐸𝑆𝑆 (9) 

𝐸𝑠,𝑚𝑖𝑛 ≤ 𝐸𝑠,𝑆𝑐(𝑡) ≤ 𝐸𝑠,𝑚𝑎𝑥       ∀𝑠 ∈ 𝐸𝑆𝑆 (10) 

𝑃𝑠,𝑆𝑐
2 (𝑡) + 𝑄𝑠,𝑆𝑐

2 (𝑡)  ≤ 𝐶𝑠2       ∀𝑠 ∈ 𝐸𝑆𝑆 (11) 

𝐿𝑠,𝑆𝑐(𝑡)  ≥ 𝑟𝑠(𝑃𝑠,𝑆𝑐
2 (𝑡) + 𝑄𝑠,𝑆𝑐

2 (𝑡))    ∀𝑠 ∈ 𝐸𝑆𝑆 (12) 

𝑣0 = 1 + 0.01(𝑇𝑃𝑆𝑐(𝑡)) (13) 

0 ≤ 𝑇𝑃𝑆𝑐(𝑡) ≤ 10 (14) 

𝑇𝑃𝑆𝑐(𝑡): 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 (15) 

𝑇𝐶𝑆𝑐(𝑡) ≥ 0 (16) 

𝑇𝐶𝑆𝑐(𝑡) ≥ 𝑇𝑃𝑆𝑐(𝑡) − 𝑇𝑃𝑆𝑐(𝑡 − 1) (17) 

𝑇𝐶𝑆𝑐(𝑡) ≥ −𝑇𝑃𝑆𝑐(𝑡) + 𝑇𝑃𝑆𝑐(𝑡 − 1) (18) 

The equations (2), (3), (4), (5) and (6) are related to the load 
balance and flow limits in the network feeders. In [9] it is 
proven that if two specific conditions hold, then the solution of 
the relaxed OPF problem is exact. For sake of brevity, we 
briefly recall the first condition1. It states that the upper limit of
the voltage should not be limiting. In this respect (4) is added 
to the problem to ensure that the upper limit of the voltage is 
not binding. This slightly shrinks the solution space of the 
problem2. The constraint (7) models the upper and lower limits 
of the bus voltages. The SoC of the BESSs is modeled as 
shown in (8) and their power rating and reservoir capacity 
limits are modeled by (9) and (10) 3. 

The capability curve of the BESSs is modeled by (11). It 
should be noted that it is assumed that the reactive power 
regulation done by the BESSs does not affect their SoC 
however, it impacts the BESS resistive losses. Equation (12) 
represents the relaxed version of the BESSs resistive losses, 
which is originally an equality constraint instead of an 
inequality one. This relaxation is exact since these losses are 

                                                           
1 The second condition can be checked a priori. It has been proven to hold 

for IEEE 34 buses test system with high penetration of DGs (actually it holds 
for most of the radial distribution networks even with high penetration of 
renewable energy.) [9]. 

2 For further details, see [9]. 
3 It is worth noting that the optimal siting and sizing of DESS has been 

discussed in [12]. 

2014 IEEE Conference on Technologies for Sustainability (SusTech)

93



minimized in the objective function. 
The tap-change of the sub-station transformer is modeled 

by the equations (13) – (18). It is assumed it has 5 steps for 
regulation such that each one can regulate the voltage of 1%. In 
the next section the proposed model is examined with standard 
test case study and various scenarios. In the following section 
we compare the behavior of the network with and without 
BESSs. The later case is analyzed by simply forcing to zero the 
energy/power capacities of BESSs in equations (9-11).   

III. SIMULATION RESULTS 
As it is shown in Fig. 1, in this section we have adopted a 

case study based on a modified IEEE 34 test distribution feeder. 
We compared two cases, i) no BESS is installed in the network, 
ii) two BESSs are optimally located in the network using the 
procedure described in [4]. It is assumed that the PV panels are 
installed on the roof of the customers therefore it is distributed 
among the buses based on the their loading. The percentages of 
load and PV connected to bus “i”, with respect to the total one, 
is shown in Table I.  

DESSDESS

DESSDESS

1 

3  4  6  7 

5 

2  8 

10 

13  14 9 

11 

12 

15  16  17  18 

19 

20 
33  34 

32 

31 

30 
29 28 23 

24 

25 

26 

27 

22 

21 

 
 

Fig. 1: Schematic of the modified IEEE 34 buses test system.  

TABLE I.  LOAD/PV SHARE OF EACH BUS 

Node 
# 

Percentages 
of total 
load/PV 

Bus # Percentages 
of total 
load/PV 

Bus # Percentages 
of total 
load/PV 

3 6.5 5 0.9 11 1.92 

12 7.63 13 0.28 14 2.26 

15 0.23 16 2.94 18 0.22 

21 0.85 22 0.11 23 1.80 

25 23.40 26 2.54 27 4.69 

28 8.25 29 4.64 30 3.79 

32 1.58   34 25.44 

 

A total of 20 scenarios are assumed to cover the 
uncertainties of the PV production using real measurements. 
Similarly, 10 scenarios are provided for daily load variations. 
These scenarios are built using Monte-Carlo simulation with 5% 
standard deviation. These two sets provide 200 scenarios in total 
for the aggregated net load of the system (PV production and 
load). The K-Means method [13] is used to decrease these 200 
scenarios to 30. As known, the method tries to synthesize the k 
clusters so that the mean squared distance from each data of the 
original set and the synthesized clusters is minimal. The 
clustered scenarios related to the total net load of the network 

are shown in Fig. 2. The uncertainties of the price variations are 
also considered with 10 scenarios that are shown in Fig. 3. The 
reduced scenarios of total net load (30 ones) and the price 
scenarios define the scenario tree of the optimization problem. It 
produces 300 scenarios in total. The weighing coefficients (W) 
of each term of the objective function are calculated using 
Analytical Hierarchy Process (AHP) [14]. It should be noted 
that the weight of the load curtailment is considered to be a big 
number and it is not incorporated into the AHP. The simulation 
parameters are shown in Table II. The base value for 
power/energy is 2.5 MW/MWh.  

 
Fig. 2: Total net daily active load scenarios (aggregated of the load and PV 
generation). The base power is 2.5 MW.  
 

 
Fig. 3: Energy price scenarios. 

TABLE II.  SIMULATION PARAMETERS 

BESS 1 power rating 
[p.u.] 0.15 BESS 2 power rating [p.u.] 0.17 

BESS 1 reservoir 
capacity [p.u.] 0.3 BESS 2 reservoir capacity 

[p.u.] 0.5 

𝑊𝑇𝑎𝑝 0.603 𝑊𝐸 0.23 

𝑊𝐿 0.167 𝑊𝐿𝐶 100 

 
The proposed MIQCQP model is implemented in YALMIP-

MATLAB interface [15] and is solved using Gurobi 
optimization software [16]. 

The objective function terms are reported in Table III for 
both cases. It shows that the total losses and the energy cost 
from the external grid are decreased using BESSs. In addition to 
these quantities, the total upward deviation 
(consuming/producing less/more energy than day-ahead 
schedule) and downward deviation (consuming/producing 
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more/less energy than day-ahead schedule) are decreased 
significantly (these values are the total deviations for the all 30 
load scenarios.). The Table III also shows that by using BESSs 
the sub-station transformer tap-changer is not used. On the 
contrary, it is used largely to modify the slack bus voltage for 
the case i (without the BESSs) For the case without the BESSs, 
2.125 MWh energy is to be curtailed in average in whole 
scenarios. The load curtailment is prevented with the presence 
of BESSs.  

 The voltage deviation is not directly included in the 
objective function and the maximum voltage deviation is 
limited to 5% by constraints (7). The boxplot of nodal voltages 
for each time step for both cases are shown in Fig. 4. The 
bottom and top of the blue boxes indicate the first and third 
quartiles (25th and 75th percentiles of the data) of the nodal 
voltages at each time step. The red lines indicate the median 
while the whiskers show the maximum and minimum of nodal 
voltages at each time step. It can be observed that, for the case 
without BESSs the max/min of voltages are equal to 1.025 and 

0.95 p.u. respectively. The max voltage corresponds to the value 
set at the slack bus by the tap-changer. The min voltage 
corresponds to the minimum limit associated to the constraint 
(7). This figure shows that the voltage profile of the network has 
been improved (i.e., the voltage deviations are minimized) by 
using BESSs.  

The daily active power scheduling of the BESSs and their 
maximum/minimum variations in different scenarios are shown 
in Fig. 5.  These variations are the capacities that are considered 
as the reserve for compensating the day-ahead forecast errors.
As it can be seen from this figure, the reserve capacity in 
correspondence of the middle of the day is high in order to 
compensate the PV production forecast errors (the uncertainties 
of the PV production is much higher that the load ones).  

IV. CONCLUSION 
The paper has proposed a process to solve the problem of 

the probabilistic day-ahead scheduling of energy resources 
connected to ADNs. The considered resources are DESSs (with 

TABLE III.          COMPARISON OF EACH TERM OF THE OBJECTIVE FUNCTION (BASE VALUE FOR POWER/ENERGY ARE 2.5 MW/MWH) 

 Total average 
loss in whole 

scenarios [p.u.] 

Use of Tap-
changer 

Load curtailment 
[p.u.] 

Total Upward 
deviation [p.u.] 

Total Downward 
deviation [p.u.] 

Energy cost 
from the 

external grid 
[CHF] 

With BESSs 0.2138 No 0 2 1.23 201.22 

Without 
BESSs 

0.29.9 YES 0.85 3.17 1.8 246.34 

 

a)  b)  

Fig. 4: The boxplot of the IEEE 34 test feeder nodal voltages. a) With BESSs and b) without BESSs. 
 

a)  b)  
Fig. 5: BESSs daily active power schedule together with their maximum and minimum variations (base power equal to 2.5 MW). a) BESS 1, b) BESS 2 
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particular reference to BESSs) and non-dispatchable DGs. The 
technical constraints of the resources, together with the ones of 
the electrical network, are modeled and incorporated into the 
optimization problem using a method already presented in the 
literature. The objective function includes loss minimization and 
economical goals associated to the energy cost imported from 
external grid and the operation costs of the BESSs together with 
transformer tap-change cost function and deviation penalties 
due to deviation from day-ahead scheduling of the power flow 
with the external grid. 

The uncertainties of load and PV forecast, in addition to the 
price forecast errors, are used to generate scenarios and 
formulate a stochastic MISOCP problem. The results show that 
the optimally controlled BESSs not only improve the quality of 
the service (i.e., decrease of voltage deviation) but also reduce 
the total losses and the day-ahead scheduling mismatch with 
respect to real-time scenarios. In addition, the proposed optimal 
control of these resources enables the load shifting and 
decreases the cost of energy supplied by the external sub-
transmission network. 
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