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Adaptive-Rate Sparse Signal Reconstruction With

Application in Compressive Background Subtraction
João F. C. Mota, Nikos Deligiannis, Aswin C. Sankaranarayanan, Volkan Cevher, Miguel R. D. Rodrigues

Abstract—We propose and analyze an online algorithm for
reconstructing a sequence of signals from a limited number
of linear measurements. The signals are assumed sparse, with
unknown support, and evolve over time according to a generic
nonlinear dynamical model. Our algorithm, based on recent the-
oretical results for ℓ1-ℓ1 minimization, is recursive and computes
the number of measurements to be taken at each time on-the-
fly. As an example, we apply the algorithm to compressive video
background subtraction, a problem that can be stated as follows:
given a set of measurements of a sequence of images with a
static background, simultaneously reconstruct each image while
separating its foreground from the background. The performance
of our method is illustrated on sequences of real images: we
observe that it allows a dramatic reduction in the number
of measurements with respect to state-of-the-art compressive
background subtraction schemes.

Index Terms—State estimation, compressive video, background
subtraction, sparsity, ℓ1 minimization, motion estimation.

I. INTRODUCTION

C
ONSIDER the problem of reconstructing a sequence of

sparse signals from a limited number of measurements.

Let x[k] ∈ R
n be the signal at time k and y[k] ∈ R

mk be

the vector of signal measurements at time k, where mk ≪ n.

Assume the signals evolve according to the dynamical model

x[k] = fk
(

{x[i]}k−1
i=1

)

+ ǫ[k] (1a)

y[k] = Ak x[k] , (1b)

where ǫ[k] ∈ R
n is modeling noise and Ak ∈ R

mk×n is a

sensing matrix. In (1a), fk : (Rn)k−1 −→ R
n is a known,

but otherwise arbitrary, map that describes x[k] as a function

of past signals. We assume that each x[k] and ǫ[k] is sparse,

i.e., it has a small number of nonzero entries. Our goal is to

reconstruct the signal sequence {x[k]} from the measurement
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sequence {y[k]}. We require the reconstruction scheme to

be recursive (or online), i.e., x[k] is reconstructed before

acquiring measurements of any future signal x[i], i > k, and

also to use a minimal number of measurements. We formalize

the problem as follows.

Problem statement. Given two unknown sparse se-

quences {x[k]} and {ǫ[k]} satisfying (1), design an online

algorithm that 1) uses a minimal number of measurements mk

at time k, and 2) perfectly reconstructs each x[k] from y[k]
acquired as in (1b), and possibly x[i], i < k.

Note that our setting immediately generalizes from the case

where each x[k] is sparse to the case where x[k] has a sparse

representation in a linear, invertible transform.1

A. Applications

Many problems require estimating a sequence of signals

from a sequence of measurements satisfying the model in (1).

These include classification and tracking in computer vision

systems [2], [3], radar tracking [4], dynamic MRI [5] and

several tasks in wireless sensor networks [6].

Our application focus, however, is compressive background

subtraction [7]. Background subtraction is a key task for

detecting and tracking objects in a video sequence and it

has been applied, for example, in video surveillance [8], [9],

traffic monitoring [10], [11], and medical imaging [12], [13].

Although there are many background subtraction techniques,

e.g., [3], [14], [15], most of them assume access to full frames

and, thus, are inapplicable in compressive video sensing [16]–

[18], a technology used in cameras where sensing is expensive

(e.g., infrared, UV wavelengths).

In compressive video sensing, one has access not to full

frames as in conventional video, but only to a small set of

linear measurements of each frame, as in (1b). Cevher et al. [7]

noticed that background subtraction is possible in this context

if the foreground pixels, i.e., those associated to a moving

object, occupy a small area in each frame. Assuming the

background image is known beforehand, compressed sensing

techniques [19], [20] such as ℓ1-norm minimization allow

reconstructing each foreground. This not only reconstructs the

original frame (if we add the reconstructed foreground to the

known background), but also performs background subtraction

as a by-product [7].

We mention that, with the exception of [21], [22], most

approaches to compressive video sensing and to compressive

1If x[k] is not sparse but z[k] := Ψx[k] is, where Ψ is an invertible
matrix, then redefine fk as the composition fz

k
= Ψ−1 ◦ fk ◦Ψ and Ak as

Az

k
:= AkΨ

−1. The signal z[k] satisfies (1) with fz

k
and Az

k
.
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background subtraction assume a fixed number of measure-

ments for all frames [7], [16]–[18], [23], [24]. If this number

is too small, reconstruction of the frames fails. If it is too large,

reconstruction succeeds, but at the cost of spending unneces-

sary measurements in some or all frames. The work in [21],

[22] addresses this problem with an online scheme that uses

cross validation to compute the number of required measure-

ments. Given a reconstructed foreground, [21], [22] estimates

the area of the true foreground using extra cross-validation

measurements. Then, assuming that foreground areas of two

consecutive frames are the same, the phase diagram of the

sensing matrix, which was computed beforehand, gives the

number of measurements for the next frame. This approach,

however, fails to use information from past frames in the

reconstruction process, information that, as we will see, can

be used to significantly reduce the number of measurements.

B. Overview of our approach and contributions

Overview. Our approach to adaptive-rate signal reconstruc-

tion is based on the recent theoretical results of [25], [26].

These characterize the performance of sparse reconstructing

schemes in the presence of side information. The scheme we

are most interested in is the ℓ1-ℓ1 minimization:

minimize
x

‖x‖1 + β‖x− w‖1
subject to Ax = y ,

(2)

where x ∈ R
n is the optimization variable and ‖x‖1 :=

∑n

i=1 |xi| is the ℓ1-norm. In (2), y ∈ R
m is a vector of mea-

surements and β is a positive parameter. The vector w ∈ R
n is

assumed known and is the so-called prior or side information:

a vector similar to the vector that we want to reconstruct,

say x⋆. Note that if we set β = 0 in (2), we obtain basis

pursuit [27], a well-known problem for reconstructing sparse

signals and which is at the core of the theory of compressed

sensing [19], [20]. Problem (2) generalizes basis pursuit by

integrating the side information w. The work in [25], [26]

shows that, if w has reasonable quality and the entries of A are

drawn from an i.i.d. Gaussian distribution, the number of mea-

surements required by (2) to reconstruct x⋆ is much smaller

than the number of measurements required by basis pursuit.

Furthermore, the theory in [25], [26] establishes that β = 1
is an optimal choice, irrespective of any problem parameter.

This makes the reconstruction problem (2) parameter-free.

We address the problem of recursively reconstructing a

sequence of sparse signals satisfying (1) as follows. Assuming

the measurement matrix is Gaussian,2 we propose an algorithm

that uses (2) with w = fk
(

{x[i]}k−1
i=1

)

to reconstruct each

signal x[k]. And, building upon the results of [25], [26], we

equip our algorithm with a mechanism to automatically com-

pute an estimate on the number of required measurements. As

application, we consider compressive background subtraction

and show how to generate side information from past frames.

Contributions. We summarize our contributions as follows:

2Although Gaussian matrices are hard to implement in practical systems,
they have optimal performance. There are, however, other more practical
matrices with a similar performance, e.g., [28], [29].

i) We propose an adaptive-rate algorithm for reconstruct-

ing sparse sequences satisfying the model in (1).

ii) We establish conditions under which our algorithm

reconstructs a finite sparse sequence {x[i]}ki=1 with large

probability.

iii) We describe how to apply the algorithm to com-

pressive background subtraction problems, using motion-

compensated extrapolation to predict the next image to

be acquired. In other words, we show how to generate

side information.

iv) Given that images predicted by motion-compensated

extrapolation are known to exhibit Laplacian noise, we

then characterize the performance of (2) under this model.

v) Finally, we show the impressive performance of our

algorithm for performing compressive background sub-

traction on a sequence of real images.

Besides the incorporation of a scheme to compute a minimal

number of measurements on-the-fly, there is another aspect

that makes our algorithm fundamentally different from prior

work. As overviewed in Section II, most prior algorithms

for reconstructing dynamical sparse signals work well only

when the sparsity pattern of x[k] varies slowly with time. Our

algorithm, in contrast, operates well even when the sparsity

pattern of x[k] varies arbitrarily between consecutive time

instants, as shown by our theory and experiments. What is

required to vary slowly is the “quality” of the prediction given

by each fk (i.e., the quality of the side information) and, to

a lesser extent, not the sparsity pattern of x[k] but only its

sparsity, i.e., the number of nonzero entries.

C. Organization

Section II overviews related work. In Section III, we state

the results from [25], [26] that are used by our algorithm. Sec-

tion IV describes the algorithm and establishes reconstruction

guarantees. Section V concerns the application to compressive

background subtraction. Experimental results illustrating the

performance of our algorithm are shown in section VI; and

section VII concludes the paper. The appendix contains the

proofs of our results.

II. RELATED WORK

There is an extensive literature on reconstructing time-

varying signals from limited measurements. Here, we provide

an overview by referring a few landmark papers.

The Kalman filter. The classical solution to estimate a se-

quence of signals satisfying (1) or, in the control terminology,

the state of a dynamical system, is the Kalman filter [30]. The

Kalman filter is an online algorithm that is least-squares op-

timal when the model is linear, i.e., fk
(

{x[i]}k−1
i=0

)

= Fkx[k],
and the sequence {ǫ[k]} is Gaussian and independent across

time. Several extensions are available when these assumptions

do not hold [31]–[33]. The Kalman filter and its extensions,

however, are inapplicable to our scenario, as they do not easily

integrate the additional knowledge that the state is sparse.

Dynamical sparse signal reconstruction. Some prior work

incorporates signal structure, such as sparsity, into online

sparse reconstruction procedures. For example, [34], [35]
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adapts a Kalman filter to estimate a sequence of sparse signals.

Roughly, we have an estimate of the signal’s support at each

time instant and use the Kalman filter to compute the (nonzero)

signal values. When a change in the support is detected, the

estimate of the support is updated using compressed sensing

techniques. The work in [34], [35], however, assumes that

the support varies very slowly and does not provide any

strategy to update (or compute) the number of measurements;

indeed, the number of measurements is assumed constant

along time. Related work that also assumes a fixed number of

measurements includes [36], which uses approximate belief

propagation, and [37], which integrates sparsity knowledge

into a Kalman filter via a pseudo-measurement technique. The

works in [38], [39] and [40] propose online algorithms named

GROUSE and PETRELS, respectively, for estimating signals

that lie on a low-dimensional subspace. Their model can be

seen as a particular case of (1), where each map fk is linear

and depends only on the previous signal. Akin to most prior

work, both GROUSE and PETRELS assume that the rank

of the underlying subspace (i.e., the sparsity of x[k]) varies

slowly with time, and fail to provide a scheme to compute the

number of measurements.

We briefly overview the work in [41], which is probably the

closest to ours. Three dynamical reconstruction schemes are

studied in [41]. The one with the best performance is

minimize
x

‖x‖1 + β‖x− w‖1 + β2‖Ax− y‖22 , (3)

where β2 > 0 and ‖·‖2 is the Euclidean ℓ2-norm. Problem (3)

is the Lagrangian version of the problem we obtain by replac-

ing the constraints of (2) with ‖Ax − y‖2 ≤ σ, where σ is

a bound on the measurement noise; see problem (9) below.

For β2 in a given range, the solutions of (9) and (3) coincide.

This is why the approach in [41] is so closely related to ours.

Nevertheless, using (9) has two important advantages: first,

in practice, it is easier to obtain bounds on the measurement

noise σ than it is to tune β2; second, and more importantly,

the problem in (9) has well-characterized reconstruction guar-

antees [25], [26]. It is exactly those guarantees that enable our

scheme for computing of the number of measurements online.

The work in [41], as most prior work, assumes a fixed number

of measurements for all signals.

III. PRELIMINARIES: STATIC SIGNAL

RECONSTRUCTION USING ℓ1-ℓ1 MINIMIZATION

This section reviews some results from [25], namely recon-

struction guarantees for (2) in a static scenario, i.e., when we

estimate just one signal, not a sequence. As mentioned before,

β = 1 is an optimal choice: it not only minimizes the bounds

in [25], but also leads to the best results in practice. This is

the reason why we use β = 1 henceforth.

ℓ1-ℓ1 minimization. Let x⋆ ∈ R
n be a sparse vector, and

assume we have m linear measurements of x⋆: y = Ax⋆,

where A ∈ R
m×n. Denote the sparsity of x⋆ with s := |{i :

x⋆
i 6= 0}|, where | · | is the cardinality of a set. Assume we

have access to a signal w ∈ R
n similar to x⋆ (in the sense that

‖x⋆−w‖1 is small) and suppose we attempt to reconstruct x⋆

by solving the ℓ1-ℓ1 minimization problem (2) with β = 1:

minimize
x

‖x‖1 + ‖x− w‖1
subject to Ax = y .

(4)

The number of measurements that problem (4) requires to

reconstruct x⋆ is a function of the “quality” of the side

information w. Quality in [25] is measured in terms of the

following parameters:

ξ :=
∣

∣{i : wi 6= x⋆
i = 0}

∣

∣−
∣

∣{i : wi = x⋆
i 6= 0}

∣

∣ , (5a)

h :=
∣

∣{i : x⋆
i > 0, x⋆

i > wi} ∪ {i : x⋆
i < 0, x⋆

i < wi}
∣

∣ .
(5b)

Note that the number of components of w that contribute to h
are the ones defined on the support of x⋆; thus, 0 ≤ h ≤ s.

Theorem 1 (Th. 1 in [25]). Let x⋆, w ∈ R
n be the vector to

reconstruct and the side information, respectively. Assume h >
0 and that there exists at least one index i for which x⋆

i =
wi = 0. Let the entries of A ∈ R

m×n be i.i.d. Gaussian with

zero mean and variance 1/m. If

m ≥ 2h log
( n

s+ ξ/2

)

+
7

5

(

s+
ξ

2

)

+ 1 , (6)

then, with probability at least 1− exp
(

− 1
2 (m−√

m)2
)

, x⋆

is the unique solution of (4).

Theorem 1 establishes that if the number of measurements is

larger than (6) then, with high probability, (4) reconstructs x⋆

perfectly. The bound in (6) is a function of the signal dimen-

sion n and sparsity s, and of the quantities ξ and h, which

depend on the signs of the entries of x⋆ and w − x⋆, but

not on their magnitudes. When w approximates x⋆ reasonably

well, the bound in (6) is much smaller than the one for basis

pursuit3 in [42]:

m ≥ 2s log
(n

s

)

+
7

5
s+ 1 . (7)

Namely, [42] establishes that if (7) holds and if A ∈ R
m×n

has i.i.d. Gaussian entries with zero mean and variance 1/m
then, with probability similar to the one in Theorem 1, x⋆ is

the unique solution to basis pursuit. Indeed, if h ≪ s and ξ is

larger than a small negative constant, then (6) is much smaller

than (7). Note that, in practice, the quantities s, ξ, and h are

unknown, since they depend on the unknown signal x⋆. In the

next section, we propose an online scheme to estimate them

using past signals.

Noisy case. Theorem 1 has a counterpart for noisy mea-

surements, which we state informally; see [25] for details.

Let y = Ax⋆ + η, where ‖η‖2 ≤ σ. Let also A ∈ R
m×n be

as in Theorem 1 with

m ≥ 1

(1− τ)2

[

2h log
( n

s+ ξ/2

)

+
7

5

(

s+
ξ

2

)

+
3

2

]

, (8)

where 0 < τ < 1. Let x̂noisy be any solution of

minimize
x

‖x‖1 + β‖x− w‖1
subject to ‖Ax− y‖2 ≤ σ .

(9)

3Recall that basis pursuit is (2) with β = 0.
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Then, with overwhelming probability, ‖x̂noisy − x⋆‖2 ≤ 2σ/τ ,

i.e., (9) reconstructs x⋆ stably. Our algorithm, described in

the next section, adapts easily to the noisy scenario, but we

provide reconstruction guarantees only for the noiseless case.

Algorithm 1 Adaptive-Rate Sparse Signal Reconstruction

Input: 0 ≤ α ≤ 1, a positive sequence {δk}, and estimates ŝ1 and
ŝ2 of the sparsity of x[1] and x[2], respectively.

Part I: Initialization
1: for the first two time instants k = 1, 2 do
2: Set mk = 2ŝk log(n/ŝk) + (7/5)ŝk + 1
3: Generate Gaussian matrix Ak ∈ R

mk×n

4: Acquire mk measurements of x[k]: y[k] = Ak x[k]
5: Find x̂[k] such that

x̂[k] ∈ argmin
x

‖x‖1

s.t. Ak x = y[k]

6: end for
7: Set w[2] = f2(x̂[1]) and compute

ξ̂2 :=
∣

∣{i : wi[2] 6= x̂i[2] = 0}
∣

∣ −
∣

∣{i : wi[2] = x̂i[2] 6= 0}
∣

∣

ĥ2 :=
∣

∣{i : x̂i[2] > 0, x̂i[2] > wi[2]} ∪ {i : x̂i[2] < 0,

x̂i[2] < wi[2]}
∣

∣ .

8: Set m̂2 = 2ĥ2 log
(

n/(ŝ2 + ξ̂2/2)
)

+ (7/5)
(

ŝ2 + ξ̂2/2
)

+ 1

9: Set φ3 = m̂2

Part II: Online estimation
10: for each time instant k = 3, 4, 5, . . . do
11: Set mk = (1 + δk)φk

12: Generate Gaussian matrix Ak ∈ R
mk×n

13: Acquire mk measurements of x[k]: y[k] = Ak x[k]
14: Set w[k] = fk({x̂[i]}

k−1

i=1 ) and find x̂[k] such that

x̂[k] ∈ argmin
x

‖x‖1 +
∥

∥x−w[k]
∥

∥

1

s.t. Ak x = y[k]

15: Compute

ŝk = |{i : x̂[k] 6= 0}|

ξ̂k =
∣

∣{i : wi[k] 6= x̂i[k] = 0}
∣

∣−
∣

∣{i : wi[k] = x̂i[k] 6= 0}
∣

∣

ĥk =
∣

∣{i : x̂i[k] > 0, x̂i[k] > wi[k]} ∪ {i : x̂i[k] < 0,

x̂i[k] < wi[k]}
∣

∣ .

16: Set m̂k = 2ĥk log
(

n/(ŝk + ξ̂k/2)
)

+(7/5)
(

ŝk + ξ̂k/2
)

+1

17: Update φk+1 = (1− α)φk + α m̂k

18: end for

IV. ONLINE SPARSE SIGNAL ESTIMATION

Algorithm 1 describes our online scheme for reconstructing

a sparse sequence {x[k]} satisfying (1). Although described

for a noiseless measurement scenario, the algorithm adapts to

the noisy scenario in a straightforward way, as discussed later.

Such an adaptation is essential when using it on a real system,

e.g., a single-pixel camera [43].

A. Algorithm description

The algorithm consists of two parts: the initialization, where

the first two signals x[1] and x[2] are reconstructed using basis

pursuit, and the online estimation, where the remaining signals

are reconstructed using ℓ1-ℓ1 minimization.

Part I: Initialization. In steps 1-6, we compute the number

of measurements m1 and m2 according to the bound in (7),

and then reconstruct x[1] and x[2] via basis pursuit. The

expressions for m1 and m2 in step 2 require estimates ŝ1
and ŝ2 of the sparsity of x[1] and x[2], which are given as

input to the algorithm. Henceforth, variables with hats refer to

estimates. Steps 7-9 initialize the estimator φk: during Part II

of the algorithm, φk should approximate the right-hand side

of (6) for x[k], i.e., with s = sk, h = hk, and ξ = ξk, where

the subscript k indicates that these are parameters associated

with x[k].
Part II: Online estimation. The loop in Part II starts by

computing the number of measurements as mk = (1+ δk)φk,

where δk, an input to the algorithm, is a (positive) safeguard

parameter. We take more measurements from x[k] than the

ones prescribed by φk , because φk is only an approxima-

tion to the bound in (6), as explained next. After acquiring

measurements from x[k], we reconstruct it as x̂[k] via ℓ1-ℓ1
minimization with w[k] = fk({x̂[i]}k−1

i=1 ) (step 14). Next, in

step 15, we compute the sparsity ŝk and the quantities in (5),

ξ̂k and ĥk, for x̂[k]. If the reconstruction of x[k] is perfect, i.e.,

x̂[k] = x[k], then all these quantities match their true values.

In that case, m̂k in step 16 will also match the true value of

the bound in (6). Note, however, that the bound for x[k], m̂k,

is computed only after x[k] is reconstructed. Consequently,

the number of measurements used in the acquisition of x[k],
k > 2, is a function of the bound (6) for x[k − 1]. Since

the bounds for x[k] and x[k − 1] might differ, we take more

measurements than the ones specified by φk by a factor δk, as

in step 11. Also, we mitigate the effect of failed reconstructions

by filtering m̂k with an exponential moving average filter,

in step 17. Indeed, if reconstruction fails for some x[k], the

resulting m̂k might differ significantly from the true bound

in (6). The role of the filter is to smooth out such variations.

Extension to the noisy case. Algorithm 1 can be easily

extended to the scenario where the acquisition process is

noisy, i.e., y[k] = Akx[k] + ηk. Assume that ηk is arbi-

trary noise, but has bounded magnitude, i.e., we know σk

such that ‖ηk‖2 ≤ σk . In that case, the constraint in the

reconstruction problems in steps 5 and 14 should be replaced

by ‖Akx− y[k]‖2 ≤ σk . The other modification is in steps 8

and 16, whose expressions for m̂k are multiplied by 1/(1−τ)2

as in (8). Our reconstruction guarantees, however, hold only

for the noiseless case.

Remarks. We will see in the next section that Algorithm 1

works well when each δk is chosen according to the prediction

quality of fk: the worse the prediction quality, the larger δk
should be. In practice, it may be more convenient to make δk
constant, as we do in our experiments in Section VI. Note

that the conditions under which our algorithm performs well

differ from the majority of prior work. For example, the

algorithms in [7], [21], [22], [34]–[40], [44] work well when

the sparsity pattern of x[k] varies slowly between consecutive

time instants. Our algorithm, in contrast, works well when the

quality parameters ξk and hk of the side information and also

the sparsity sk of x[k] vary slowly; in other words, when the
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quality of the prediction of fk varies slowly.

B. Reconstruction guarantees

The following result bounds the probability with which

Algorithm 1 with α = 1 perfectly reconstructs a finite-length

sequence {x[i]}ki=1. The idea is to rewrite the condition that (6)

applied to x[i − 1] is (1 + δi) times larger than (6) applied

to x[i]. If that condition holds for the entire sequence then,

using Theorem 1 and assuming that the matrices Ak are drawn

independently, we can bound the probability of successful

reconstruction. The proof is in Appendix A.

Lemma 2. Let α = 1, m := min
{

m1,m2,mini=3,...,k m̂i

}

,

and fix k > 2. Let also, for all i = 3, . . . , k,

δi ≥
2
[

hi log(
n
ui
)− hi−1 log(

n
ui−1

)
]

+ 7
5 (ui − ui−1)

2hi−1 log(
n

ui−1

) + 7
5ui−1 + 1

, (10)

where ui := si + ξi/2. Assume ŝq ≥ sq := |{j : xj [q] 6= 0}|,
for q = 1, 2, i.e., that the initial sparsity estimates ŝ1 and ŝ2
are not smaller than the true sparsity of x[1] and x[2]. Assume

also that the matrices {Ai}ki=1 in Algorithm 1 are drawn

independently. Then, the probability (over the sequence of

matrices {Ai}ki=1) that Algorithm 1 reconstructs x[i] perfectly

in all time instants 1 ≤ i ≤ k is at least

(

1− exp
[

− 1

2
(m−√

m)2
])k

. (11)

When the conditions of Lemma 2 hold, the probability

of perfect reconstruction decreases with the length k of the

sequence, albeit at a very slow rate: for example, if m is as

small as 8, then (11) equals 0.9998 for k = 102, and 0.9845
for k = 104. If m is larger, these numbers are even closer

to 1.

Interpretation of (10). As shown in the proof, condi-

tion (10) is equivalent to (1 + δi)mi−1 ≥ mi, where mi

is (6) applied to x[i]. To get more insight about this condition,

rewrite it as

δi ≥
hi − hi−1 + c1(n)

hi−1 + c2(n)
, (12)

where

c1(n) :=
2hi−1 log ui−1 − 2hi log ui +

7
5 (ui − ui−1)

2 logn

c2(n) :=
7
5ui−1 + 1− 2hi−1 log ui−1

2 logn
.

Suppose {x[i]} and {ǫ[i]} are signals for which n ≫ ui, hi.

In that case, c1(n), c2(n) ≃ 0, and condition (12) tells us that

the oversampling factor δi should be larger than the relative

variation of hi from time i − 1 to time i. In general, the

magnitude of c1(n) and c2(n) can be significant, since they

approach zero at a relatively slow rate, o(1/ logn). Hence,

those terms should not be ignored.

Remarks on the noisy case. There is an inherent difficulty

in establishing a counterpart of Lemma 2 for the noisy

measurement scenario: namely, the quality parameters ξ and h
in (5) are not continuous functions of x. So, no matter

how close a reconstructed signal is from the original one,

their quality parameters can differ arbitrarily. And, for the

noisy measurement case, we can never guarantee that the

reconstructed and the original signals are equal; at most, if (8)

holds, they are within a distance 2σ/τ , for 0 < τ < 1.

So far, we have considered {x[k]} and {ǫ[k]} to be deter-

ministic sequences. In the next section, we will model {ǫ[k]}
(and thus {x[k]}) as a Laplacian stochastic process.

V. COMPRESSIVE VIDEO BACKGROUND SUBTRACTION

We now consider the application of our algorithm to com-

pressive video background subtraction. We start by modeling

the problem of compressive background subtraction as the

estimation of a sequence of sparse signals satisfying (1). Our

background subtraction system, based on Algorithm 1, is then

introduced. Finally, we establish reconstruction guarantees for

our scheme when ǫ[k] in (1a) is Laplacian noise.

A. Model

Let {Z[k]}k≥1 be a sequence of images, each with res-

olution N1 × N2, and let z[k] ∈ R
n with n := N1 · N2

be the (column-major) vectorization of the kth image. At

time instant k, we collect mk linear measurements of Z[k]:
u[k] = Akz[k], where Ak ∈ R

mk×n is a measurement

matrix. We decompose each image Z[k] as Z[k] = X [k]+B,

where X [k] is the kth foreground image, typically sparse,

and B is the background image, assumed known and to be

the same in all the images. Let x[k] and b be vectorizations

of X [k] and B, respectively. Because the background image is

known, we take measurements from it using Ak: ub[k] = Akb.
Then, as suggested in [7], we subtract ub[k] to u[k]:

y[k] := u[k]− ub[k] = Ak(z[k]− b) = Akx[k] . (13)

This equation tells us that, although we cannot measure the

foreground image x[k] directly, we can still construct a vector

measurements, y[k], as if we would. Given that x[k] is usually

sparse, the theory of compressed sensing tells us that it can

be reconstructed by solving, for example, basis pursuit [19],

[20]. Specifically, if x[k] has sparsity sk and the entries of Ak

are realizations of i.i.d. zero-mean Gaussian random variables

with variance 1/mk, then 2sk log(n/sk) + (7/5)sk + 1 mea-

surements suffice to reconstruct x[k] perfectly [42] [cf. (7)].

Notice that (13) is exactly the equation of measurements

in (1b). Regarding equation (1a), we will use it to model the

estimation of the foreground of each frame, x[k], from pre-

vious foregrounds, {x[i]}k−1
i=1 . We use a motion-compensated

extrapolation technique, as explained in Subsection V-C. This

technique is known to produce image estimates with an error

well modeled as Laplacian and, thus, each ‖ǫ[k]‖1 is expected

to be small. This perfectly aligns with the way we integrate

side information in our reconstruction scheme: namely, the

second term in the objective of the optimization problem in

step 14 of Algorithm 1 is nothing but ‖ǫ[k]‖1.

B. Our background subtraction scheme

Fig. 1 shows the block diagram of our compressive back-

ground subtraction scheme and, essentially, translates Algo-

rithm 1 into a diagram. The scheme does not apply to the
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ẑ[k − 2] ẑ[k − 1]

background b

current frame z[k]

ẑ[k]

motion extrapolation

Ak

Ak

ℓ1-ℓ1

b

b
x̂[k]

b

+
−

−
+

y[k]

+
+

e[k] w[k]

u[k]

ub[k]

Figure 1. Block diagram of Algorithm 1 when applied to background
subtraction. The main blocks are highlighted.

reconstruction of the first two frames, which are reconstructed

as in [7], i.e., by solving basis pursuit. This corresponds to

Part I of Algorithm 1. The scheme in Fig. 1 depicts Part II

of Algorithm 1. The motion extrapolation module constructs

a motion-compensated prediction e[k] of the current frame,

z[k], by using the two past (reconstructed) frames, ẑ[k − 2]
and ẑ[k − 1]. Motion estimation is performed in the image

domain (z[k]) rather than in the foreground domain (x[k]),
as the former contains more texture, thereby yielding a more

accurate motion field. Next, the background frame b is sub-

tracted from e[k] to obtain a prediction of the foreground x[k],
i.e., the side information w[k]. These two operations are

modeled in Algorithm 1 with the function fk, which takes

a set of past reconstructed signals (in our case, x̂[k − 2]
and x̂[k−1], to which we add b, obtaining ẑ[k−2] and ẑ[k−1],
respectively), and outputs the side information w[k]. This

is one of the inputs of the ℓ1-ℓ1 block, which solves the

optimization problem (4). To obtain the other input, i.e., the

set of foreground measurements y[k], we proceed as specified

in equation (13): we take measurements u[k] = Akz[k]
of the current frame and, using the same matrix, we take

measurements of the background u[k] = Akb. Subtracting

them we obtain y[k] = u[k] − ub[k]. The output of the ℓ1-

ℓ1 module is the estimated foreground x̂[k], from which we

obtain the estimate of the current frame as ẑ[k] = x̂[k] + b.

C. Motion-compensated extrapolation

To obtain an accurate predition e[k], we use a motion-

compensated extrapolation technique similar to what is used

in distributed video coding for generating decoder-based

motion-compensated predictions [45]–[47]. Our technique is

illustrated in Fig. 2. In the first stage, we perform for-

ward block-based motion estimation between the reconstructed

frames ẑ[k−2] and ẑ[k−1]. The block matching algorithm is

performed with half-pel accuracy and considers a block size

of γ × γ pixels and a search range of ρ pixels. The required

interpolation for half-pel motion estimation is performed using

the 6-tap filter of H.264/AVC [48]. In addition, we use the ℓ1-

norm (or sum of absolute differences: SAD) as error metric.

The resulting motion vectors are then spatially smoothed by

applying a weighted vector-median filter [49]. The filtering

improves the spatial coherence of the resulting motion field

ẑ[k − 2] ẑ[k − 1] e[k]

estimation extrapolation

Figure 2. Scheme of motion-compensated extrapolation. We use the motion
between matching blocks in ẑ[k− 2] and ẑ[k− 1] to create an estimate e[k]
of frame z[k].

by removing outliers (i.e., motion vectors that are far from the

true motion field). Assuming linear motion between ẑ[k − 2]
and ẑ[k − 1], and ẑ[k − 1] and ẑ[k], we linearly project the

motion vectors between ẑ[k − 2] and ẑ[k − 1] to obtain e[k],
our estimate of z[k]; see Fig. 2. During motion compensation,

pixels in e[k] that belong to overlapping prediction blocks

are estimated as the average of their corresponding motion-

compensated pixel predictors in ẑ[k− 1]. Pixels in uncovered

areas (i.e., no motion-compensated predictor is available) are

estimated by taking averaging the three neighbor pixel values

in e[k] (up, left and up-left pixel positions, following a raster

scan of the frame) and the corresponding pixel in ẑ[k − 1].

D. Reconstruction guarantees for Laplacian modeling noise

It is well known that the noise produced by a motion-

compensated prediction module, as the one just described,

is Laplacian [45], [50]. In our model, that corresponds to

each ǫ[k] in (1a) being Laplacian. We assume each ǫ[k] is

independent from the matrix of measurements Ak.

Model for ǫ[k]. As in [45], [50], [51] (and references

therein), we assume that ǫ[k] is independent from ǫ[l], for

k 6= l, and that the entries of each ǫ[k] are independent and

have zero-mean. The probability distribution of ǫ[k] is then

P(ǫ[k] ≤ u) = P(ǫ1[k] ≤ u1, ǫ2[k] ≤ u2, . . . , ǫn[k] ≤ un)

=

n
∏

j=1

P(ǫj [k] ≤ uj)

=

n
∏

j=1

∫ uj

−∞

λj

2
exp

[

− λj |ǫj|
]

dǫj , (14)

where u ∈ R
n, and λj ≥ 0 is the parameter of the distribu-

tion of ǫj [k]. The entries of ǫ[k], although independent, are

not identically distributed, since they have possibly different

parameters λj . The variance σ2
j of each component ǫj [k] is

given by σ2
j = 2/λ2

j .

Resulting model for x[k]. The sequence {ǫ[k]} being

stochastic implies that {x[k]} is also stochastic. Indeed, if

each fk in (1) is measurable, then {x[k]}k≥2 is a sequence

of random variables. Given the independence across time and

across components of the sequence {ǫ[k]}, the distribution

of x[k] given {x[i]}k−1
i=1 is also Laplacian, yet not necessarily

with zero-mean. That is, for u ∈ R
n and k ≥ 2,

P

(

x[k] ≤ u
∣

∣ {x[i]}k−1
i=1

)
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= P

(

fk({x[i]}k−1
i=1 ) + ǫ[k] ≤ u

∣

∣ {x[i]}k−1
i=1

)

= P

(

ǫ[k] ≤ u− fk({x[i]}k−1
i=1 )

∣

∣ {x[i]}k−1
i=1

)

=

n
∏

j=1

∫ uj−[fk({x[i]}
k−1

i=1
)]j

−∞

λj

2
exp

[

− λj |ǫj |
]

dǫj

=
n
∏

j=1

∫ uj

−∞

λj

2
exp

[

− λj

∣

∣zj − [fk({x[i]}k−1
i=1 )]j

∣

∣

]

dzj (15)

where [fk({x[i]}k−1
i=1 )]j is the jth component of fk({x[i]}k−1

i=1 ).
In words, the distribution of each component of x[k] condi-

tioned on all past realizations x[i], 1 ≤ i < k, is Laplacian

with mean [fk({x[i]}k−1
i=1 )]j and parameter λj . Furthermore, it

is independent from the other components.

Reconstruction guarantees. Note that {x[k]} and {ǫ[k]}
being stochastic processes implies that the quantities in (5),

which we will denote with ξk and hk for signal x[k], are

random variables. Hence, at each time k, the conditions of

Theorem 1, namely that hk > 0 and that there is at least

one index i such that xi[k] = wi[k] = 0, become events,

and may or may not hold. We now impose conditions on

the variances σ2
j = 2/λj that guarantee the conditions of

Theorem 1 are satisfied and, thus, that ℓ1-ℓ1 minimization

reconstructs x[k] perfectly, with high probability. Given a

set S ∈ {1, . . . , n}, we use Sc to denote its complement

in {1, . . . , n}.

Theorem 3. Let w ∈ R
n be given. Let ǫ have distribu-

tion (14), where the variance of component ǫj is σ2
j = 2/λ2

j .

Define x⋆ := w + ǫ, and the sets Σ := {j : σ2
j 6= 0} and

W := {j : wj 6= 0}. Assume Σc ∩ Wc 6= ∅, that is, there

exists j such that σ2
j = 0 and wj = 0. Assume A ∈ R

m×n is

generated as in Theorem 1 with a number of measurements

m ≥ 2(µ+ t) log

(

n
∣

∣Σ
∣

∣+ 1
2

∣

∣Σc ∩W
∣

∣

)

+
7

5

(

∣

∣Σ
∣

∣+
1

2

∣

∣Σc ∩W
∣

∣

)

+ 1 , (16)

for some t > 1, where µ := 1
2

∑

j∈Σ

[

1+exp
(

−
√
2|wj |/σj

)]

.

Let x̂ denote the solution of ℓ1-ℓ1 minimization (4). Then,

P
(

x̂ = x⋆
)

≥
[

1− exp
(

− (m−√
m)2

2

)

]

×

×
[

1− exp
(

− 2µ2

|Σ|
)

− exp
(

− 2(t− 1)2

|Σ|
)

]

. (17)

The proof is in Appendix B. By assuming each compo-

nent ǫj is Laplacian with parameter λj =
√
2/σj (independent

from the other components), Theorem 3 establishes a lower

bound on the number of measurements that guarantee perfect

reconstruction of x⋆ with probability as in (17). Note that all

the quantities in (16) are deterministic. This contrasts with

the direct application of Theorem 1 to the problem, since the

right-hand side of (6) is a function of the random variables s,

h, and ξ. The assumption Σc ∩ Wc 6= ∅ implies Σc 6= ∅,

which means that some components of ǫ have zero variance

and, hence, are equal to zero with probability 1. Note that,

provided the variances σ2
j are known, all the quantities in (16),

and consequently in (17), are known.

The proof of Theorem 3 uses the fact that the sparsity of x⋆

is s = |Σ|+|Σc∩W|/2 with probability 1. This implies that the

bound in (16) is always smaller than the one for basis pursuit

in (7) whenever µ+ t < s = |Σ|+ |Σc ∩W|. Since µ ≤ |Σ|,
this holds if t < |Σc ∩W|/2.

We state without proof a consequence of Theorem 3 that is

obtained by reasoning as in Lemma 2:

Corollary 4. Let {ǫ[k]} be a stochastic process where ǫ[k]
has distribution (14) and each ǫ[k] is independent from ǫ[l],
k 6= l. Assume that {x[k]} is generated as in (1a) and consider

Algorithm 1 with α = 1 at iteration k > 2. Assume that ǫ[k]
and Ak are independent. Assume also, for i = 3, . . . , k, that

δi ≥
{

2
[

(µi + ti) log
( n

ui

)

− (µi−1 + ti−1) log
( n

ui−1

)]

+
7

5
(ui−ui−1)

}

/

{

2(µi−1+ti−1) log
( n

ui−1

)

+
7

5
ui−1+1

}

,

(18)

where ui := |Σi|+ |Σc
i ∩Wi|/2, and the quantities µi, ti, Σi,

and Wi are defined as in Theorem 3 for signal x[i]. Assume

the initial sparsity estimates satisfy ŝ1 ≥ s1 and ŝ2 ≥ s2
with probability 1, where s1 and s2 are the sparsity of x[1]
and x[2]. Then, the probability over the sequences {Ai}ki=1

and {ǫ[i]}ki=1 that Algorithm 1 reconstructs x[i] perfectly in

all time instants 1 ≤ i ≤ k is at least

k
∏

i=1

[

1− exp
(

− (mi −
√
mi)

2

2

)

][

1− exp
(

− 2µ2
i

|Σi|
)

− exp
(

− 2(ti − 1)2

|Σi|
)

]

.

Corollary 4 establishes reconstruction guarantees of Algo-

rithm 1 when the modeling noise ǫ[k] in (1a) is Laplacian.

In contrast with Lemma 2, the bound in (18) is a function

of known parameters, but it requires the variances σ2
j [i] of

each ǫj[i], which can be estimated from the past frame in

a block-based way [46], [50]. For some insight on (18),

assume ui ≃ ui−1, ti = ti−1, and that n is large enough

so that terms not depending on it are negligible. Then, (18)

becomes δi & (µi − µi−1)/(µi−1 + ti−1), and we can select

δi = 2κ− 1 ≃ κ− 1
2

1
|Σi−1|

+ 1
2

=
|Σi| − 1

2 |Σi−1|
1 + 1

2 |Σi−1|
≥ µi − µi−1

µi−1 + ti−1
,

(19)

where κ := |Σi|/|Σi−1|, and the inequality is due to |Σi|/2 ≤
µi ≤ |Σi|. The approximation in (19) holds if |Σi−1| ≫ 2,

which is often the case in practice. The expression in (19) tells

us that, for large n, δi is mostly determined by the ratio κ:

if κ > 1 (resp. < 1), then we should select δi > 1 (resp. < 1).

We observe that, in practice, (18) and (19) give conservative

estimates for δi. We will see in the next section that selecting

a small, constant δi (namely 0.1) leads to excellent results

without compromising perfect reconstruction.
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Reconstructed

Reconstructed foreground

(binarized)

Figure 3. Hall sequence. The top panel shows the background and 4 different frames of the original sequence, which consists of 282 frames. The remaining
panels show the estimated frames e[k], the reconstructed frame ẑ[k], and the reconstructed foreground x̂[k] (binarized for better visualization).
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(a) Quantities related to the number of measurements.
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(b) Relative errors of estimation and reconstruction.

Figure 4. Results for the Hall sequence. (a) Number of measurements mk taken from each frame (solid red line) and estimate φk (dashed blue line); the
dotted lines are the right-hand side of (6) and (7) (green and black, respectively). (b) Relative error of estimation ‖e[k]− z[k]‖2/‖z[k]‖2, and reconstruction
‖ẑ[k]− z[k]‖2/‖z[k]‖2. Figure (b) is illustrative, since the reconstruction error is mostly determined by the precision of the solver for (4).
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Figure 5. PETS sequence. The top panel shows the background and 4 different frames of the original sequence, which consists of 171 frames. The remaining
panels show the estimated frames e[k], the reconstructed frame ẑ[k], and the reconstructed foreground x̂[k] (binarized for better visualization).
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Figure 6. Results for the PETS sequence. The displayed quantities are the same as in Fig. 4.
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VI. EXPERIMENTAL RESULTS

We applied the scheme described in the previous section to

two sequences of images: the Hall monitor sequence4 and a

sequence from the PETS 2009 database.5 The Hall monitor

sequence has 282 frames6 with two people walking in an

office; the top panel of Fig. 3 shows the background image and

frames 4, 100, 150, and 250. The PETS sequence is a sequence

of 171 frames with several people walking on a street; the top

panel of Fig. 5 shows the background image and frames 5,

75, 100, and 170. Since the background of both sequences

is static and the foreground in each frame is sparse, we can

apply our scheme to simultaneously reconstruct and perform

background subtraction on each frame. The remaining panels

of Figs. 3 and 5 show the estimated frames, the reconstructed

frames, and the reconstructed foregrounds, binarized for better

visualization (note that the foreground pixels are dark).

Experimental setup. In both sequences, we set the over-

sampling parameters as δ := δk = 0.1, for all k, and the filter

parameter as α = 0.5. While for the Hall sequence we used the

true sparsity of the first two foregrounds, i.e., ŝ1 = s1 = 417
and ŝ2 = s2 = 446, for the PETS sequence we set these

input parameters to values much smaller than their true values:

10 = ŝ1 ≪ s1 = 194 and 10 = ŝ2 ≪ s2 = 211. In spite of

this poor initialization, the algorithm was able to quickly adapt,

as we will see. For memory reasons, we downsampled each

frame of the Hall sequence to 128×128 and each frame of the

PETS sequence to 116× 116. We also removed camera noise

from each frame, i.e., isolated pixels, by preprocessing the full

sequences. For the motion estimation, we used a block size of

γ × γ = 8 × 8, and a search limit of 6. Finally, we mention

that, after computing the side information w[k] for frame k,

we amplified the magnitude of its components by 30%. This,

according to the theory in [25], improves the quality of the

side information. To solve basis pursuit in the reconstruction

of the first two frames we used SPGL1 [52], [53].7 To solve

ℓ1-ℓ1 minimization problem (4) in the reconstruction of the

remaining frames we used DECOPT [54], [55].8

Results. We benchmark Algorithm 1 with the CS (oracle)

bound given by (7). Note that the prior state-of-the-art in com-

pressive background subtraction, [21], [22], requires always

more measurements than the ones given by (7). The results

of the experiments are in Fig. 4 for the Hall sequence and

in Fig. 6 for the PETS sequence. Figs. 4(a) and 6(a) show

the number of measurements mk Algorithm 1 took from each

frame and the corresponding estimate φk of (6). These figures

also show the bounds (6) and (7) as if an oracle told us the true

values of sk, hk, and ξk. We can see that mk and φk are always

below the CS bound (7), except at a few frames in Fig. 6(a)

(PETS sequence). In those frames, there is no foreground

and thus the number of required measurements approaches

zero. Since there are no such frames in the Hall sequence, all

quantities in Fig. 4(a) do not exhibit such large fluctuations.

4Obtained from http://trace.eas.asu.edu/yuv/
5Obtained from http://garrettwarnell.com/ARCS-1.0.zip
6The original sequence has 300 frames, but we removed the first 18, since

they contain practically no foreground.
7Available at http://www.math.ucdavis.edu/~mpf/spgl1/
8Available at http://lions.epfl.ch/decopt/

Fig. 4(a) clearly shows the advantage of our algorithm with

respect to using standard CS (i.e., basis pursuit) [7], [21], [22],

even if CS reconstruction is performed using the knowledge

of the true foreground sparsity: our algorithm required an

average of 33% of the measurements that standard (oracle)

CS required. Recall that the performance of the prior state-of-

the-art algorithm [21], [22] is always above the CS bound

line. In Figs. 4(a) and 6(a), the estimate φk is very close

to the oracle bound (6) and, for most frames, the number

of measurements mk is larger than (6), even though the

oversampling factor δ = 0.1 is quite small. In fact, mk was

smaller than (6) in less than 7% (resp. 30%) of the frames for

the Hall (resp. PETS) sequence. Yet, the corresponding frames

were reconstructed with a relatively small error, as shown in

Figs. 4(b) and 6(b), and the algorithm quickly adapted.

Figs. 4(b) and 6(b) show the relative errors of the estimated

image e[k] and the reconstruction image ẑ[k], i.e., ‖e[k] −
z[k]‖2/‖z[k]‖2 and ‖ẑ[k] − z[k]‖2/‖z[k]‖2. It can be seen

that the estimation errors were approximately constant, around

0.01 for the Hall sequence and around 0.93 for the PETS

sequence. The reconstruction error is essentially determined by

the precision of the solver for (4). It varied between 3.8×10−9

and 3.5 × 10−6 for the Hall sequence [Fig. 4(b)]. For the

PETS sequence [Fig. 6(b)], it was always below 10−5 except

at three instances, where the reconstruction error approached

the estimation error. These correspond to the frames with no

foreground (making the bounds in (6) and (7) approach zero)

and to the initial frames, where the number of measurements

was much smaller than (6). In spite of these “ill-conditioned”

frames, our algorithm was able to quickly adapt in the next

frames, and follow the ℓ1-ℓ1 bound curve closely.

Noisy measurements. We also applied the version of

Algorithm 1 that handles noisy measurements, i.e., y[k] =
Akx[k] + ηk, with ‖ηk‖2 ≤ σk , to the Hall sequence. In this

case, ηk was a vector of i.i.d. Gaussian entries with zero mean

and variance 4/mk, and we used σk = 2 for all frames. The

number of measurements was computed as in (8) with τ = 0.1.

The results are shown in Fig. 7. It can be seen that all the

quantities in Fig. 7(a) are slightly larger than in Fig. 4(a) (we

truncated the CS bound in Fig. 7(a) so that the vertical scales

are the same). Yet, all the curves have the same shape. The

most noticeable difference between the noisy and the noiseless

case is the reconstruction error (Fig. 7(b)), which is about 3
orders of magnitude larger for the noisy case.

VII. CONCLUSIONS

We proposed and analyzed an online algorithm for recon-

structing a sparse sequence of signals from a limited number

of measurements. The signals vary across time according to a

nonlinear dynamical model, and the measurements are linear.

Our algorithm is based on ℓ1-ℓ1 minimization and, assuming

Gaussian measurement matrices, it estimates the required

number of measurements to perfectly reconstruct each signal,

automatically and on-the-fly. We also explored the application

of our algorithm to compressive video background subtraction

and tested its performance on sequences of real images. It was

shown that the proposed algorithm allows reducing the number
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Figure 7. Results for the Hall sequence for the noisy measurement case. The quantities are the same as in Fig. 4. The CS bound curve in (a) was truncated
at 6000 measurements so that the vertical scale is the same as in Fig. 4(a).

of required measurements with respect to prior compressive

video background subtraction schemes by a large margin.

APPENDIX A

PROOF OF LEMMA 2

First, note that condition (10) is a function only of the

parameters of the sequences {x[k]} and {ǫ[k]} and, therefore,

is a deterministic condition. Simple algebraic manipulation

shows that it is equivalent to

(1 + δi)

[

2hi−1 log
( n

ui−1

)

+
7

5
ui−1 + 1

]

≥ 2hi log
( n

ui

)

+
7

5
ui + 1 ,

or

(1 + δi)mi−1 ≥ mi , (20)

where mi is the right-hand side of (6) applied to x[i], that is,

mi := 2hi log
( n

si + ξi/2

)

+
7

5

(

si +
ξi
2

)

+ 1 . (21)

Notice that the source of randomness in Algorithm 1 is the set

of matrices (random variables) Ak, generated in steps 3 and 12.

Define the event Si as “perfect reconstruction at time i.” Since

we assume that ŝ1 and ŝ2 are larger than the true sparsity

of x[1] and x[2], there holds [42]

P(Si) ≥ 1− exp
[

− 1

2
(mi −

√
mi)

2
]

≥ 1− exp
[

− 1

2
(m−√

m)2
]

, (22)

for i = 1, 2, where the second inequality is due to mi ≥ m
and 1− exp(−(1/2)(x−√

x)2) being an increasing function.

Next, we compute the probability of the event “perfect

reconstruction at time i” given that there was “perfect re-

construction at all previous time instants l < i,” i.e.,

P(Si|
∧

l<i Sl), for all i = 3, . . . , k. Since we assume α = 1,

we have φi = m̂i−1 and step 11 of Algorithm 1 becomes mi =
(1 + δi)m̂i−1, for all i ≥ 3. Under the event Si−1, i.e.,

x̂[i − 1] = x[i − 1], we have ĥi−1 = hi−1, ξ̂i−1 = ξi−1,

and m̂i−1 = mi−1, where mi−1 is defined in (21). (The

hat variables are random variables.) Consequently, due to

our assumption (20), step 11 can be written as mi = (1 +
δi)m̂i−1 = (1 + δi)mi−1 ≥ mi. This means (6) is satisfied

and hence, for i ≥ 3,

P

(

Si

∣

∣

∧

l<i

Sl

)

≥ 1− exp
[

− 1

2
(mi −

√
mi)

2
]

≥ 1− exp
[

− 1

2
(m−√

m)2
]

, (23)

where, again, we used the fact that mi ≥ m and that 1 −
exp(−(1/2)(x−√

x)2) is an increasing function.

Finally, we bound the probability that there is perfect

reconstruction at all time instants 1 ≤ i ≤ k:

P(S1 ∧ S2 ∧ · · · ∧ Sk)

= P(S1)P(S2|S1)

k
∏

i=3

P(Si|S1 ∧ · · · ∧ Si−1) (24)

= P(S1)P(S2)
k
∏

i=3

P

(

Si

∣

∣

∧

l<i

Sl

)

(25)

≥
(

1− exp
[

− 1

2
(m−√

m)2
]

)k

. (26)

From (24) to (25) we used the independence between S1

and S2. From (25) to (26), we used (22) and (23).

APPENDIX B

PROOF OF THEOREM 3

Recall the definitions of ξ and h in (5):

ξ =
∣

∣{j : wj 6= x⋆
j = 0}

∣

∣−
∣

∣{j : wj = x⋆
j 6= 0}

∣

∣

h =
∣

∣{j : x⋆
j > 0, ǫj > 0} ∪ {j : x⋆

j < 0, ǫj < 0}
∣

∣ ,

where we rewrote h using x⋆ = w + ǫ. Define the events

A := “ ∃j : xj = wj = 0 ”, B := “h > 0 ”, and

C := “m ≥ 2h log
( n

s+ ξ/2

)

+
7

5

(

s+
ξ

2

)

+ 1 ,”

which are the assumptions of Theorem 1. In C, m and n are

deterministic, whereas s, h, and ξ are random variables. Then,

P
(

x̂ = x⋆
)

≥ P

(

x̂ = x⋆
∣

∣

∣
A ∧ B ∧ C

)

· P
(

A∧ B ∧ C
)
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≥
[

1− exp
(

− (m−√
m)2

2

)

]

· P
(

A ∧ B ∧ C
)

, (27)

where we used Theorem 1. The rest of the proof consists of

lower bounding P
(

A∧ B ∧ C
)

.

Lower bound on P
(

A∧B∧C
)

. Recall that w is fixed and

that each component x⋆
j is determined by x⋆

j = wj + ǫj . Due

to the continuity of the distribution of ǫ, with probability 1, no

component j ∈ Σ (i.e., σ2
j 6= 0) contributes to ξ. When j ∈ Σc,

we have two cases:

• j ∈ Σc ∩ W (i.e., σ2
j = 0 and wj 6= 0): in this

case, we have x⋆
j = wj with probability 1. Hence, these

components contribute to the second term of ξ.

• j ∈ Σc ∩ Wc (i.e., σ2
j = 0 and wj = 0): in this case,

we also have x⋆
j = wj with probability 1. However, these

components do not contribute to ξ.

We conclude P
(

D
)

= P
(

ξ = −
∣

∣Σc ∩ W
∣

∣

)

= 1, where D
is the event “ξ = −

∣

∣Σc ∩ W
∣

∣.” From the second case above

we also conclude that our assumption Σc ∩ Wc 6= ∅ implies

P
(

A
)

= 1. We can then write

P
(

A∧ B ∧ C
)

= P
(

A
)

· P
(

B ∧ C
∣

∣A
)

= P
(

B ∧ C
∣

∣A
)

≥ P
(

B ∧ C
∣

∣A, D
)

· P
(

D
∣

∣A
)

(28)

= P
(

B ∧ C
∣

∣A, D
)

· P
(

D
)

(29)

= P
(

B ∧ C
∣

∣A, D
)

(30)

= P
(

0 < h ≤ µ+ t
∣

∣A, D
)

. (31)

From (28) to (29), we used the fact that the events A = “Σc∩
Wc 6= ∅” and D = “ξ = −|Σc ∩ W|” are independent. This

follows from the independence of the components of ǫ and the

disjointness of Σc ∩Wc and Σc ∩W . From (30) to (31), we

used the fact that event C conditioned on D is equivalent to

h ≤ µ + t. To see why, note that the sparsity of x⋆ is given

by s = |Σ|+ |Σc ∩W|; thus, given D, s+ ξ/2 equals |Σ| +
|Σc ∩W|/2; now, subtract the expression in assumption (16)

from the expression that defines event C:

0 ≥ 2(h− µ− t) log

[

n

|Σ|+ 1
2 |Σc ∩W|

]

.

Using the fact that n = |Σ| + |Σc| ≥ |Σ| + |Σc ∩ W| ≥
|Σ| + |Σc ∩ W|/2, we conclude that C is equivalent to the

event “h ≤ µ+ t.” We now bound (31) as follows:

P
(

0 < h ≤ µ+ t
∣

∣A, D
)

≥ P
(

0 < h < µ+ t− 1
∣

∣A, D
)

= 1− P
(

h ≤ 0
∣

∣A, D
)

− P
(

h ≥ µ+ t− 1
∣

∣A, D
)

= 1− P
(

h− µ ≤ −µ
∣

∣A, D
)

− P
(

h− µ ≥ t− 1
∣

∣A, D
)

(32)

≥ 1− exp

[

− 2µ2

∣

∣Σ
∣

∣

]

− exp

[

− 2(t− 1)2
∣

∣Σ
∣

∣

]

, (33)

where the last step, explained below, is due to Hoeffding’s

inequality [56]. Note that once this step is proven, (33)

together with (27) and (31) give (17), proving the theorem.

Proof of step (32)-(33). Hoeffding’s inequality states that

if {Zj}Lj=1 is a sequence of independent random variables and

P(0 ≤ Zj ≤ 1) = 1 for all j, then [56, Th.4]:

P

( L
∑

j=1

Zj −
L
∑

j=1

E
[

Zj

]

≥ τ

)

≤ exp
[

− 2τ2

L

]

(34)

P

( L
∑

j=1

Zj −
L
∑

j=1

E
[

Zj

]

≤ −τ

)

≤ exp
[

− 2τ2

L

]

, (35)

for any τ > 0. We apply (35) to the second term in (32)

and (34) to the third term. This is done by showing that h is

the sum of |Σ| independent random variables, taking values

in [0, 1] with probability 1, and whose expected values sum

to µ. Note that µ > 0 by definition, and t > 1 by assumption.

We start by noticing that the components of ǫ that contribute

to h are the ones for which σ2
j 6= 0, i.e., j ∈ Σ (otherwise,

ǫj = 0 with probability 1). Using the relation x⋆
j = wj+ǫj [cf.

(1a)], we then have h =
∑

j∈Σ Zj , where Zj is the indicator

of the event

ǫj > max
{

0, −wj

}

or ǫj < min
{

0, −wj

}

, (36)

that is, Zj = 1 if (36) holds, and Zj = 0 otherwise. By

construction, 0 ≤ Zj ≤ 1 for all j. Furthermore, because

the components of ǫ are independent, so are the random

variables Zj . All we have left to do is to show that the sum of

the expected values of Zj conditioned on A and D equals µ.

This involves just simple integration. Let j ∈ Σ. Then,

E

[

Zj

∣

∣A, D
]

= P
(

Zj = 1
∣

∣A, D
)

(37)

= P
(

ǫj > max
{

0, −wj

})

+ P
(

ǫj < min
{

0, −wj

})

(38)

=
1 + exp

(

− λj

∣

∣wj

∣

∣

)

2
(39)

=
1 + exp

(

−
√
2
∣

∣wj

∣

∣/σj

)

2
. (40)

From (37) to (38), we used the fact that the events in (36)

are disjoint for any wj . From (38) to (39), we used the fact

that λj is finite for j ∈ Σ, and

P
(

ǫj > max
{

0, −wj

})

=

∫ +∞

max{−wj ,0}

λj

2
exp(−λj |u|) du

=

{ 1
2 , wj > 0

1
2 exp

(

λjwj

)

, wj < 0

P
(

ǫj < min
{

0, −wj

})

=

∫ min{−wj ,0}

−∞

λj

2
exp(λj |u|) du

=

{ 1
2 exp

(

− λiwj

)

, wj > 0

1
2 , wj < 0 .

And from (39) to (40) we simply replaced λj =
√
2/σj . The

expected value of h conditioned on A and D is then

E

[

h
∣

∣A, D
]

= E

[

∑

j∈Σ

Zj

∣

∣A, D
]

=
∑

j∈Σ

E

[

Zj

∣

∣A, D
]

=
1

2

∑

j∈Σ

[

1 + exp
(

−
√
2
∣

∣wj

∣

∣/σj

)

]

=: µ ,

where we used (40).
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