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 ABSTRACT 

Sampling moiré effects occur due to aliasing (foldover) when a continuous periodic signal g(x) 

is sampled using a sampling frequency that does not respect the Nyquist condition. However, 

visible beating artifacts may also occur when g(x) is sampled using sampling frequencies which 

fully respect the Nyquist condition. These moiré-like effects, that we call sub-Nyquist artifacts, 

are more difficult to analyze since they are not visible by our main moiré investigation tool, the 

Fourier theory. In a recent publication we have addressed this difficulty by bypassing spectral-

domain considerations, and studying these phenomena using a signal-domain approach. In the 

present contribution we go further ahead, and show how, in spite of this difficulty, we can still 

interpret the phenomena in question from the spectral-domain point of view. This also leads us to 

new interesting connections between sampling-related phenomena in the discrete world and 

modulation (beating) phenomena which occur in the purely continuous world, known in acoustics 

as “beats of mistuned consonances”. 

Keywords: sampling, reconstruction, moiré effects, sub-Nyquist artifacts, modulation, beats 

 

1. Introduction 

In a previous publication [1] we have reviewed the beating artifacts that may occur 

when sampling a periodic signal g(x) of frequency f using a sampling frequency fs. 

Obviously, when the sampling frequency fs does not respect the Nyquist condition of the 

sampling theorem (i.e. when fs is not at least twice the highest frequency contained in 

g(x)), various moiré or aliasing artifacts may appear in the resulting sampled signal g(xk) 

(see, for example, Figs. 1 and 2). But we have also seen, as already mentioned in [2], [3, 

p. 642] or [4, pp. 222, 225], that some beating artifacts (pseudo moirés) may still appear 

in the sampled signal g(xk) even when fs does respect the Nyquist condition. 

 These beating artifacts are intriguing for several reasons: (a) They appear where the 

Nyquist condition is fully satisfied, so that no aliasing or moiré artifacts should be 

present. (b) Their periods (or frequencies) are not represented in the Fourier spectrum, 

although they are clearly visible in the sampled signal. (c) Furthermore, in the signal 

domain, the beating effect in question does not really correspond to a smooth low-

frequency signal, but rather to a highly oscillating signal that is only modulated by low-

frequency envelopes. For these reasons, the phenomena in question are not considered 
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as true sampling moiré effects. And yet, as described in [1], in many aspects their 

behaviour is very similar to that of true moirés. 

The fact that these moiré-like artifacts are not visible by our main moiré investigation 

tool, the Fourier theory (see point (b) above), makes them more difficult to analyze. This 

difficulty was addressed in [1] by means of a theorem that explains these phenomena 

from the signal-domain point of view, i.e. in terms of the sampled points themselves. 

For the sake of completeness, this theorem is presented below in Appendix C, Remark 

9. 

This signal-domain approach provides, indeed, a good explanation of the sub-Nyquist 

artifacts and the sampling moiré effects. Nevertheless, it is well known (both in signal 

processing and in the moiré theory) that spectral-domain considerations may often offer 

a new, wider perspective on the phenomena in question. It may be asked, therefore, 

whether or not this general rule applies to our case, too, even though sub-Nyquist 

artifacts are not directly visible in the Fourier spectrum. 

In the present contribution we answer this question in the affirmative, and show how 

the phenomena in question can be understood from the point of view of the Fourier 

spectral domain, in spite of the inherent difficulties. This spectral-domain approach will 

shed a new light on the sub-Nyquist artifacts, their origins, their properties, and their 

relationship with the true sampling moiré effects. In particular, this approach will 

provide new interesting connections between the phenomena which occur in the discrete 

world due to the sampling process, and modulation (beating) phenomena which occur in 

the purely continuous world, known in acoustics as “beats of mistuned consonances”. 

The present work is structured as follows: Sec. 2 provides our initial background, and 

sets up the basic notions that will be used in the sequel. Then, in Sec. 3 we develop our 

spectral-domain strategy, starting with the simple case of the cosine signal. In Sec. 4 we 

extend this spectral-domain approach to any general periodic signals. In Sec. 5 we 

discuss, based on the spectral-domain point of view, the effect of poor reconstruction on 

the visibility of sub-Nyquist artifacts. And finally, we present our conclusions in Sec. 6. 

 

 

Figure 1: The artifact that occurs when f ≈ (1/1)fs (which is, in fact, a true (1,-1)-order 
sampling moiré). Each row shows in the left-hand column the periodic signal 
g(x) = cos(2fx) having frequency f, as well as its sampled version after being 
sampled with a sampling frequency of fs = 8.0 (i.e. with a sampling interval of 
x = 1/fs = 1/8). The right-hand column shows the respective CFT 
(continuous Fourier transform) of the continuous signal g(x), along with the 
DFT (discrete Fourier transform) of its sampled version (after having applied 
the required reorganizations and scalings; see, for example, [5]). The only 
difference between the 5 rows is in the frequency f of the original signal g(x): 
(a) f = fs (the singular state). (b) f = fs – 1/32. (c) f = fs – 1/16. (d) f = fs – 1/8. 
(e) f = fs – 1/4. Note that the new low frequency of this sampling moiré effect 
is clearly visible both in the sampled signal and in its DFT (although it does 
not exist in the original continuous signal and in its CFT). 
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(a)

(b)

(c)

(d)

(e)

Signal domain Spectral domainm
n = 1

1

g(x) = cos(2πfx),  f = (m/n)fs =
= (1/1)8.0 = 8.0• • • Sampled.

CFT
• • • DFT after

reorg. & sca.

g(x) = cos(2πfx),  f = (m/n)fs - ε =
= (1/1)8.0 - 1/32• • • Sampled.

CFT
• • • DFT after

reorg. & sca.

m(x) = env1(x) = cos(2πεx),  ε = 1/32

g(x) = cos(2πfx),  f = (m/n)fs - ε =
= (1/1)8.0 - 1/16• • • Sampled.

CFT
• • • DFT after

reorg. & sca.

m(x) = env1(x) = cos(2πεx),  ε = 1/16

g(x) = cos(2πfx),  f = (m/n)fs - ε =
= (1/1)8.0 - 1/8• • • Sampled.

CFT
• • • DFT after

reorg. & sca.

m(x) = env1(x) = cos(2πεx),  ε = 1/8

g(x) = cos(2πfx),  f = (m/n)fs - ε =
= (1/1)8.0 - 1/4• • • Sampled.

CFT
• • • DFT after

reorg. & sca.

m(x) = env1(x) = cos(2πεx),  ε = 1/4
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2. Background: sub-Nyquist artifacts vs. true sampling moiré effects 

As we have seen in [1], when sampling a periodic function g(x) of frequency f using a 

sampling frequency fs, sampling artifacts may occur whenever f and fs satisfy f ≈ mn fs, 

where m and n are integer numbers. When n = 1 the resulting artifact is a true sampling 

moiré effect: a (m,-1)-moiré that occurs when mfs – f ≈ 0, and whose frequency is                   

fM = mfs – f. But when n > 1 the resulting artifact is a (m/n)-order sub-Nyquist artifact, a 

beating artifact (pseudo moiré) that is modulated by n interlaced envelopes having the 

frequency  = mn fs – f. 

A sampling moiré effect occurs in a sampled signal due to aliasing. It appears in the 

signal domain as a new visible low-frequency signal having frequency fM that passes 

through the very same sampling points g(xk) and mimics the original signal g(x) (see, for 

example, Figs. 1 and 2). A sampling moiré effect is visible in the Fourier domain, too, 

where it appears as a new, false folded-over low-frequency fM that did not exist in the 

original continuous signal before sampling. On the other hand, although a sub-Nyquist 

artifact is clearly visible in the sampled signal as a new low-frequency beating effect, 

this new low frequency  is not directly represented in the Fourier spectrum. 

To better illustrate this difference, let us compare the spectra of the sampled signals in 

Figs. 1 and 2, which show true sampling moiré effects, with those in Figs. 3-5, which 

show sub-Nyquist artifacts. In Figs. 1 and 2, the DFT (Discrete Fourier Transform) of 

the sampled signal g(xk) contains new low frequencies near the spectrum origin, which 

did not exist in the CFT (Continuous Fourier Transform) of the original signal g(x). 

These new frequencies in the spectral domain correspond to the new low-frequency 

sampling moiré effect which is generated in the sampled signal due to aliasing 

(foldover).1 However, in Figs. 3-5, which correspond to sub-Nyquist artifacts, no such 

new low frequencies appear in the DFT of the sampled signal, in spite of the new low-

frequency beating artifacts that are clearly visible in the sampled signal itself.2 This 

spectral-domain contrast between true sampling moiré effects and sub-Nyquist artifacts 

may seem  surprising  at first sight,  but in fact  it can be understood  quite intuitively  as 

 

 

Figure 2: The artifact that occurs when f ≈ (2/1)fs (which is, in fact, a true        
(2,-1)-order sampling moiré). This figure is similar to Fig. 1, except 
for the signal-frequency f being used in each row: (a) f = 2fs (the 
singular state). (b) f = 2fs – 1/32. (c) f = 2fs – 1/16. (d) f = 2fs – 1/8. 
(e) f = 2fs – 1/4. Like in Fig. 1, the new low frequency of this 
sampling moiré effect is clearly visible both in the sampled signal 
and in its DFT (although it does not exist in the original continuous 
signal and in its CFT). 

                                                 
1 Note that the spectra in our figures show both the CFT of the original continuous signal g(x) and the 

DFT of the sampled signal g(xk). All the required DFT normalizations (reorganizations and scalings) 

have been applied, as explained, for example, in Chapters 3 and 4 of [5]. 
2 In fact, as we will see later on, this difference between true sampling moiré effects and sub-Nyquist 

artifacts also exists in the CFT of the sampled signal, which is shown in Figs. 6-8 but not in Figs. 1-5. 
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(a)

(b)

(c)

(d)

(e)

Signal domain Spectral domainm
n = 2

1

g(x) = cos(2πfx),  f = (m/n)fs =
= (2/1)8.0 = 16.0• • • Sampled.

CFT
• • • DFT after

reorg. & sca.

g(x) = cos(2πfx),  f = (m/n)fs - ε =
= (2/1)8.0 - 1/32• • • Sampled.

CFT
• • • DFT after

reorg. & sca.

m(x) = env1(x) = cos(2πεx),  ε = 1/32

g(x) = cos(2πfx),  f = (m/n)fs - ε =
= (2/1)8.0 - 1/16• • • Sampled.

CFT
• • • DFT after

reorg. & sca.

m(x) = env1(x) = cos(2πεx),  ε = 1/16

g(x) = cos(2πfx),  f = (m/n)fs - ε =
= (2/1)8.0 - 1/8• • • Sampled.

CFT
• • • DFT after

reorg. & sca.

m(x) = env1(x) = cos(2πεx),  ε = 1/8

g(x) = cos(2πfx),  f = (m/n)fs - ε =
= (2/1)8.0 - 1/4• • • Sampled.

CFT
• • • DFT after

reorg. & sca.

m(x) = env1(x) = cos(2πεx),  ε = 1/4
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follows: If we apply to our sampled signal g(xk) in Figs. 1 and 2 a smoothing filter (such 

as a moving average of g(xk) [6, pp. 277-280]), the results will indeed show a low-

frequency signal which did not exist in the original continuous signal g(x) before 

sampling. But if we apply the same smoothing (moving average) to our sampled signal 

in Figs. 3-5, the resulting signal will be identically zero. This means that in this case no 

new low-frequency content really exists in the sampled signal. In other words, the 

beating artifact we see in the sampled signal in this case is not a true low-frequency 

component (a moiré effect), but rather a modulation effect.3 

So how can we explain the low-frequency beating artifacts that are clearly visible in 

the sampled signal in cases like Figs. 3-5, although they are not represented in the 

corresponding spectra? A signal-domain explanation was already presented in [1]. In the 

following sections we will show that a spectral-domain interpretation can be also given, 

in spite of the apparent difficulties. Moreover, we will see that the spectral-domain 

approach sheds new light on the phenomena in question and illuminates them from a 

completely different angle. 

 

3. Spectral-domain explanation of the sub-Nyquist artifacts in cosine functions 

For the sake of simplicity, we start our spectral-domain analysis with the simplest 

setting, in which the continuous-world function being sampled is g(x) = cos(2fx). Let 

us first study the spectral-domain situation in two simple examples, that will give us a 

deeper insight and guide us to the explanation of the general case. 

3.1 The case of the (1/2)-order sub-Nyquist artifact 

A (1/2)-order sub-Nyquist artifact appears in the sampled signal when we sample at 

the sampling rate fs an original cosine function g(x) = cos(2fx) whose frequency f is 

close to 1
2  fs, namely f ≈ 1

2  fs or: 

   f = 1
2  fs –               (1) 

 

 

Figure 3: The (1/2)-order sub-Nyquist artifact. This figure is similar to Figs. 1-2, except 
for the signal-frequency f being used in each row: (a) f = 1

2fs (the singular 
state). (b) f = 1

2fs – 1/32. (c) f = 1
2fs – 1/16. (d) f = 1

2fs – 1/8. (e) f = 1
2fs – 1/4. The 

highly visible (1/2)-order sub-Nyquist artifact is generated because 
consecutive points g(xk) of the sampled signal alternately jump between the 
n = 2 modulating envelopes (each of the two modulating envelopes being 
simply a stretched and shifted version of g(x)). These two interlaced 
modulating envelopes are highlighted in the figure in different colours. Note 
that their new low frequency is not visible in the DFT of the sampled signal. 

                                                 
3 This intuitive explanation will be treated more rigorously in Sec. 4.2. We will see there the precise 

meaning of the “moving average”, and discuss its role as a centreline of the rapid oscillations in the sub-

Nyquist artifact. 
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(a)

(b)

(c)

(d)

(e)

Signal domain Spectral domainm
n = 1

2

g(x) = cos(2πfx),  
f = 4.0• • • Sampled.

CFT
• • • DFT after

reorg. & sca.
folded-
over

g(x) = cos(2πfx),  f = 4.0 - 1/32
• • • Sampled.

CFT
• • • DFT after

reorg. & sca.

env1(x) = cos(2πεx),  ε = 1/32
env2(x) = cos(2πε[x-16]),  ε = 1/32

g(x) = cos(2πfx),  f = (m/n)fs - ε =
= (1/2)8.0 - 1/16• • • Sampled.

CFT
• • • DFT after

reorg. & sca.

env1(x) = cos(2πεx),  ε = 1/16
env2(x) = cos(2πε[x-8]),  ε = 1/16

g(x) = cos(2πfx),  f = (m/n)fs - ε =
= (1/2)8.0 - 1/8• • • Sampled.

CFT
• • • DFT after

reorg. & sca.

env1(x) = cos(2πεx),  ε = 1/8
env2(x) = cos(2πε[x-4]),  ε = 1/8

g(x) = cos(2πfx),  f = (m/n)fs - ε =
= (1/2)8.0 - 1/4• • • Sampled.

CFT
• • • DFT after

reorg. & sca.

env1(x) = cos(2πεx),  ε = 1/4
env2(x) = cos(2πε[x-2]),  ε = 1/4
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This is illustrated in Fig. 3, which shows the resulting beating artifact for several 

values of f around the frequency 1
2  fs (i.e. for several values of ). The sampling               

frequency used in Fig. 3 (as well as in all our figures here) is fs = 8, so that the 

maximum frequency allowed by the sampling theorem without causing aliasing is 
1
2  fs = 4.4 

Consider for instance the (1/2)-order sub-Nyquist artifact that is shown in Fig. 3(e). 

The frequency of the continuous cosine function being sampled in this case is f = 3.75, 

which is indeed lower by  = 0.25 than the maximum frequency 1
2  fs allowed by the 

sampling theorem. As we can see in the figure, the resulting sampled signal has a 

beating effect with an envelope period of length 4, i.e. an envelope frequency of  = 

0.25.  

In order to understand this beating effect from the spectral-domain point of view, 

consider the two first rows of Fig. 6. These two rows show in the continuous-world 

spectrum what happens when we sample a continuous cosine function g(x) = cos(2fx) 

having the frequency f = 1
2  fs –  using the sampling frequency fs. The reason we prefer to 

use here the continuous-world spectrum (CFT) of the sampled signal is that CFT spectra 

are easier to understand than DFT spectra (such as in Fig. 3): Their frequency range is 

not limited, and they do not suffer from wraparound and foldover of higher frequencies 

as DFT spectra do.5 

Fig. 6(a) shows the continuous-world spectrum G(u) of our original, unsampled cosine 

function g(x). This spectrum consists of an impulse pair at the frequencies 1
2  fs –  and           

–1
2  fs + . Fig. 6(b) shows the continuous-world spectrum of g(xk), the sampled 

counterpart of our cosine g(x). As we know from sampling theory, if the CFT of g(x) is 

G(u), then the continuous-world spectrum of the sampled version of g(x) consists of 

infinitely many replicas of the original spectrum G(u), which are centered about all the 

integer multiples of the sampling frequency fs (see, for example, [7, p. 222] or [5, p. 

92]). Fig. 6(b) shows only five of these replicas, namely, the original one (which is 

identical, up to a certain amplitude scaling factor, to row (a) of the figure) plus its two 

nearest neighbours to each direction, that are centered about fs, 2fs, –fs, and –2fs. As we 

can see in Fig. 6(b), these new sampling-induced replicas add to the continuous-world 

spectrum infinitely many new impulses. In particular, note that a new impulse pair is 

added just slightly beyond the impulse pair of our original cosine, i.e. at the frequencies 
1
2  fs +  and –1

2  fs – . This new impulse pair corresponds to a newly added cosine in the 

signal domain, whose frequency is 1
2  fs + .  

Thus, the central part of the spectrum shown in Fig. 6(b) corresponds in the signal 

domain to a sum of two cosines: our original continuous cosine, whose frequency f = 
1
2  fs –  is slightly below 1

2  fs, and a new continuous cosine, whose frequency f ' = 1
2  fs +  is 

slightly above 1
2  fs. Let us denote the sum of these two cosines (with halved amplitudes, 

for reasons we will soon see below) by gA(x): 

                                                 
4 Note that this is also the maximum frequency in the DFT spectrum; see, for example, Eq. (4.10) in [5, p. 

73]. 
5 Note that the spectral domain in each row of Figs. 1-5 shows only the CFT of the original continuous 

function g(x), and the DFT of the sampled signal g(xk). The CFT of the sampled signal is not shown 

there due to lack of room, but some particular cases are shown separately in Figs. 6-8. 
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  gA(x) = 1
2cos(2 fx) + 1

2cos(2 f 'x) 

         = 1
2cos(2 [1

2  fs–]x) + 1
2cos(2 [1

2  fs+]x)           (2) 

The spectrum GA(u) of this continuous-world sum of cosines is shown in Fig. 6 in a 

separate panel (a'). Now, we claim that the continuous-world spectrum shown in row (b) 

of Fig. 6 is also the spectrum of the sampled version of gA(x), using the same sampling 

frequency fs. To see this, note that the spectrum in row (b) can be also considered as an 

infinite replication of the spectrum GA(u), where the replicas are located, once again, 

about all the integer multiples of fs: Because the impulse pairs of every two 

neighbouring replicas of GA(u) fall exactly at the same points along the u axis, their 

halved amplitudes simply add up on top of each other, giving back precisely the 

spectrum shown in row (b). This means that the continuous-world spectrum in row (b) 

belongs not only to the sampled version of our original cosine function g(x) = cos(2fx), 

but also to the sampled version of the cosine sum gA(x). This means, in turn, that the 

sampled version of our original cosine g(x) is identical to the sampled version of the 

cosine sum gA(x) (although obviously g(x) and gA(x) themselves are different): 

   g(xk) = gA(xk)  at all the sampling points xk          (3) 

Let us try to figure out the shape of the continuous cosine sum gA(x), in order to 

deduce therefrom the shape of its sampled version gA(xk) and hence the shape of our 

sampled cosine g(xk). As reminded in Appendix A, the sum of two continuous cosines 

with close frequencies f1 and f2 gives a continuous-world beating effect (pseudo moiré) 

whose envelope frequency is fenv = 1
2(f2 – f1). In our present case the two close cosine 

frequencies in the sum gA(x) are f1 = f and f2 = f ' = f + 2 (see Fig. 6(b)), and therefore 

we have fenv = 1
2(f2 – f1) = . Since this frequency (the envelope frequency of the 

continuous-world beats in gA(x)) is very low with respect to our sampling frequency fs, it 

is clear that the beating effect will be captured by the sampled signal gA(xk), and hence 

by our sampled cosine, g(xk). And indeed, a glimpse at Fig. 3 confirms that the beating 

effect we obtain in our sampled cosine has the envelope frequency of fenv = . For 

example, in the case shown in Fig. 3(e) this beating effect has the envelope frequency of 

 = 1
4, i.e. an envelope period of 4. Note that this low-frequency artifact in our sampled 

signal is more prominent than the original cosine itself. But this beating effect is a sub-

Nyquist artifact and not an aliasing or sampling-moiré artifact, since the frequency of 

the original continuous cosine being sampled here, f = 1
2  fs –  = 3.75, is lower than the 

maximum frequency allowed by the sampling theorem, 1
2  fs = 4. 

In conclusion, the spectral-domain explanation of our (1/2)-order sub-Nyquist artifact 

is quite straightforward: The beating effect we get when sampling an original 

continuous signal g(x) = cos(2fx) whose frequency is f = 1
2  fs –  is simply the sampled 

version of the continuous-world beating modulation effect that occurs in the continuous 

cosine sum gA(x). This is clearly illustrated in Fig. B1 of Appendix B. Now, as 

stipulated by Theorem A.1 in Appendix A, this continuous-world modulation effect 

consists of two interlaced low-frequency cosinusoidal envelopes, each of which being a 

stretched and shifted version of our original cosine g(x). These two interlaced envelopes, 

which are highlighted in Fig. 3 by different colours, are expressed by: 
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  env1(x) = cos(2  fenv x) = cos(2x)  

  env2(x) = cos(2[x + a])             
(4)

 

where the envelope frequency is  = 1
2fs – f, and the shift a equals half of the envelope’s 

period 1/, i.e. a = 1/(2). Because the frequency  is much lower than the frequency f of 

the original cosine signal g(x) being sampled, this sampling-induced artifact may be 

quite visible, and distort our perception of the true nature of the original signal. And yet, 

the low frequency  itself is not present in the CFT or DFT of our sampled signal. 

3.2 The case of the (1/3)-order sub-Nyquist artifact 

We have seen above the spectral-domain explanation of the (1/2)-order sub-Nyquist 

artifact. But as already mentioned in [2] and later in [1], similar sub-Nyquist artifacts 

may also appear at other alias-free combinations of signal and sampling frequencies, i.e. 

in cases with other m,n combinations. Before we proceed to the spectral-domain 

explanation of the general (m/n)-order sub-Nyquist artifact, let us first consider the 

particular case with (m/n) = (1/3). 

Suppose we sample at the rate of fs an original cosine function g(x) = cos(2fx) whose 

frequency f is close to 1
3  fs, namely f ≈ 1

3  fs or: 

   f = 1
3  fs –               (5) 

This time, a (1/3)-order sub-Nyquist artifact will appear in the sampled signal. This is 

illustrated in Fig. 4, which shows the resulting beating artifact for several values of f 

around the frequency 1
3  fs (i.e. for several values of ). As we can see in the figure, in this 

case, too, the beating artifact has an envelope frequency of , i.e. an envelope period of 

length 1/. To better understand this from the spectral-domain point of view, consider 

Fig. 7(d), which shows the continuous-world spectrum of our sampled signal g(xk). As 

we can see, the situation in this spectrum is very similar to the situation in Fig. 6(b): In 

both cases, the continuous-world spectrum of the sampled cosine signal g(xk) consists of 

an infinite replication of the spectrum of the original cosine g(x) = cos(2fx), G(u) = 
1
2  (u–f) + 1

2  (u+f), where the replicas are centered about all the integer multiples of the 

sampling frequency  fs. And in both cases, these new sampling-induced replicas add to 

the original  continuous-world spectrum  a new impulse pair  that is located  just slightly 

 

 

Figure 4: The (1/3)-order sub-Nyquist artifact. This figure is similar to Figs. 1-3, except 
for the signal-frequency f being used in each row: (a) f = 1

3fs (the singular 
state). (b) f = 1

3fs – 1/32. (c) f = 1
3fs – 1/16. (d) f = 1

3fs – 1/8. (e) f = 1
3fs – 1/4. The 

highly visible (1/3)-order sub-Nyquist artifact is generated because 
consecutive points g(xk) of the sampled signal alternately jump between the 
n = 3 modulating envelopes (each of these modulating envelopes being 
simply a stretched and shifted version of g(x)). These three interlaced 
modulating envelopes are highlighted in the figure in different colours. Note 
that their new low frequency is not visible in the DFT of the sampled signal. 
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(a)

(b)

(c)

(d)

(e)

Signal domain Spectral domainm
n = 1

3

g(x) = cos(2πfx),  f = (m/n)fs =
= (1/3)8.0 = 2.66• • • Sampled.

CFT
• • • DFT after

reorg. & sca.

g(x) = cos(2πfx),  f = (m/n)fs - ε =
= (1/3)8.0 - 1/32• • • Sampled.

CFT
• • • DFT after

reorg. & sca.

env1(x) = cos(2πεx),  ε = 1/32
env2(x) = cos(2πε[x-32/3]),  ε = 1/32
env3(x) = cos(2πε[x-64/3]),  ε = 1/32

g(x) = cos(2πfx),  f = (m/n)fs - ε =
= (1/3)8.0 - 1/16• • • Sampled.

CFT
• • • DFT after

reorg. & sca.

env1(x) = cos(2πεx),  ε = 1/16
env2(x) = cos(2πε[x-16/3]),  ε = 1/16
env3(x) = cos(2πε[x-32/3]),  ε = 1/16

g(x) = cos(2πfx),  f = (m/n)fs - ε =
= (1/3)8.0 - 1/8• • • Sampled.

CFT
• • • DFT after

reorg. & sca.

env1(x) = cos(2πεx),  ε = 1/8
env2(x) = cos(2πε[x-8/3]),  ε = 1/8
env3(x) = cos(2πε[x-16/3]),  ε = 1/8

g(x) = cos(2πfx),  f = (m/n)fs - ε =
= (1/3)8.0 - 1/4• • • Sampled.

CFT
• • • DFT after

reorg. & sca.

env1(x) = cos(2πεx),  ε = 1/4
env2(x) = cos(2πε[x-4/3]),  ε = 1/4
env3(x) = cos(2πε[x-8/3]),  ε = 1/4
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beyond the impulse pair of the original continuous cosine. Now, just as we did in the 

previous case, we consider the sum of the two corresponding cosine functions back in 

the signal domain (with halved amplitudes): 

  gA(x) = 1
2cos(2 fx) + 1

2cos(2 f 'x) 

and show, exactly in the same way, that its sampled version at the sampling rate of fs 

satisfies Eq. (3). 

But while in the previous case (Fig. 6(b)) the frequency of the original cosine and the 

frequency of the newly added cosine were f = 1
2  fs –  and f ' = 1

2  fs + , respectively, in our 

present case the frequency of the original cosine is f = 1
3  fs –  and the frequency of the 

newly added cosine is f ' = fs – (1
3  fs – ) = 2

3  fs +  (see Fig. 7(d)). Although these two 

cosine frequencies are slightly farther apart than in the previous case, it turns out that a 

similar modulation effect is generated in gA(x) in our present case, too. To see this, note 

that this time we have f ' = 2f + 3. If we denote here f1 = f and f2 = f ', we obtain: 

   f2 = 2f1 +               (6) 

with  = 3. But according to Theorem A.1 in Appendix A, the sum of two continuous 

cosines with frequencies f1 and f2 that satisfy f2 = 2f1 +  gives a continuous-world 

beating effect (pseudo moiré) whose envelope frequency is fenv = [1/(2+1)] = . Now, 

turning back to our sampled signal g(xk), we see by virtue of Eq. (3) that g(xk) has the 

same beating effect as gA(xk), i.e. an envelope frequency fenv = . And indeed, this is 

clearly confirmed in Fig. 4: For example, in the particular case shown in Fig. 4(e) this 

beating modulation effect has the envelope frequency of  = 1
4, i.e. an envelope period 

length of 4. Furthermore, as stipulated by Theorem A.1, this modulation effect consists 

of 2+1 = 3 interlaced low-frequency cosinusoidal envelopes, each of which being a 

stretched and shifted version of our original cosine g(x). These 3 envelopes, which are 

highlighted in Fig. 4 by different colours, are expressed by: 

  env1(x) = cos(2  fenv x) = cos(2x) 

  env2(x) = cos(2[x + a])            (7) 

  env3(x) = cos(2[x + 2a]) 

where the envelope frequency is  = 1
3fs – f, and the shift a equals 1

3 of the envelope’s 

period 1/, i.e. a = 1/(3). Because the envelope frequency  is much lower than the 

frequency f of the original cosine signal g(x) being sampled, this sampling-induced 

artifact may be clearly visible and distort our perception of the true nature of the original 

signal. But this beating effect is a sub-Nyquist artifact and not an aliasing or sampling-

moiré artifact, since the frequency of the original continuous cosine being sampled here, 

f = 1
3  fs – , is lower than the maximum frequency allowed by the sampling theorem,                 

1
2  fs = 4. And once again, the low frequency  itself is not present in the spectral domain. 

This spectral-domain consideration explains, indeed, the 3 interlaced modulation 

envelopes we get in a (1/3)-order sub-Nyquist artifact, like in Fig. 4. 
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3.3 The case of the general (m/n)-order sub-Nyquist artifact 

Having understood the cases of the (1/2)- and (1/3)-order sub-Nyquist artifacts, we are 

ready now to proceed to the most general case, that of the (m/n)-order sub-Nyquist 

artifact. As a simple illustration we will refer to the (2/5)-order sub-Nyquist artifact that 

is shown in Fig. 5 and in Fig. 7(e). 

In order to obtain a (m/n)-order sub-Nyquist artifact, let us sample at the rate of fs an 

original cosine function g(x) = cos(2fx) whose frequency f is close to m
n  fs, namely            

f ≈ mn  fs or: 

   f = mn  fs –               (8) 

This is illustrated for the case of (m/n) = (2/5) in Fig. 5, which shows the resulting 

beating artifact for several values of f around the frequency mn  fs (i.e. for several values of 

). Consider now Fig. 7(e), which shows for the case of (m/n) = (2/5) the continuous-

world spectrum of the sampled signal g(xk). The situation in this spectrum is very 

similar to the situation in the two previous cases: Here, too, the new sampling-induced 

replicas of the impulse pair G(u) add to the original continuous-world spectrum a new 

impulse pair that is located slightly beyond the impulse pair of the original continuous 

cosine. Therefore, just as we did in the previous cases, we consider the sum of the two 

corresponding cosine functions back in the signal domain (with halved amplitudes): 

  gA(x) = 1
2cos(2 fx) + 1

2cos(2 f 'x)            (9) 

and show exactly in the same way that its sampled version at the sampling rate of fs 

satisfies Eq. (3). 

In our general case the frequency of the original cosine is f = mn  fs –  and the frequency 

of the newly added cosine is f ' = fs – (m
n  fs – ) = n – m

n  fs +  (see Fig. 7(e) for the case of 

(m/n) = (2/5)). This means that f ' = n – m
m f + n

m . Thus, if we denote here f1 = f and f2 = f ', 

we obtain: 

   f2 = n – m
m  f1 +             (10) 

with  = n
m . But according to Theorem A.1 in Appendix A, the sum of two continuous 

cosines with frequencies f1 and f2 that satisfy f2 = n – m
m f1 +  gives a continuous-world 

beating effect (pseudo moiré) whose envelope frequency is fenv = m
n  = . Therefore, 

turning back to our sampled signal g(xk), we see by virtue of Eq. (3) that g(xk) has the 

same beating effect as gA(xk), i.e. an envelope frequency of fenv = . For example, in the 

particular case shown in Fig. 5(e) the beating effect has the envelope frequency of  = 1
4, 

i.e. an envelope period length of 4. 

In conclusion, the beating effect we get when sampling the original continuous signal 

g(x) = cos(2fx) whose frequency is f = m
n  fs –  is simply the sampled version of the 

continuous-world beating modulation effect that is generated in the continuous cosine 

sum gA(x) = 1
2cos(2fx) + 1

2cos(2f 'x). This is clearly illustrated for the case of (m/n) = 

(2/5) in Fig. B3 of Appendix B. As stipulated by Theorem A.1, this modulation effect 

consists of k+j = (n–m) + m = n interlaced low-frequency cosinusoidal envelopes, each 
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of which being a stretched and shifted version of our original cosine g(x). These n 

envelopes are expressed by: 

  env1(x) = cos(2  fenv x) = cos(2x) 

  env2(x) = cos(2[x + a]) 

  env3(x) = cos(2[x + 2a])           (11) 

   . . . 

  envn(x) = cos(2[x + (n – 1)a]) 

where the envelope frequency is  = m
n fs – f, and the shift a equals m

n  of the envelope’s 

period 1/, i.e. a = 
m
n . And once again, because the envelope frequency  is much lower 

than the frequency f of the original cosine signal g(x) being sampled, this sampling-

induced artifact may become quite conspicuous and distort our perception of the true 

nature of the original signal. Note, however, that this artifact becomes less prominent for 

higher values of m and n (see Appendix A, soon after Theorem A.1). 

This result, which is expressed more formally by Theorem B.1 in Appendix B, gives 

us the spectral-domain interpretation of the beating effect (the modulation envelopes) 

that appear in the sampled signal g(xk) = cos(2fxk) when f = mn  fs – . As we can see, the 

spectral-domain approach offers a new insight into this phenomenon, and establishes an 

interesting connection with a similar beating modulation effect that occurs in the 

continuous world, in the sum of two cosinusoidal functions whose frequencies are 

related by f2 = 
 
k
j

 f1 + . 

 

4. Extension of the spectral-domain approach to general periodic functions 

So far we have only considered the simplest setting, in which the continuous-world 

function being sampled is g(x) = cos(2fx). What happens in the case of a general 

periodic function g(x)?  This question  can be best answered  by representing our general 

 

 

Figure 5: The (2/5)-order sub-Nyquist artifact. This figure is similar to Figs. 1-4, except 
for the signal-frequency f being used in each row: (a) f = 2

5fs (the singular 
state). (b) f = 2

5fs – 1/32. (c) f = 2
5fs – 1/16. (d) f = 2

5fs – 1/8. (e) f = 2
5fs – 1/4. The 

highly visible (2/5)-order sub-Nyquist artifact is generated because 
consecutive points g(xk) of the sampled signal alternately jump between the 
n = 5 modulating envelopes (each of these modulating envelopes being 
simply a stretched and shifted version of g(x)). These 5 interlaced 
modulating envelopes are highlighted in the figure in different colours or 
line styles. Since we have in this case m = 2, successive envelopes are shifted 
by twice one fifth of their period. Note that their new low frequency is not 
visible in the DFT of the sampled signal. 
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(a)

(b)

(c)

(d)

(e)

Signal domain Spectral domainm
n = 2

5

g(x) = cos(2πfx),  f = (m/n)fs =
= (2/5)8.0 = 3.2• • • Sampled.

CFT
• • • DFT after

reorg. & sca.

g(x) = cos(2πfx),  f = (m/n)fs - ε =
= (2/5)8.0 - 1/32• • • Sampled.

CFT
• • • DFT after

reorg. & sca.

env
1
(x) = cos(2πεx),  ε = 1/32

env
2
(x) = cos(2πε[x-(2/5)32]),  ε = 1/32

env
3
(x) = cos(2πε[x-2(2/5)32]),  ε = 1/32

env
4
(x) = cos(2πε[x-3(2/5)32]),  ε = 1/32

env
5
(x) = cos(2πε[x-4(2/5)32]),  ε = 1/32

g(x) = cos(2πfx),  f = (m/n)fs - ε =
= (2/5)8.0 - 1/16• • • Sampled.

CFT
• • • DFT after

reorg. & sca.

env
1
(x) = cos(2πεx),  ε = 1/16

env
2
(x) = cos(2πε[x-(2/5)16]),  ε = 1/16

env
3
(x) = cos(2πε[x-2(2/5)16]),  ε = 1/16

env
4
(x) = cos(2πε[x-3(2/5)16]),  ε = 1/16

env
5
(x) = cos(2πε[x-4(2/5)16]),  ε = 1/16

g(x) = cos(2πfx),  f = (m/n)fs - ε =
= (2/5)8.0 - 1/8• • • Sampled.

CFT
• • • DFT after

reorg. & sca.

env
1
(x) = cos(2πεx),  ε = 1/8

env
2
(x) = cos(2πε[x-(2/5)8]),  ε = 1/8

env
3
(x) = cos(2πε[x-2(2/5)8]),  ε = 1/8

env
4
(x) = cos(2πε[x-3(2/5)8]),  ε = 1/8

env
5
(x) = cos(2πε[x-4(2/5)8]),  ε = 1/8

g(x) = cos(2πfx),  f = (m/n)fs - ε =
= (2/5)8.0 - 1/4• • • Sampled.

CFT
• • • DFT after

reorg. & sca.

env
1
(x) = cos(2πεx),  ε = 1/4

env
2
(x) = cos(2πε[x-(2/5)4]),  ε = 1/4

env
3
(x) = cos(2πε[x-2(2/5)4]),  ε = 1/4

env
4
(x) = cos(2πε[x-3(2/5)4]),  ε = 1/4

env
5
(x) = cos(2πε[x-4(2/5)4]),  ε = 1/4
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periodic function g(x) as a Fourier series, i.e. as a sum of cosines and sines of various 

harmonics having coefficients al and bl [7, p. 236]: 

  g(x) = a0 + 2l=1

∞[alcos(2 lx/p) + blsin(2 lx/p)]        (12) 

where p is the period of our function g(x), and the l-th Fourier series coefficients al and 

bl are given by Eq. (A.14) in Appendix A. 

4.1 The case of the sine function 

In order to extend our discussion to any general periodic signal, we need to consider 

sine signals, too. And indeed, since the sine signal is a shifted version of the cosine, it is 

not surprising that very similar artifacts also occur when sampling sinusoidal signals. 

This can be explained using practically the same considerations as in the cosine case. 

Note however that because the sine signal and its sampled version are odd 

(antisymmetric), the corresponding spectra are purely imaginary-valued [7 pp. 14-15]. 

As an illustration, the case of (m/n) = (1/2) is explained in the two last rows of Fig. 6: 

Consider a continuous-world sine g(x) = sin(2fx) whose frequency f is slightly below 
1
2  fs, f = 1

2  fs – . Its spectrum G(u) = i[1
2  (u+f) – 1

2  (u–f)] is shown in Fig. 6(c), and the 

spectrum of its sampled version is shown in Fig. 6(d). As we can see, in this case, too, 

the new sampling-induced replicas add to the continuous-world spectrum a new impulse 

pair that is located just slightly beyond the impulse pair of the original continuous sine. 

This new impulse pair corresponds to a newly added minus sine in the signal domain, 

whose frequency is f ' = 1
2  fs + . We denote the sum of the positive and negative sines in 

question (again, with halved amplitudes) by:  

  gA(x) = 1
2sin(2 fx) – 1

2sin(2 f 'x)          (13) 

 

 

Figure 6: Explanation in the continuous-world spectrum of the (1/2)-order sub-Nyquist 
artifact that occurs when sampling a continuous cosine function g(x) = 
cos(2fx) whose frequency f is just slightly below half of the sampling 
frequency (1

2  fs). (a) The continuous-world spectrum G(u) = 1
2  (u–f) + 1

2  (u+f) 
of our original cosine. (b) The continuous-world spectrum of the sampled 
cosine. As a result of the sampling, spectrum (b) is an infinite replication of 
the original spectrum G(u), where the replicas are centered about all the 
integer multiples of the sampling frequency fs. Thanks to the first two 
impulse-pairs centered about its origin, the spectrum (b) of the sampled 
cosine basically corresponds to a sum of two cosines: our original continuous 
cosine, whose frequency is slightly below 1

2  fs, and a new continuous        
cosine, whose frequency is slightly above 1

2  fs. We denote the sum of these        
two cosines (with halved amplitudes) by gA(x) = 1

2cos(2 [1
2  fs–]x) + 

1
2cos(2 [1

2  fs+]x). The spectrum GA(u) of this sum of cosines is shown in the 
figure in a separate panel (a'). Now, as explained in detail in the text, the 
continuous-world spectrum (b) is also the spectrum of the sampled version of 
gA(x), using the same sampling frequency fs. This means, in turn, that the 
sampled version of our given cosine g(x) is identical to the sampled version of 
the  cosine  sum  gA(x)   (although  obviously  g(x)  and  gA(x)  themselves  are 
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different). Now, as shown in Appendix A, the sum of two continuous cosines 
with slightly different frequencies gives a beating modulation effect. Thus, the 
(1/2)-order sub-Nyquist artifact that appears when our original cosine g(x) is 
being sampled (see Fig. 3) is simply the sampled version of the beating 
modulation effect that occurs in the continuous cosine sum gA(x). Rows (c), 
(d) and the separate panel (c') show the respective considerations for the case 
of the sine function g(x) = sin(2fx). Here, too, the explanation is very similar, 
but the spectra are imaginary-valued since g(x), gA(x) and their sampled 
versions are odd (antisymmetric). 
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The spectrum GA(u) of this continuous-world sine difference is shown in Fig. 6 in a 

separate panel (c'). Now, just as in the case of the cosine, it is easy to see that the 

continuous-world spectrum of the sampled sine g(xk) = sin(2fxk), shown in Fig. 6(d), is 

also the spectrum of the sampled version of gA(x), using the same sampling frequency fs: 

The replication of GA(u) about all the integer multiples of fs gives again exactly Fig. 

6(d). This also remains true in the general (m/n) case, where f = m
n  fs –  and f ' = n – m

m
f + 

n
m . Thus, the beating effect we get when sampling the original continuous signal g(x) = 

sin(2fx) whose frequency is f = m
n  fs –  is simply the sampled version of the 

continuous-world beating modulation effect that is generated in the continuous sine 

difference gA(x) (see Theorem A.2 in Appendix A). This modulation effect gives n 

interlaced low-frequency envelopes similar to those obtained in the case of the cosine 

(Eq. (11)), but with sines instead of cosines. This result is expressed more formally by 

Theorem B.2 in Appendix B (the sine counterpart of the cosine-based Theorem B.1). 

4.2 Cases with higher harmonics 

What happens now if the given periodic continuous function g(x) contains also higher 

harmonics of its frequency f? For the sake of simplicity we will consider here the higher 

cosine harmonics, but similar results can be also obtained mutatis mutandis for the sine 

harmonics. We first concentrate on the simple case of the (1/2)-order sub-Nyquist 

artifact, and only then we generalize our discussion to the general (m/n) case. 

 

 

Figure 7: Explanation in the continuous-world spectrum of some typical sub-Nyquist 
artifacts that occur when sampling a continuous cosine function g(x) = 
cos(2fx) with various frequencies f. Each row shows the continuous-
world spectrum of the corresponding sampled cosine. Due to the sampling, 
each of these spectra is an infinite replication of the original continuous-
world spectrum G(u) = 1

2  (u–f) + 1
2  (u+f), where the replicas are centered 

about all integer multiples of the sampling frequency fs. The replica 
centered about the origin, which corresponds to the original continuous-
world spectrum G(u) itself, is highlighted in red; replicas 1 and -1 are 
highlighted in green. Whenever the replication generates new lower-
frequency impulses that are located close to the spectrum origin, and 
which correspond therefore to a true sampling moiré effect, the 
corresponding moiré is indicated by blue arrows. (a) The artifact that 
occurs when f ≈ (1/1)fs, which is a true (1,-1)-sampling moiré effect, as 
shown in Fig. 1. (b) The artifact that occurs when f ≈ (2/1)fs, which is a 
true (2,-1)-sampling moiré effect, as shown in Fig. 2. (c) A (1/2)-order 
sub-Nyquist artifact, as shown in Fig. 3. (d) A (1/3)-order sub-Nyquist 
artifact, as shown in Fig. 4. (e) A (2/5)-order sub-Nyquist artifact, as 
shown in Fig. 5. We use this last case as a prototype for illustrating the 
general (m/n)-sub-Nyquist artifact. In rows (a) and (b), the impulses ±fM 
near the spectrum origin, which originate from the replicas 1 and -1 (or 2 
and -2, respectively), give in the signal domain a new low-frequency 
cosinusoidal moiré effect. On the other hand, in rows (c)-(e), the impulses 
±f and ±f ' give in the signal domain a sum of two cosines with frequencies 
f and f ', which generates a beating (modulation) effect. 
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Let us consider Fig. 8. This figure shows the CFT (continuous-world spectrum) of a 

typical (1/2)-order sub-Nyquist artifact that is generated when a continuous signal g(x) 

having frequency f = 1
2fs –  is being sampled at the rate of fs. Row (a) shows the 

continuous-world spectrum of the sampled signal when g(x) contains only a cosine with 

the fundamental frequency f, and row (b) shows the continuous-world spectrum of the 

sampled signal when g(x) also contains a cosine with the frequency 2f, i.e. a second 

harmonic. As we can see, each replica in the spectrum (due to the sampling) is simply a 

shifted copy of the entire original spectrum G(u), including all its higher-order impulses. 

So what does the existence of higher harmonics in each of the replicas contribute to 

the spectral explanation of the sub-Nyquist artifact? Consider row (b) of Fig. 8. In this 

case the original periodic function g(x) contains two harmonics, so that each of the 

replicas of G(u) consists of two concentric impulse pairs. Just like in row (a), a (1/2)-

order sub-Nyquist artifact is generated in row (b), too, since the impulse of the 

fundamental frequency f is close to 1
2fs (see Sec. 3.1). But unlike in row (a), we have in 

row (b) an additional phenomenon: A new higher-harmonic impulse belonging to one of 

the neighbouring replicas (the -2 harmonic of replica 1) happens to fall close to the 

spectrum origin, at the point fM = fs – 2f = fs – 2(1
2fs – ) = 2. This new impulse (together 

with its symmetric twin at –fM) corresponds to a new cosine having the low frequency         

fM = 2 that is generated in the sampled signal. This new low-frequency cosine is a true 

second-order (1,-2) sampling moiré effect, since it is represented in the spectrum by a 

corresponding low-frequency impulse pair with fM = fs – 2f.6 This means that in row (b) 

the sampled signal suffers simultaneously from two sampling-induced artifacts: The 

(1/2)-order sub-Nyquist artifact that is generated here just as in row (a), and a new true 

(1,-2) sampling moiré effect. How is this reflected in the signal domain, in the sampled 

signal itself? 

The case shown in Fig. 8(a) is illustrated by Fig. 3, in which the continuous-world 

function being sampled is g(x) = cos(2fx). To illustrate the case shown in Fig. 8(b), 

consider Fig. 9, in which the continuous-world function being sampled is g(x) = 

cos(2fx) + 0.8cos(2[2f]x).7 As we can see, in Fig. 9 too, the sampled signal g(xk) is 

modulated by two interlaced envelopes, that are highlighted in the figure by red and 

green curves, each of which being a stretched and shifted version of g(x): 

 env1(x) = cos(2x) + 0.8cos(2[2]x) 

 env2(x) = cos(2[x + a]) + 0.8cos(2[2][x + a])         
(14)

 

where the envelope frequency is  = 1
2fs – f, and the shift a equals half of the envelope’s 

period  1/,  i.e.  a = 1/(2).  This is ascertained by  Theorem A.3 in Appendix A,  which 

                                                 
6 Note that the (1,-2) sampling moiré is not the same as the (2,-1) sampling moiré shown in Fig. 2: Our 

(1,-2)-moiré here is generated between fs and the second harmonic of g(x), 2f, and its frequency is fM = 

fs – 2f; while the (2,-1)-moiré is generated between 2fs and f and its frequency is fM = 2fs – f. As we can 

see in Fig. 2, the generation of the (2,-1)-moiré does not require the presence of a second harmonic 

component in g(x). See also Remark 7 in Appendix C. 
7 We have scaled the second-harmonic cosine by 0.8 in order to be able to easily distinguish between the 

first and second harmonic impulses in the spectral domain according to their height. 
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Figure 8: Explanation in the continuous-world spectrum of the (1/2)-order sub-
Nyquist artifact: (a) When the original continuous-world spectrum G(u) 
only contains one impulse pair; and (b) when G(u) also contains second-
order harmonics. The original continuous functions being sampled are:             
(a) g(x) = cos(2fx); (b) g(x) = cos(2fx) + 0.8cos(2[2f]x). Each row 
shows the continuous-world spectrum of the corresponding sampled 
function g(xk). Due to the sampling, each of these spectra is an infinite 
replication of the original continuous-world spectrum G(u), where the 
replicas are centered about all integer multiples of the sampling frequency 
fs. The replica centered about the origin, which corresponds to the original 
continuous-world spectrum G(u) itself, is highlighted in red; replicas 1 and 
-1 are highlighted in green. In (a) G(u) contains only the fundamental 
impulse pair (at the frequencies ±f), while in (b) G(u) contains two             
harmonics (at the frequencies ±f and ±2f, respectively). Note that in (b) a 
new lower-frequency impulse is generated close to the origin, at the low 
frequency fM = fs – 2f = fs – 2(1

2fs – ) = 2. In terms of sampling theory, 
this is a false folded-over low frequency due to aliasing; in terms of the 
moiré theory, this low-frequency second-harmonic impulse corresponds to 
a (1,-2)-sampling moiré effect in the sampled signal, as indicated in blue. 
Thus, in row (b) the sampled signal suffers simultaneously from two 
sampling-induced artifacts: The (1/2)-order sub-Nyquist artifact that is 
generated here just as in row (a), and a new true (1,-2) sampling moiré 
effect. 
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extends the cosine-based Theorem A.1 to the case of a general periodic function g(x) 

having any number of harmonics. 

However, the resulting effect in Fig. 9 is no longer a pure sub-Nyquist artifact like its 

single-harmonic counterpart of Fig. 3: On the one hand, as we can see in the DFT 

spectra of Fig. 9, we do have here a new folded-over low-frequency impulse pair close 

to the origin, at fM = 2, that corresponds to a new (1,-2)-moiré effect. But on the other 

hand, the phenomenon we see in the signal domain of Fig. 9 is not a pure moiré effect, 

either: Our sampled signal g(xk) is not a pure cosine with the low frequency of fM = 2; 

rather, it rapidly oscillates between the two interlaced envelopes env1(x) and env2(x), 

much like a sub-Nyquist artifact. As we can see, this is a hybrid case between a true 

moiré effect and a pure sub-Nyquist artifact, having an intermediate behaviour between 

the two. Let us study this behaviour in more detail. 

Comparing the sampled signal in each row of Fig. 9 with its counterpart in Fig. 3, we 

notice an interesting difference: Suppose we apply to each of our sampled signals g(xk) 

(in the left-hand column of Figs. 3 or 9) a smoothing filter such as a moving average [6, 

pp. 277-280]. This smoothing will give us the centreline curve of each sampled signal. 

In Fig. 3 these centrelines are identically zero and coincide with the x axis, but in Fig. 9 

the resulting centrelines are cosinusoidal curves having the frequency fM = 2. More 

precisely, while the sampled signal in each row of Fig. 3 oscillates about (i.e. above and 

below) the x axis, in Fig. 9 the sampled signal oscillates about the curve c(x) = 

0.8cos(2[2]x). This confirms the presence of a true low-frequency component in the 

sampled signal g(xk) of Fig. 9, as we already noticed in the corresponding DFT spectra 

of Fig. 9 (and in the CFT of g(xk), shown in Fig. 8(b)). 

This can be readily understood by comparing Eq. (14) with Eq. (4): Note that the 

cosine 0.8cos(2[2]x) in Eq. (14) has the frequency 2, i.e. a period of 1/(2); therefore 

the shift of a = 1/(2) that is applied to env2(x) has no effect on its second term. In other 

words, the second term of env2(x) remains identical to the second term in env1(x), so that 

the two envelopes of Eq. (14) are simply raised by the same curve 0.8cos(2[2]x) with 

respect to the envelopes of Eq. (4). And indeed, we see that in Fig. 9 the rapidly 

oscillating points g(xk) are raised by c(x) = 0.8cos(2[2]x) with respect to Fig. 3. 

 

 

Figure 9: The (1/2)-order sub-Nyquist artifact, where the periodic signal being sampled 
contains two harmonics: g(x) = cos(2fx) + 0.8cos(2[2f]x). The only 
difference between the 5 rows is in the frequency f of the original signal g(x): 
(a) f = 1

2fs (the singular state). (b) f = 1
2fs – 1/32. (c) f = 1

2fs – 1/16. (d) f = 1
2fs – 

1/8. (e) f = 1
2fs – 1/4. The highly visible (1/2)-order sub-Nyquist artifact is 

generated because consecutive points g(xk) of the sampled signal alternately 
jump between the n = 2 modulating envelopes (each of the two modulating 
envelopes being a stretched and shifted version of g(x)). These two 
interlaced modulating envelopes are highlighted in the figure in different 
colours. As explained in the text, this example is a hybrid case in which the 
(1/2)-order sub-Nyquist artifact is also accompanied by a true (1,-2)-
sampling moiré having the frequency fM = 2. 
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We can therefore say that the first term in env1(x) and env2(x) (see Eq. (14)) 

corresponds to the (1/2)-order sub-Nyquist artifact, while the remaining term 

corresponds to the true moiré effect, which is embodied by the above-mentioned 

centreline c(x). This becomes clearer if we rewrite Eq. (14) as follows: 

 env1(x) = cos(2x) + c(x) 

 env2(x) = cos(2[x + a]) + c(x)           
(15)

 

where c(x) = 0.8cos(2[2]x). Here, c(x) is the true moiré effect (the centreline), having 

the frequency 2, while the first term, which is different in each envelope, corresponds 

to the vertical distance of env1(x) or env2(x) above or below the centreline c(x). Because 

successive points of our sampled signal g(xk) fall intermittently on env1(x) or env2(x), as 

stipulated by Theorem B.3 in Appendix B, we see that the first term in both lines of Eq. 

(15) corresponds to the alternating jumps of the sampled points g(xk) above and below 

the centreline c(x). The rapid oscillations of our sampled signal g(xk) between env1(x) 

and env2(x), above and below c(x), correspond to the sub-Nyquist artifact. 

It should be stressed here that the two interlaced envelopes (14) still behave as 

predicted by Theorems A.1 and B.1, even though g(x) is no longer a pure cosine and 

contains a second harmonic, too. As we have seen, this happens thanks to Theorems A.3 

and B.3, which extend the scope of theorems A.1 and B.1 to cases where g(x) is a 

general periodic function having any number of harmonics. We can therefore freely use 

in the multiple-harmonics case Theorems A.3 and B.3 instead of their cosine 

counterparts A.1 and B.1. 

So what happens if the Fourier series development of our given continuous-world 

function g(x) contains more than two cosine harmonics? Note that the above 

considerations remain true for all further even-numbered cosine harmonics too, since 

any additional term of the form a2kcos(2[2k]x) in env1(x) and env2(x) of the (1/2)-order 

sub-Nyquist artifact has the frequency 2k, i.e. a period of 1/(2k), and thus it remains 

invariant under shifts of a = 1/(2): 

  a2kcos(2[2k][x + 1/(2)]) = a2kcos(2[2k]x)        (16) 

This means that the splitting suggested by Eq. (15) can be generalized as follows:  

 env1(x) = n(x) + c(x) 

 env2(x) = n(x + a) + c(x)            
(17)

 

Here, c(x) lumps together the constant a0 of the Fourier series (12) and all the even 

cosine harmonics, all of which are invariant under the envelope shift a = 1/(2). All the 

other cosine harmonics, which are not invariant under this shift, are lumped together 

into n(x). Thus, c(x) gives the centreline about which the (1/2)-order sub-Nyquist artifact 

oscillates, and n(x) gives the alternating jumps of the sampled points g(xk) above and 

below the centreline c(x), i.e. the rapid oscillations due to the sub-Nyquist artifact. Now, 

if the centreline c(x) contains a low-frequency component, this component corresponds 

to a true moiré effect in the sampled signal. But if this centreline does not contain a low-
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frequency component (see, for example, Fig. 3, where the centreline is identically zero), 

no true moiré effect is visible in the sampled signal. 

Example ((1/2)-order sub-Nyquist artifacts with multiple cosine harmonics): 

To illustrate the situation in a case having multiple cosine harmonics, consider Fig. 10. 

Here, g(x) is a symmetric (even) continuous-world square wave, whose spectrum G(u) 

consists of infinitely many cosine harmonics. As we can see in the figure, this is a 

hybrid case in which both a (1/2)-order sub-Nyquist artifact and a true (1,-2)-moiré 

effect are visible. Considering first the spectral domain point of view, we see that in 

rows (b)-(e) of Fig. 10 the discrete-world spectrum (DFT) of the sampled signal g(xk) 

does contain new low frequencies near the origin, that did not exist in the continuous-

world spectrum (CFT) of the original continuous signal g(x). These new low frequencies 

correspond, indeed, to a true (1,-2)-moiré effect as shown in Fig. 8(b), but this time they 

include all the even-numbered harmonics of f: Not only the (1,-2)-impulse itself (like in 

Fig.8(b)), which is located at fM = fs – 2f = 2 and corresponds to the fundamental 

frequency of the (1,-2)-moiré, but also the entire impulse-comb (1,-2)k, k  that it 

spans, i.e. all the impulses located at kfM = kfs – 2kf = 2k. And yet, the fundamental 

frequency f of our original continuous-world square wave g(x) is located just below half 

of the sampling frequency, 1
2fs = 4, as we clearly see both in the CFT and in the DFT in 

the spectral domain of Fig. 10. This indicates the existence of a (1/2)-order sub-Nyquist 

artifact that is also generated simultaneously in the same sampled signal.  

From the signal-domain point of view, the (1,-2)-moiré effect corresponds to the 

periodic centreline curve c(x), having the frequency 2, which consists of all the even-

numbered cosine harmonics. This centreline is plotted in rows (b)-(e) of Fig. 10 by a 

blue curve; its slight undulations occur since it was only calculated there using a finite 

number of even harmonics. The (1/2)-order sub-Nyquist artifact, on its part, corresponds 

to the alternating jumps of the sampled points g(xk), k = 0, 1, 2,... above and below this 

centreline, between the two envelopes env1(x) and env2(x).     ■ 

So far we only discussed multiple harmonic cases for the (1/2)-order sub-Nyquist 

artifact, but similar considerations apply also to any (m/n)-order sub-Nyquist artifact. 

Consider, for example, a generalization of Fig. 7(d) (or Fig. 7(e)) in which G(u) has two 

harmonics, like in Fig. 8(b), or even more than two harmonics. If in the spectrum of the 

sampled signal the –n-th impulse of the m-th sampling-induced replica of G(u) exists (is 

non-zero) and falls close to the spectrum origin, the sub-Nyquist artifact of Fig. 7(d) (or 

Fig. 7(e)) will also be accompanied by a true (m,-n) sampling moiré effect. In such 

“hybrid” cases the low frequency fM = mfs – nf of the (m,-n) moiré effect will clearly 

manifest itself both in the sampled signal g(xk) and in its spectrum; and yet, the highly 

oscillating nature of the sub-Nyquist artifact will still be preserved. 

Note that the condition f ≈ m
n fs for the generation of the (m/n)-order sub-Nyquist 

artifact (Sec. 3.3) and the condition mfs – nf ≈ 0 for the generation of the (m,-n)-moiré 

effect are equivalent: For any m,n, f ≈ m
n fs  occurs if and only if  mfs – nf ≈ 0. However,              

mfs – nf ≈ 0 only gives a true moiré effect if g(x) possesses in its Fourier decomposi-              

tion a non-zero n-th harmonic nf of its frequency f. But this additional condition is not 

required for the generation of the (m/n)-order sub-Nyquist artifact. For example, 
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compare Figs. 9-10 with Fig. 3, in which g(x) does not contain higher harmonics of its 

frequency f; the sub-Nyquist artifact is present in all of these figures, but in Figs. 9-10 it 

is also accompanied by a true moiré effect, which is not present in Fig. 3. 

Interestingly, the frequency of the (m,-n) moiré effect is fM = mfs – nf, while the 

frequency of the modulating envelopes of the (m/n)-order sub-Nyquist artifact is, as 

explained in Sec. 3.3,  = m
n fs – f. It follows, therefore, that fM = n, meaning that the 

period pM = 1/fM of the true moiré effect is n times smaller than the period penv = 1/ of 

each modulating envelope. In fact, each of the n shifted envelopes of the sub-Nyquist 

artifact includes exactly one period of the moiré effect; Fig. 10(e) shows a (1/2)-order 

case, where n = 2. Note that cases with n = 1 are pure moiré effects (see Sec. 2). 

In conclusion, the (m/n)-order sub-Nyquist artifact that is generated by the 

fundamental frequency f of the original signal g(x) when f ≈ m
n fs (see Figs. 7(c)-(e) and 

Fig. 8) may be also accompanied by a true (m,-n) sampling moiré effect. If both a visible 

sub-Nyquist artifact and a moiré effect are generated simultaneously, a hybrid effect 

results (like in Figs. 9-10). If no new impulses fall near the spectrum origin, no visible 

moiré can be recognized in the sampled signal, and only the sub-Nyquist artifact is 

visible (as in Figs. 3-5). And finally, in cases like Figs. 7(a),(b) where some new 

impulses do fall close to the origin but the fundamental frequency f does not generate a 

sub-Nyquist artifact, only a pure moiré effect becomes visible in the sampled signal. 

This is the case, indeed, in Figs. 1 and 2, which correspond to the spectra of Figs. 7(a) 

and 7(b), respectively: In such cases only a pure moiré effect is visible in the sampled 

signal, but no oscillations due to a sub-Nyquist artifact are present. 

We see, therefore, that all of the 4 combinations are possible: sub-Nyquist artifact 

together with moiré, sub-Nyquist artifact alone, moiré alone, or none of the two. This 

last case, which is, of course, the most desirable in signal processing applications, 

occurs if none of the corresponding conditions is satisfied, namely: If the fundamental 

frequency f of our original periodic function g(x) is not close to mn  fs for any integers m,n 

(so that no sub-Nyquist artifact occurs); and if no higher-harmonic impulses ±mfs±nf 

happen to fall close to the spectrum origin (so that no sampling moiré occurs). 

Practically, only small values of m,n should be considered, since for higher values the 

phenomena in question (sub-Nyquist artifacts or sampling moirés) become negligible. 

 

 

Figure 10: This figure is similar to Fig. 9, except that the original continuous function 
being sampled is the periodic square wave g(x) = wave(fx) (with frequency f 
and opening ratio of /p = 1/5). The highly visible (1/2)-order sub-Nyquist 
artifact is generated because consecutive points g(xk) of the sampled signal 
alternately jump from one of the n = 2 modulating envelopes to the other 
(each of the two modulating envelopes being simply a stretched and shifted 
version of g(x)). These two interlaced modulating envelopes are highlighted 
in the figure in different colours. The centreline c(x) is plotted in rows (b)-
(e) by a blue curve; its undulations occur because it was only calculated 
there using a finite number of harmonics. 
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(b)

(c)

(d)

(e)

Signal domain Spectral domainm
n = 1

2

g(x) = wave(fx),  f = (m/n)fs =
= (1/2)8.0 = 4.0• • • Sampled.

CFT
• • • DFT after

reorg. & sca.

g(x) = wave(fx),  f = (m/n)fs - ε =
= (1/2)8.0 - 1/32• • • Sampled.

CFT
• • • DFT after

reorg. & sca.

env1(x) = wave(εx),  ε = 1/32
env2(x) = wave(ε[x-16]),  ε = 1/32
c(x)

g(x) = wave(fx),  f = (m/n)fs - ε =
= (1/2)8.0 - 1/16• • • Sampled.

CFT
• • • DFT after

reorg. & sca.

env1(x) = wave(εx),  ε = 1/16
env2(x) = wave(ε[x-8]),  ε = 1/16
c(x)

g(x) = wave(fx),  f = (m/n)fs - ε =
= (1/2)8.0 - 1/8• • • Sampled.

CFT
• • • DFT after

reorg. & sca.

env1(x) = wave(εx),  ε = 1/8
env2(x) = wave(ε[x-4]),  ε = 1/8
c(x)

g(x) = wave(fx),  f = (m/n)fs - ε =
= (1/2)8.0 - 1/4• • • Sampled.

CFT
• • • DFT after

reorg. & sca.

env1(x) = wave(εx),  ε = 1/4
env2(x) = wave(ε[x-2]),  ε = 1/4
c(x)
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4.3 Extension to general periodic functions 

So far we have only discussed higher cosine harmonics, but the case of higher sine 

harmonics is obtained in a very similar way. The only difference is that for each of the 

sine harmonics we have to consider the difference (13) rather than the sum (9). This is 

the case whenever g(x) is an odd (antisymmetric) periodic function, since the Fourier 

series decomposition of such functions contains only sine harmonics. 

Finally, a combination of these results gives us the extension to any general periodic 

function g(x), since such a function can always be considered as a sum of cosines and 

sines of various harmonics, as defined by the Fourier series decomposition of g(x) (Eq. 

(12)). The most general case, which holds for any periodic function g(x), is formally 

expressed by Theorem B.3 in Appendix B, and illustrated by Figs. B4-B6 there. 

As we can see, we have now fully attained the goal set up in the introduction: In spite 

of the inherent difficulty in devising a spectral-domain explanation to phenomena which 

are not directly visible in the spectrum, we have succeeded to establish a general 

spectral-domain approach which is valid for any periodic function g(x). This spectral-

domain explanation covers all sub-Nyquist artifacts and sampling moiré effects which 

may occur when sampling a given continuous periodic function g(x). Moreover, this 

spectral approach sheds new light on the connections between the classical true moiré 

effects and the sub-Nyquist artifacts, and on the precise nature of their hybrid 

combinations. This approach also provides new interesting links between the sampling-

induced beating modulation effects in the discrete world, and the beating modulation 

effects which may occur in the continuous world between two mistuned instances of a 

continuous periodic function (see Appendices A and B for the full details). 

As mentioned earlier in the introduction, we have already succeeded in [1] to explain 

the sub-Nyquist artifacts by using a purely signal-domain approach. However, the 

signal-domain approach does not explain as clearly as the spectral-domain approach the 

nature of the hybrid cases, and it does not provide the insightful connections with the 

continuous-world modulation effects. As is often the case in signal processing and in the 

moiré theory, both the signal- and spectral-domain approaches are useful, and none of 

them is redundant. On the contrary, they prove to be complementary, and each of them 

contributes a new interesting viewpoint of its own to the subject under discussion. 

 

5. Reconstruction considerations 

As already mentioned in [1], although sub-Nyquist artifacts are generated during the 

sampling process, they may be also considered as reconstruction artifacts. We can now 

illustrate this claim from the spectral-domain point of view, using Fig. 11. This spectral-

domain figure shows a generic (m/n)-order sub-Nyquist artifact, that is generated when 

sampling a given continuous cosine g(x) = cos(2fx) using a sampling frequency of fs, 

where f = m
n  fs – . Let us denote the distance between f and 1

2  fs by . As explained in 

Sec. 3.3, our (m/n)-order sub-Nyquist artifact is caused by the modulation effect that 
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occurs between the original cosine g(x), whose frequency is f = 1
2  fs – , and a new cosine 

with frequency f ' = 1
2  fs +  that is generated due to the impulse replication that the 

sampling process imposes on the spectrum (see row (b) of Fig. 11). Note that Fig. 11 is 

generic, and it may correspond to any of the different sub-Nyquist artifacts shown in 

Fig. 7(c)-(e), where only the distance  varies from case to case. Furthermore, although 

Fig. 11 shows the cosine case, the following discussion holds equally well for the sine 

case, too, using the reasoning shown in Fig. 6(c),(d), and by extension for any periodic 

functions having higher harmonics too. 

Let us now consider rows (c)-(e) of Fig. 11. Because the frequency of our cosine 

function g(x) is below 1
2  fs, the sampling theorem guarantees that this function can be 

perfectly reconstructed from its sampled version g(xk). This perfect reconstruction is 

done, as stipulated by the sampling theorem, by multiplying the spectrum of Fig. 11(b) 

with a rect function extending from –1
2  fs to 1

2  fs (see Figs. 11(c),(d)). Equivalently, in 

terms of the signal domain, perfect reconstruction is obtained by sinc-function 

interpolation, i.e. by convolving the sampled version of the cosine signal with the 

narrow sinc function that is the inverse Fourier transform of the above rect function;              

see [8, p. 83] or Fig. 8.11 in [5]. This ideal reconstruction removes the new impulse              

pair having the frequency ±f ' from the spectrum, as shown in Fig. 11(d), and hence the 

corresponding new cosine disappears from the signal domain, so that no sub-Nyquist 

artifact can be generated. 

However, in practice, the reconstruction of a sampled signal can never be done by a 

sinc interpolation as stipulated by the sampling theorem, because the sinc function 

extends ad infinitum to both directions. Instead, reconstruction is very often performed 

by means of a linear interpolation, meaning that successive sample points are simply 

connected by straight line segments, just as on the display of an oscilloscope. This is, 

indeed, what we are also doing in our figures here (see the sampled signals in Figs. 1-5). 

But since sinc-function interpolation is the only perfect reconstruction method, as 

stipulated by the sampling theorem, this alternative interpolation method cannot 

perfectly reconstruct the original signal g(x) from its sampled version g(xk). Viewed 

from the spectral domain point of view, any alternative reconstruction method is 

equivalent to multiplying the spectrum of Fig. 11(b) with a non-ideal substitute of the 

ideal rect function. But when doing such a multiplication, the new replicas that appeared 

in row (b) due to the sampling will not be completely removed, and some debris thereof 

may still subsist in the spectrum, as shown in Fig. 11(e). In such cases, a low-frequency 

sub-Nyquist artifact may indeed become visible in the sampled signal (see Figs. 3-5); 

this is simply the beating modulation effect that occurs in the sum of the newly genera-

ted cosine (due to the new impulses in the spectrum) and the original cosine function. 

These reconstruction considerations remain valid even when g(x) contains higher 

harmonics, since only the fundamental frequency f of g(x) is involved in the generation 

of sub-Nyquist artifacts. However, when higher harmonics exist, they may give rise to a 

true sampling moiré effect if any impulse of the form ±mfs±nf happens to fall close to 

the spectrum origin. Obviously, such impulses cannot be removed during the 

reconstruction process even when using ideal reconstruction, since they are located near 

the spectrum origin, inside the interval –1
2  fs … 1

2  fs. 
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As we can see, the surprising fact that low-frequency artifacts may exist in a sampled 

signal even when the sampling rate is located within the frequency range that is 

supposed to be safe by virtue of the sampling theorem, is based, in fact, on a 

misconception. “Safe” in terms of the sampling theorem does not mean that under the 

specified conditions (i.e. when the sampling rate is at least twice the highest frequency 

present in the signal) the sampled signal is perfectly faithful to the original continuous-

world signal, and does not show new parasite structures due to sampling. The sampling 

theorem only states that under the specified conditions there is no aliasing, and the 

original continuous signal can be perfectly reconstructed from its sampled version by 

convolution with a specified sinc function. But no guarantee is provided that a 

continuous signal reconstructed by any other method (such as linear interpolation, or the 

reconstruction method tacitly used by our eyes when looking at a sampled signal) will 

exactly follow the shape of the original signal g(x), and have no new apparent artifacts. 

 

6. Conclusions 

Sub-Nyquist artifacts are parasite beating effects that may “creep in” when sampling a 

continuous periodic signal g(x), even when the Nyquist condition is fully satisfied, like 

in Figs. 3-5. Although sub-Nyquist artifacts are clearly visible in the sampled signal 

g(xk), in the form of new periodic beats or modulation envelopes that did not exist in 

g(x) itself, they are not directly represented in the spectral domain: No new impulses 

appear in the spectrum of the sampled signal at the frequency of this beating effect. This 

fact makes sub-Nyquist artifacts more difficult to analyze, since our main analysis tool, 

the Fourier approach, seems in this case to be unusable. And yet, we show in the present 

contribution that in spite of this difficulty, sub-Nyquist artifacts can be explained from 

the point of view of the spectral domain, too. It turns out that these beating effects are 

generated due to an interaction between the fundamental frequency f of the original 

periodic function  g(x)  and a new slightly higher frequency  f '  that  is  generated  in  the 

 

 

Figure 11: The (m/n)-order sub-Nyquist artifact explained using reconstruction 
considerations. (a) Schematic view of the continuous-world spectrum G(u) 
of a continuous cosine function g(x) = cos(2fx) whose frequency is lower 
than half of the sampling frequency 1

2  fs:  f = 1
2  fs – . Note that the distance 

 equals  in the (1/2)-order sub-Nyquist artifact (see Fig. 7(c)), but in 
other cases such as the (1/3)- or (2/5)-order sub-Nyquist artifact (see Figs. 
7(d) and (e), respectively) the distance  may be bigger than . (b) The 
continuous-world spectrum of the sampled version of g(x). As a result of 
the sampling, spectrum (b) is an infinite replication of the original 
spectrum G(u), where the replicas are centered about all the integer 
multiples of the sampling frequency fs. (c), (d) Because the frequency of 
our cosine function is below 1

2  fs, it can be perfectly reconstructed from its 
sampled version as stipulated by the sampling theorem, by multiplying the 
spectrum (b) with a rect function (a 1-valued pulse) extending from –1

2  fs to 
1
2  fs  (or,  equivalently,  by  convolving  the  sampled  version  of  the cosine 
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signal with the corresponding sinc function). (e) When reconstructed by 
multiplying the spectrum (b) with a non-ideal substitute of the ideal rect 
function, debris of the new replicas that appeared in (b) due to the 
sampling may still subsist in the spectrum, causing a visible sub-Nyquist 
artifact. As shown in (b), this beating effect is generated by the sampling 
operation; but as we can see in (e), it becomes actually visible due to the 
non-ideal reconstruction. Note that the low beating frequency itself is not 
present in the spectrum, meaning that it is not a true moiré effect. Panel 
(a') is only used for demonstrating Theorem B.1. It shows the spectrum 
GA(u) of the cosine sum gA(x) = 1

2cos(2 [1
2  fs–]x) + 1

2cos(2 [1
2  fs+]x); see 

the detailed explanation given in Fig. 6 for the case of (m/n) = (1/2). 
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spectrum due to the sampling process. More precisely, if f is close to an integer fraction 

of the sampling frequency fs, namely if f = mn  fs –   for some integers m,n, then a beating 

effect may be generated due to the interaction between the frequency f and the new 

frequency f ' = n – m
n

 fs +  that is contributed by the neighbouring replica in the spectrum 

of the sampled signal. We show that this beating effect is tightly related to another 

beating phenomenon, that occurs this time in the continuous world, in the sum of two 

periodic functions whose frequencies f1 and f2 are related by f2 = k
j

 f1 + . This 

continuous-world beating phenomenon is widely known in the particular case of two 

sinusoidal (or cosinusoidal) functions with k = j = 1: This is simply the beating effect 

that occurs in the sum of two sines (or two cosines) with frequencies f2 ≈ f1. But beating 

phenomena may also occur for any other integer ratios k/j. These continuous-world beats 

are known in the field of acoustics as “beats of mistuned consonances” [9]. We show 

that this phenomenon is not limited to the sum of sinusoidal or cosinusoidal functions, 

and it actually occurs in the sum of two mistuned instances of any periodic function, 

having any number of harmonics in its Fourier series representation. This explains 

indeed the sub-Nyquist artifacts that occur back in the discrete case when sampling a 

general periodic function having any number of harmonics. 

We thus extend the scope of the moiré theory (and of the sampling theory) to include 

pseudo-moiré cases, which were so far hard-to-explain “stepsons”, because they defied 

the standard Fourier analysis tools being used for their investigation. 

The present contribution also illustrates another interesting point: The “Fourier 

paradigm” saying that every periodicity in the signal domain must be represented by 

corresponding spikes (impulse or impulse pair) in the Fourier frequency domain is based 

in fact on a misconception. Various periodic modulation phenomena, such as sub-

Nyquist artifacts in the sampling process or beating effects in the sum of mistuned 

periodic functions, may be present in the signal domain, without being directly 

represented by corresponding spikes of their own in the spectrum. 

Finally, it should be noted that although only the one-dimensional case has been 

considered here, our results can be also extended to two or higher dimensional settings. 

A first step in this direction, concerning the (1/2)-order sub-Nyquist artifact in the two 

dimensional setting, can be found in [5, Sec. 8.6]. 
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Appendix A: The beating effect between two mistuned instances of a periodic 

function 

In this appendix we review the beating modulation effects which may occur in the 

continuous world between two mistuned cosines or between two mistuned sines. We 

then extend our discussion to the case of general periodic functions, that may have any 

number of cosine and/or sine harmonics in their Fourier series representation. 

A.1 The beating effect in the sum of two mistuned continuous cosines 

Consider the sum of two continuous-world cosines having frequencies f1 and f2: 

   s(x) = cos(2 f1x) + cos(2 f2x)    (A.1) 

When f2 = f1, the sum s(x) is simply a cosine having the same frequency and twice the 

amplitude. But how does the sum look like when f2 ≠ f1? Let us proceed step by step as 

follows: 

(1) Consider first the case where f2 ≈ f1 (or in other words f2 = f1 +  for some small 

value ). 

Using the well-known trigonometric identity [10, p. 284]: 

   cos + cos = 2 cos 
 +  

2
 cos 

 – 

2
      (A.2) 

we can reformulate the sum (A.1) as follows: 

 s(x) = cos(2 f1x) + cos(2 f2x) = 2 cos(2 
f1 +  f2

2
x) cos(2 

f1 –  f2

2
x)  (A.3) 

In our present case, where f2 ≈ f1, the cosine product in the right hand side of (A.3) 

corresponds to a modulation effect, where the cosine with the higher frequency 
f1 +  f2

2
 represents the carrier and the cosine with the low frequency 

f1 –  f2

2
 represents 

the modulating envelope (see Fig. A1). More precisely, this modulating envelope 

consists of two cosinusoidal curves with the same frequency fenv = (f2 – f1)/2 = /2 

and the same period penv = 1/fenv = 2/, one of these two curves being shifted by half 

a period, i.e. by a = 1/:8 

  env1(x) = 2 cos(2 (/2)x) 

  env2(x) = 2 cos(2 (/2)[x + a])     
(A.4)

 

Thanks to this modulation, the sum s(x) of two cosines with close frequencies f1 and   

f2 = f1 +  gives rise to a low-frequency beating effect (pseudo moiré). This beating 

is not a true moiré effect, since the spectrum of s(x) does not contain impulses 

having the corresponding new low frequency: Based on the addition rule for the 

Fourier transform, the spectrum of the cosine sum s(x) = cos(2 f1x) + cos(2 f2x) 

only contains the frequencies that are contributed by the two original cosines 

                                                 
8 If f2 > f1, we may prefer to consider the difference f2 – f1 rather than f1 – f2. This makes no difference 

here, since the cosine function is insensitive to the sign of . 
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themselves, namely, ±f1 and ±f2, but no new lower frequencies such as (f2 – f1)/2 are 

present in the spectrum of s(x). 

(2) Let us now consider the other extreme case, where the frequencies f1, f2 of the two 

given cosines are very far apart, say f2 >> f1. Although identity (A.3) obviously still 

holds here, in the present case the cosine sum s(x) no longer resembles a 

modulation. Instead, it takes the more intuitively expected form of a cosine sum 

(see Fig. A2): A high-frequency cosine wave of frequency f2 that is added to (or 

“rides” on) a low-frequency cosine wave of frequency f1. The fact that the 

modulation due to identity (A.3) is no longer prominent here is easily understood: 

Since f2 >> f1 implies (f2 + f1)/2 ≈ (f2 – f1)/2, the carrier and the modulating wave 

have almost the same frequency, and the modulation effect is no longer visible.9 

(3) So far we have seen how the cosine sum s(x) behaves in the two extreme cases, 

where f2 ≈ f1 and where f2 >> f1. What happens to s(x) between these two cases? 

It turns out that whenever f2 ≈ kf1 with an integer k (namely f2 = kf1 + ), a new 

modulation phenomenon appears in the sum s(x). This is a simple generalization of 

case (1) above, and we call it a k-th order modulation. Fig. A3 shows a modulation 

effect that occurs in the cosine sum s(x) when k = 2. As we can see by comparing 

Figs. A3 and A1, the second-order modulation with k = 2 looks more complex and 

intricate than the first-order modulation with k = 1.10 

However, this is not yet all: it turns out that a similar phenomenon may also occur 

whenever f2 ≈ (k/j)f1 (namely f2 = (k/j)f1 + ), where k/j is considered as a reduced 

integer ratio. We call such cases (k/j)-order modulation effects. For example, Fig. 

A4 shows the (3/2)-order modulation that occurs in the cosine sum s(x) when (k/j) = 

(3/2). More formally, we have the following theorem:  

 

 

Figure A1: (a) The sum s(x) of two continuous cosinusoidal waves with similar 
frequencies f1 = 3 and f2 = f1 + , where  = 0.1. (b) The two interlaced 
envelopes of the modulation effect that occurs in the sum (a) are given by 
Eq. (A.4). Their frequency is fenv = /2 = 0.05 and their period is penv = 2/ 
= 20. (c) The carrier of the modulation effect in the sum (a) is given by 
the cosine cos(2   

f1 +  f2

2
 x). For the sake of completeness, we show in (d) 

the two original cosines themselves: The cosine cos(2f1x) is plotted with 
a continuous line (left), while the cosine cos(2f2x) is dashed (right); both 
curves are overprinted in the central part of (d) to allow a better 
understanding of their sum in (a). 

                                                 
9 Nevertheless, because identity (A.3) is always true, the modulating envelopes given by Eq. (A.4) still 

remain valid in this case, too. This can be seen by looking carefully at row (b) of Fig. A2: Although the 

modulation effect of type (1) is no longer prominent here in the cosine sum s(x), the two curves env1(x) 

and env2(x) still “envelop” the signal s(x) correctly. Indeed, this modulation or beating effect is only 

conspicuous in the sum s(x) when f2 ≈ f1, but formally the curves (A.4) remain envelopes of s(x) in all 

cases, whether or not a modulation effect is visible in the sum s(x). 
10 Situations with k >> 1 (so that f2 >> f1) already belong to case (2). On the gradual transition between 

cases of types (3) and (2), see the paragraph soon after Theorem A.1 as well as Remark 1. 
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The (1/1)-order modulation effect in  s(x) = cos(2πf1x) + cos(2πf2x)  with:
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Figure A2: (a) The sum s(x) of two continuous cosinusoidal waves with very different 
frequencies f1 = 0.1 and f2 = 10f1 + , where  = 0.1, looks as a cosine wave 
of frequency 10f1 that “rides” on a lower-frequency cosine wave of 
frequency f1. (b) The two interlaced cosines of Eq. (A.4) still “envelop” the 
sum s(x) correctly, although the modulation effect is no longer prominent. 
For the sake of completeness, we show in (c) the two original cosines 
themselves: The cosine cos(2f1x) is plotted with a continuous line (left), 
while the cosine cos(2f2x) is dashed (right); both curves are overprinted in 
the central part of (c) to allow a better understanding of their sum in (a). 
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The “riding” effect in  s(x) = cos(2πf1x) + cos(2πf2x)  where f2 >> f1:

f1 = 0.1

f2 = 10f1 + δ,   δ = 0.1
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Figure A3: (a) The sum s(x) of two continuous cosinusoidal waves with frequencies            
f1 = 3 and f2 = 2f1 + , where  = 0.1. (b) The 3 interlaced envelopes of the 
modulation effect that occurs in the sum (a) are given by Eqs. (A.6) with            
k = 2, j = 1. Their frequency is fenv = /3 = 0.0333 and their period is            
penv = 3/ = 30. For the sake of completeness, we show in (c) the two 
original cosines themselves. 
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The (2/1)-order modulation effect in  s(x) = cos(2πf1x) + cos(2πf2x)  with:

f1 = 3

f2 = 2f1 + δ,   δ = 0.1
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Figure A4: (a) The sum s(x) of two continuous cosinusoidal waves with frequencies           
f1 = 3 and f2 = 3

2f1 + , where  = 0.1. (b) The 5 interlaced envelopes of the 
modulation effect that occurs in the sum (a) are given by Eqs. (A.6) with           
k = 3, j = 2. Their frequency is fenv = 2

5   = 0.04 and their period is             
penv = 5

2/ = 25. For the sake of completeness, we show in (c) the two 
original cosines themselves. 
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Theorem A.1 (the sum of two mistuned cosine functions): 

Suppose we are given two continuous cosine functions with frequencies f1 and f2, 

respectively: 

   g1(x) = cos(2 f1x) and g2(x) = cos(2 f2x), 

where: 

   f2 = 
 
k
j

 f1 +         (A.5) 

( being positive or negative, and k/j being a reduced integer ratio). Then the sum of the 

two given cosines, s(x) = g1(x) + g2(x), is modulated by k+j interlaced periodic curves 

(called envelopes), each of which being a stretched and shifted cosine. These envelopes 

have all the same frequency 

   fenv = 
j

k +  j
   

and the same period penv = 
k +  j

j
/, and they only differ from each other in their phase. 

Any two successive envelopes are simply displaced from each other by a fraction 
j

k +  j
 of 

their period penv, i.e. by a shift of a = 1/: 

   env1(x) = 2 cos(2  

j

k +  j
 x)  

   env2(x) = 2 cos(2  

j

k +  j
 [x+a]) 

   env3(x) = 2 cos(2  

j

k +  j
 [x+2a])    (A.6) 

          .  .  . 

   envk+j(x) = 2 cos(2  

j

k +  j
 [x+(k+j–1)a])     ■ 

This result is indeed a generalization of case (1) above, in which we had (k/j) = (1/1) 

(see Eq. (A.4)). Figs. A1, A3 and A4 illustrate this generalized result for the cases of 

(k/j) = (1/1), (2/1) and (3/2), respectively. However, as the integers k or j become bigger, 

this beating modulation effect becomes less prominent, until it finally disappears. This 

can be seen for example in Fig. A2 for the case of (k/j) = (10/1), in which the 11 

interlaced envelopes of the (10/1)-order modulation are no longer visible.11 

Interestingly, this result has been known in the field of acoustics at least since the 19
th

 

century, although in a slightly different form: When two pure tones of f1 = jf and             

f2 = kf +  cycles per second (i.e. f1 and f2 = k
j

 f1 + ) are sounded together, they give rise 

to fb = j beats per second [11, pp. 167-168], [12, pp. 46-49]. This result agrees with our 

theorem since within any one-period span penv, each of the k+j interlaced cosinusoidal 

envelopes contributes exactly one shifted beat (i.e. exactly one envelope-maximum), so 

that within each one-period span of the envelope we have k+j beats (see Figs. A1, A3, 

                                                 
11 When both k and j are increased, (k/j)-order cases can be often assimilated with a close-by (k/j)-order 

case having smaller integers k and j, that gives a stronger beating effect. For example, a (11/10)-order 

case would rather look like a (1/1) case with a slightly different : Since (11/10) ≈ (1/1), we have for the 

same frequencies f1 and f2 both f2 = (11/10)f1 + 1 and f2 = (1/1)f1 + 2; but because the beating effect of 

the latter is much stronger, it will take the upper hand and completely obscure the former (even if 

theoretically the curves belonging to the former still “envelop” the signal s(x) correctly, too). 
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A4). This means that the beat frequency is k+j times the envelope frequency: fb = 

(k+j)fenv = j. A historical account on this result and its various demonstrations and 

interpretations in the field of acoustics, as well as an extended bibliography, can be 

found in [9]. These beats are known in acoustics as “beats of mistuned consonances” or 

“second-order beats”. Nice pictures of such beats are plotted in [13, pp. 484-487]; other 

pictures, that have been photographed on an oscilloscope, can be found in [14]. 

Remark 1 (on the smooth transition between cases of types (3) and (2)): 

Note that Theorem A.1 does not contradict case (2) above, and it remains valid even 

when f2 >> f1 (see for example Fig. A2, in which k
j
 = 10 so that f2 ≈ 10 f1). In such cases 

the modulation described by this theorem is already too weak to be noticed, but formally 

our theorem still holds, meaning that the k+j curves env1(x) … envk+j(x) still “envelop” 

the signal s(x) correctly (see Fig. C1(c)). This is a generalization of the footnote in case 

(2) above. Note also that the transition between “modulation-shaped” cases of type (1) 

or (3) and “riding-shaped” cases of type (2) is not abrupt, but rather smooth. This can be 

observed by plotting a series of cases, gradually varying between k
j
 = 2 (i.e. f2 ≈ 2f1, as in 

Fig. A3) and k
j
 = 10 (i.e. f2 ≈ 10 f1, as in Fig. A2); see also Fig. C1(a)-(c).     ■ 

Remark 2 (envelopes vs. beats): 

Note that talking in terms of envelopes (as in our theorem) is more judicious than 

talking in terms of beats (as in the classical results), since in cases with odd ripple 

effects such as in Figs. A3 or A4 the maxima of the beats do not occur at the same 

points along the x axis as the minima, and the notion of a “beat” is not quite clear. It 

should be noted, however, that except in the case of (k/j) = (1/1) our envelopes do not 

necessarily follow all the local peaks of the sum s(x). As we can see for example in Fig. 

A3(a), our envelopes provide a correct contour of the beat’s maxima and minima, but in 

intermediate zones they simply pass through the local oscillations of s(x).     ■ 

Remark 3 (the dynamic behaviour of this modulation effect when  is being varied): 

Consider the (k/j)-order modulation effect that is generated in the sum s(x) = cos(2 f1x) 

+ cos(2 f2x) when f2 = (k/j)f1 + . As   0, the resulting modulation period gradually 

increases, until when  = 0 it becomes infinitely big and disappears. This is, indeed, the 

singular point of the (k/j)-order modulation. Then, when  pursues its way beyond 0 and 

becomes negative, the modulation effect “comes back from infinity” and reappears once 

again with a very large period. But as  moves away from the singular point 0 (to either 

direction), the modulation period becomes smaller and less prominent, until the effect 

finally fades out and disappears. This may remind us of the behaviour of sampling moiré 

effects or sub-Nyquist artifacts that occur when sampling a continuous periodic signal, 

as described in [1]. And indeed, as shown in Appendix B, this similarity is not just a 

coincidence, and it results from a true connection that exists between these two 

phenomena.     ■ 

Remark 4 (sums of cosines never give true moiré effects): 

Note that unlike in the discrete-world configuration (effects that occur due to sampling), 

in our present continuous-world configuration (effects that occur in the sum of two 
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continuous cosine functions having frequencies f1 and f2 = 
 
k
j

 f1 + ) no new frequencies 

can be generated in the spectrum, and hence no true moiré effects may appear in the 

cosine sum.12 Therefore, all the beating artifacts that may occur in this configuration, as 

shown in Figs. A1, A3 and A4, are only pseudo moiré effects (see also [15] or [16, pp. 

17-18, 53-55]).     ■ 

Remark 5 (on the various envelope definitions): 

It is interesting to note that the term “envelope” is not uniquely defined, and it may have 

different meanings in different contexts. This is not really surprising, since the envelope 

curve only touches the “enveloped objects” at certain points, but elsewhere the envelope 

may behave in various ways [7, p. 363]. 

In differential geometry, the envelope of a family of curves F(x,y,c) = 0 with a single 

parameter c is defined as a curve that is tangent to each member of the family at some 

point [17, p. 559]. This envelope curve is obtained by eliminating the parameter c from 

the two equations: 

  F(x,y,c) = 0,  F(x, y, c)

c
 = 0  

In the context of amplitude modulation, however, the envelope of a rapidly oscillating 

signal h(x) is understood as a tangent curve that follows h(x) along the extrema of its 

oscillations, thus outlining its maxima and minima. It is usually defined as the 

instantaneous amplitude of h(x), and obtained using the Hilbert transform. A detailed 

explanation can be found, for example, in Chapter 18 of [18]. According to this classical 

definition, the envelope of s(x) = cos(2 f1x) + cos(2 f2x) turns out to be: 

  E(x) = ± 2 + 2cos(2  [f2
  – f1]x)  

which can be reduced using the trigonometric identity cos(/2) = ±  1
2 + 12cos  into: 

  E(x) = ±2|cos(2[(f2 – f1)/2]x)| 

In the case of the first-order modulation (i.e. when k
j
 = 1; see, for example, Fig. A1) this 

classical envelope definition gives indeed the same curves as our envelopes env1(x) and 

env2(x) in Eq. (A.4), although expressed in a different way. However, the classical 

envelope definition only gives the envelopes of the first-order modulation, which 

become irrelevant and useless in cases like Fig. A3, where the prominent beating effect 

belongs to a higher-order modulation. Note, in particular, that the classical envelope 

definition always gives two envelope curves (as specified by the ± sign), while in a (k/j)-

order modulation the number of envelope curves, as determined by Theorem A.1, is k+j. 

In particular, the classical envelope definition cannot handle cases with odd beat types 

(where the beat’s global maxima and minima do not occur simultaneously): For 

example, in Fig. A3 it clearly fails to capture the true nature of the signal s(x), that is 

described by our three envelopes env1(x), env2(x) and env3(x) (see Eq. (7) in Sec. 3.2). 

As we can see, the envelope definition being used in our theorems is a generalization of 

the above classical definition which is adapted to higher-order modulations, too.     ■ 

                                                 
12 This follows, again, from the addition rule for the Fourier transform, as we have seen after Eq. (A.4). 
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A.2 The beating effect in the difference of two mistuned continuous sines 

Because the sine function is simply a shifted version of the cosine, it is not surprising 

that very similar results also prevail for the sine function. Consider the difference of two 

continuous-world sines having frequencies f1 and f2: 

s(x) = sin(2 f1x) – sin(2 f2x) 

(the reason we need here the difference rather than the sum is explained in Sec. 5).13 

Using the sine counterpart of identity (A.2) [10, p. 284]: 

   sin – sin = 2 cos 
 +  

2
 sin 

 – 

2
      (A.7) 

we can reformulate our sine difference s(x) as follows: 

 s(x) = sin(2 f1x) – sin(2 f2x) = 2 cos(2 
f1 +  f2

2
x) sin(2 

f1 –  f2

2
x)  (A.8) 

This implies that when f2 ≈ f1 (or in other words f2 = f1 + ), the product in the right hand 

side of (A.8) corresponds to a modulation effect, where the cosine with the higher 

frequency 
f1 +  f2

2
 represents the carrier and the sine with the low frequency 

f1 –  f2

2
 

represents the modulating envelope. More precisely, this modulating envelope consists 

of two sinusoidal curves with the same frequency fenv = (f2 – f1)/2 = /2 and the same 

period penv = 1/fenv = 2/, one of these two curves being shifted by half a period, i.e. by a 

= 1/:14 

  env1(x) = 2 sin(2 (/2)x) 

  env2(x) = 2 sin(2 (/2)[x + a])     
(A.9)

 

Proceeding to the general case of f2 = 
 
k
j

 f1 + , we can formulate here in a similar way 

the sine counterpart of Theorem A.1, in which the cosines in the envelopes (A.6) are 

simply replaced by sines: 

Theorem A.2 (the difference of two mistuned sine functions): 

Suppose we are given two continuous sine functions with frequencies f1 and f2, 

respectively: 

   g1(x) = sin(2 f1x) and g2(x) = sin(2 f2x), 

where: 

   f2 = 
 
k
j

 f1 +   

( being positive or negative, and k/j being a reduced integer ratio). Then the difference 

of the two given sines, s(x) = g1(x) – g2(x), is modulated by k+j interlaced periodic 

curves (called envelopes), each of which being a stretched and shifted sine. These 

envelopes have all the same frequency 

                                                 
13 Note also that if we do take here the sum, the resulting envelopes will consist of cosines rather than 

sines, so the envelopes will no longer be “stretched and shifted sines” as claimed by Theorem A.2 below 

(see Eqs. (A.10)). 
14 Here, too, we may prefer to use the difference f2 – f1 rather than f1 – f2 if we assume that f2 > f1. But 

unlike in the cosine case (Eq. (A.4)), in the sine case this will cause a sign inversion in the envelopes, 

since sin(2 (–/2)x) = sin(2 (/2)(–x)) = –sin(2 (/2)x). 
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   fenv = 
j

k +  j
   

and the same period penv = 
k +  j

j
/, and they only differ from each other in their phase. 

Any two successive envelopes are simply displaced from each other by a fraction 
j

k +  j
 of 

their period penv, i.e. by a shift of a = 1/: 

   env1(x) = 2 sin(2  

j

k +  j
 x)  

   env2(x) = 2 sin(2  

j

k +  j
 [x+a]) 

   env3(x) = 2 sin(2  

j

k +  j
 [x+2a])    (A.10) 

          .  .  . 

   envk+j(x) = 2 sin(2  

j

k +  j
 [x+(k+j–1)a])     ■ 

A.3 Extension to the case of two mistuned instances of a general periodic function 

An extended version of Theorems A.1 and A.2 also holds for any periodic continuous 

signal g(x). Before we formulate our generalized theorem, we recall here the fact that 

any function g(x) can be uniquely split into odd and even parts [7, pp. 11-13]: 

   even[g(x)] = 1
2g(x) + 1

2g(–x) 

   odd[g(x)] = 1
2g(x) – 1

2g(–x) 

so that g(x) = even[g(x)] + odd[g(x)] and g(–x) = even[g(x)] – odd[g(x)]. The even part 

contains all the cosine harmonics of the Fourier series decomposition of g(x), and the 

odd part contains all the sine harmonics. We now define the “signed sum” of two 

mistuned instances of g(x), g(f1x) and g(f2x) as follows: 

  s(x) = (even[g(f1x)] + odd[g(f1x)]) + (even[g(f2x)] – odd[g(f2x)])  

       = g(f1x) + g(–f2x) 

Using these notations, our generalized result can be formulated as follows: 

Theorem A.3 (the case of two mistuned instances of a general periodic function): 

Let g(x) be a continuous periodic function of frequency 1 and period 1. Suppose we are 

given two mistuned versions of g(x) having frequencies f1 and f2, respectively: g(f1x) = 

even[g(f1x)] + odd[g(f1x)] and g(f2x) = even[g(f2x)] + odd[g(f2x)], where: 

   f2 = 
 
k
j

 f1 +            (11) 

( being positive or negative, and k/j being a reduced integer ratio). Then the “signed 

sum” of the two mistuned functions, s(x) = g(f1x) + g(–f2x), is modulated by k+j 

interlaced periodic curves (called envelopes), each of which being a stretched and 

shifted version of g(x).15 These envelopes have all the same frequency 

                                                 
15 The reason we have to use here the “signed sum” rather than the simple sum s(x) = g(f1x) + g(f2x) is 

that for the odd part of g(x), which is composed of sine harmonics, we need to take here the difference 

rather than the sum. The signed sum may be also called “conjugate sum”, in analogy to its counterpart in 

complex-valued functions. 
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   fenv = 
j

k +  j
   

and the same period penv = 
k +  j

j
/, and they only differ from each other in their phase. 

Any two successive envelopes are simply displaced from each other by a fraction 
j

k +  j
 of 

their period penv, i.e. by a shift of a = 1/: 

   env1(x) = 2 g( 

j

k +  j
 x)  

   env2(x) = 2 g(
j

k +  j
 [x+a]) 

   env3(x) = 2 g( 

j

k +  j
 [x+2a])     (A.12) 

          .  .  . 

   envk+j(x) = 2 g(
j

k +  j
 [x+(k+j–1)a])     ■ 

This generalized result is obtained by considering our general periodic function g(x) as 

a Fourier series, i.e. as a sum of cosines and sines of various harmonics having 

coefficients al and bl [7 p. 236]: 

  g(fx) = a0 + 2l=1

∞[alcos(2 lfx) + blsin(2 lfx)]   (A.13) 

where p = 1/f is the period of our function g(fx), and the l-th Fourier series coefficients 

al and bl are given by: 

  al = (1/p) ∫p
 g(fx) cos(2 lfx) dx 

  bl = (1/p) ∫p
 g(fx) sin(2 lfx) dx     

(A.14)
 

This decomposition of g(fx) allows us to apply Theorem A.1 (or its sine equivalent, 

Theorem A.2) to each of the cosine and sine terms of (A.13) individually. Every 

envelope envi(x) in Eq. (A.12) is then constructed as a sum of the individual 

cosinusoidal or sinusoidal envelopes we obtain by Theorem A.1 or A.2 for each of the 

terms of (A.13) separately. We thus obtain in each envelope envi(x) of (A.12) the very 

same Fourier series decomposition (A.13) of g(fx), that is only stretched out, and shifted 

by (i–1)a. This means that every envelope envi(x) in (A.12) is indeed a stretched and 

shifted version of g(fx) (multiplied by the constant 2, as in Theorems A.1 and A.2). 

To illustrate our generalized Theorem A.3, consider Figs. A5-A7. Fig. A5 shows an 

example with an even periodic function (i.e. with cosine components only). It consists 

of two mistuned instances of the periodic square wave function g(x) = wave(x), i.e. 

g(f1x) and g(f2x), with (k/j) = (1/1), f1 = 1, f2 = f1 + , and  = -0.1. 

Fig. A6 shows an example with an odd periodic function (i.e. with sine components 

only). It consists of two mistuned instances of the periodic sawtooth function g(x) = 

saw(x) = (x mod 1) – 0.5, i.e. g(f1x) and g(f2x), again with (k/j) = (1/1), f1 = 1, f2 = f1 + , 

and  = -0.1. Note that the envelopes env1(x) and env2(x) in this case are mirror-imaged 

with respect to the original sawtooth function, due to the negative value of . 
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Figure A5: (a) The sum s(x) of two mistuned instances of the square wave g(x) = 
wave(x), namely g(f1x) = wave(f1x) and g(f2x) = wave(f2x), with frequencies 
f1 = 1 and f2 = f1 + , where  = -0.1. (b) The two interlaced envelopes of 
the modulation effect that occurs in the sum (a) are given by Eqs. (A.12) 
with k = 1, j = 1. Their frequency is fenv =  = -0.1 and their period is penv =               
1/ = -10. For the sake of completeness, we show in (c) the two original 
square waves g(f1x) and g(f2x) themselves. Just as in Fig. A1, the two 
interlaced envelopes follow the contour of the beat’s maxima and minima 
(here: y = 2 and y = 0). 

(a)

(b)

(c)

The (1/1)-order modulation effect in  s(x) = wave(f1x) + wave(f2x)  with:

f1 = 1

f2 = f1 + δ,   δ = -0.1
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Figure A6: (a) The difference s(x) of two mistuned instances of the sawtooth wave                 
g(x) = saw(x) = (x mod 1) – 0.5, namely g(f1x) and g(f2x), with frequencies                 
f1 = 1 and f2 = f1 + , where  = -0.1. (b) The two interlaced envelopes of the 
modulation effect that occurs in the difference (a) are given by Eqs. (A.12) 
with k = 1, j = 1. Their frequency is fenv =  = -0.1 and their period is                
penv = 1/ = -10. Note that these envelopes are mirror-imaged with respect to 
the two original sawtooth waves g(f1x) and g(f2x) themselves, which are 
shown in (c). This happens due to the negative sign of . 
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(c)

The (1/1)-order modulation effect in  s(x) = saw(f1x) - saw(f2x)  with:

f1 = 1

f2 = f1 + δ,   δ = -0.1
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Figure A7: (a) The “signed sum” s(x) of two mistuned instances of the general periodic 
function g(x) = wave(x) + saw1(x), namely g(f1x) and g(f2x), with                    
frequencies f1 = 1 and f2 = f1 + , where  = -0.1. The sawtooth wave saw1(x) 
is similar to saw(x) in Fig. A6, but it is shifted by half a period and truncated 
to the pulse-width of the square wave wave(x). (b) The two interlaced 
envelopes of the modulation effect that occurs in (a) are given by Eqs. 
(A.12) with k = 1, j = 1. Their frequency is fenv =  = -0.1 and their period is 
penv = 1/ = -10. Note that these envelopes are mirror-imaged with respect to 
the two original waves g(f1x) and g(f2x) themselves, which are shown in (c). 
This happens due to the negative sign of . 

(a)

(b)

(c)

The (1/1)-order modulation effect in  s(x) = [wave(f1x) + saw1(f1x)] + [wave(f2x) - saw1(f2x)]  with:

f1 = 1

f2 = f1 + δ,   δ = -0.1
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Finally, Fig. A7 shows an example with a general periodic function (containing both 

sine and cosine components), once again with (k/j) = (1/1), f1 = 1, f2 = f1 + , and            

 = -0.1. Note that here, too, the envelopes env1(x) and env2(x) are mirror-imaged, due to 

the negative value of . 

 

Appendix B: The connection between the two beating phenomena 

In this appendix we express formally the connection between the beating effect which 

occurs when sampling a periodic signal, and the beating effect which occurs in the 

continuous world in the sum (or difference) of two mistuned instances of a periodic 

signal. 

The main result we have obtained in Sec. 3.3 can be reformulated more formally as 

follows: 

Proposition B.1: Suppose we are sampling with sampling frequency fs a continuous 

signal g(x) = cos(2  fx) whose frequency f is close to mn fs, i.e. f = mn fs – . The (m/n)-order 

sub-Nyquist artifact we obtain in the resulting sampled signal is simply the sampled 

version of the continuous-world beating modulation effect that appears in the 

continuous cosine sum gA(x) = 1
2cos(2f1x) + 1

2cos(2f2x) whose two frequencies are 

f1 = mn fs –  and f2 = n – m
n

 fs + .    ■ 

In other words, this proposition says that although the two continuous-world functions 

g(x) = cos(2fx) with frequency f = mn fs –  and gA(x) = 1
2cos(2f1x) + 1

2cos(2f2x) with 

frequencies f1 = mn fs –  and f2 = n – m
n  fs +  are obviously different, their sampled versions 

when using the sampling frequency fs are identical: 

   g(xk) = gA(xk)  at all the sampling points xk  

The proof of this result is explained in Sec. 3.1 and Fig. 6 for the particular case of 

(m/n) = (1/2); the general (m/n) case, which is illustrated in rows (a), (a') and (b) of Fig. 

11, can be easily demonstrated in the same manner (see also Sec. 3.3). 

Figures B1, B2 and B3 illustrate this result for the cases of (m/n) = (1/2), (1/3) and 

(2/5), respectively. 

Now, since Proposition B.1 bounces us back to the sum of two continuous-world 

cosines, we can apply here Theorem A.1. But in order to do so, we first need to express 

k, j and  of Theorem A.1 in terms of the values m, n and  that are used in Proposition 

B.1. The connection between the two can be easily obtained by comparing Eq. (A.5) of 

Theorem A.1 with Eq. (10), which gives: 

   k = n – m  

   j = m         (B.1) 

    = n
m   

or in the converse direction: 
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   m = j  

   n = k + j        (B.2) 

    = 
j

k +  j
   

We thus obtain: 

Theorem B.1: Suppose we are sampling with sampling frequency fs a continuous signal 

g(x) = cos(2 fx) whose frequency f is close to m
n fs, i.e. f = mn fs +  (where  may be 

positive or negative). Then the successive sampled points g(xi) = cos(2 fxi), i = 0, 1, 

2,… fall intermittently on k + j = (n – m) + m = n interlaced periodic curves (called 

envelopes), each of which being a stretched and shifted version of g(x). These envelopes 

are expressed by: 

 env1(x) = cos(2x) 

 env2(x) = cos(2[x + a]) 

 env3(x) = cos(2[x + 2a])       (B.3) 

  . . . 

 envn(x) = cos(2[x + (n – 1)a]) 

where the envelope frequency is , and the shift a equals mn  of the envelope’s period 1/, 

i.e. a = 
m
n .    ■ 

The formal proof of this result can be obtained by following the same lines as in our 

informal discussion in Sec. 3.3. The cosine amplitudes of 2 in Eq. (A.6) have been 

cancelled out in (B.3) since the cosine sum gA(x) in Proposition B.1 is defined with half 

of the cosine amplitudes. The intermittence, i.e. the fact that successive sampled points 

g(xi) fall intermittently on successive envelopes, can be easily demonstrated as follows: 

Our sampling is performed at the points 0, x, 2x,… namely, 0, 1/fs, 2/fs,… 

At the first sampling point, x = 0, we have: 

  g(0) = cos(0) = 1 

  env1(x) = cos(0) = 1 

meaning that the first sampled point of g(x) falls on env1(x). 

At the second sampling point, x = 1/fs, we have: 

  g(1/fs) = cos(2 [m
n fs + ]/fs) = cos(2 [m

n  + /fs]) 

  env2(1/fs) = cos(2[1/fs + 
m
n]) = cos(2[/fs + mn ]) 

meaning that the second sampled point of g(x) falls on env2(x). 

Similarly, at the n-th sampling point, x = (n–1)/fs, we have: 
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Figure B1: Illustration of Proposition B.1 for the case of (m/n) = (1/2), i.e. a (1/2)-order 
sub-Nyquist artifact. (a) The continuous cosine g(x) = cos(2fx) with 
frequency f = 1

2fs – , where  = 1/8, plotted by a thin, continuous line. Its 
sampled version g(xk) with sampling frequency fs = 8 is represented by black 
dots. These dots have been connected by thicker line segments in order to 
better convey their correct order. Note that (a) is simply a magnification of 
Fig. 3(d). (b) The continuous cosine sum gA(x) = 1

2cos(2f1x) + 1
2cos(2f2x) 

with frequencies f1 = 1
2fs –  and f2 = 1

2fs + , plotted by a thin, continuous line. 
Its sampled version gA(xk) after being sampled with the same sampling 
frequency fs = 8 is represented by black dots. Note that in rows (a) and (b) 
the sampled points as well as their envelope curves are identical, although 
the original continuous signals g(x) and gA(x) are different. 

 

(a)  Discrete-world configuration (results of sampling):

g(x) = cos(2πfx),        f = (m/n)fs - ε =

= (1/2)8.0 - 1/8• • • Sampled at fs = 8.

(b)  Continuous-world configuration (sum of mistuned cosines):

gA(x) =   cos(2πf1x) +   cos(2πf2x),        f1 = (1/2)fs - ε,    ε = 1/8

f2 = (1/2)fs + ε

f2 = f1 + δ,    δ = 2ε⇒

• • • Sampled at fs = 8.
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Figure B2: Illustration of Proposition B.1 for the case of (m/n) = (1/3), i.e. a (1/3)-order 
sub-Nyquist artifact. (a) The continuous cosine g(x) = cos(2fx) with 
frequency f = 1

3fs – , where  = 1/8, plotted by a thin, continuous line. Its 
sampled version g(xk) with sampling frequency fs = 8 is represented by black 
dots. These dots have been connected by thicker line segments in order to 
better convey their correct order. Note that (a) is simply a magnification of 
Fig. 4(d). (b) The continuous cosine sum gA(x) = 1

2cos(2f1x) + 1
2cos(2f2x) 

with frequencies f1 = 1
3fs –  and f2 = 2

3  fs + , plotted by a thin, continuous 
line. Its sampled version gA(xk) after being sampled with the same sampling 
frequency fs = 8 is represented by black dots. Note that in rows (a) and (b) 
the sampled points as well as their envelope curves are identical, although 
the original continuous signals g(x) and gA(x) are different. 

 

(a)  Discrete-world configuration (results of sampling):

g(x) = cos(2πfx),        f = (m/n)fs - ε =

= (1/3)8.0 - 1/8• • • Sampled at fs = 8.

(b)  Continuous-world configuration (sum of mistuned cosines):

gA(x) =   cos(2πf1x) +   cos(2πf2x),        f1 = (1/3)fs - ε,    ε = 1/8

f2 = (2/3)fs + ε

f2 = 2f1 + δ,    δ = 3ε⇒

• • • Sampled at fs = 8.
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Figure B3: Illustration of Proposition B.1 for the case of (m/n) = (2/5), i.e. a (2/5)-order 
sub-Nyquist artifact. (a) The continuous cosine g(x) = cos(2fx) with 
frequency f = 2

5fs – , where  = 1/8, plotted by a thin, continuous line. Its 
sampled version g(xk) with sampling frequency fs = 8 is represented by black 
dots. These dots have been connected by thicker line segments in order to 
better convey their correct order. Note that (a) is simply a magnification of 
Fig. 5(d). (b) The continuous cosine sum gA(x) = 1

2cos(2f1x) + 1
2cos(2f2x) 

with frequencies f1 = 2
5fs –  and f2 = 3

5fs + , plotted by a thin, continuous line. 
Its sampled version gA(xk) after being sampled with the same sampling 
frequency fs = 8 is represented by black dots. Note that in rows (a) and (b) 
the sampled points as well as their envelope curves are identical, although 
the original continuous signals g(x) and gA(x) are different. 

 

(a)  Discrete-world configuration (results of sampling):

g(x) = cos(2πfx),        f = (m/n)fs - ε =

= (2/5)8.0 - 1/8• • • Sampled at fs = 8.

(b)  Continuous-world configuration (sum of mistuned cosines):

gA(x) =   cos(2πf1x) +   cos(2πf2x),        f1 = (2/5)fs - ε,    ε = 1/8

f2 = (3/5)fs + ε

f2 = (3/2)f1 + δ,    δ = (5/2)ε⇒

• • • Sampled at fs = 8.
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 g((n–1)/fs) = cos(2 [m
n fs + ](n–1)/fs) = cos(2 [m

n (n–1) + (n–1)/fs]) 

 envn ((n–1)/fs) = cos(2[(n–1)/fs + (n–1)
m
n]) = cos(2[(n–1)/fs + (n–1)m

n ]) 

so that the n-th sampled point of g(x) falls on envn(x). 

Finally, for n+1 and on a new cycle begins, and the successive sampled points fall 

again on env1(x), env2(x), etc. 

Very similar results exist also for the sine function: 

Proposition B.2: Suppose we are sampling with sampling frequency fs a continuous 

signal g(x) = sin(2  fx) whose frequency f is close to mn fs, i.e. f = mn fs – . The (m/n)-order 

sub-Nyquist artifact we obtain in the resulting sampled signal is simply the sampled 

version of the continuous-world beating modulation effect that appears in the 

continuous sine difference gA(x) = 1
2sin(2f1x) – 1

2sin(2f2x) whose two frequencies are      

f1 = mn fs –  and f2 = n – m
n

 fs + .    ■ 

Now, since Proposition B.2 bounces us back to the difference of two continuous-

world sines, we can apply here Theorem A.2, using the connections provided by Eqs. 

(B.1) and (B.2). We thus obtain: 

Theorem B.2: Suppose we are sampling with sampling frequency fs a continuous signal 

g(x) = sin(2 fx) whose frequency f is close to m
n fs, i.e. f = mn fs +  (where  may be 

positive or negative). Then the successive sampled points g(xi) = sin(2 fxi), i = 0, 1, 

2,… fall intermittently on k + j = (n – m) + m = n interlaced periodic curves (called 

envelopes), each of which being a stretched and shifted version of g(x). These envelopes 

are expressed by: 

 env1(x) = sin(2x) 

 env2(x) = sin(2[x + a]) 

 env3(x) = sin(2[x + 2a])       (B.4) 

  . . . 

 envn(x) = sin(2[x + (n – 1)a]) 

where the envelope frequency is , and the shift a equals mn  of the envelope’s period 1/, 

i.e. a = 
m
n .    ■ 

Finally, as shown in Sec. 4, it turns out that an extended version of these results still 

holds for any periodic continuous signal g(x). These generalized results can be 

formulated as follows: 

Proposition B.3: Let g(x) be a continuous periodic signal of frequency 1 and period 1. 

Suppose we are sampling with sampling frequency fs the continuous periodic signal 

g(fx) whose frequency f is close to m
n fs, i.e. f = mn fs – . The (m/n)-order sub-Nyquist 

artifact we obtain in the resulting sampled signal is simply the sampled version of the 

continuous-world beating modulation effect that appears in the continuous “signed sum” 
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gA(x) = 1
2(even[g(f1x)] + even[g(f2x)]) + 1

2(odd[g(f1x)] – odd[g(f2x)]) whose two 

frequencies are f1 = mn fs –  and f2 = n – m
n

 fs + .    ■ 

Figures B4, B5 and B6 illustrate this result for the case of (m/n) = (1/2): Fig. B4 shows 

an example with an even periodic function (whose Fourier series decomposition consists 

of cosine components only). Fig. B5 shows an example with an odd periodic function 

(i.e. with sine components only). And Fig. B6 shows an example with a general periodic 

function (that is composed of both sine and cosine components). 

Now, since Proposition B.3 bounces us back to the “signed sum” of two mistuned 

instances of a continuous-world periodic function, we can apply here Theorem A.3, 

using the connections provided by Eqs. (B.1) and (B.2). We thus obtain: 

Theorem B.3: Let g(x) be a continuous periodic signal of frequency 1 and period 1. 

Suppose we are sampling with sampling frequency fs the continuous periodic signal 

g(fx) whose frequency f is f = mn fs +  (where  may be positive or negative). Then the 

successive sampled points g(fxi), i = 0, 1, 2,… fall intermittently on k + j = (n – m) + m 

= n interlaced periodic curves (called envelopes), each of which being a stretched and 

shifted version of g(x). These envelopes are expressed by: 

 env1(x) = g(x) 

 env2(x) = g([x + a]) 

 env3(x) = g([x + 2a])        (B.5) 

  . . . 

 envn(x) = g([x + (n – 1)a]) 

where the envelope frequency is , and the shift a equals mn  of the envelope’s period 1/, 

i.e. a = 
m
n .    ■ 

The formal proof of this result can be obtained by following the same lines as in our 

informal discussion in Secs. 3.3 and 4. The amplitudes of 2 in Eq. (A.12) have been 

cancelled out in (B.5) since the sum gA(x) in Proposition B.3 is defined with half of the 

function amplitudes. The intermittence, i.e. the fact that successive sampled points g(xi) 

fall intermittently on successive envelopes, can be easily demonstrated as in Theorem 

B.1: 

Our sampling is performed at the points 0, 1/fs, 2/fs,… At the first sampling point, x = 

0, we have: 

  env1(x) = g(0) 

meaning that the first sampled point of g(x) falls on env1(x). 

At the second sampling point, x = 1/fs, we have: 
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Figure B4: Illustration of Proposition B.3 for the case of (m/n) = (1/2), i.e. a (1/2)-order 

sub-Nyquist artifact. (a) The continuous-world square wave g(x) = wave(fx) 
with frequency f = 1

2fs – , where  = 1/8, plotted by a thin, continuous line. 
Its sampled version g(xk) with sampling frequency fs = 8 is represented by 
black dots. These dots have been connected by thicker line segments in 
order to better convey their correct order. Note that (a) is simply a 
magnification of Fig. 10(d). (b) The continuous-world wave sum gA(x) = 
1
2wave(f1x) + 1

2wave(f2x) with frequencies f1 = 1
2fs –  and f2 = 1

2fs + , plotted 
by a thin, continuous line. Its sampled version gA(xk) after being sampled 
with the same sampling frequency fs = 8 is represented by black dots. Note 
that in rows (a) and (b) the sampled points as well as their envelope curves 
are identical, although the original continuous signals g(x) and gA(x) are 
different. 

 

(a)  Discrete-world configuration (results of sampling):

g(x) = wave(fx),        f = (m/n)fs - ε =

= (1/2)8.0 - 1/8• • • Sampled at fs = 8.

(b)  Continuous-world configuration (sum of mistuned square waves):

gA(x) =   wave(f1x) +   wave(f2x),          f1 = (1/2)fs - ε,    ε = 1/8

f2 = (1/2)fs + ε

f2 = f1 + δ,    δ = 2ε⇒

• • • Sampled at fs = 8.
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Figure B5: Illustration of Proposition B.3 for the case of (m/n) = (1/2), i.e. a (1/2)-order 

sub-Nyquist artifact. (a) The continuous-world sawtooth wave g(x) = saw(fx) 
with frequency f = 1

2fs – , where  = 1/4, plotted by a thin, continuous line. 
Its sampled version g(xk) with sampling frequency fs = 8 is represented by 
black dots. These dots have been connected by thicker line segments in 
order to better convey their correct order. (b) The continuous-world wave 
difference gA(x) = 1

2saw(f1x) – 1
2saw(f2x) with frequencies f1 = 1

2fs –  and 
f2 = 1

2fs + , plotted by a thin, continuous line. Its sampled version gA(xk) after 
being sampled with the same sampling frequency fs = 8 is represented by 
black dots. Note that in rows (a) and (b) the sampled points as well as their 
envelope curves are identical, although g(x) and gA(x) are different.16 

                                                 
16 Note that a Fourier series development assigns to any discontinuity point of g(x) the midvalue at that 

point [7, pp. 235-236]. Because Theorem A.3 and hence Theorem B.3 rely on the Fourier series 

development of g(x), we must use here a definition of saw(x) that satisfies this rule. Further details and 

references on the midvalue rule can be found in [5, Sec. 8.2]. 

(a)  Discrete-world configuration (results of sampling):

g(x) = saw(fx),        f = (m/n)fs - ε =

= (1/2)8.0 - 1/4• • • Sampled at fs = 8.

(b)  Continuous-world configuration (difference of mistuned sawtooth waves):

gA(x) =   saw(f1x) -   saw(f2x),        f1 = (1/2)fs - ε,    ε = 1/4

f2 = (1/2)fs + ε

f2 = f1 + δ,    δ = 2ε⇒

• • • Sampled at fs = 8.
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Figure B6: Illustration of Proposition B.3 for the case of (m/n) = (1/2), i.e. a (1/2)-order 

sub-Nyquist artifact. (a) The continuous-world asymmetric wave g(x) = 
even[g(x)] + odd[g(x)] = wave(fx) + saw1(fx), where saw1(x) is a sawtooth 
wave that is shifted by half a period and truncated to the pulse-width of the 
square wave. The function g(x) with frequency f = 1

2fs – ,  = 1/8, is plotted 
here by a thin, continuous line. Its sampled version g(xk) with sampling 
frequency fs = 8 is represented by black dots. These dots are connected by 
thicker line segments in order to better convey their correct order. (b) The 
continuous-world “signed sum” wave gA(x) = 1

2wave(f1x) + 1
2wave(f2x) + 

1
2saw1(f1x) – 1

2saw1(f2x) with frequencies f1 = 1
2fs –  and f2 = 1

2fs + , plotted by 
a thin, continuous line. Its sampled version gA(xk) after being sampled with 
the same sampling frequency fs = 8 is represented by black dots. Note that in 
rows (a) and (b) the sampled points as well as their envelope curves are 
identical, although the original continuous signals g(x) and gA(x) are 
different. 

(a)  Discrete-world configuration (results of sampling):

g(x) = wave(fx) + saw1(fx),     f = (m/n)fs - ε =

= (1/2)8.0 - 1/8• • • Sampled at fs = 8.

(b)  Continuous-world configuration (sum of mistuned complex periodic waves):

gA(x) =   [wave(f1x) + saw1(f1x)] +   [wave(f2x) - saw1(f2x)],        f1 = (1/2)fs - ε,    ε = 1/8

f2 = (1/2)fs + ε

f2 = f1 + δ,    δ = 2ε⇒

• • • Sampled at fs = 8.
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  g(f/fs) = g( [m
n fs + ]/fs) = g(m

n  + /fs) 

  env2(1/fs) = g([1/fs + 
m
n]) = g(/fs + mn ) 

meaning that the second sampled point of g(x) falls on env2(x). 

Similarly, at the n-th sampling point, x = (n–1)/fs, we have: 

  g((n–1)f/fs) = g([m
n fs + ](n–1)/fs) = g(m

n (n–1) + (n–1)/fs) 

  envn((n–1)/fs) = g([(n–1)/fs + (n–1)
m
n]) = g((n–1)/fs + (n–1)m

n ) 

so that the n-th sampled point of g(x) falls on envn(x). 

Finally, for n+1 and on a new cycle begins, and the successive sampled points fall 

again on env1(x), env2(x), etc. 

Note that Theorems B.1 and B.3 are equivalent (up to some formulation details) to 

Theorems 1 and 2 in [1], which have been proved there in a completely different way, 

based on signal-domain considerations only. 

 

Appendix C: Miscellaneous remarks 

In this appendix we provide some further remarks that may shed new light on various 

aspects of our discussion. 

Remark 6 (cases with n = 1, i.e. true moiré effects): 

It is interesting to ask now whether the spectral-domain approach we presented here still 

works in cases with n = 1. As we have seen in [1, Sec. 3], in such cases all the sampled 

points g(xk) fall on a single envelope, which corresponds to a true moiré effect: there are 

no interlaced envelopes, and the sampled points no longer jump intermittently from one 

curve to another as they do in a sub-Nyquist artifact. Formally, in cases with n = 1 

Theorem A.1 gives us k + j = (1–m) + m = 1 modulating envelopes, whose frequency is 

fenv = 
j

k +  j
  = m = m(1/m) = , which is indeed correct (see for example the true 

sampling moiré effects with n = 1 in Figs. 1 and 2). But this resulting envelope curve 

turns out to be irrelevant to the cosine sum in question (namely, it is not a true envelope 

thereof). The reason is, as we can see in Remark 4 in Appendix A, that Theorem A.1 

deals with sums of continuous cosines; such sums can only give modulations – but 

never true moirés, which correspond to new low frequencies. Therefore, Theorem A.1 

cannot handle situations where a true moiré effect is generated, such as the first-order 

moiré shown in Figs. 1 and 7(a), or the second-order moiré shown in Figs. 2 and 7(b). 

And indeed, true sampling moiré effects are explained by the spectral approach in the 

classical way, i.e. by the presence in the spectrum of new low-frequency impulses that 

are introduced by the sampling-induced replicas (see, for example, rows (a) and (b) in 

Fig. 7). The spectral approach only recurs to Theorem A.1 for the explanation of pure or 

hybrid sub-Nyquist artifacts (like in rows (c)-(e) of Fig. 7 or in Fig. 8).     ■ 
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Remark 7 (moiré effects due to higher harmonics): 

In cases where the original continuous periodic function g(x) contains only the 

fundamental frequency f but no higher harmonics, sampling moiré effects may only 

occur when an impulse mfs – f happens to fall close to the spectrum origin. This 

configuration can only give (m,-1) moiré effects (see, for example, the (1,-1) moiré in 

Figs. 7(a) and 1, and the (2,-1) moiré in Figs. 7(b) and 2). However, when the original 

continuous periodic function g(x) contains the n-th harmonic of f, too, sampling moiré 

effects may also occur whenever an impulse mfs – nf falls close to the origin. This may 

give rise to an (m,-n) sampling moiré effect (see, for example, the (1,-2) moiré in Figs. 

8(b) and 9). In the first case, where n = 1, all the sampled points g(xk) fall on a single 

envelope, which corresponds indeed to a pure moiré effect in the sampled signal (see 

Figs. 1 and 2). But in the second case, when n > 1, the sampled points oscillate between 

n intermittent envelopes, giving a hybrid moiré effect (like in Fig. 9).     ■ 

Remark 8 (omnipresence of modulating envelopes): 

We saw in Theorems A.1-A.3 that two mistuned instances of a continuous periodic 

function having frequencies f1 and f2, where f2 ≈ (k/j)f1, may give rise to a modulation 

effect. It is important to note that modulating envelopes can be traced along our 

continuous-world signal s(x) in all circumstances, whether the frequency f2 is close to 

(k/j)f1 or not (note that Theorems A.1-A.3 hold for any value of , be it small or large). 

Moreover, for any given f1 and f2, different sets of modulating envelopes belonging to 

different k, j values can be always traced along the very same signal s(x) (see Fig. C2).17 

Nevertheless, these modulating envelopes only become relevant and truly visible when 

f2 is sufficiently close to (k/j)f1, i.e. when  = f2 – (k/j)f1 is close to zero (so that the                  

(k/j)-order modulation effect is close to its singular state; see Remark 3 in Sec. A.1).18 

Furthermore, the larger the integer numbers k,j (and hence the number k+j of interlaced 

envelopes), the less visible and prominent the envelopes become (see Fig. C1). The 

reason is that when several envelopes are intermingled together it becomes more 

difficult for the eye to detect and follow each of the envelopes separately, i.e. to detect a 

visible order within the oscillations of the signal s(x). Thus, although modulating 

envelopes are always present in the signal s(x), in practice the resulting beating effect is 

only visible for relatively low values of k, j and . In fact, the signal s(x) is 

simultaneously modulated by various sets of interlaced envelopes, each set 

corresponding to different k, j,  values (see Fig. C2); but the envelopes truly become 

visible only when the values of k, j and  are relatively low.     ■ 

Remark 9 (the main theorem of [1]): 

For the sake of completeness, we repeat here Theorem 2 from [1]. Note that this 

theorem was proved there using signal-domain considerations only: 

                                                 
17 Note that for any given f1 and f2 there exist infinitely many values of k,j and  that satisfy Eq. (A.5),       

f2 = (k/j)f1 + : For any chosen k and j, there exists a corresponding  value that satisfies the equation. 
18 Note that when the k,j values are ill-adapted and give a  value that is too far from zero, each of the 

interlaced envelope curves “skims” s(x) within shorter intervals, that are also spaced farther apart. For 

example, consider Fig. C2 and compare there row (a), in which  = 0.1, with rows (b) and (c), in which 

 = 1.1 and  = -0.9, respectively. 
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Figure C1: Illustration of Remark 1, Appendix A: The transition between “modulation-
shaped” cases of type (3) and “riding-shaped” cases of type (2) is not 
abrupt, but rather smooth. Each row shows the sum s(x) of two continuous 
cosinusoidal waves with frequencies f1 = 1 and f2 = kf1 + , with  = 0.1:               
(a) k = 2 (compare with Fig. A3). (b) k = 3. (c) k = 5. Case (a) is clearly of 
type (3), but case (c) is already closer to type (2), just like Fig. A2(a). In 
cases of type (2) the modulation described by Theorem A.1 is already too 
weak to be noticed, but formally the theorem still holds (see row (c)). 
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The (k/j)-order modulation effect in  s(x) = cos(2πf1x) + cos(2πf2x)  with:
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Figure C2: Illustration of Remark 8, Appendix C: All rows show the very same sum 
s(x) of two continuous cosines with the same frequencies f1 = 1 and f2 = 2.1. 
And yet, different sets of modulating envelopes belonging to different k, j,  
values can be always traced along the very same sum s(x): (a) k = 2, j = 1,              
 = 0.1, so that f2 = 2f1 +  = 2.1. (b) k = 1, j = 1,  = 1.1, so that f2 = f1 +  = 
2.1. (c) k = 3, j = 1,  = -0.9, so that f2 = 3f1 +  = 2.1. Note that f1 and f2 do 
not vary from row to row, so that s(x) remains identical. Although all the 
modulating envelopes in all rows “envelop” the signal s(x) correctly, the 
modulating envelopes only become relevant and truly visible for k,j values 
that give  close to zero, i.e. when f2 ≈ (k/j)f1, as is the case in (a). 
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Suppose we are given a continuous periodic function g(x) having frequency f and period 

p = 1/f, and that we sample this function at the sampling frequency fs, i.e. with a 

sampling step of x = 1/fs. If the frequency f of our given function g(x) differs by  from 

the singular frequency mn fs for some integers m and n: 

  f = mn fs +   

 (where  may be positive or negative), then the successive sampled points of our 

original function, g(xk), k = 0, 1, 2,... fall intermittently on one of n low-frequency 

envelopes, which are simply expanded (stretched) versions of g(x) having the frequency 

 and period 1/, and which only differ from each other in their phase. Any two 

successive envelopes are displaced from each other by m
n  of their period 1/, i.e. by a 

shift of a = 
m
n .     ■ 
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