
SwarmViz: An Open-Source Visualization Tool for
Particle Swarm Optimization

Guillaume Jornod, Ezequiel Di Mario, Iñaki Navarro and Alcherio Martinoli
Distributed Intelligent Systems and Algorithms Laboratory

School of Architecture, Civil and Environmental Engineering

École Polytechnique Fédérale de Lausanne

guillaume.jornod@gmail.com, {ezequiel.dimario, inaki.navarro, alcherio.martinoli}@epfl.ch

Abstract—Particle Swarm Optimization (PSO) is a meta-
heuristic for solving high dimensional optimization problems.
Due to the large number of dimensions usually employed with
PSO, it is not trivial to visualize and monitor the progress of
the algorithm. Because of this, adjusting the parameters that
govern the dynamics of the swarm for a specific problem becomes
challenging. In this article, we present SwarmViz, an open-source
visualization tool for PSO. Through SwarmViz, users are able
to set up PSO experiments on canonical benchmark functions
or input data from external experiments (e.g., learning robotic
controllers), and to visualize the optimization process with state-
of-the-art visualization tools. SwarmViz has two main goals. First,
to enable researchers to monitor the progress of their specific
optimization problem and adjust the relevant PSO parameters.
Second, to give a visual insight about PSO to students in the scope
of teaching optimization techniques. We demonstrate the features
of the software through examples on well-known numerical
benchmark functions and a case study on the optimization of
a robotic controller.

I. INTRODUCTION

This paper introduces SwarmViz, an open-source, cross-

platform software written in C++ for the visualization of

Particle Swarm Optimization (PSO) [1]. SwarmViz addresses

the problem of visualizing the progress of PSO in high-

dimensional search spaces for educational and research pur-

poses. The current version of the software is focused on PSO,

but it is easily extensible to other population-based algo-

rithms. By its essence, PSO is used to solve multi-dimensional

problems. This feature raises an issue when the dynamics

of the algorithm are studied: high-dimensional visualization.

Even though the visualization of two or three dimensions is

straightforward, the addition of extra dimensions involves a

large set of additional problems to address.

PSO is taught in higher education institutions in courses

related to swarm intelligence and machine learning techniques.

This study is generally addressed through the formal definition

of the algorithm illustrated by several two-dimensional exam-

ples of the swarm dynamics. This educational purpose would

largely benefit from a high-dimensional visualization tool.

Moreover, PSO has a significant amount of parameters,

which all drastically impact the efficiency of the algorithm.

It is therefore of great interest to obtain a better understand-

ing of the influence of such parameters using the proposed

visualization tool.

The learning of robotic behaviors with population-based

metaheuristic techniques has a large computational cost. The

evaluation of each candidate solution leads to a computation-

ally expensive simulation or real robotic experiment, increas-

ing dramatically the cost of the learning. Additionally, multiple

sources of uncertainty affect the performance evaluation of

a candidate solution and lead to a need of reevaluation [2].

Being able to understand the dynamics of PSO in this kind of

application can help in reducing the learning costs.

The presented software enables the visualization of the

PSO process using state-of-the-art representation means for

population-based algorithms, including projections, represen-

tations of the swarm state, and progress metrics.

SwarmViz comes with a set of canonical benchmark func-

tions on which PSO can be tested. Users can set all PSO pa-

rameters through a dedicated Graphical User Interface (GUI)

and run experiments, either step by step, with a fixed time

delay between iterations, or at computational speed. Addition-

ally, Gaussian noise can be added to numerical benchmark

function evaluations.

The tool also supports the import of data from external

simulated or real experiments. While it is straightforward to

store the results of each iteration in text files, their interpreta-

tion is difficult when multiple dimensions are involved. This

issue is tackled by the possibility to visualize this data through

SwarmViz.

The remaining of this article is organized as follows. In

Section II, existing visualization tools and techniques are pre-

sented together with a quick overview of the PSO algorithm.

An overview of SwarmViz and its features is presented in

Section III. Section IV presents the different visualizations

developed in the tool. The visualization of a robotic learning

experiment example is described and discussed in Section V.

Finally, Section VI concludes this article and presents an

outlook for potential improvements.

II. RELATED WORK

A. PSO Algorithm

PSO is a relatively new metaheuristic originally introduced

by Kennedy and Eberhart [1], which was inspired by the

movement of flocks of birds and schools of fish. Because of

its simplicity and versatility, PSO has been used in a wide

range of applications such as antenna design, communication

1: Intialize particles

2: for Ni iterations do

3: for each particle do

4: Update particle position

5: Evaluate particle

6: Share personal best

7: end for

8: end for

Fig. 1. PSO algorithm.

networks, finance, power systems, and scheduling. The pseu-

docode for the algorithm is shown in Figure 1.

Given xi, j the position of particle i in dimension j, its

velocity vi, j depends on three components: the velocity at

the previous step weighted by an inertia coefficient w, a

randomized attraction to its personal best x∗i, j weighted by wp,

and a randomized attraction to the neighborhood’s best x∗
i′, j

weighted by wn (Eq. 1). rand() is a random number drawn

from a uniform distribution between 0 and 1.

vi, j = w ·vi, j +wp ·rand() ·(x∗i, j −xi, j)+wn ·rand() ·(x∗i′, j −xi, j)
(1)

B. Visualization of High-Dimensional Optimization Problems

Spears presented an overview of multidimensional visu-

alization [3]. This overview gives insights on how to use

colors in the visualization of evolutionary algorithms. The

idea of depicting each generation with a different color can

be extended to PSO in order to differentiate particles and

iterations. In addition to differentiating multiple objects on

the same plot, colors can be used to denote an additional

dimension with a color map.

This overview also presents glyphs, i.e., elements of writing

or complex symbols, such as the star plot and Chernoff’s

faces. The former represents the dimensions with star spokes

whose lengths denote the values in a relative scale. The latter

represents the data point with traits on human faces. The

implementation of Chernoff’s faces is obviously very greedy,

especially when it comes to representing the states of the

algorithm with no delay. The different representation methods

using glyphs are reviewed in another study [4].

In addition, Spears reviews projection techniques [3]. He

states that the simple projection in 2D of multidimensional

data is of great interest since it is computationally simple and

might reveal unusual structures within the multidimensional

space. Andrew’s curves [5] and the Grand tour [6] techniques

are also presented.

Finally, the overview ends with the parallel coordinates plot,

a method that allows to work around one drawback of the

projections: the impossibility to visualize all dimensions in

the same plot. The multidimensional points are drawn on a

broken line in which each vertex corresponds to a dimension.

A more recent overview of multidimensional visualizations

focused on PSO presents results with the density plot, a graph

that shows whether the particles converged, and the parallel

coordinates plot, described above, which can help to detect

convergence or specific patterns [7]. These two visualization

techniques are described in further detail in Sec. IV.

C. Existing Tools

GEATbx [8] is a MATLAB toolbox that provides graphs to

visualize the convergence of Genetic Algorithms. It includes

the visualization of the fitness of individuals, distance between

them and other metrics. The tool offers complete sources and

documentation; however, it is a commercial software with a

large cost which can be a potential drawback for educational

purposes.

GONZO [9] is a software visualization tool for Evolutionary

Algorithms. It offers the possibility to display summary graphs

with genetic and parental information, as well as search space

metrics. This tool works for online and offline simulations,

which allows to visualize ongoing and finished simulations.

VISPLORE [10] is a toolkit for PSO exploration which

runs on Mathematica. It includes density plots, star plots,

parallel coordinates plots, and history plots, and offers as

well the possibility to visualize a single particle, the swarm

at a specific step, the swarm during an entire experiment or

multiple experiments.

The aforementioned tools offer a large set of possibilities:

multiple plotting and visualization techniques, visualization of

different algorithms and running on different platforms with

both commercial and non-commercial software.

However, the research and educational purposes addressed

in this paper require a high flexibility for the former and a

low or non existent cost for the latter. Moreover, the flexibility

should be extensible to both platforms and algorithms.

The development of a standalone application has the ad-

vantage of being independent of any license. Furthermore, it

gives freedom for users to customize the algorithm being used,

adapting it to any of the PSO variants present in the literature,

and the benchmark functions, for instance, by adding noise

with different distributions. It also provides the possibility

to load external data. These data can originate from either

simulated or real-life experiments, and the input format can

be adapted to the researcher’s needs.

III. SOFTWARE OVERVIEW

This section provides an overview of SwarmViz features,

including the different visualizations, the capabilities for inter-

pretation of data generated offline, and the execution of PSO

experiments on canonical benchmark functions.

SwarmViz was developed in the C++ language using Qt,

an application framework which enables the development

of cross-platform graphical user interfaces. Benefiting from

the cross-platform advantage of Qt applications, the tool

has been successfully tested on multiple operating systems:

Ubuntu 12.04, Linux Mint 17.1, Windows 7, and OS X

10.9. This application is distributed under the GNU General

Public License. Its source code is available in the git repository

https://github.com/epfl-disal/SwarmViz.git.

Fig. 2. SwarmViz main window with the different visualizations on the left,
and the configuration and control panel tabs on the right side.

A. A GUI for PSO Experiment Visualizations

From a development point of view, a visualization tool

could a priori only be composed of independent plot windows

launched from a command line. But the tasks to be carried out

are multiple and diverse: tweaking PSO parameters, reading

and writing files, tuning visualization options, etc. Conse-

quently, SwarmViz is under the form of a GUI designed to

setup simulations, manage input and output files and handle

the visualization widgets. Figure 2 presents the main window

of the software.

The two main usages of the software are the analysis of

PSO on benchmark functions and visualization of off-line PSO

experiments, in our case from robotic learning. The former is

tackled through the configuration of PSO experiments with the

desired parameters using the GUI, which is discussed in Sec.

III-B, while the latter is addressed by the input and reading

of data generated offline, which is detailed in Sec. III-C. Both

functions of the software are useful for research and education.

B. PSO on Benchmark Functions

The configuration of a PSO experiment begins with the

choice of the function among the set of implemented canonical

functions presented in Table I. Then, the algorithm parameters

are specified:

• number of particles;

• dimensionality of the problem;

• minimum initial value;

• maximum initial value;

• maximum velocity;

• total number of neighbors;

• weight of the neighborhood best;

• weight of the personal best;

• inertia;

• maximum number of iterations;

• number of re-evaluations.

By setting a non zero value for the inertia parameter, PSO

with inertia is run [11]. Moreover, a noise value can be defined;

this value is the standard deviation of the Gaussian noise that

will be added to the function evaluations. Finally, a noise-

resistant version of the algorithm [12], [13] can be activated.

The software also includes the option to write the state of

the algorithm on benchmark functions in the same format as

the one used to load external data, intended to be used for

reproducing results of previous experiments.

C. Loading data generated offline

In the process of robotic learning with PSO, it is common

to output the states of the particles at each iteration. Analyzing

information from this kind of data is difficult, especially with

large swarms on high dimensional problems and long learning

times.

SwarmViz proposes a feature to read data generated offline.

This feature lets the user import files from robotic experiments,

allowing to visualize the behavior of the swarm during the

learning process and to draw conclusions on the influence of

the PSO parameters in the scope of robotic learning.

D. Ouputs

In addition to the aforementioned state files, SwarmViz

offers the possibility to output the plots at any time of the

experiment. The available formats are PDF, JPG, PNG and

BMP, which come with specific properties: size, quality and

scale. These figures can be directly included in reports and

articles as illustrated in the examples of this paper.

IV. VISUALIZATIONS

This section presents the visualizations provided by Swarm-

Viz. The term visualization as used in this section should be

understood as graphical representation. The visualizations de-

scribed are: trajectories, fitness landscape, Sammon’s mapping,

density, parallel coordinates, best graph, Euclidean distance,

and finally fitness. They are classified by types: projections,

overall visualizations, and metrics.

A. Projections

Projections can be used to reduce the number of dimen-

sions of the original data to a number suitable for graphical

representation, i.e., two or three dimensions. Three projections

implemented in the visualization tool are presented.

1) Trajectories: they depict the change in the particles’ po-

sitions at successive iterations. The visualization of trajectories

is achieved through a projection from the search space to a

plane of two arbitrary dimensions selected by the user. Two

coloring schemes are proposed, the first one is index-based

whereas the second one is based on the performance of the

particles at the current iteration.

Figure 3 illustrates trajectories with a swarm of 20 particles

on the sphere function in 100 dimensions, using index-based

colors. In this example, the inertia, and the neighborhood and

local weights are very low, which allows to draw simultane-

ously fifty positions of a particle and to get a worms effect. The

TABLE I
LIST OF IMPLEMENTED CANONICAL FUNCTIONS.

Name Definition Domain Global minimum

Sphere function f (x) =
d

∑
j=1

x2
j R

d min(f) = f (~0) = 0

Rosenbrock’s valley f (x) =
d−1

∑
j=1

[

100 · (x j+1 − x2
j)

2 +(1− x j)
2
]

R
d min(f) = 0

Rastrigin’s function f (x) = 10 ·d +
d

∑
j=1

[

x2
j −10 · cos(2 ·π · x j)

]

R
d min(f) = f (~0) = 0

Griewank’s function f (x) = 1+
d

∑
j=1

x2
j

4000
−

s

∏
j=1

cos
(

x j√
j

)

R
d min(f) = f (~0) = 0

Twin peaks function f (x1,x2) =−5 · x2
1 + x2

2 + x4
1 R

2 min(f) = f (±1.5811,0) =−6.25

Crater lake function f (x1,x2) =−
(

x2
1 + x2

2

)2
+100 ·

(

x2
1 + x2

2

)

R
2 −

Schwefel’s function f (x) =
d

∑
j=1

[

−x j · sin
(√

|x j |
)]

R
d min(f) = f (~420.9687) =−418.9829 ·d

Ackley’s function f (x) =−20 · exp

[

−0.2 ·
√

1
n

d

∑
j=1

x2
j − exp

(

1
n

d

∑
j=1

cos2 ·π · x j

)

]

+20+ exp(1) R
d min(f) = f (~0) = 0

Michalewicz’s function f (x) =−
m

∑
j=1

sin(x j) ·
[

sin

(

j·x2
j

π

)]20

R
d −

Easom’s function f (x1,x2) =−cos(x1) · cos(x2) · exp
(

−(x1 −π)2 − (x1 −π)2
)

R
2 min(f) = f (π,π) =−1

Drop wave function f (x1,x2) =−
1+cos

(

12·
√

x2
1
+x2

2

)

0.5·(x2
1
+x2

2
)+2

R
2 −

�✁✂✄ �☎✂✆ ☎ ☎✂✆ ✁✂✄ ✁✂✝ ✄✂✞
✟✠✡☛☞✌✠✍☞ ✁

�✄✂✞

�✁✂✆

�☎✂✝

☎

☎✂✝

✁✂✆

✄✂✞

✎
✏✑
✒
✓
✔✏
✕
✓
✖

✗✘✙✚✛✜✢✣✘✤ ✥✦✧★✙✩✦✧✙✢✦✣✪

Fig. 3. Trajectory visualization on the sphere function in 100 dimensions
with 20 particles and 50 successive positions for each trajectory.

particles slowly move towards the global minimum, located at

the origin.

2) Fitness Landscape: it describes the attempt to recon-

struct the shape of the fitness function using all previously

evaluated positions. Each position is projected into a two-

dimensional plane using a color coding to represent the fitness

function values. This plot is similar to the visualization of

trajectories, except that all positions are represented in the

selected dimensions, with no identification of the different

particles. As it is often the case when projections are used,

this visualization has the drawback that positions that are far

apart in the original search space may actually overlap in

the projected space, causing clutter and potentially leading to

confusion. However, it can also provide insight as to whether

there is some kind of structure in the search space and help

to identify or discard potential regions for good solutions.

Figure 4 illustrates the fitness landscape visualization for a

simulation with 20 particles in 400 iterations, in two and ten

�✁✂✄ �☎ �✆✂✄ ✝ ✆✂✄ ☎ ✁✂✄
✞✟✠✡☛☞✟✌☛ ✆

�✁✂✄

�☎

�✆✂✄

✝

✆✂✄

☎

✁✂✄

✍
✎✏
✑
✒
✓✎
✔
✒
✕

✖✗✘✙✚✛✛ ✜✢✙✛✣✢✤✚

(a)

�✁ �✂ �✄ ☎ ✄ ✂ ✁
✆✝✞✟✠✡✝☛✠ ☞

�✌✍✎

�✎

�✄✍✎

☎

✄✍✎

✎

✌✍✎

✏
✑✒
✓
✔
✕✑
✖
✔
✗

✘✙✚✛✜✢✢ ✣✤✛✢✥✤✦✜

(b)

Fig. 4. Fitness landscape for the Rastrigin function (20 particles after 400
iterations). (a) Two dimensions. (b) Ten dimensions.

dimensions on the Rastrigin function. In two dimensions, the

Rastrigin fitness landscape is expected to show green circles,

depicting the local minima of the function. However, in ten

dimensions, this pattern is less clearly visible, principally due

to the overlapping of different performances at the same point.

3) Sammon’s mapping: it is a non-linear algorithm that

maps a high dimensional space to a lower dimensional space

(i.e., dimension reduction), while attempting to preserve the

distances between points [14]. This preservation is obtained

by minimizing a metric, called Sammon’s stress:

E =
1

∑
i< j

δi j
∑
i< j

(δi j −di j)
2

δi j

where δi j and di j denote the distance in the d-dimensional

space and in the resulting 2-dimensional space, respectively.

The minimization of the Sammon’s error is performed by

gradient descent. The gradient, the Hessian matrix, and the

search direction are recomputed until the error is lower than

10−6.

�✁✂✄ �✁✂☎ �✆✂✝ ✆ ✆✂✝ ✁✂☎ ✁✂✄
�✆✂✝

�✆✂✞✟

�✆✂✠

�✆✂✁✟

✆

✆✂✁✟

✆✂✠

✡☛☞☞✌✍✎✏ ☞☛✑✑✒✍✓

(a)

�✁ �✂ �✄ ☎ ✄ ✂ ✁
✆✝✞✟✠✡✝☛✠ ☞

�✂✌✍

�✎

�☞✌✍

☎

☞✌✍

✎

✂✌✍

✏
✑✒
✓
✔
✕✑
✖
✔
✗

✘✙✚✛✜✢✢ ✣✤✛✢✥✤✦✜

(b)

Fig. 5. Clustering of the particles in the Twin Peaks function in two
dimensions for a swarm of 20 particles. (a) Sammon’s Mapping. (b) Fitness
landscape.

The current implementation does not take into account the

previous state of the particles, which leads to abrupt transitions

between iterations in the projected space, making it hard

to follow the particles. This issue could be addressed by

implementing a variation of Sammon’s mapping that would

take into account the previous swarm state and allow to

visualize the trajectories in the projected space, as described

in [15].

Figure 5 shows a simple case of pattern observation in two

dimensions. The purpose of this example is not to show the

dimensionality reduction but to illustrate the cluster detection.

The twin peaks function in two dimensions presents two

global optima (Fig. 5b); the particles fall into one of the

two minima (Fig. 5a). Figure 5 also highlights the orientation

loss: the plane of the Sammon’s mapping is not related to the

orientation of the axes in the original plane.

B. Overall visualizations

Trajectories and fitness landscape visualizations let us ob-

serve the particles in a two dimensional projection, but the

behavior in the other dimensions is hidden. This could become

an issue when we are trying to detect the convergence of

the algorithm. Sammon’s mapping is a good attempt to work

around this drawback, but the actual values and the scale

differences are lost.

SwarmViz implements three additional visualizations that

offer an overview of the positions in the d-dimensional space,

which we name overall visualizations.

1) Density: it is a two dimensional graphical tool originally

used to visualize data contained in a matrix. It is widely used

in the field of System Biology to visualize DNA microarray

data. This plot is also known under the previously trademarked

name of Heatmap.

Here, the density plot is used to visualize all the dimensions

of the PSO problem at a specific iteration. Each rectangle

represents the position of a particle in a dimension. For

instance, the rectangle at (1, 10) represents the position of the

first particle in the tenth dimension. The intensity of the gray

color in the rectangle denotes the value of that position, using

�✁ ✂✄ ☎✁ ✆✄ ✝✁ ✞✄
✟✠✡☛☞✌✠✍☞

✂

✆

✞

�✎

�✁

�✏

✑
✒✓
✔✕
✖✗
✘

✙✚✛✜✢✣✤ ✥✦✧✣

(a)

�✁ ✂✄ ☎✁ ✆✄ ✝✁ ✞✄
✟✠✡☛☞✌✠✍☞

✂

✆

✞

�✎

�✁

�✏

✑
✒✓
✔✕
✖✗
✘

✙✚✛✜✢✣✤ ✥✦✧✣

(b)

Fig. 6. Density plots for sphere function with 20 particles and 100 dimensions.
(a) Plot at the initial state. (b) Plot at the 75th iteration.

one of several color scales proposed (e.g., black for the lowest

position value found so far, white for the highest). In addition

to giving an overview of the values of the particles, this plot

aims to detect the convergence of the algorithm, depicted by

vertical lines which represent the same position for all particles

in a given dimension.

Figure 6 shows the density plots for PSO with 20 particles

on the sphere function in 100 dimensions, at the 1st and 75th

iterations. The random values for the initial state clearly appear

on Fig. 6a, depicted by a gray scale patchwork. The relative

convergence of the swarm at the 75th iteration is depicted by

vertical lines on Fig. 6b.

2) Parallel Coordinates: it is a multi-dimensional visualiza-

tion tool. This plot is largely used in different domains such

as data mining, air traffic control, and computer vision.

The particles are represented by poly-lines; their vertices

are located at points whose abscissas represent dimensions

and ordinates their corresponding values. In addition to its

original purpose, i.e., an overview of the particles’ positions

in all dimensions, the parallel coordinates plot is also useful

to detect convergence: overlapping vertices represent equal

values in the corresponding dimension and overlapping poly-

lines show convergence of the algorithm.

Figure 7 shows the parallel coordinates plot in the same

experiment than the density plot in the previous section. The

initial values shown in Fig. 7a represent the randomness of

the particle initialization as in Fig. 6a for the density plot. In

addition to providing a way to detect convergence, depicted

by the overlapping polylines, Fig. 7b gives an overview of the

optimized values.

3) Best graph: This graph reports the position of the best

particle across all iterations. This visualization is an adaptation

of the depiction of the Best individual [16] used in Genetic

Algorithms.

Each dimension of the global best is represented by a

specifically colored line, whose vertices denote a particular

position value for that dimension at each iteration. It should

be noted that the best particle is the particle with the best

estimated performance, which is not necessarily the actual best

in the case of noisy function evaluations.

�✁ ✂✄ ☎✁ ✆✄ ✝✁ ✞✄
✟✠✡☛☞✌✠✍☞

✎✆

✎☎

✎✏

✄

✏

☎

✆

✑
✒
✓✔
✕✔
✒
✖

✗✘✙✘✚✚✛✚ ✜✢✢✙✣✤✥✘✦✛✧

(a)

�✁ ✂✄ ☎✁ ✆✄ ✝✁ ✞✄
✟✠✡☛☞✌✠✍☞

✎✂

✎✏

✎�

✄

�

✏

✂

✑
✒
✓✔
✕✔
✒
✖

✗✘✙✘✚✚✛✚ ✜✢✢✙✣✤✥✘✦✛✧

(b)

Fig. 7. Parallel coordinates plot for the sphere function in 100 dimensions
with 20 particles. (a) At the first iteration. (b) At the 75th iteration.

� ✁�� ✂�� ✄�� ☎�� ✆�� ✝�� ✞��
✟✁

�

✁

✂

✄

☎

✆

✠✡☛☞ ✌✍✎✏✑

Fig. 8. Best graph plot for a swarm of 20 particles on the Rastrigin function
in 3 dimensions with a global neighborhood.

This visualization is useful to observe the convergence of

the algorithm, i.e., when the global best stabilizes in a certain

position. The best particle is also a good indicator of the state

of the algorithm, as it guides the search for the other particles,

especially in the case of a global neighborhood with a large

weight wn in Eq. 1.

Figure 8 illustrates the influence of the neighborhood weight

in the case of 20 particles in an experiment on the Rastrigin

function with 3 dimensions. The best particle moves during the

first 50 iterations to finally find a stable position. A sign of

convergence is observed after the iteration 120, where the three

dimensions are close to 1. In this case, the location
[

1,1,1
]

is

the best local minimum.

C. Metrics

This section presents two metrics that describe the progress

of the algorithm through different iterations.

1) Euclidean Distance: it is computed as the mean inter-

particle distance at each iteration for all particles in the swarm:

de =
1

n(n−1)
·

n

∑
i=1

n

∑
j=i+1

√

√

√

√

d

∑
k=1

(xik − x jk)2 (2)

� ✁� ✂� ✄� ☎� ✆� ✝� ✞�
✟✠✡☛☞✠✌✍✎

✄✏✆

✞

✁�✏✆

✁☎

✁✞✏✆

✂✁

✑
✒✓
✔✕
✖
✗✘

✙✚✛✜✢✣✤✥✦ ✣✢✧★✥✦✛✤

Fig. 9. Euclidean distance plot for a swarm of 20 particles on the sphere
function in 100 dimensions during 75 iterations.

� ✁� ✂� ✄� ☎� ✆� ✝� ✞�
✟✠✡☛☞✠✌✍✎

✁✏�

✂☎�

✄��

✄✝�

☎✂�

☎✏�

✆☎�

✑✒
✓✔
✕
✖✖

✗✘✙✚✛✜✜ ✢✣✛✜✙ ✤✚✥ ✤✦✛✧✤★✛✩

Fig. 10. Fitness plot for a swarm of 20 particles on the sphere function in
100 dimensions during 75 iterations.

As shown in Fig. 9, it gives an overall measure of the

compactness of the swarm and of convergence towards a

particular position.

2) Fitness: The learning process consists of the minimiza-

tion or the maximization of a fitness function, which is used to

evaluate the particles in the swarm. The fitness visualization

(see Fig. 10) is a plot of the fitness value as a function of the

iterations. The user can select to plot either the fitness of the

best particle and the mean of the whole swarm, or the fitness

of all individual particles.

V. CASE STUDY

This case study describes the use of the software during

the final project of our master-level course on Distributed

Intelligent Systems1. Students used SwarmViz in order to

better understand the dynamics of PSO applied to the learning

of robotic controllers. PSO was used to learn a behavior

consisting on the formation of a chain constituted by four

e-puck robots [17] without communication. The leader had a

1http://disal.epfl.ch/teaching/distributed intelligent systems

predefined controller, while the three followers ran the same

learned controller. This controller was a recurrent artificial

neural network of two units with sigmoidal activation func-

tions. The outputs of the units determined the wheel speeds.

By exploiting the symmetry of the problem, the total number

of parameters to be learned was reduced to five.

The learning problem for PSO was choosing a set of pa-

rameters of the underlying robotic controller such that a given

fitness metric was minimized. The fitness corresponded to the

average of the distance between each pair of robots, which

reflected the formation of a robotic chain. The experiments

were performed in simulation using Webots [18], a high-

fidelity robotic simulator. The PSO swarm consisted of 30

particles, and learning was performed during 93 iterations.

At each iteration, the learning algorithm outputs a file sum-

marizing the state of the swarm, including the particles’ posi-

tion, velocity, neighbor’s and personal best and performance,

as well as the best particle of the swarm and its performance.

Using these files, the learning process was monitored through

SwarmViz. Figure 11 presents the visualizations of the last

iteration.

The fitness landscape (Fig. 11a) shows a red cluster (bad

performances) at the convergence value (x1 ≈−2, x2 ≈−5.5).

This illustrates the difficulty of the algorithm to converge in

other dimensions.

Both the parallel coordinates and density plots (Fig. 11b

and 11c respectively) show the relative convergence of the

algorithm. Dimensions 1, 2 and 4 seem to have a consensus

for the convergence values. However, the particles are less

clustered in dimensions 3 and 5, emphasizing either the

sensitivity of these dimensions or the difficulty to find an

optimal value. The best graph (Fig. 11d) confirms these trends.

The patterns imply that the neighborhood coefficient could be

lowered to avoid the high variation of the best position.

The Euclidean distance plot (Fig. 11e) also illustrates the

convergence process. The fluctuating decrease of the distance

is usual in robotic learning but sharp changes such as around

the 16th iteration imply that the PSO parameters are not

optimally set. Finally, the average performance (Fig. 11f)

is relatively low from the beginning, showing that a quite

satisfactory value is found at the early stage of the algorithm.

Students reported that using SwarmViz helped in the choice

of the PSO parameters and decreased the number of attempts

before reaching a good performing controller. Moreover, they

included output graphs in their report and presentation, illus-

trating the PSO learning and the quantitative description of the

results.

VI. CONCLUSION AND OUTLOOK

This paper has described the development of SwarmViz,

a visualization tool for PSO. SwarmViz is an open-source

software written in C++ aiming to be used as a tool for

teaching and research in population-based learning techniques.

SwarmViz has been used in robotic learning and on bench-

mark functions with added noise both for research and edu-

cational purposes. It allowed both researchers and students to

better understand the dynamics of PSO. With the publication

of the source code we hope to allow other people to benefit

from this tool and also to potentially collaborate on augment-

ing its functionality.

The current version of the software gives a satisfactory

visualization of the algorithm’s behavior. Nevertheless, we will

now discuss features that could be improved in future releases.

The Density Plot implemented in the current version of

the software displays the positions of the particles but does

not give any information about the performance. On the other

hand, the Fitness Plot shows the performance of all particles

but due to the fact that it shows all iterations, the performances

are not distinguishable at the end of the algorithm. A heatmap

such as the one described in [19] combines the values in

the search space and the performances; this multi-objective

implementation could be adapted for the purpose of this

application.

The concrete result of a PSO experiment is the set of values

that gives the best performance. In the current state, these

positions are only visible in the parallel coordinates plot if the

algorithm converges at the end of the experiment. This optimal

set of values could be displayed in a more convenient way.

The visualization tool developed only includes PSO as

optimization algorithm. Given the structure of the imple-

mentation, and the visualizations provided, other population-

based algorithms such as GA or Evolution Strategies could be

included in the software. A particular development effort has

been put to enable this possible extension.

ACKNOWLEDGMENT

This research was partially supported by the Swiss National

Science Foundation through the National Center of Compe-

tence in Research Robotics.

REFERENCES

[1] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm
theory,” in IEEE International Symposium on Micro Machine and

Human Science, 1995, pp. 39–43.
[2] E. Di Mario, I. Navarro, and A. Martinoli, “Analysis of fitness noise

in particle swarm optimization: From robotic learning to benchmark
functions,” in IEEE Congress on Evolutionary Computation, 2014, pp.
2785–2792.

[3] W. M. Spears, “An overview of multidimensional visualization tech-
niques,” in Visualization Workshop of GECCO, vol. 99, 1999.

[4] S. E. Fienberg, “Graphical methods in statistics,” The American Statis-

tician, vol. 33, no. 4, pp. 165–178, 1979.
[5] D. F. Andrews, “Plots of high-dimensional data,” Biometrics, pp. 125–

136, 1972.
[6] D. Asimov, “The grand tour: a tool for viewing multidimensional data,”

SIAM Journal on Scientific and Statistical Computing, vol. 6, no. 1, pp.
128–143, 1985.

[7] N. Khemka and C. Jacob, “What hides in dimension x? a quest for
visualizing particle swarms,” in International Conference on Ant Colony

Optimization and Swarm Intelligence, 2008, pp. 191–202.
[8] H. Pohlheim, “Geatbx: Genetic and evolutionary algorithm toolbox for

use with matlab,” IEE Colloquium on Applied Control Techniques Using

MATLAB, vol. 14, no. 1, 1998.
[9] T. D. Collins, “Understanding evolutionary computing: A hands on

approach,” in IEEE Congress on Evolutionary Computation, 1998, pp.
564–569.

[10] N. Khemka and C. Jacob, “Visplore: a toolkit to explore particle swarms
by visual inspection,” in Conference on Genetic and Evolutionary

Computation, 2009, pp. 41–48.

(a) (b) (c)

(d) (e) (f)

Fig. 11. Final iteration of the robotic learning process. (a) Fitness landscape in the two first dimensions. (b) Parallel coordinates. (c) Density plot with global
values scaling. (d) Best graph. (e) Euclidean distances. (f) Best (blue) and average (brown) performances.

[11] R. Eberhart and Y. Shi, “Particle swarm optimization: developments,
applications and resources,” in Evolutionary Computation, 2001. Pro-

ceedings of the 2001 Congress on, vol. 1, 2001, pp. 81–86 vol. 1.
[12] J. Pugh, A. Martinoli, and Y. Zhang, “Particle swarm optimization for

unsupervised robotic learning,” in IEEE Swarm Intelligence Symposium,
2005, pp. 92–99.

[13] E. Di Mario and A. Martinoli, “Distributed particle swarm optimization
for limited time adaptation with real robots,” Robotica, vol. 32, no. 02,
pp. 193–208, 2014.

[14] J. W. Sammon Jr, “A nonlinear mapping for data structure analysis,”
Computers, IEEE Transactions on, vol. 100, no. 5, pp. 401–409, 1969.

[15] Y.-H. Kim, K. H. Lee, and Y. Yoon, “Visualizing the search process of
particle swarm optimization,” in Conference on Genetic and Evolution-

ary Computation, 2009, pp. 49–56.

[16] H. Pohlheim, “Visualization of evolutionary algorithms-set of standard
techniques and multidimensional visualization,” in Conference on Ge-

netic and Evolutionary Computation, vol. 1, 1999, pp. 533–540.
[17] F. Mondada, M. Bonani, X. Raemy, J. Pugh, C. Cianci, A. Klaptocz,

S. Magnenat, J.-C. Zufferey, D. Floreano, and A. Martinoli, “The e-
puck, a robot designed for education in engineering,” in Conference on

Autonomous Robot Systems and Competitions, vol. 1, no. 1, 2009, pp.
59–65.

[18] O. Michel, “Webots: Professional mobile robot simulation,” Advanced

Robotic Systems, vol. 1, no. 1, pp. 39–42, 2004.
[19] A. Pryke, S. Mostaghim, and A. Nazemi, “Heatmap visualization of

population based multi objective algorithms,” in Evolutionary Multi-

Criterion Optimization. Springer, 2007, pp. 361–375.

