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Abstract

This thesis addresses statistical inference for the resolution of inverse problems. Our work
is motivated by the recent trend whereby classical linear methods are being replaced by
nonlinear alternatives that rely on the sparsity of naturally occurring signals. We adopt
a statistical perspective and model the signal as a realization of a stochastic process that
exhibits sparsity as its central property. Our general strategy for solving inverse problems
then lies in the development of novel iterative solutions for performing the statistical
estimation.

The thesis is organized in five main parts. In the first part, we provide a general overview
of statistical inference in the context of inverse problems. We discuss wavelet–based and
gradient–based algorithms for linear and nonlinear forward models. In the second part,
we present an in-depth discussion of cycle spinning, which is a technique used to improve
the quality of signals recovered with wavelet–based methods. Our main contribution here
is its proof of convergence; we also introduce a novel consistent cycle-spinning algorithm
for denoising statistical signals. In the third part, we introduce a stochastic signal model
based on Lévy processes and investigate popular gradient–based algorithms such as those
that deploy total-variation regularization. We develop a novel algorithm based on be-
lief propagation for computing the minimum mean-square error estimator and use it to
benchmark several popular methods that recover signals with sparse derivatives. In the
fourth part, we propose and analyze a novel adaptive generalized approximate message
passing (adaptive GAMP) algorithm that reconstructs signals with independent wavelet-
coefficients from generalized linear measurements. Our algorithm is an extension of the
standard GAMP algorithm and allows for the joint learning of unknown statistical pa-
rameters. We prove that, when the measurement matrix is independent and identically
distributed Gaussian, our algorithm is asymptotically consistent. This means that it per-
forms as well as the oracle algorithm, which knows the parameters exactly. In the fifth and
final part, we apply our methodology to an inverse problem in optical tomographic mi-
croscopy. In particular, we propose a novel nonlinear forward model and a corresponding
algorithm for the quantitative estimation of the refractive index distribution of an object.

Keywords: Approximate message passing, belief propagation, compressive sensing, cycle
spinning, inverse problems, iterative shrinkage, phase microscopy, sparsity, statistical in-
ference, tomographic microscopy, total variation regularization, wavelets.
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Résumé

Cette thèse s’intéresse à l’inférence statistique pour la résolution de problèmes inverses.
Notre travail est motivé par les récentes avancées dans ce domaine où les méthodes li-
néaires classiques sont de plus en plus souvent remplacées par des alternatives non li-
néaires qui exploitent la parcimonie des signaux naturels. Nous adoptons une approche
statistique et modélisons le signal comme réalisation d’un processus stochastique possé-
dant des propriétés essentielles de parcimonie. Notre stratégie générale pour la résolution
des problèmes inverses repose alors sur le développement de nouveaux algorithmes itéra-
tifs d’estimation statistique.

Cette thèse s’organise en cinq parties principales. Dans la première partie, nous donnons
une perspective générale de l’inférence statistique dans le contexte de la résolution de pro-
blèmes inverses. Nous présentons des algorithmes basés sur les ondelettes et le gradient
dans le cadre de modèles linéaires et non linéaires. Dans la deuxième partie, nous discu-
tons en détail le concept de cycle spinning, une technique utilisée pour améliorer la qualité
de signaux reconstruits par des méthodes d’ondelettes. Ici, notre contribution principale
est la démonstration de sa convergence ; nous introduisons de plus le nouveau concept
de consistent cycle spinning pour le débruitage de signaux statistiques. Dans la troisième
partie, nous introduisons un modèle de signal stochastique basé sur les processus de Lévy
et analysons des algorithmes standards basés sur le gradient, comme les méthodes de va-
riation totale. Nous développons un nouvel algorithme basé sur la méthode de belief pro-

pagation pour le calcul d’estimateur d’erreur quadratique moyenne minimale, et l’utilisons
pour comparer plusieurs méthodes classiques de reconstruction de signaux à gradient par-
cimonieux. Dans la quatrième partie, nous proposons et analysons un nouvel algorithme
d’adaptive GAMP pour la reconstruction de signaux à composantes indépendantes à par-
tir de mesures linéaires généralisées. Notre algorithme est une extension de l’algorithme
GAMP et permet l’estimation de paramètres statistiques inconnus. Nous démontrons que
lorsque la matrice de mesure est Gaussienne, indépendante et identiquement distribuée,
notre algorithme est asymptotiquement consistent. Cela signifie qu’il est aussi performant
qu’un algorithme avec oracle, qui connaîtrait les valeurs exactes des paramètres. Dans la
cinquième et dernière partie, nous appliquons nos méthodes à un problème inverse de
microscopie tomographique par diffraction. Nous proposons en particulier un nouveau
modèle non linéaire et un algorithme itératif associé pour la reconstruction quantitative
de la distribution d’indices de réfraction.

Mots clés : Microscopie, ondelettes, problèmes inverses, parcimonie, régularisation, re-
construction.
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Chapter 1

Introduction

The term inverse problem refers to a general framework used to convert observed measure-
ments into information about a physical object. For example, given tomographic measure-
ments of a cell, we might wish to learn about its internal composition and structures. Hav-
ing the capability to solve inverse problems is useful because it tells us something about
physical quantities that we are unable to observe directly. Accordingly, inverse problems
are some of the most important and well-studied mathematical problems in science and
engineering. They have found many applications in different areas of science, including
medical imaging, geophysics, astronomy, etc.

Two main reasons that make inverse problems of practical relevance difficult are as fol-
lows:

– they are sometimes ill-posed, which means that many different solutions may be con-
sistent with the measured data;

– they are high-dimensional in the sense that the measurements and the corresponding
solution might contain millions or even billions of data entries.

These challenges force algorithmic solutions to strike a specific balance between the qual-
ity of the reconstructed signal and the computational complexity for obtaining it. In
this thesis, we attempt to refine the theory and develop new algorithms for addressing
these challenges in a principled way. In particular, the ill-posed nature of the problem
is offset by introducing a statistical framework where observed measurements are com-
plemented with prior information on the statistics of the object. On the other hand, the
high-dimensionality of the data is addressed by developing iterative algorithms that are re-
stricted to performing the most basic operations with minimal memory and computational
load. Nonetheless, as we shall see, our simple algorithms are still capable of producing
satisfactory results for numerous practical applications in biomedical imaging.

1.1 Main Contributions

This thesis brings four main contributions to the field of inverse problems.

1. We provide a theoretical justification for the popular technique called cycle spinning
in the context of general linear inverse problems. Cycle spinning has been extensively
used for improving the visual quality of images reconstructed with wavelet-domain
methods. We also refine traditional cycle spinning by introducing the concept of con-
sistent cycle spinning that can be used to perform wavelet-domain statistical estima-
tion. In particular, we empirically show that consistent cycle spinning achieves the
minimum mean-squared error (MMSE) solution for denoising stochastic signals with
sparse derivatives.

1



1. INTRODUCTION

2. We introduce a continuous-domain stochastic framework for modeling signals with
sparse derivatives. Our framework is based on Lévy processes and provides us with
a large collection of structured statistical signals for benchmarking various standard
algorithms used for solving inverse problems. We also develop a novel MMSE esti-
mation algorithm for our signal model. This algorithm—based on a message-passing
methodology—allows us to evaluate the optimality of other commonly used algo-
rithms. For example, it is well known that the popular total variation (TV) method
corresponds to performing maximum-a-posteriori (MAP) probability estimation of sig-
nals with Laplace distributed gradients. One of our findings is that TV is in general
a poor estimator for such Laplace processes; however, it reaches the performance of
MMSE estimation for piecewise-constant compound Poisson processes.

3. Generalized approximate message passing (GAMP) is an iterative algorithm for per-
forming statistical inference under generalized linear models. The algorithm can be
derived by simplifying the equations of a more general belief propagation (BP) algo-
rithm, which is intractable in the setting of general inverse problems. Our contribu-
tion in the context of GAMP is twofold: (a) we extend the traditional GAMP with a
novel algorithm called adaptive GAMP that can learn unknown statistical parameters
present in the inverse problem during the reconstruction; (b) we prove that adaptive
GAMP is asymptotically consistent for certain measurement models when learning
is performed via the maximum-likelihood (ML) estimator. This means that adaptive
GAMP can perform as well as the oracle algorithm that knows the parameters exactly.

4. We introduce a novel inverse problem formulation suitable for optical tomographic
microscopy. The latter is an advanced digital imaging technique that combines the
recording of multiple holograms with the use of inversion procedures to retrieve the
quantitative information on the object. Here, our contribution is a nonlinear for-
ward model that simulates the physics of the wave propagating through the sample.
Compared to existing linear alternatives, our forward model provides an improved
description of the measured data due to its ability to properly emulate the diffraction
and propagation effects of the wave field. We finally develop a novel iterative algo-
rithm, which uses the structure of our nonlinear forward operator, for quantitatively
estimating the object.

1.2 Organization of the Thesis

This thesis is organized as follows: In Chapter 2, we expose the principles behind the
formulation and resolution of inverse problems. We also present classical and state-of-
the-art reconstruction techniques within a general statistical framework. In Chapter 3,
we discuss an algorithmic strategy to perform competitive reconstruction using wavelet-
regularization. The key concept that yields the improvements is cycle spinning, which we
shall study in great detail. In Chapter 4, we study Lévy processes and the corresponding
statistical estimators. The Lévy model will allow us to revisit several state-of-the-art re-
construction algorithms and compare them against the optimal MMSE estimator that we
develop. In Chapter 5, we present the adaptive GAMP algorithm that allows us to apply
the message-passing philosophy to more general inverse problems. The algorithm has the
capability to learn the unknown statistical parameters during the reconstruction. In Chap-
ter 6, we present several numerical comparisons for algorithms discussed in the thesis.
In Chapter 7, we present our algorithm for the optical tomographic microscope, which is
a promising technique for quantitative three-dimensional (3D) mapping of the refractive
index in biological cells and tissues.

2



Chapter 2

A Practical Guide to Inverse Problems

2.1 Introduction

In this chapter, we introduce the inverse problem formalism that will be used extensively
in the sequel. We start by discussing several categories of forward models that can be used
to model various practical acquisition systems. In the process, we also address the issues
related to the discretization of continuous-domain inverse problems 1. This is important
since practical methods for solving inverse problems often rely on digital processing of the
data in a computer. We finally introduce the statistical framework and several standard
approaches that are currently used for solving inverse problems. Experimental evalua-
tions throughout this chapter illustrate the capabilities of the described methods while
simultaneously highlighting the necessity for the contributions presented in the rest of
this thesis.

2.2 Forward Model

2.2.1 Continuous-Domain Formulation

The usual starting point in the formulation of inverse problems is the formal understand-
ing of the acquisition process relating the physical signal x to the measured data of the
form

y= S {x}. (2.1)

The continuous-domain signal x may be a function of space and/or time, while the mea-
surements are stored in an M -dimensional vector y. For notational convenience, we as-
sume that the signal and measurements are both real valued; nonetheless, all the al-
gorithms considered in this thesis can be easily extended to work with complex valued
signals. We also assume that the signal is of finite energy, and thus it belongs to the
normed space L2(R

d). In full generality, the scalar value of x at every continuous coor-
dinate r = (r1, . . . , rd) inside Rd is denoted by x(r) ∈ R. We refer to S as the forward

operator and typically assume that it models accurately the physics behind the acquisition.
Depending on the acquisition modality, computation of S might involve various linear
or nonlinear operations, including projection, orthogonal transformation, discretization,
etc. In particular, we shall distinguish among the following four categories: nonlinear,
generalized linear, linear, and signal denoising.

1. The subsection on the discretization of inverse problems is based on our paper [1].
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S
x(r) z y

H py|z(y |z)

Figure 2.1: Generalized linear model.

2.2.1.1 Nonlinear Models The most general nonlinear forward model allows us to handle so-
phisticated acquisition modalities. Such models must still be sufficiently structured to be
implemented and computed digitally on a computer. The computational complexity for
numerical evaluation of such models should be weighted against the benefits of having a
more accurate representation of the acquisition. As we shall see later, nonlinear models
also complicate the recovery of the signal by leading to nonconvex costs in variational
reconstruction methodology. In such difficult cases, it is beneficial to derive a lineariza-
tions of the model. Then, one can use the latter to obtain a good initial guess for the
solution that can subsequently be refined by using the nonlinear model. We will illustrate
one concrete example of a nonlinear forward model in Chapter 7, where we consider the
quantitative recovery of the refractive-index in tomographic microscopy [2].

2.2.1.2 Generalized Linear Models The generalized linear model (GLM), illustrated in Figure 2.1,
is a special case of nonlinear model that consists of a known linear mixing operator H
followed by a probabilistic componentwise nonlinearity py |z . Such models have been ex-
tensively studied in statistics [3]. The linear part of the model has the general form

zm = [H{x}]m =
∫

R
d

x(r)ψm(r) dr, (m= 1, . . . , M) (2.2)

where the measurement function ψm represents the spatial response of the mth detector
in the acquisition system. The conditional probability distribution py|z that is subsequently
involved can model noise and various other types of deformations that are intrinsic to the
physics of the acquisition.

One relevant practical example arises in analog-to-digital conversion (ADC), where one
needs to estimate a signal from quantized measurements y= Q(H{x}). This is a challeng-
ing problem because the quantization function Q is nonlinear and the operator H mixes
x , thus necessitating joint estimation. Although reconstruction from quantized measure-
ments is typically linear, more sophisticated, nonlinear techniques can offer significant
improvements. In the case of ADC the improvement from replacing conventional linear
estimation with nonlinear estimation increases with the oversampling factor [4–9].

From the algorithmic side, reconstruction methods based on GLM formulation might also
suffer from nonconvexity of the cost function during optimization. The approaches based
on message-passing algorithms seem to perform the best for GLM based inverse prob-
lems. In Chapter 5, we will introduce adaptive generalized approximate message passing
(adaptive GAMP) algorithm that is specifically tailored for statistical estimation under
GLM [8–10].

2.2.1.3 Linear Models Further simplification of GLM is the linear forward model, which can be
obtained by assuming that the distortion, characterized by the output nonlinearity py|z , is
additive and signal independent. This allows us to re-express (2.2) as

y= z+ e with z= H{x}, (2.3)

where H is given in (2.2) and e represents the noise, which is very often assumed to
be independent and identically distributed (i.i.d.) Gaussian. Linear inverse problems
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2.2. Forward Model

are central to most modern imaging systems with applications in diverse areas such as
biomicroscopy [11], magnetic resonance imaging [12], x-ray tomography [13], etc. The
major advantage of linearity is that it allows us to borrow some intuition and rely on
standard theoretical results from linear algebra. Typically, when confronted with a more
general inverse problem, it is sensible that one reflects if there is a possibility to obtain a
suitable linearization of the problem.

Most algorithms we develop in this thesis are particularly well-suited to solve linear in-
verse problems under Gaussian noise assumption. It is possible to extend many of them
to more general types of noise, but this might result in nonconvex formulation of the
reconstruction. In such scenarios, we can use the solution obtained under the Gaussian
assumption to initialize the more general algorithm.

2.2.1.4 Signal Denoising Even further simplification is possible by assuming that our acquisition
system simply samples the signal x . In the context of the general form (2.2), this assumes
that ψm corresponds to a shifted Dirac delta function, which allows us to write

y= z+ e with zm = x(rm), (m= 1, . . . , M) (2.4)

where {rm}m=1,...,M are locations where the signal samples are taken and e represents the
noise. A more general denoising model with a signal dependent noise can be obtained by
sampling directly in the GLM formulation.

Signal denoising is considered as the most basic form of signal reconstruction. The sources
of noise are typically application dependent, but the two most common types are Gaussian
and Poisson noises [14]. Algorithmically, signal denoising is useful as a key sub-routine
in methods for solving more general inverse problems. As we shall see in detail, it is re-
ferred to as proximal operator corresponding to a particular statistical distribution of the
signal [15]. Also, denoising provides a practical scenario for testing various prior distribu-
tions since it disregards the effects due to the linear mixing operator H. We shall consider
the signal denoising problem in Chapter 4, where we study the optimal estimation of
signals with sparse derivatives.

2.2.2 Discrete Representation of the Signal

It is most often impossible to solve an inverse problem analytically, and we must resort to
a computer program to recover x . In order to perform computations digitally, we need to
discretize x into a finite number of parameters N that can be represented as a vector x ∈
R

N . To obtain a clean analytical discretization of the problem, we consider the generalized
sampling approach using shift-invariant reconstruction spaces [16]. The advantage of
such a representation is that it offers the same type of error control as finite-element
methods, i.e., the approximation error between the original signal and its representation
in the reconstruction space can be made arbitrarily small by choosing a sufficiently fine
reconstruction grid.

The idea is to represent the signal x by projecting it onto a reconstruction space. We
define our reconstruction space at resolution ∆ as

V∆(ϕint) ¬

(
x∆(r) =

∑

k∈Zd

x[k]ϕint

�
r

∆
− k

�
: x[k] ∈ ℓ∞(Zd)

)
(2.5)

where x[k] ¬ x(r)|r=k, and ϕint is an interpolating basis function positioned on the
reconstruction grid ∆Zd . The interpolation property is ϕint(k) = δ[k]. For the represen-
tation of x in terms of its samples x[k] to be stable and unambiguous, ϕint has to be a

5



2. A PRACTICAL GUIDE TO INVERSE PROBLEMS

valid Riesz basis for V∆(ϕint) [16]. Moreover, to guarantee that the approximation error
decays as a function of ∆, the basis function should satisfy the partition of unity property

∑

k∈Zd

ϕint(r− k) = 1, (2.6)

for all r ∈ Rd . The projection of the signal onto the reconstruction space V∆(ϕint) is given
by

PV∆
x(r) =

∑

k∈Zd

x(∆k)ϕint

�
r

∆
− k

�
, (2.7)

with the property that PV∆
PV∆

x = PV∆
x (i.e. PV∆

x is a projection operator). To simplify
the notation, we shall use a unit sampling ∆ = 1 with the implicit assumption that the
sampling error is negligible 2. Thus, the resulting discretization is

x1(r) = PV1
x(r) =

∑

k∈Zd

x[k]ϕint(r− k). (2.8)

To summarize, x1 is the discretized version of the original signal x and it is uniquely
described by the samples x[k] = x(r)|r=k for k ∈ Zd . The main point is that the re-
constructed signal is represented in terms of samples even though the problem is still
formulated in the continuous-domain.

Although the signal representation (2.8) contains an infinite sum, in practice, we restrict
ourselves to a subset of N basis functions with k ∈ Ω, where Ω is a discrete set of integer
coordinates in a region of interest (ROI). Hence, we rewrite (2.8) as

x1(r) =
∑

k∈Ω
x[k]ϕk(r), (2.9)

where ϕk corresponds to ϕint(· − k) up to modifications at the boundaries (periodization
or Neumann boundary condition).

2.2.3 Discrete Measurement Model

The discretization that we just presented allows us to obtain elegant discrete represen-
tation for the generalized linear, linear, and signal denoising forward models. For more
general nonlinear models the discrete representation might lack a closed form matrix-
vector representation.

2.2.3.1 Generalized Linear Models By using the discretization scheme in (2.9), we are now
ready to formally link the continuous model in Figure 2.1 to a corresponding discrete
forward model. We substitute the signal representation (2.9) into (2.2) and obtain the
discretized measurement model written in a matrix-vector form as

y∼ py|z(y|z) with z= Hx, (2.10)

where y is the M -dimensional measurement vector, x ¬ {x[k]}k∈Ω is the N -dimensional
signal vector, and H is the M × N measurement matrix whose entry (m,k) is given by

[H]m,k ¬ 〈ψm,ϕk〉=
∫

R
d

ψm(r)ϕk(r) dr. (2.11)

This allows us to specify the discrete linear forward model that is compatible with the
continuous-domain formulation. The solution of this problem yields the representation
x1(r) of x(r) which is parameterized in terms of the signal samples x.

2. If the sampling error is large, one can use a finer sampling and rescale the reconstruction grid appropriately.
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2.2.3.2 Nonlinear Models Unfortunately, in the case of nonlinear forward models, an elegant
model similar to (2.10) is generally not possible. However, it is still necessary to represent
the signal as in (2.9) and replace the forward operator S by a discrete operator S that can
be computed by substituting continuous-domain operators with their discrete counterparts
acting directly on the samples x

y= S(x) + e, (2.12)

where e models the noise and potential discrepancies due to discretization. An example
of such implementation is given in our microscopy application in Chapter 7.

2.2.4 Wavelet Discretization

Occasionally, we might prefer to represent the signal x in terms of its wavelet coeffi-
cients [17]. In that case, we constrain the basis function ϕint to be a scaling function
that satisfies the property of multiresolution [18]. To obtain an equivalent characteriza-
tion of the object with its orthonormal wavelet coefficients, we simply define the wavelets
as a linear combination of ϕk. Then, there exists a discrete wavelet transform (DWT)
represented with the matrix W that bijectively maps x to the wavelet coefficients w as

w=Wx ⇔ x=WT w, (2.13)

and that represents the signal x in a continuous wavelet basis. Note that the matrix-vector
multiplications above have efficient filterbank implementations [19].

2.3 Statistical Inference

As we have mentioned in Chapter 1, inverse problems are often ill-posed. This means that
measurements y cannot explain the signal x uniquely, and in order to separate meaningful
solutions from the noise, we are obliged to introduce supplementary information describ-
ing x. Statistical theory provides a unified approach for imposing additional constraints
on the solution. The basic idea is to introduce a prior probability distribution px favor-
ing solutions that we consider to be correct and penalizing those that we consider to be
wrong. Then, given the prior px, one can express the posterior distribution of the signal
given the measurements

px|y(x|y)∝ py|x(y|x) px(x), (2.14)

where ∝ denotes equality after normalization, and py|x is the conditional distribution of
the data given the signal. The posterior (2.14) provides a complete statistical characteri-
zation to the problem. In particular, the maximum-a-posteriority (MAP) estimator is given
by

bxMAP ¬ argmax
x∈RN

¦
px|y(x|y)

©
(2.15a)

= arg min
x∈RN

¦
− log

�
py|x(y|x)

�
− log

�
px(x)

�©
(2.15b)

= arg min
x∈RN

�
D(x) +φ(x)

	
(2.15c)

In the context of inverse problems, the first term D in (2.15) is called the data term

due to its direct dependance on the measurements, while the second term φ is called
the regularizer due to its capability to impose more meaningful solutions. Similarly, we
might be interested in finding the minimal mean squared error (MMSE) estimator, which
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2. A PRACTICAL GUIDE TO INVERSE PROBLEMS

is usually expressed as the computationally intractable N -dimensional integral

bxMMSE ¬ argmin
bx∈RN

¦
E[‖x− bx‖2 | y]

©
(2.16a)

= E[x | y] (2.16b)

=

∫

R
N

x px|y(x|y) dx. (2.16c)

Once we accept the statistical perspective, we have several degrees of freedom to develop
practical methods for solving inverse problems.

– The first degree of freedom lies in the specification of the prior distribution px. In
some cases such as for MMSE estimation, we would want the prior to match the true
empirical distribution of possible signals x as closely as possible. At the same time, we
want the prior to be as simple as possible in order to result in low-computation recon-
struction algorithms. Prior distributions promoting sparse solutions in some transform
domains are currently state-of-the-art in this regard [20].

– Specification of the conditional distribution py|x is the second issue to address. For the
generalized linear model (2.10), this task becomes trivial and yields

py|x(y|x) = py|z(y|Hx) =
M∏

m=1

py |z(ym|[Hx]m). (2.17)

In more generic scenarios, one might either find an accurate statistical distribution
characterizing the distortion or make a simplification by assuming a Gaussian noise
model. The latter results in the popular least-squares data term penalizing the quadratic
distance between y and z.

– Once the prior px and the data distribution py|x are specified, we must develop an al-
gorithm for computing the MAP, MMSE, or other estimators efficiently. We will cover
several state-of-the-art approaches based on two distinct philosophies: (a) methods
that explicitly minimize some predetermined cost-function, (b) methods based on pass-
ing messages on graphical models. In the former category we have methods such as
fast iterative shrinkage/thresholding algorithm (FISTA) [21] and alternating direction
method of multipliers (ADMM) [22], while in the latter we have belief propagation
(BP) algorithm [23] and generalized approximate message passing (GAMP) [24].

– Sometimes, we know the prior and the data distribution up to a finite number of
unknown parameters

px(x|θθθ x), py|z(y|z,θθθ z), (2.18)

where θθθ x ∈ ΘΘΘx and θθθ z ∈ ΘΘΘz represent parameters of the densities and ΘΘΘx ⊆ Rdx and
ΘΘΘz ⊆ Rdz denote the corresponding parameter sets. For example, such scenario is
realistic when we know the family of the prior distribution, but have no direct way of
obtaining the parameters of the prior. Then, we must also find a method to choose the
parameters θθθ x and θθθ z in a suitable way. The adaptive GAMP algorithm that we present
in Chapter 5 is an effective method of doing this under generalized linear models.

In the rest of this section, we will discuss some of the standard approaches for solving
inverse problems.

2.4 Least Squares

The simplest prior is actually a flat prior. Thus, one basic approach for solving a general
inverse problem is the least-squares (LS) method that assumes a uniform prior px and an
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Algorithm 2.1: Gradient-descent to minimize: CLS(x) = (1/2)‖y− S(x)‖2
2

input: data y, initial guess bx0,
step-size γ ∈ (0, 1/L], where L is the Lipschitz constant of ∇CLS,
and efficient implementation of ∇CLS.

set: t ← 1
repeat
bxt ← bxt−1 − γ∇CLS(bxt−1) (gradient step)
t ← t + 1

until stopping criterion
return bxt

additive white Gaussian noise (AWGN) [25]. Although, it is particularly well suited for
linear forward models with M ≥ N , nothing prevents it from being applied more generally.

2.4.1 Nonlinear Model

In nonlinear form of LS, one seeks the solution

bxLS ¬ argmin
x∈RN

�
CLS(x)

	
(2.19a)

= arg min
x∈RN

�
1

2
‖y− S(x)‖2

2

�
, (2.19b)

which can be interpreted as a search for a signal x that—by means of S—matches y as
closely as possible. The Euclidean norm ‖ · ‖2 in (2.19b) corresponds to the assumed
Gaussianity of the noise.

In the most general scenario, the LS function CLS is non-convex, which implies that there
might be many global and local solutions to the problem (2.19). In such cases, the com-
putation of the global solution may be intractable, and we simply expect our optimization
algorithms to find any one of the local minimizers of CLS.

For differentiable forward models S, the gradient of CLS is given by

∇CLS(x) =

�
∂

∂ x
S(x)

�T

(S(x)− y) , (2.20)

where (∂ /∂ x)S(x) is the Jacobian matrix of S. When the gradient (2.20) can be computed
efficiently for all x, we can use the gradient descent method summarized in Algorithm 2.1
for finding a local solution of (2.19). The step-size γ > 0 must be sufficiently small to
guarantee the convergence of the algorithm. More specifically, for a Lipschitz continuous
gradient ∇CLS



∇CLS(x)−∇CLS(z)




2 ≤ L ‖x− z‖2 , (for all x,z ∈ RN ) (2.21)

where L > 0 is the Lipschitz constant of ∇CLS, the convergence is guaranteed for any
γ ∈ (0, 1/L] [21,26]. In practice, it might be difficult to determine L analytically, and we
might need to hand-pick a suitable step-size γ.
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Algorithm 2.2: Gradient-descent to minimize: CLS(x) = (1/2)‖y−Hx‖2
2

input: data y, initial guess bx0,
Lipschitz constant L = λmax(H

T H),
and system matrix H.

set: t ← 1
repeat
bxt ← bxt−1 − (1/L)HT (Hbxt−1 − y) (gradient step)
t ← t + 1

until stopping criterion
return bxt

2.4.2 Linear Model

In the linear acquisition scenario, the LS reconstruction reduces to

bxLS ¬ arg min
x∈RN

�
CLS(x)

	
(2.22a)

= argmin
x∈RN

�
1

2
‖y−Hx‖2

2

�
, (2.22b)

where H is the measurement matrix given by (2.11). In this case, the gradient takes a
simple form

∇CLS(x) = HT(Hx− y) . (2.23)

In imaging, due to high-dimensionality of the problem the matrices H and HT cannot
be stored explicitly in memory, and we require an efficient implementation of two basic
operations:

1. multiply(x) ¬ Hx, (for all x ∈ RN )

2. multiplyTranspose(z) ¬ HT z. (for all z ∈ RM )

Finding Lipschitz constant of the gradient reduces to computing the largest eigenvalue of
HT H

L = λmax(H
T H), (2.24)

which can be precomputed once by using an iterative method such as power iteration.
The iterative LS approach for linear models is summarized in Algorithm 2.2.

When M ≥ N and H is nonsingular, the LS solution is given by

bxLS =
�

HT H
�−1

HT y (2.25a)

= x+
�

HT H
�−1

HT e (2.25b)

where H−1 denotes the inverse of the matrix H. In many practical applications, it is the
case that H is ill-conditioned, which implies a presence of small singular values. As a
result, LS yields a solution of poor quality due to the amplification of noise through the
inverse of HT H in (2.25b).

When M < N , the situation is worse, because any x ∈ RN that satisfies

HT Hx= HT y, (2.26)

corresponds to a valid LS solution. Since in such scenario H is singular, the system (2.26)
has an infinity of possible solutions. Therefore, depending on the initial guess bx0, Algo-
rithm 2.2 can converge to any of these solutions.
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Algorithm 2.3: Fast gradient-descent for: CLS(x) = (1/2)‖y− S(x)‖2
2

input: the data y, an initial guess bx0,
a step-size γ ∈ (0,1/L], where L is the Lipschitz constant of ∇CLS,
and an efficient implementation of ∇CLS.

set: t ← 1, s0← bx0, k0← 1
repeat
bxt ← st−1 − γ∇CLS(s

t−1) (gradient step)

kt ← 1
2

�
1+
p

1+ 4k2
t−1

�

st ← bxt + ((kt−1 − 1)/kt)(bxt − bxt−1)

t ← t + 1
until stopping criterion
return bxt

Algorithm 2.4: Fast gradient-descent for: CLS(x) = (1/2)‖y−Hx‖2
2

input: data y, initial guess bx0,
Lipschitz constant L = λmax(H

T H),
and system matrix H.

set: t ← 1, s0← bx0, k0← 1
repeat
bxt ← st−1 − (1/L)HT (Hst−1 − y) (gradient step)

kt ← 1
2

�
1+
p

1+ 4k2
t−1

�

st ← bxt + ((kt−1 − 1)/kt)(bxt − bxt−1)

t ← t + 1
until stopping criterion
return bxt

2.4.3 Signal Denoising

In signal denoising, LS returns the trivial solution

bxLS = y. (2.27)

This implies that to denoise a signal, we must go beyond the uniform prior.

2.4.4 Accelerated Gradient descent

It is well-known that the sequence of solutions {bxt}t∈N obtained via the standard gradient
descent converges quite slowly to the local minimizer of the cost CLS. In fact, it has been
shown in [21] that its rate of convergence is given by

CLS(bxt)−CLS(x
∗)≤

L

2t
‖bxt − x∗‖2

2, (t > 1) (2.28)

where L is the Lipschitz constant of the gradient, and x∗ ∈ RN is any of the local minimiz-
ers of CLS.

It turns out, it is possible to obtain an algorithm that has exactly the same per-iteration
complexity as the standard gradient-descent, but has significantly better rate of conver-
gence. The idea was originally developed for differentiable functions by Nesterov in [27].
The improved rate of convergence comes from a controlled over-relaxation that utilizes
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Figure 2.2: Least-squares reconstruction of a 256 × 256 Lung image from 256 Radon
measurements: (a) original; (b) measurements; (c) gradient-descent solution at t = 200;
(d) fast gradient-descent solution at t = 200; (e) evolution of the cost; (f) evolution of
SNR

the previous iterates to produce a better guess for the next update. Possible implementa-
tions of the scheme for LS are shown in Algorithms 2.3 and 2.4. The convergence rate of
the accelerated gradient-descent is given by

CLS(bxt)−CLS(x
∗)≤

2L

(t + 1)2
‖bxt − x∗‖2

2. (t > 1) (2.29)

In practice, switching from a linear to a quadratic convergence rate translates into impres-
sive improvements over the standard gradient descent. Extensions of such accelerated
techniques to non-smooth functions typically deliver state-of-the-art performance for high-
dimensional inverse problems and will therefore constitute our methods of choice [21].

Figure 2.2 provides a concrete example where a linear inverse problem is solved with LS.
A Lung image of size 256×256 in Figure 2.2(a) is measured via 256 equally-spaced Radon
projections in the range [−π/2,π/2] in Figure 2.2(b). The measurements have addition-
ally been corrupted by AWGN with the variance corresponding to 10 log10(‖Hx‖2/‖e‖2) =

40 dB. Figures 2.2 (c) and (d) illustrate the solutions of Algorithms 2.2 and 2.4, respec-
tively, after 200 iterations. The algorithms were initialized with the image bx0 = 0. Fig-
ures 2.2(e) and (f) illustrate the evolution of the LS cost and the signal-to-noise-ratio
(SNR) of the reconstruction, respectively. This example illustrates the convergence gain
from using the accelerated gradient descent algorithm for LS. Moreover, it shows a typical
behaviour of LS: as the algorithm progresses the quality of the recovered signal drops. The
drop can be more or less significant depending on the amount of noise and the condition
number of the measurement matrix. One standard approach to circumvent such behaviour
at the reconstruction is to regularize the solution by replacing the uniform prior in LS with
some other px that imposes useful restrictions to the solution.
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2.5 Wavelet-Domain Reconstruction

We now present wavelet-based methods for signal reconstruction. The idea is to define
the prior distribution of the signal in the orthogonal wavelet domain. This is achieved
by first expanding the signal as in (2.13), and introducing a simple prior for the wavelet
coefficients. The prior distributions that we will consider have the general separable form

px(x)∝ pw(Wx) =
N∏

n=1

pwn

�
[Wx]n

�
, (2.30)

where ∝ denotes identity after normalization, and pwn
is the distribution of the nth

wavelet-coefficient. We define the potential function φw as

φw(w) ¬ − log
�

pw(w)
�

(2.31a)

= −
N∑

n=1

log
�

pwn
(wn)

�
=

N∑

n=1

φwn
(wn). (2.31b)

We start the section with the review of signal denoising, where we revisit the classical
wavelet soft-thresholding algorithm [28]. The algorithm is based on two empirical obser-
vations: (a) the energy of natural signals concentrates on very few wavelet coefficients;
(b) the energy of i.i.d. noise is spread out uniformly in the wavelet domain. Accordingly,
the noise can be suppressed by simply discarding small wavelet-coefficients. We then ex-
tend the wavelet denoising algorithm to more general inverse problems by introducing the
concept of proximal operators. Initially, we will limit our discussion to the linear forward
models with AWGN. At the end of the section, we present a more general algorithm for
computing wavelet-based solutions under nonlinear forward models.

2.5.1 Signal Denoising

In the simplest case of AWGN denoising, the posterior distribution of the signal becomes

px|y(x|y)∝
N∏

n=1

�
G (xn − yn;σ2)pwn

([Wx]n)
�

, (2.32)

where G denotes the zero-mean Gaussian distribution

G (x;σ2) ¬
1

σ
p

2π
e−

x2

2σ2 . (2.33)

The orthonormality of the wavelet-basis implies the norm identity ‖x‖2
2 = ‖Wx‖2

2 that
allows for an equivalent wavelet-domain characterization of the signal statistics

pw|u(w|u)∝
N∏

n=1

�
G (wn − un;σ2)pwn

(wn)
�

, (2.34)

where w =Wx and u =Wy. Such characterization effectively reduces the vector estima-
tion problem into N -scalar estimation subproblems.

2.5.1.1 MAP Denoising The wavelet–based MAP estimator is given by

bxMAP = argmin
x∈RN

�
CMAP(x)

	
(2.35a)

= argmin
x∈RN

�
1

2
‖x− y‖2

2 +σ
2φw(Wx)

�
(2.35b)

(a)
=WT argmin

w∈RN

�
1

2
‖w−Wy‖2

2 +σ
2φw(w)

�
, (2.35c)
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2. A PRACTICAL GUIDE TO INVERSE PROBLEMS

where in (a) we use the orthonormality of the wavelet-basis. Computationally, the esti-
mator (2.35) reduces to

– wavelet-transformation u=Wy,

– scalar MAP estimation

bwn = argmin
w∈R

�
1

2
(w − un)

2 +σ2φwn
(w)

�
, (n= 1, . . . , N) (2.36)

– inverse wavelet-transformation bxMAP =WT bw.

Since, the scalar estimator (2.36) can be precomputed and stored in a lookup table, the
overall denoising procedure is very efficient. The optimization in (2.35c) can be repre-
sented more compactly by defining the proximal operator

bw= proxφw

�
u; σ2

�
(2.37a)

=




proxφw1
(u1;σ2)

...
proxφwN

(uN ;σ2)


 (2.37b)

¬ argmin
w∈RN

�
1

2
‖w− u‖2

2 +σ
2φw(w)

�
. (2.37c)

Then wavelet-domain MAP estimation can be represented with a simple and efficient for-
mula

bxMAP =WT proxφw
(u;σ2) with u=Wy. (2.38)

2.5.1.2 MMSE Denoising The wavelet-based MMSE estimator can be computed in a similar way
by performing the following operations

– wavelet-transformation u=Wy,

– scalar MMSE estimation

bwn =

∫

R

wn pwn|un
(wn|un) dwn, (n= 1, . . . , N) (2.39a)

=

∫
R

wnG (wn − un;σ2)pwn
(wn) dwn∫

R
G (wn − un;σ2)pwn

(wn) dwn

, (2.39b)

– inverse wavelet-transformation bxMMSE =WT bw.

This can be represented more compactly as

bxMMSE =WT
Ew|u [w|u] with u=Wy. (2.40)

A quick glance at (2.40) and (2.38) reveals major similarities between MMSE and MAP
estimators. The only observable difference is the shape of the scalar estimation functions:
in MMSE they are obtained via integration (2.39), while in MAP they are obtained via
optimization (2.36). Unfortunately, this similarity is restricted to signal denoising with
orthogonal wavelets, and breaks for more general forward models and priors. Orthonor-
mality of the wavelet transform and Parseval’s norm identity provide the necessary ele-
ments for making MMSE computationally equivalent to MAP. One of our contributions in
Chapter 3 will be the extension of this idea to more general wavelet-transforms by relying
on the concept of consistent cycle spinning.
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2.5. Wavelet-Domain Reconstruction
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Figure 2.3: Illustration of TMAP (dashed) and TMMSE (solid) shrinkage functions for a
Laplace prior with parameter λ = 2 and AWGN of variance σ2 = 1.

2.5.1.3 Illustrative Examples As the first example, we assume that the wavelet-coefficients of
the signal are zero-mean i.i.d. Gaussian with variance σ2

x
. Since the wavelet-expansion of

an i.i.d. Gaussian vector has exactly the same distribution, estimation can be performed
in the spatial- or the wavelet-domains equivalently. By introducing the prior distribution

pw(w;σ2
x
) =

1
p
(2πσ2)N

e
− ‖w‖

2

2σ2
x , (2.41)

into (2.36) and (2.39), we obtain

bwMAP = bwMMSE =
σ2

x

σ2
x
+σ2 u. (2.42)

The estimation is thus reduced to linearly shrinking noisy wavelet-coefficients u in a way
that is inversely proportional to signal power σ2

x
and proportional to σ2, i.e., higher noise

implies more shrinking.

When the wavelet-coefficients of the signal are assumed to be i.i.d. Laplace random vari-
ables with parameter λ, the prior is given by

pw(w;λ) =
λ

2
e−λ‖w‖1 . (2.43)

Then, MAP estimator reduces to

bxMAP =WTTMAP

�
Wy;λσ2

�
, (2.44)

where the pointwise soft-thresholding function T is given by

TMAP(w;λ) ¬ (|w| −λ)+ sgn(w). (2.45)

The resulting denoising method corresponds to the popular wavelet-domain soft-thresholding
algorithm that yields sparse solutions [28, 29]. The scalar MMSE estimator TMMSE for the
Laplace prior has also an analytical expression, albeit a more complicated one, that can
easily be found in the literature [15]. The final MMSE estimator is then computed as

bxMMSE =WTTMMSE

�
Wy;λ,σ2

�
, (2.46)

Both TMAP and TMMSE are illustrated in Figure 2.3 for λ = 2 and σ2 = 1.
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2. A PRACTICAL GUIDE TO INVERSE PROBLEMS

Algorithm 2.5: ISTA to minimize: CMAP(x) = (1/2)‖y−Hx‖2
2 +σ

2φw(Wx)

input: data y, initial guess bx0,
Lipschitz constant L = λmax(H

T H), noise variance σ2,
system matrix H, and operator proxφw

.
set: t ← 1
repeat

zt ← bxt−1 − (1/L)HT
�

Hbxt−1 − y
�

(gradient step)
bxt ←WT proxφw

(Wzt ;σ2/L) (shrinkage step)
t ← t + 1

until stopping criterion
return bxt

2.5.2 Linear Model

We now consider the linear inverse problem

y= Hx+ e, (2.47)

where the vector e represents i.i.d. Gaussian measurement noise of variance σ2. Given
the wavelet-domain prior (2.30), one can express the posterior distribution

px|y(x|y)∝ py|x(y|x) px(x) (2.48a)

∝
M∏

m=1

G (ym − [Hx]m;σ2)

N∏

n=1

pwn

�
[Wx]n

�
, (2.48b)

where G is the Gaussian distribution. MAP estimator is given by

bxMAP = argmin
x∈RN

�
CMAP(x)

	
(2.49a)

= argmin
x∈RN

�
1

2
‖y−Hx‖2

2 +σ
2φw(Wx)

�
, (2.49b)

where φw is the potential function in (2.31). Although, we might also be interested in
finding the MMSE solution to general linear forward models, this becomes computation-
ally intractable. We will thus concentrate in obtaining a method for computing the MAP
estimator (2.49). In Chapter 5, we will return to the problem of MMSE estimation and
present an adaptive GAMP method that can be used for approximating MMSE.

2.5.2.1 ISTA Algorithm An elegant and nonparametric method for computing the estimator
(2.49) is the so-called iterative shrinkage/thresholding algorithm (ISTA) [30–32]. The
latter relies on the separable proximal operator

bw= proxφw
(u; λ) ¬ argmin

w∈RN

�
1

2
‖w− u‖2

2 +λφw(w)

�
. (2.50a)

The proximal operator corresponds to the wavelet-based MAP solution of the denoising
problem (2.37). For our wavelet-domain priors, it reduces to a collection of scalar nonlin-
ear maps that can be precomputed and stored in a lookup table.

Based on the definition of our forward model, ISTA can be expressed as in Algorithm 2.5.
Iterations of ISTA combine gradient-descent steps with pointwise proximal operators. To
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2.5. Wavelet-Domain Reconstruction

Algorithm 2.6: FISTA for: CMAP(x) = (1/2)‖y−Hx‖2
2 +σ

2φw(Wx)

input: data y, initial guess bx0,
Lipschitz constant L = λmax(H

T H), noise variance σ2,
system matrix H, and operator proxφw

.
set: t ← 1, s0← bx0, k0← 1
repeat

zt ← st−1 − (1/L)HT (Hst−1 − y) (gradient step)
bxt ←WT proxφw

(Wzt ;σ2/L) (shrinkage step)

kt ← 1
2

�
1+
p

1+ 4k2
t−1

�

st ← bxt + ((kt−1 − 1)/kt)(bxt − bxt−1)

t ← t + 1
until stopping criterion
return bxt

understand why the algorithm actually minimizes the cost, we bound CMAP as follows

CMAP(x) =
1

2
‖Hx− y‖2

2 +σ
2φw(Wx) (2.51a)

(a)
=

1

2
‖Hbxt−1 − y‖2

2 + (x− bxt−1)T
�

HT (Hbxt−1 − y)
�

(2.51b)

+ (x− bxt−1)T HT H(x− bxt−1) +σ2φw(Wx)
(b)
≤

1

2
‖Hbxt−1 − y‖2

2 + (x− bxt−1)T
�

HT (Hbxt−1 − y)
�

(2.51c)

+
1

2γ
‖x− bxt−1‖2

2 +σ
2φw(Wx)

=
1

2γ




x−
�
bxt−1 − γHT

�
Hbxt−1 − y

��



2

2
+σ2φw(Wx) + const (2.51d)

=Q(x,bxt−1), (2.51e)

where “const” denotes terms that are constant with respect to x. In (a) we performed a
quadratic Taylor expansion of the cost around x= bxt−1, in (b) we selected γ such that

1

2γ
‖x‖2

2 ≥ ‖Hx‖2
2 (2.52)

for all x ∈ RN . To guarantee monotone convergence, equation (2.52) restricts the choice
of γ to the interval (0, 1/L], where L = λmax(H

T H). Note that the auxiliary cost function
Q(x,bxt−1) that depends on the previous estimate bxt−1 is much simpler than the original
cost CMAP. Our formulation imposesQ(x,bxt−1)≥ CMAP(bxt−1) with equality when x= bxt−1.
Thus, one can recover the ISTA iteration by simply minimizing the cost Q(x,bxt−1) over x
and setting the solution to be bxt .

2.5.2.2 FISTA Similar to the gradient descent algorithm for LS estimation, the main weakness of
ISTA is in its slow convergence. FISTA, summarized in Algorithm 2.6, is an improvement
of the standard ISTA that results in a rate of convergence that is equivalent to accelerated
gradient descent of Section 2.4.4. The convergence to the global minimizer of CMAP is only
achieved when the potential function φw is convex [21]. Note that a simpler, and in some
cases more effective way of speeding up ISTA, was proposed by Wright et al. [33], where
the acceleration is obtained by using larger step-sizes.
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2. A PRACTICAL GUIDE TO INVERSE PROBLEMS

Algorithm 2.7: FISTA for: CMAP(x) = D(x) +φw(Wx)

input: data y, initial guess bx0,
step-size γ ∈ (0, 1/L] where L is the Lipschitz constant of ∇D,
and efficient implementation of ∇D and proxφw

.
set: t ← 1, s0← bx0, k0← 1
repeat

zt ← st−1 − γ∇D(st−1) (gradient step)
bxt ←WT proxφw

(Wzt ;γ) (shrinkage step)

kt ← 1
2

�
1+
p

1+ 4k2
t−1

�

st ← bxt + ((kt−1 − 1)/kt)(bxt − bxt−1)

t ← t + 1
until stopping criterion
return bxt

2.5.3 Nonlinear Model

In the most general case, we consider the solution x accurate if it is consistent with the
available measurements y. While adopting this principle, we nevertheless want to acco-
modate for noise and model imperfections. Therefore, it is practical to propose a soft
constraint, demanding that bx reintroduced into our forward model results in measure-
ments by that are close to y. Accordingly, we define the general data discrepancy measure
D(x), which depends explicitly on the signal x, and implicitly on the measurements y and
the forward model S. The data term might also depend on some unknown parameters
inherent to the forward model. A popular data term that we have already discussed is the
LS cost

D(x) = CLS(x) =
1

2
‖y− S(x)‖2

2. (2.53)

Other possible D can be obtained by considering different noise distributions as in (2.15c).
To obtain a wavelet-based estimator for general forward models, we assume that D is
differentiable with respect to x and that its gradient ∇D can be efficiently computed.
Algorithm 2.7 summarizes the resulting method for computing the MAP estimator for
general forward models.

2.6 Gradient–Based Regularization

We now present an alternative to wavelet–based approach. The prior distribution of the
signal will be defined in the gradient domain. Although, the idea can be generalized
beyond gradient [34], the state-of-the-art performance of gradient–based regularization
such as total variation (TV) [35] makes the latter particularly interesting [36]. With
the new priors, our algorithms favor signals whose gradient follows certain statistical
distributions. For computational reasons, we will restrict ourselves to separable prior
distributions of the form

px(x)∝ pu(Dx) =
N∏

n=1

pun
([Dx]n), (2.54)
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2.6. Gradient–Based Regularization

Algorithm 2.8: FISTA for: CMAP(x) = (1/2)‖y−Hx‖2
2 +σ

2φu(Dx)

input: data y, initial guess bx0,
Lipschitz constant L = λmax(H

T H), noise variance σ2,
system matrix H, and operator proxφu

.
set: t ← 1, s0← bx0, k0← 1
repeat

zt ← st−1 − (1/L)HT (Hst−1 − y) (gradient step)
bxt ← proxφu

(zt ;σ2/L) (prox step)

kt ← 1
2

�
1+
p

1+ 4k2
t−1

�

st ← bxt + ((kt−1 − 1)/kt)(bxt − bxt−1)

t ← t + 1
until stopping criterion
return bxt

where D ∈ RdN×N is the discrete-counterpart of the gradient. Note that for each signal
pixel n, there are d gradient coefficients

un ¬ [Dx]n =




[D1x]n
...

[Ddx]n


 , (2.55)

where Dk denotes the derivative along the dimension k. This implies that pun
is a mul-

tivariate probability distribution. It is also important to note that sometimes the prior of
form (2.54) may be improper, which means that it cannot be normalized.

We define the potential function φu as

φu(u) ¬ − log
�

pu(u)
�

(2.56a)

= −
N∑

n=1

log
�

pun
(un)

�
=

N∑

n=1

φun
(un). (2.56b)

2.6.1 Linear Model

Given our prior (2.54), we can express the posterior distribution

px|y(x|y)∝
M∏

m=1

G (ym − [Hx]m;σ2)

N∏

n=1

pun
([Dx]n), (2.57a)

where G is the Gaussian distribution. Similar to the wavelet-domain estimation, we will
restrict our discussion to the MAP estimation, due to intractability of the MMSE estima-
tor. We will extensively address MMSE estimation for signals with sparse derivatives in
Chapter 4. The MAP estimator is specified by

bxMAP = argmin
x∈RN

�
1

2
‖y−Hx‖2

2 +σ
2φu(Dx)

�
. (2.58)

We will define the proximal operator for φu in (2.56) as

bx= proxφu
(z;λ) ¬ argmin

x∈RN

�
1

2
‖x− z‖2

2 +λφu(Dx)

�
. (2.59)
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Algorithm 2.9: FISTA for: CMAP(x) = D(x) +φu(Dx)

input: data y, initial guess bx0,
step-size γ ∈ (0, 1/L] where L is the Lipschitz constant of ∇D,
and efficient implementation of ∇D and proxφu

.
set: t ← 1, s0← bx0, k0← 1
repeat

zt ← st−1 − γ∇D(st−1) (gradient step)
bxt ← proxφu

(zt ;γ) (prox step)

kt ← 1
2

�
1+
p

1+ 4k2
t−1

�

st ← bxt + ((kt−1 − 1)/kt)(bxt − bxt−1)

t ← t + 1
until stopping criterion
return bxt

The proximal operator corresponds to the gradient–based MAP solution of the denoising
problem H= I. However, unlike the wavelet–based approach, here the proximal operators
are not scalar mappings that can be precomputed easily. One needs to develop additional
algorithms for computing them [36, 37]. Algorithm 2.8 summarizes the FISTA approach
to gradient-based MAP estimation. Note that Algorithm 2.8 and Algorithm 2.6 are nearly
identical with only difference being in the computation of the respective proximal opera-
tors.

2.6.1.1 Total Variation prior The anisotropic version of the popular TV method is obtained by
assuming an i.i.d. Laplace prior on the components of u= Dx. This results in the following
minimization problem

bxTV ¬ argmin
x∈RN

�
1

2
‖y−Hx‖2

2 +λ‖Dx‖1

�
(2.60a)

= arg min
x∈RN

(
1

2
‖y−Hx‖2

2 +λ

d∑

k=1

‖Dkx‖1

)
, (2.60b)

where, without loss of generality, we assumed that λ incorporates both the noise variance
σ2 and the scale parameter of Laplace distribution. The problem with the anisotropic

formulation in (2.60) is that it gives preference to some orientations of the signal. Con-
sequently, there is an alternative isotropic formulation of TV method that results in the
minimization of form

bxTV ¬ arg min
x∈RN

(
1

2
‖y−Hx‖2

2 +λ

N∑

n=1

‖[Dx]n‖2

)
(2.61a)

= argmin
x∈RN

(
1

2
‖y−Hx‖2

2 +λ

N∑

n=1

p
[D1x]2

n
+ · · ·+ [Ddx]2

n

)
, (2.61b)

with some appropriate boundary conditions for the signal. Although, alternative gradient-
priors have been extensively discussed in literature [1, 38], classical TV is probably the
most popular regularizer for solving inverse problems in imaging.
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2.7. Experimental Evaluation
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Figure 2.4: Evolution of the reconstruction SNR of a 256×256 Lung image from 64 Radon
measurements with noise variance corresponding to the input SNR of 50 dB.

(a) (b)

(c) (d)

Figure 2.5: Reconstruction of a 256×256 Lung image from 64 Radon measurements with
noise variance corresponding to the input SNR of 50 dB: (a) original; (b) linear (SNR =
18.86 dB); (c) wavelet-domain ℓ1 (SNR = 19.8 dB); (d) TV (SNR = 21.89 dB).

2.7 Experimental Evaluation

We revisit the problem of reconstructing an image from its Radon measurements. This
time, however, the Lung image in Figure 2.5(a) is only projected 64 times. The noiseless
measurements z= Hx have then been corrupted with AWGN corresponding to input SNR
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2. A PRACTICAL GUIDE TO INVERSE PROBLEMS

of 50 dB. We compare three reconstruction algorithms: linear, wavelet-domain, and TV.
The linear solution is obtained by minimizing

C (x) =
1

2
‖y−Hx‖2

2 +λ‖x‖
2
2,

where λ > 0 is the parameter, which is hand picked for the lowest MSE. The linear solu-
tion is illustrated in Figure 2.5(b) and has the final SNR of 18.86 dB. In wavelet-domain
algorithm, we penalize the ℓ1-norm of wavelet-coefficients to promote sparse solutions to
the problem. We use the Haar transform with 5 decomposition levels and the penalization
is only performed on the detail (high-pass) coefficients. The parameter λ is again tuned
for the optimal MSE performance. The corresponding solution with SNR 19.8 dB is illus-
trated in Figure 2.5(c). The TV solution is obtained by minimizing the cost (2.61) with
MSE optimal λ. The final TV solution llustrated in Figure 2.5(d), has SNR of 21.89 dB.

The first thing our experimental evaluation illustrates is that it is possible to significantly
improve the reconstruction performance by using nonlinear reconstruction. By now, it
is well-known that sparsity-driven nonlinear algorithms systematically outperform their
classical linear counterparts. The second observation is related to suboptimal performance
of orthogonal wavelet-domain methods compared to TV. The superior performance of TV
makes it the method of choice for solving general inverse problems. However, it is known
that it is possible to improve the performance of wavelet-domain methods by making them
shift-invariant. We will discuss this idea in detail in the next chapter. The final observation
is that due to oracle-aided tuning of λ, the performances presented here are not achievable
in practice and one needs to develop more practical ways to set the unknown parameters
in the problem.

2.8 Summary

We reviewed and addressed a range of issues related to the resolution of inverse prob-
lems. In particular, we presented wavelet– and gradient–based approaches to compute
regularized solutions to inverse problems. Computational simplicity of wavelet-based ap-
proaches makes them ideal for dealing with high-dimensional data sets encountered in
practice. However, our experimental evaluations have illustrated that the gradient–based
methods yield solutions of superior quality. This suboptimal performance of wavelet-based
methods is mainly attributed to the lack of translation-invariance in orthogonal wavelet-
bases [39]. In Chapter 3, we address this issue by showing that it is possible to make
wavelet–based methods equivalent to their gradient–based counterparts.

Due to unavailability of tractable methods for performing MMSE estimation, our algo-
rithms were mostly limited to computing MAP solutions. One delicate aspect of applying
our statistical estimators to imaging is that the true statistical distribution of the data is
rarely known. Moreover, it was shown by Gribonval [40] that a MAP solution bxMAP for an
assumed prior px might, in fact, correspond to an MMSE solution bxMMSE for another prior
qx. Thus, if our data is actually distributed as qx, one might actually use the MAP solution
to approximate MMSE. From this perspective, practically successful methods commonly
interpreted as MAP estimators (e.g. TV regularization) could actually be computing an
MMSE solution of the problem. In Chapter 4, we investigate this issue thoroughly by
introducing a generative stochastic model for signals that have sparse-derivatives. Our
signals based on Lévy processes are ideally suited for TV-like algorithms. The key to our
investigation will be a novel message-passing algorithm for computing the MMSE solution
for Lévy processes.

We take the issue of MMSE estimation further in Chapter 5. In particular, we propose
and analyze a novel algorithm called adaptive GAMP. This message-passing algorithm is
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2.8. Summary

ideally suited for statistical estimation under generalized linear models when the signal
prior px can be made separable in some basis. Besides approximating the MMSE solu-
tion, the algorithm is also capable of learning the unknown statistical parameters in the
problem. In Chapter 6, we also present several simulations comparing the performance of
MMSE estimator computed with GAMP against wavelet– and gradient–based approaches
discussed in this chapter.

Finally, in Chapter 7, we apply the non-linear forward model–based algorithm to 3D imag-
ing of objects using optical tomographic microscope, which is a very challenging modality
due to the extremely large dimensionality of the data and ill-posed nature of the inverse
problem. We shall propose a novel characterization of the forward model as well as TV–
based iterative estimation algorithm.
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Chapter 3

Cycle Spinning: Boosting
Wavelet-Domain Reconstruction

3.1 Overview

In this chapter, we discuss cycle spinning, which is a widely used technique for improving
the performance of wavelet–based methods for solving linear inverse problems. Extensive
numerical experiments have shown that it significantly improves the quality of the recov-
ered signal without increasing the computational cost. Our first contribution is theoretical,
where we provide the first convergence result for cycle spinning. We prove that the se-
quence of reconstructed signals is guaranteed to converge to the minimizer of some global
cost function that incorporates all wavelet shifts. Our second contribution is conceptual,
where we develop the consistent cycle spinning technique that allows to compute MAP and
MMSE solutions to the signal denoising problem in synthesis formulation. We empirically
validate the MMSE performance of the technique through statistical estimation of Lévy
processes 1.

3.2 Introduction

We revisit the problem of estimating an unknown signal from noisy linear observations

y= Hx+ e, (3.1)

where the matrix H ∈ RM×N models the response of the acquisition device; the vector e
represents the measurement noise, which is assumed to be independent and identically
distributed (i.i.d.) Gaussian. As mentioned in Chapter 2, when problem (3.1) is ill-posed,
the standard approach is to introduce some prior distribution px that promotes solutions
with desirable properties. In the wavelet–based framework, regularization is achieved
by favoring solutions that have sparse wavelet expansions. One popular approach is to
use the non-smooth convex function φw(Wx) = ‖Wx‖1, where W ∈ RN×N represents
a wavelet transform [30–32]. Although (2.49) generally does not admit a closed-form
solution with non-quadratic regularizers, it can still be computed efficiently using iterative
algorithms such as ISTA [30–32]. Based on the definition of our statistical model, ISTA
can be expressed as in Algorithm 2.5 with the pointwise shrinkages of the form

proxφw
(w;λ) = T (w;λ) ¬ (|w| −λ)+sgn(w), (3.2)

Because of its simplicity, ISTA has become the method of choice for finding sparse solu-
tions.

1. This chapter is based on our papers [41–43]
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3. CYCLE SPINNING: BOOSTING WAVELET-DOMAIN RECONSTRUCTION

Algorithm 3.1: ISTA with Cycle Spinning

input: data y, initial guess bx0,
step sizes {γt}t∈N, noise variance σ2,
family of K shifted wavelet transforms {Wk}k=1,...,K ,
system matrix H, and operator proxφw

.
set: t ← 1
repeat

kt ← 1+ (t − 1 mod K) (choice of basis)
zt ← bxt−1 − γtH

T
�

Hbxt−1 − y
�

(gradient step)
bxt ←WT

kt
proxφw

(Wkt
zt ;γtσ

2) (shrinkage step)
t ← t + 1

until stopping criterion
return bxt

3.3 Cycle Spinning

The theory of wavelet–regularized reconstruction is often formulated with orthogonal
wavelet transforms. However, in order to make regularized wavelet–based methods truly
competitive, one needs to make the transform shift-invariant. The concept was first in-
troduced by Coifman and Donoho for wavelet–based denoising under the name of cycle

spinning [39].

Let the matrix Wk denote an orthogonal wavelet transform with k-th shift applied to all
the basis functions 2 in W. We consider the K different shifts W1, . . . ,WK that are required
to get a shift-invariant version of W. The original idea developed in [39] was to perform
a one-time shrinkage of form

bx=
1

K

K∑

k=1

WT
k
bwk with bwk = proxφw

(Wky;σ2), (3.3)

Practically, the method performs K basic wavelet-denoising operations in parallel and
averages the results. A remarkable property of cycle spinning is that it is guaranteed to
improve upon the non-redundant wavelet denoising [15].

An alternative technique called recursive cycle spinning was introduced by Fletcher et

al. [44, 45]. They proposed to improve the simple averaging solution in (3.3) with a
scheme that iteratively updates the initial guess bx0 = y as

bxt =WT
kt
TRCS(Wkt

bxt−1;λ), (t ∈ N) (3.4)

where kt = 1 + (t − 1 mod K) is an iteration-dependent shift, TRCS is some admissible
thresholding function, and the parameter λ > 0 controls the amount of shrinkage. The
authors have proved the convergence of this iterative denoising algorithm for thresholding
functions TRCS that perform projections 3.

The idea of cycle spinning was generalized to more-general linear inverse problems by
Figueiredo and Nowak [30]. They incorporated both parallel and recursive variations
of cycle spinning into an iterative reconstruction scheme, and reported significant im-
provements in reconstruction quality. Currently, cycle spinning is used in the majority

2. Alternatively, this effect can be achieved by shifting and unshifting the signal.
3. Note that the soft-thresholding operation (3.2) is not a projection and thus is not usable within this scheme.
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3.4. Analysis of Cycle Spinning

of wavelet-based reconstruction algorithms to obtain higher-quality solutions with less-
blocky artifacts [11, 12, 46, 47]. However, it is rarely accounted for in the accompanying
theory.

A simple way to implement cycle spinning for solving general linear inverse problems,
without increasing the memory usage, is to consider Algorithm 3.1. Even though Algo-
rithm 3.1 has nearly the same computational cost as Algorithm 2.5, it yields results of
significantly higher quality (see Figure 3.2). The algorithm is different from the original
formulation of cycle spinning in [39], where the thresholded wavelet-coefficients corre-
sponding to different shifts are simply averaged. It rather corresponds to the recursive
cycle spinning approaches used in [11,12,30,44,46,47].

3.4 Analysis of Cycle Spinning

The apparent limitation of the cycle-spinning method in Algorithm 3.1 lies in its greedy
nature. At each iteration, the algorithm simply makes a locally optimal step towards the
minimization of

Ckt
(x) =

1

2
‖y−Hx‖2

2 +σ
2φw(Wkt

x), (3.5)

instead of using the information available from all possible shifts. We are not aware of any
prior analysis of the convergence properties of such a scheme. In Theorem 3.1 below, we
establish the first convergence result for cycle spinning applied for solving linear inverse
problems.

Theorem 3.1. Define

CCS(x) ¬
1

K

K∑

k=1

Ck(x), (3.6)

where

Ck(x) =
1

2
‖y−Hx‖2

2 +σ
2φw(Wkx). (3.7)

Assume also a nonempty, convex, bounded, and closed subset X ⊆ RN . Set γt = 1/(L
p

t),

where L is any constant such that L > λmax(H
T H). Let bx0 be an arbitrary vector in X , and

{bxt}t∈N be the sequence generated by Algorithm 3.1 with an additional projection step onto

X . Then,

lim
t→∞
CCS(bxt) = C ∗

CS
where C ∗

CS
=min

x∈X
CCS(x). (3.8)

Proof: See Section 3.8.

When K = 1, cycle spinning reduces to the standard ISTA, which is known to con-
verge [21]. What our theorem proves is that, by iteratively cycling through K orthogonal
wavelets, we are minimizing a cost function that regularizes the solution over all the shifts
simultaneously, with the advantage that the underlying regularizer is truly shift-invariant.
Note that the set X is a set of possible values for the signals x. It can be selected as an
arbitrary subset of RN that is large enough to contain the signals of interest, and that is
nonempty, convex, bounded, and closed.

3.5 Consistent Cycle Spinning

We now focus on a simpler problem of signal denoising with the objective of further boost-
ing the performance of wavelet–domain MAP estimation. In particular, we introduce the
concept of consistent cycle spinning (CCS), which can be used to cast the estimation with
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3. CYCLE SPINNING: BOOSTING WAVELET-DOMAIN RECONSTRUCTION

redundant transforms into the synthesis form that still preserves the Parseval’s identity.
Then, it becomes possible to denoise the signal with the MMSE estimator in (2.40). In
order to validate MMSE performance of CCS experimentally, we present in Section 3.6.2
numerical evaluations on statistical signals with sparse derivatives.

We start by defining the transform matrix

T ¬




W1
...

WK


 (3.9)

and its pseudo inverse

T†
¬

1

K

�
WT

1 . . .WT
K

�
(3.10)

that satisfy the following two properties of Parseval frames

argmin
x∈RN

�
1

2
‖z− Tx‖2

2

�
= T†z, (for all z ∈ RKN ) (3.11)

and T†T = I [15]. Then, the original (noniterative) cycle spinning algorithm (3.3) can be
written as

bx= T† bw with bw= proxφw
(Ty;σ2). (3.12)

In the context of signal reconstruction, (3.12) is often referred to as synthesis formulation,
while the iterative version analysed in Theorem 3.1 is called the analysis formulation [48].
Synthesis and analysis formulations are equivalent when T is orthogonal (i.e. K = 1), but
yield different solutions when T is overcomplete. The underlying reason for this dissagree-
ment is in the Parseval’s identity, which is lost for redundant transform matrices. The ma-
jor advantage of the synthesis formulation is that in the orthogonal case the computation
of the MMSE solution becomes simple (See Section 2.5.1). CCS refers to a technique that
performs synthesis–type redundant wavelet-domain reconstruction by enforcing the norm
equivalence as follows

bw= argmin
w∈RKN

�
1

2
‖w− u‖2

2 + Kσ2φw(w)

�
s.t. TT†w=w, (3.13)

where u = Ty. In the context of general overcomplete transforms, such formulation was
studied by Elad et al. [49]. The factor K that appears in front of σ2 is due to the relation

K‖x‖2
2 = ‖Tx‖2

2, (3.14)

which is true for any x ∈ RN . Thus, CCS combines better approximation capabilities of
redundant representations with wavelet–domain solutions that behave as if the transform
were truly orthogonal. Note that under the consistency constraint in (3.13), the estima-
tion reduces to a simple pointwise shrinkage of wavelet-coefficients. This observation
hints at the use of shrinkage functions other than MAP. For example, one can use the
shrinkage that computes MMSE solution to the denoising problem. In view of results by
Gribonval in [40], usage of MMSE shrinkages corresponds to implicit penalization with
the corresponding MMSE potential function φMMSE

w .

A practical optimization scheme for the constrained minimization problem (3.13) with
possibly non-convex potential functions can be obtained by using an augmented-Lagrangian
approach [22]. The idea is to introduce the augmented-Lagrangian cost function

L (w,x) =
1

2
‖w− u‖2

2 + Kσ2φw(w) +
τ

2
‖w− Tx‖2

2 −µ
T (w− Tx), (3.15)
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3.6. Numerical Evaluation

Algorithm 3.2: Consistent Cycle Spinning (CCS) for Signal Denoising

input: data u= Ty, initial guess bx0,
quadratic penalty τ > 0, noise variance σ2,
transform matrix T,
and scalar shrinkage T .

set: t ← 1 and µ0← 0
repeat
bwt = T

�
(u+τTbxt−1 +µt−1)/(1+τ); Kσ2/(1+τ)

�

bxt = T†
�
bwt −µt−1/τ

�

µt = µt−1 −τ(bwt − Tbxt)

t ← t + 1
until stopping criterion
return bxt

where τ > 0 is the penalty parameter and µ ∈ RKN is the vector of Lagrange multipli-
ers. The condition w = Tx asserted by the penalty function constrains w to the column
space of T, which is equivalent to the consistency condition w = TT†w. Although the
quadratic penalty term inL does not influence the final solution, it typically improves the
convergence behaviour of the iterative optimization [50]. To solve the minimization, we
alternate between solving the problem for w for x fixed and vice versa, which corresponds
to the alternating direction method of multipliers (ADMM) algorithm [22]. Implementa-
tion of CCS is summarized in Algorithm 3.2.

3.6 Numerical Evaluation

We now present some numerical results illustrating the concepts discussed in this section.
We divide experiments into two main parts. In the first, we illustrate the results of Theo-
rem 3.1 by considering general linear inverse problems. In the second part, we highlight
the MMSE denoising capability of CCS by considering a statistical signal model based on
Lévy processes. Advantage of using the Lévy signal model is that we can then compare the
results to the MMSE estimator computed by the message-passing algorithm developed in
Chapter 4.

3.6.1 Convergence of Cycle Spinning

We illustrate Theorem 3.1 with two simple examples. In the first example, we consider
the estimation of a piecewise constant signal of length N = 128 corrupted by AWGN
corresponding to an input signal-to-noise ratio (SNR) of 30 dB. An interesting property
of such signals is that they can be sparsified with the finite-difference operator, which
justifies the use of TV regularization [51]. Since the TV regularizer corresponds to an
ℓ1-penalty applied to the finite differences of the signal, our theorem indicates that it can
also be minimized with cycle spinning when W corresponds to the Haar-wavelet basis
with one level of decomposition and a zero weight in the lowpass. In Figure 3.1, we plot
the per-iteration gap

�
CTV(bxt)−C ∗TV

�
, where bxt is computed with cycle spinning and CTV

is the TV-regularized least-squares cost. We set λ = 0.05 and, following our analysis, we
set the step-size to γt = 1/(4

p
t). As expected, we observe that, as t →∞, we have that�

CTV(bxt)−C ∗TV

�
→ 0. Moreover, we note that, for large t, the slope of

�
CTV(bxt)−C ∗TV

�

in log-log domain tends to −1/2, which indicates the asymptotic rate of convergence
O (1/

p
t).
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Figure 3.1: Estimation of a sparse signal from noisy measurements. We plot the gap�
CTV(bxt)−C ∗TV

�
against the iteration number t. The plot illustrates the convergence of

cycle spinning to the minimizer of the cost function CTV.

(a) (b) (c)

(d) (e)

Figure 3.2: Reconstruction of Cameraman from blurry and noisy measurements. (a) orig-
inal, (b) blurry, (c) standard wavelet-based ISTA (SNR = 19.10 dB), (d) reconstruction
with TV (SNR = 21.58 dB), (e) wavelet-based reconstruction with cycle spinning (SNR =
21.58 dB).

In the second example, we consider an image-deblurring problem where the Cameraman

image of size 256× 256 is blurred with a 7× 7 Gaussian kernel of standard deviation 2
with the addition of AWGN of variance σ2 = 10−5. In Figure 3.2, we present the result of
the reconstruction with three different methods: standard Haar-domain ℓ1-regularization,
anisotropic TV [52], and cycle spinning with 1D Haar-basis functions applied horizontally
and vertically to imitate TV. The regularization parameters for the standard wavelet ap-
proach and TV were optimized for the least-error performance. The regularization param-
eter of cycle spinning was set by rescaling the regularization parameter of TV according to
λCS =

p
2KλTV, with K = 4 4. Therefore, we expect cycle spinning to again match the TV

4. The goal is for cycle spinning to be minimizing exactly the same cost function as TV. Thus, the factor K is
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Figure 3.3: SNR improvement as a function of the level of noise for Brownian mo-
tion. The wavelet-denoising methods by reverse order of performance are: standard
soft-thresholding (ortho-ST), optimal shrinkage in a wavelet basis (ortho-MAP/MMSE),
shrinkage in a redundant system (frame-MAP/MMSE), and optimal shrinkage with con-
sistent cycle spinning (CCS-MAP/MMSE).
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Figure 3.4: SNR improvement as a function of the level of noise for a Lévy process with
Laplace-distributed increments. The wavelet-denoising methods by reverse order of per-
formance are: ortho-MAP (equivalent to soft-thresholding with fixed λ), ortho-MMSE,
frame-MMSE, frame-MAP, CCS-MAP, and CCS-MMSE. The results of CCS-MMSE are com-
patible with the ones of the reference MMSE estimator in Chapter 4.

solution. It is clear from Figure 3.2 that cycle spinning outperforms the standard wavelet
regularization (improvement of at least 2 dB). As expected, the solution obtained by cycle
spinning exactly matches that of TV both visually and in terms of SNR.

3.6.2 Statistical Estimation with CCS

We experimentally evaluate CCS by considering two versions of the algorithm: CCS-MAP
and CCS-MMSE that use MAP and MMSE shrinkage functions, respectively. We test the
estimation performance of the algorithms on Lévy processes that will be discussed with
much greater detail in Chapter 4. One can view Lévy processes as continuous-time analogs
of random walks. Their defining property is that they have independent and stationary
increments [53, 54], which implies that the applications of finite-difference operator on
samples of a Lévy process decouples it into a sequence of independent random variables.
In the experiments, we consider the denoising of four types of Lévy processes of lengths
N = 2048 in the Haar-wavelet domain. All the results were obtained by averaging 10 ran-

due to the number of shifts, while the factor
p

2 is due to the normalization of the Haar wavelets.
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Figure 3.5: SNR improvement as a function of the level of noise for a compound Poisson
process (piecewise-constant signal). The wavelet-denoising methods by reverse order of
performance are: ortho-ST, ortho-MMSE, frame-MMSE, and CCS-MMSE. The results of
CCS-MMSE are compatible with the ones of the reference MMSE estimator obtained using
message passing in Chapter 4.
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Figure 3.6: SNR improvement as a function of the level of noise for a Lévy flight with
Cauchy-distributed increments. The wavelet-denoising methods by reverse order of per-
formance are: ortho-MAP, ortho-MMSE, frame-MMSE, frame-MAP, CCS-MAP, and CCS-
MMSE. The results of CCS-MMSE are compatible with the ones of the reference MMSE
estimator obtained using message passing in Chapter 4.

dom realizations of the problem for various noise levels. The metric used for comparisons
is the SNR improvement

∆SNR ¬ 10 log10

�
‖x− y‖2

2

‖x− bx‖2
2

�
(3.16)

The four statistical distributions for our signals are (see Figure 4.2 for an illustration of
their realizations)

– Gaussian: This is the best-known example of a Lévy process. We set the distribution
of increments to N (0, 1).

– Laplace: We set the scale parameter to one.

– Compound-Poisson: We consider the sparse scenarios and set the mass probability
at 0 to 0.6. The size of the jumps follow the standard Gaussian distribution.

– Cauchy: We set the distribution of the increments to be Cauchy (α = 1) with scale
parameter ρ = 1.

The wavelet denoising methods compared are the standard orthogonal wavelet soft-thresholding
(ortho-ST), statistically optimal shrinkages in the orthogonal wavelet domain (ortho-
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3.7. Summary

MAP/MMSE), traditional cycle spinning (3.12) with statistically optimal shrinkages (frame-
MAP/MMSE), and statistically optimal shrinkages with CCS (CCS-MAP/MMSE). Note that
for the Gaussian signals in Figure 3.3 MAP and MMSE estimators coincide resulting in the
same shrinkage operation that is linear.

In Figure 3.4 we compare 6 statistical estimators for denoising Lévy processes with Laplace
increments: ortho-MAP, ortho-MMSE, frame-MAP, frame-MMSE, CCS-MAP, and CCS-MMSE.
We remark that for Haar basis and the Laplace prior, CCS-MAP reduces to the popular TV-
denoising algorithm [41]. Figure 3.4 exposes several possible ways for improving the
quality of the reconstructed signal. First, as expected, when the transform is orthogo-
nal MMSE outperforms MAP. We also see the boost in performance due to cycle spinning
with both frame-MAP and frame-MMSE giving better results that ortho-MAP and ortho-
MMSE. Due to redundancy, wavelet-domain MMSE estimator loses its optimality in space
domain, which is corroborated by the relative performance of frame-MAP against frame-
MMSE. The correct MMSE/MAP order, however, is re-established for CCS, where the strict
norm equivalence between domains is enforced.

In Figure 3.5, we denoise piecewise-constant compound Poisson signals. In this case, we
omit MAP estimators which correspond to trivial solutions due to the mass at 0. As be-
fore, we observe that model based ortho-MMSE improves over the standard wavelet soft-
thresholding. Another significant boost is obtained by passing from orthogonal wavelets to
cycle spinning. Finally, the best performance is obtained by enforce the norm equivalence
via CCS.

In Figure 3.5, we consider the highly compressible Lévy signal with Cauchy increments [55].
We again see that CCS-MMSE yields the best SNR performance, while ortho-MAP yields
the worse one.

Finally, it is important to note that the results of CCS-MMSE presented here are fully com-
patible with the message-passing MMSE estimator developed in Chapter 4. This implies
that CCS-MMSE does indeed perform MMSE estimation for Lévy processes in AWGN.

3.7 Summary

We have considered cycle spinning as a simple tool for boosting the performance of
wavelet-domain statistical estimators. We have established the convergence result of the
iterative cycle-spinning technique for solving linear inverse problems. We have proved
that the algorithm converges to the minimizer of a regularized least-squares cost function
where the regularizer penalizes translation-invariant wavelet coefficients in the analysis
form [48].

We have then introduced the CCS technique that performs estimation in the synthesis
form. We empirically illustrated its application for performing MAP and MMSE denoising
with redundant wavelets. Although, the current formulation of CCS is restricted to the
problem of signal denoising, the obtained results are encouraging and show the potential
of MMSE type estimators. We will see in Chapter 5 an alternative way of obtaining similar
estimators for other types of linear inverse problems.

One can imagine numerous possible extensions of our results. The analysis of cycle spin-
ning presented in this chapter was deterministic; an interesting avenue for future research
would be to see if it also holds in the stochastic setting, where kt would be generated
randomly at each iteration. Our analysis indicates that the rate of convergence of cycle
spinning is no worse than O (1/

p
t). A possible direction of research is to search for a

faster convergence rate by using various standard acceleration techniques for ISTA algo-
rithms [21]. On the other hand, the empirical MMSE performance of CCS requires an
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in-depth investigation, which is also a topic of future research.

3.8 Appendix

3.8.1 Useful Facts from Convex Analysis

Before embarking on the actual proof of Theorem 3.1, it is convenient to summarize a few
facts that will be used next.

A subgradient of a convex function f at x is any vector g that satisfies the inequality
f (y) ≥ f (x) + 〈g,y− x〉, for all y. When f is differentiable, the only possible choice for g
is ∇ f (x). The set of subgradients of f at x is the subdifferential of f at x, denoted ∂ f (x).
The condition that g be a subgradient of f at x can then be written g ∈ ∂ f (x).

The proximal operator is defined as

x= proxφ(z;γ) (3.17)

= arg min
x∈X

�
1

2
‖x− z‖2

2 + γφ(x)

�
,

where X ⊆ RN , γ > 0 and φ is a convex continuous function. The proximal operator is
characterized by the following inclusion, for all x,z ∈ X :

x= proxφ(z;γ)⇔ z− x ∈ γ∂ φ(x). (3.18)

We say that an operator T : X → X is nonexpanding if, for all x,z ∈ X , it satisfies
‖Tx− Tz‖2 ≤ ‖x− z‖2. Note that the proximal operator is nonexpansive.

Next, we present the Browder-Göhde-Kirk’s fixed-point theorem. It is a standard theorem
in convex analysis (see [56, Theorem 4.19])

Theorem 3.2. LetX be a nonempty bounded closed convex subset of RN and let T :X →X
be a nonexpansive operator. Then, the operator T has a nonempty set of fixed points, i.e.,

Fix T 6= ;.

The Krasnoselskii–Mann theorem will also be of use (see [56, Theorem 5.14]).

Theorem 3.3. Let X be a nonempty closed convex subset of RN , let T : X → X be a

nonexpansive operator such that Fix T 6= ;, let (θt)t∈N be a sequence in (0,1) such that∑
t∈N θt(1−θt) =∞, and let x0 ∈ X . Set bxt = bxt−1+θt(Tbxt−1−bxt−1). Then, the sequence

{bxt}t∈N converges to a point in Fix T.

3.8.2 General Model

For the purpose of our analysis, we consider the cost function

CCS(x) =
1

K

K∑

k=1

Ck(x) = D(x) +
1

K

K∑

k=1

φk(x). (3.19)

It is more general that the cost function of Theorem 3.1, which it includes as a special
case. We shall also make the following assumptions:

– The feasible setX ⊆ RN is nonempty, convex, bounded, and closed. There exists D > 0
such that for all x,z ∈ X ,‖x− z‖2 ≤ D.

– D : RN → R is convex and differentiable, with a Lipschitz-continuous gradient. There
exists L > 0 such that, for all x,z ∈ X ,‖∇D(x)−∇D(z)‖2 ≤ L‖x− z‖2.

34



3.8. Appendix

Algorithm 3.3: Minimizes: CCS(x) = D(x) + (1/K)
∑K

k=1φk(x)

input: data y, initial guess bx0,
steps {γt}t∈N in (0,1/L] where L is the Lipschitz constant of ∇D,
and an efficient implementation of ∇D and proxφk

.
set: t ← 1
repeat

kt ← 1+ (t − 1 mod K) (choice of regularizer)
zt ← bxt−1 − γt∇D(bxt−1) (gradient step)
bxt ← proxφk

(zt ;γt) (shrinkage step)
t ← t + 1

until stopping criterion
return bxt

– For each k, φk is a continuous, convex function that is possibly nondifferentiable.

– The gradient of D and the subgradients of φk are bounded. There exists G > 0 such
that, for all k and all x ∈ X , ‖∇D(x)‖2 ≤ G and ‖∂ xφk(x)‖2 ≤ G.

Note that for φk(x) = ‖Wkx‖1, we have ∂ x‖Wkx‖1 = {WT
k
g | ‖g‖∞ ≤ 1, 〈WT

k
g,x〉 =

‖Wkx‖1}, which indeed implies that the subgradients are bounded [57]. Then, the Al-
gorithm 3.1 is a special case of the proximal-gradient algorithm summarized in Algo-
rithm 3.3.

3.8.3 Main Technical Lemmas

The proof of Theorem 3.1 relies on two lemmas that we shall prove now.

Lemma 3.1. For all t = 1, 2, . . . , and for any x∗ ∈ X , we have that

Ckt

�bxt
�
−Ckt

�
x∗
�

(3.20)

≤
1

2γt

�
‖bxt−1 − x∗‖2

2 −‖bxt − x∗‖2
2

�
+ 6γt G

2.

Proof. The optimality condition of (3.18) implies that there must exist a vector gt ∈
∂ xφkt

(bxt) such that

bxt = bxt−1 − γt

�
∇D(bxt−1) + gt

�
. (3.21)

Then, we can write

‖bxt − x∗‖2
2 = ‖bxt−1 − γt

�
∇D(bxt−1) + gt

�
− x∗‖2

2 (3.22)

= ‖bxt−1 − x∗‖2
2 − 2γt〈∇D(bxt−1) + gt ,bxt−1 − x∗〉

+ γ2
t
‖∇D(bxt−1) + gt‖2

2.

By using the triangle inequality, we can bound the last term as

‖∇D(bxt−1) + gt‖2
2 ≤ 4G2. (3.23)
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To bound the second term we proceed in two steps. We first write that

〈∇D(bxt−1),bxt−1 − x∗〉
(a)
≥D(bxt−1)−D(x∗) (3.24)

(b)
≥D(bxt)− 〈∇D(bxt),bxt − bxt−1〉 −D(x∗)
= D(bxt)−D(x∗)− 〈∇D(bxt),−γt

�
∇D(bxt−1) + gt

�
〉

(c)
≥D(bxt)−D(x∗)− 2γt G

2,

where in (a) and (b) we used the convexity of D, in (c) we used the Cauchy-Schwarz
inequality and the bound on the gradient. Then, in a similar fashion, we can also write
that

〈gt ,bxt−1 − x∗〉= 〈gt ,bxt − x∗〉 − 〈gt ,bxt − bxt−1〉 (3.25)
(a)
≥φkt

(bxt)−φkt
(x∗)− 〈gt ,−γt

�
∇D(bxt−1) + gt

�
〉

(b)
≥φkt

(bxt)−φkt
(x∗)− 2γt G

2,

where in (a) we used the convexity of φkt
, in (b) we used the Cauchy-Schwarz inequality

followed with a bound on the gradient.

By plugging (3.23), (3.24), and (3.25) into (3.22), by reorganizing the terms, and by
using the definition Ckt

(x) = D(x) +φkt
(x), we obtain the claim.

Lemma 3.2. With {bxt}t∈N in X and x̄ ∈ X , let bxt → x̄. Then,

lim
n→∞

(
1

nK

nK∑

t=1

Ckt
(bxt)

)
= CCS(x̄). (3.26)

Proof. We introduce the shorthand notation δt = Ckt
(bxt)−Ckt

(x̄). The convergence of bxt

and the continuity of Ck imply that, for a given ε > 0, there exists an m such that, for all
t > mK , |δt |= |Ckt

(bxt)−Ckt
(x̄)|< ε/2. Then,

�����
1

nK

nK∑

t=1

Ckt
(bxt)−CCS(x̄)

�����=
�����

1

nK

nK∑

t=1

�
Ckt
(bxt)−Ckt

(x̄)
�
�����

≤
1

nK

�����

mK∑

t=1

δt

�����+
1

nK

�����

nK∑

t=mK+1

δt

�����

≤
1

nK

mK∑

t=1

��δt

��+
1

nK

nK∑

t=mK+1

��δt

�� (3.27)

≤
m

n

�
max

t∈[1...mK]
|δt |
�
+

�
1−

m

n

��
max

t∈[mK+1...nK]
|δt |
�

.

Now, considering ñ ≥ (2m/ε)
�

maxt∈[1...mK] |δt |
�

and realizing that the second term is
bounded by ε/2, we conclude that, for a given ε > 0, there exists ñ such that, for all
n> ñ, �����

1

nK

nK∑

t=1

Ckt
(bxt)−CCS(x̄)

�����< ε. (3.28)
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3.8.4 Proof of Theorem 3.1

Let x∗ denote a minimizer of CCS. We introduce the shorthand notation ∆t = ‖bxt − x∗‖2
2.

By following an approach similar to [58], we sum the bound in Lemma 3.1

nK∑

t=1

�
Ckt
(bxt)−Ckt

(x∗)
�
=

nK∑

t=1

Ckt
(bxt)− nKCCS(x

∗)

≤
1

2

nK∑

t=1

1

γt

�
∆t−1 −∆t

�
+ 6G2

nK∑

t=1

γt

≤
1

2γ1
∆0 +

1

2

nK−1∑

t=1

�
1

γt+1
−

1

γt

�
∆t + 6G2

nK∑

t=1

γt

(a)
≤

D2

2γ1
+

D2

2

nK−1∑

t=1

�
1

γt+1
−

1

γt

�
+ 6G2

nK∑

t=1

γt

≤
D2

2γnK

+ 6G2
nK∑

t=1

γt , (3.29)

where in (a) we used the boundedness of X . Then, by choosing γt = 1/(L
p

t), by using
the bound

∑T

t=1 1/
p

t ≤ 2
p

T , and by dividing the two sides of inequality by nK , we
obtain

1

nK

nK∑

t=1

Ckt
(bxt)−CCS(x

∗)≤
C
p

n
, (3.30)

where the constant C is given by

C =
LD2

2
p

K
+

12G2

L
p

K
. (3.31)

To complete the proof, we argue that the sequence {bxt}t∈N converges to a fixed point inX .
On one hand, note that, due to the nonexpansiveness of proxφkt

(·;γt) and the Lipschitz
property of D, the operator Tk :X →X ,

Tkx= proxφk

�
x− γ∇D(x);γ

�
(3.32)

is nonexpanding for any γ ∈ (0,1/L]. Therefore, the composition T = TK · · ·T1 is also
nonexpanding. Then, from Theorem 3.2, we know that there exists at least one fixed-
point of T in X . On the other hand, for our choice γt = 1/(L

p
t), Theorem 3.3 implies

that the subsequence generated via bxK t = TbxK(t−1) converges to the fixed-point x̄ ∈ Fix T.
Since, γt → 0, we have that

�
bxt−1 − Tkt

bxt−1
�
→ 0 and conclude that bxt → x̄. Finally, this

allows us to show that

0
(a)
≤CCS(x̄)−CCS(x

∗)

(b)
= lim

n→∞

(
1

nK

nK∑

t=1

Ckt
(bxt)

)
−C ∗CS

(c)
≤0, (3.33)

where (a) comes from the optimality of x∗, (b) from Lemma 3.2, and (c) from the upper
bound (3.30).

37





Chapter 4

Optimal Estimators for Denoising Lévy
Processes

4.1 Overview

In this chapter, we investigate a stochastic signal-processing framework for signals with
sparse derivatives. The signal model is based on Lévy processes that include the well-known
Brownian motion and piecewise-constant Poisson process; moreover, the Lévy family also
contains other interesting members exhibiting heavy-tail statistics that fulfill the require-
ments of compressibility. We use our simple generative model to develop and test various
standard reconstruction algorithms. For example, we will see that the MAP estimator for
the Lévy process with Laplace increments coincides with total-variation (TV) regulariza-
tion.

In order to concentrate on the important issue of the dependancy between various recon-
struction algorithms and our prior probability model, we restrict ourselves to the problem
of signal denoising. There are two main advantages of working in this simplified regime:
(i) the estimated solutions do not depend on the type of measurement model H; (ii) it
becomes possible to develop a tractable computational method for evaluating the MMSE
estimator. In fact, one of our major contributions here is a novel implementation of the
MMSE estimator based on the belief propagation algorithm performed in the Fourier do-
main. Our algorithm takes advantage of the fact that the joint statistics of general Lévy
processes are much easier to describe by their characteristic function, as the probability
densities do not always admit closed form expressions. We then use our new estimator as
a benchmark to compare the performance of existing algorithms for optimal recovery of
signals with sparse gradients 1.

4.2 Introduction

We restrict our attention to the problem of estimating a signal x from a noisy vector y =
x+e where the components of e are independent and distributed with a known probability
distribution. It is clear that if we suppose that the components of the vector x are also
independent, then the estimation problem becomes separable and reduces to N scalar
estimation problems. In practice, however, due to correlations between the components
of x, simple pointwise techniques are suboptimal and more refined methods often perform
significantly better. Here, we consider the problem of estimating signals that have sparse

1. This chapter is based on our paper [51]
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derivatives. We take a continuous-domain perspective and propose Lévy processes [15,
53,54,59] as a natural approach to model such signals.

The fundamental defining property of a Lévy process is that it has independent and sta-
tionary increments. Therefore, the application of a finite-difference operator on samples
of a Lévy process decouples it into a sequence of independent random variables. Interest-
ingly, the class of Lévy processes is in one-to-one correspondence with the class of infinitely
divisible distributions. Such distributions typically exhibit a heavy-tail behavior that has
recently been proven to fulfill the requirements of compressibility [55, 60]. Therefore,
Lévy processes can be considered as the archetype of sparse stochastic signals [15].

Many recent algorithms for the recovery of sparse signals can be interpreted as MAP es-
timators relying on some specific priors. From this Bayesian perspective, state-of-the-art
methods based on gradient regularizers, such as TV [35] minimization, implicitly assume
the signals to be sampled instances of Lévy processes [61]. Our aim is to investigate MMSE
estimator for Lévy processes. The estimator provides a lower-bound on the mean-squared
error (MSE) for the problem of recovery of signals with sparse derivatives. Unfortunately,
due to high-dimensional integration, MMSE estimators are computationally intractable
for general signals. By considering the Lévy signal model, we propose a novel method
for computing the MMSE estimator based on the belief-propagation (BP) algorithm on
cycle-free factor graphs [62–64].

The main contributions in this chapter are as follows:

– Bayesian formulation of the signal-recovery problem under the Lévy hypothesis for a
general “signal+noise” measurement model. With this formulation, we are able to
derive an equivalence between MAP estimators for Lévy processes and some existing
algorithms for the recovery of sparse signals.

– Characterization of the MSE optimal solution and the determination of performance
bounds. We show that the MMSE estimator can be computed directly with the BP al-
gorithm. The algorithm also obtains the marginals of the posterior distribution, which
allows us to estimate the MSE of the reconstruction and to provide confidence inter-
vals.

– Development of a novel frequency-domain message-passing algorithm specifically tai-
lored to the MMSE estimation of Lévy processes. Some of the sparsest priors con-
sidered here do not have closed-form probability density functions. Indeed, they are
represented in terms of their characteristic function obtained by the Lévy-Khintchine
theorem [53,54]. The frequency-domain algorithm allows us to use the characteristic
function directly without any numerical inversion.

– Experimental evaluation and comparison with standard solutions such as LMMSE, ℓ1–
minimization, and ℓp–relaxation [65]. In particular, the availability of MMSE allows
us to benchmark these estimators on signals with desired properties such as sparsity.

4.3 Signal and Measurement Model

In this section, we describe the signal model summarized in Figure 4.1. We first give a
powerful, yet simple continuous-domain stochastic formulation of the signal. The one-to-
one mapping between our model and the extended family of infinitely divisible distribu-
tions is discussed. We finally describe the measurement model and provide examples of
typical measurement channels.
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z ∈ R
M y ∈ R

M

Sparse Lévy
Process Sampling Componentwise

Measurement Channel

Available
Measurements

Unknown
Samples

Figure 4.1: Signal model considered in this work. The continuous-domain Lévy process
x(t) is sampled, and the resulting vector z ∈ RM is passed through a separable measure-
ment channel py|z to yield y ∈ RM . We investigate the estimation of interpolated vectors
x ∈ RN , N ≥ M , from the noisy measurements y.

4.3.1 Lévy Processes

Stochastic processes are often used to model random signals, the Brownian motion and
the Poisson process being the two most common examples. Lévy processes—often seen as
analogues of random walks in continuous time—extend those two processes to a larger
family of distributions. They represent a fundamental and well-studied class of stochastic
processes [53, 54]. Let {x(t) : t ≥ 0} be a continuous-time stochastic process. It is called
a Lévy process if

1. x(0) = 0 almost surely;

2. for each N ∈ N and 0 ≤ t1 < t2 < · · · < tN < ∞ the random variables {x(tn+1)−
x(tn) : 1≤ n≤ N − 1} are independent;

3. for each 0≤ t1 < t2 <∞, the random variable
�

x(t2)− x(t1)
�

is equal in distribution
to x(t2 − t1);

4. for all ε > 0 and for all t1 ≥ 0

lim
t2→t1

Prob
���x(t2)− x(t1)

��> ε
�
= 0.

Together, Properties 2 and 3 are commonly referred to as the stationary-independent-

increments property, while Property 4 is called the stochastic continuity.

One of the most powerful results concerning Lévy processes is that they are in one-to-one
correspondence with the class of infinitely divisible probability distributions. The random
variable x is said to be infinitely divisible if, for any positive n ∈ N, there exist i.i.d. random
variables y (1), . . . , y (n) such that

x
d
= y (1) + · · ·+ y (n).

In other words, it must be possible to express the pdf px as the n-th convolution power of
py . In fact, it is easy to show that the pdf of the increment ut = x(t+ s)− x(s) of length t

of any Lévy process is infinitely divisible

ut

d
= x(t)

d
=u

(1)
t/n
+ · · ·+ u

(n)

t/n
,

where each

u
(k)

t/n
= x

�
kt

n

�
− x

�
(k− 1)t

n

�
.

The increments u
(k)

t/n
are of length t/n and are i.i.d. by the stationary-independent-increments

property. Conversely, it has also been proved that there is a Lévy process for each infinitely
divisible probability distribution [53].

41



4. OPTIMAL ESTIMATORS FOR DENOISING LÉVY PROCESSES

20 40 60 80 100 120

!"#$%&'()*")$+',')

20 40 60 80 100 120

!-#$.'+/'0)1$2'*33')$/&'4533

20 40 60 80 100 120

!4#$6"/7"45$*)4&5+5)8$/&'4533

20 40 60 80 100 120

!1#$69:;$<*=>8$/&'4533

Figure 4.2: Sample paths of Lévy processes discussed in this chapter.

The fundamental Lévy-Khintchine formula provides the characteristic function of all in-
finitely divisible distributions: pu is an infinitely divisible probability distribution if and
only if its characteristic function can be written as

p̂u(ω) =E
�

ejωu
�
= exp

�
jaω−

1

2
bω2 +

∫

R\{0}

�
ejωz − 1− jzωI|z|<1(z)

�
v(z) dz

�
,

where a ∈ R, b ≥ 0, and where I|z|<1 is an indicator function. The function v ≥ 0 is the
Lévy density satisfying ∫

R\{0}
min

�
1, z2

�
v(z) dz <∞.

The representation of p̂u by a triplet (a, b, v(·)) is unique. Here, we limit our attention
to even-symmetric pdfs pu(x) = pu(−x) which results in the simplified Lévy-Khintchine
formula

p̂u(ω) = exp
�
− 1

2
bω2 −

∫

R\{0}
(1− cos (ωz)) v(z) dz

�
. (4.1)

4.3.2 Examples

We now give examples of a few Lévy processes that are particularly interesting for us.
Sample paths of these processes are shown in Figure 4.2. Without loss of generality, we
assume an increment u= x(s)− x(s− 1) for some fixed s ≥ 1.

1. Brownian Motion: By setting a = 0 and choosing the Lévy density v(z) = 0, we ob-
tain the familiar Brownian motion that has stationary independent increments char-
acterized by

p̂u(ω) = e−
1
2

bω2

, (4.2)
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with b ≥ 0. This implies that the increments of the resulting Lévy process are Gaussian
random variables with mean 0 and variance b, which corresponds to u∼N (0, b). We
illustrate in Figure 4.2(a) a single realization of a Brownian motion.

2. Compound Poisson Process: Let {zk : k ∈ Z+} be a sequence of i.i.d. random vari-
ables with distribution pz and let n(t) ∼ Poisson(λ) be a Poisson process of intensity
λ > 0 that does not depend on any zk. The compound Poisson process y is then
defined as

y(t) =

n(t)∑

k=1

zk,

for each t ≥ 0. This is a Lévy process obtained by setting the parameter triplet to
(0, 0, v(z) = λpz(z)), which results in the characterization of increments

p̂u(ω) = eλ(p̂z(ω)−1), (4.3)

where p̂z is the Fourier transform of pz . On finite intervals, the sample paths of the
process are piecewise-constant (Figure 4.2(b)), while the size of the jumps is deter-
mined by pz [54]. Compound Poisson processes are piecewise-constant signals for
which TV-like estimation algorithms are well suited [66]. The parameter λ controls
the sparsity of the signal; it represents the rate of discontinuities.

3. Laplace Increment Process: The Lévy process with Laplace-distributed increment u

is obtained by setting the parameter triplet to
�

0, 0, v(z) = e−λ|z|/|z|
�

, which results
in

p̂u(ω) =
λ2

λ2 +ω2 , (4.4)

where λ > 0 is the scale parameter of the Laplace distribution. To obtain the charac-
teristic function (4.4), we remark that

log
�

p̂u(ω)
�
=

∫

R\{0}

�
ejωz − 1

� e−λ|z|

|z| dz

= 2

∫ ∞

0

(cos (ωz)− 1)
e−λz

z
dz.

Then, by differentiation with respect to ω and integrating back using the condition
p̂u(0) = 1, we obtain (4.4). The corresponding pdf is

pu(u) =
λ

2
e−λ|u|. (4.5)

An interesting observation is that the Bayesian MAP interpretation of the TV reg-
ularization method with a first-order finite-differences operator inherently assumes
the underlying signal to be a Lévy process with Laplace increments. We give in Fig-
ure 4.2(c) an illustration of such a process.

4. Lévy-Flight Process: Stable random variables are such that a linear combination of
two independent ones results in a third stable random variable [53]. In the symmetric
case, they are often referred to as symmetric α-stable random variables and written as
u ∼ SαS, where 0 < α < 2 is the stability parameter. It is possible to generate a Lévy
process with α-stable increments by setting

�
0,0, v(z) = cα/|z|1+α

�
, which results in

p̂u(ω) = e−ρ|ω|
α

, (4.6)

with ρ > 0 and 0 < α < 2. Such distributions are heavy-tailed and are known
to result in highly compressible sequences [55]. A sample signal generated from a
Cauchy-increment Lévy flight, which corresponds to the α-stable process with α = 1,
is illustrated in Figure 4.2(d).
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4.3.3 Innovation Modeling

Recently, an alternative system-theoretic formulation of Lévy processes was proposed in
the context of the general theory of sparse stochastic processes [15]. The authors specify
the Lévy process {x(t) : t ≥ 0} as the solution of the stochastic differential equation

d

dt
x(t) = w(t), (4.7)

where the differentiation is interpreted in the weak sense of distributions. The process w is
a non-Gaussian white noise referred to as a continuous-time innovation process. According
to the formalism developed in [15], the Lévy process is then generated by integrating the
white noise according to

x(t) =

∫ t

0

w(t ′) dt ′, (4.8)

which provides a convenient linear-system interpretation. The only delicate aspect of this
interpretation is that the white noise must be considered as a tempered distribution, since
it is too rough to admit a classical interpretation as a function of t. The result confirms
that, for all positive k ∈ Z+, the quantities

uk = x(k)− x(k− 1) = Dd x(k)

=

∫ k

k−1

w(t) dt = 〈rect
�
· − k+ 1

2

�
, w(·)〉

(4.9)

are i.i.d. random variables that can be seen as discrete innovations [67]. The symbol
〈·, ·〉 denotes an inner product between two functions, Dd is the finite-difference operator,
and rect is the rectangular function, which is 1 inside the interval [−1/2, 1/2] and zero
outside. The fundamental observation is that the increment is obtained by applying the
discrete version of the derivative to x , in an attempt to emulate (4.7) using discrete means
only.

4.3.4 Measurement Model

Consider the measurement model illustrated in Figure 4.1. The vector z ∈ RM contains
the uniformly sampled values of x

zm = x(m∆s), (m= 1, . . . , M) (4.10)

where ∆s > 0 is the sampling interval. The components of y are generated by a separable
measurement channel given by the conditional probability distribution

py|z(y |z) =
M∏

m=1

py |z(ym | zm). (4.11)

The measurement channel models distortions affecting the signal during the acquisition
process. This chapter addresses the computation of the estimator bx of the vector x ∈ RN

on some uniform grid
xn = x(n∆e), (n= 1, . . . , N) (4.12)

where ∆e > 0 is the interpolation interval. We wish to minimize the squared-error of the
reconstruction in the situations when ∆s = ms∆e for some positive ms ∈ N. This implies
that in general N ≥ M . In other words, we seek more estimates than there are samples.
The special case N = M reduces the problem to signal denoising. From now on, we
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assume ∆s(M − 1) = ∆e(N − 1) and set ∆e = 1 to simplify the expressions. In particular,
this implies that for any ms =∆s/∆e we have zm = xms(m−1)+1 for all m ∈ [1 . . . m].

The generality of the measurement channel allows us to handle both signal–dependent
and –independent distortions. Some common noise models encountered in practice are

1. Additive White Gaussian Noise: The measurements in the popular AWGN noise
model are given by y = z+ e, where e ∈ RN is a signal-independent Gaussian vector
with i.i.d components en = yn − zn ∼ N (0,σ2). The transitional probability distribu-
tion then reduces to

py |z(y | z) = G (y − z;σ2). (4.13)

2. Scalar Quantization: Another common source of signal distortion is the analog-
to-digital converter (ADC). When the conversion corresponds to a simple mapping
of the analog voltage input to some uncoded digital output, it can be modeled as
standard AWGN followed by a lossy mapping Q : R → C . The nonlinear func-
tion Q is often called a K-level scalar quantizer [68]. It maps the K-partitions of
the real line

¦
Q−1(ci) : i = 1, . . . , K

©
⊆ R into the set of discrete output levels C =�

ci : i = 1, . . . , K
	
. This channel is signal-dependent. It is described in terms of the

transitional probability distribution

py|z(y | z) =
∫

Q−1(y)

G (z′ − z;σ2) dz′, (4.14)

where Q−1(y) =
�
z ∈ R : Q(z) = y

	
denotes a single partition.

4.4 Bayesian Formulation

We now specify explicitly the class of problems we wish to solve and identify correspond-
ing statistical estimators. Consider the vector u ∈ RN obtained by applying the finite-
difference matrix D to x, whose components are given in (4.12). Then, from the stationary
independent increments property of Lévy processes the components

un = [Dx]n = xn − xn−1, (4.15)

of the vector u are realizations of i.i.d. random variables characterized by the simplified
Lévy-Khintchine formula (4.1). Note that, from the definition of the Lévy process we have
x0 = 0. We construct the conditional probability distribution for the signal x given the
measurements y as

px|y (x |y)∝ py|x (y |x) px (x)

∝
M∏

m=1

py|z(ym | zm)

N∏

n=1

pu

�
[Dx]n

�
,

(4.16)

where we use ∝ to denote identity after normalization to unity. The distribution of the
whitened elements pu is, in principle, obtained by taking the inverse Fourier transform
pu(u) = F−1 �p̂u

	
(u); however, it does not necessarily admit a closed-form formula. The

posterior distribution (4.16) of the signal provides a complete statistical characterization
of the problem. In particular, the MAP and MMSE estimators of x are specified by

bxMAP = argmax
x∈RN

¦
px|y (x |y)

©
(4.17a)

bxMMSE = E [x |y]. (4.17b)
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4.4.1 MAP Estimation

An estimation based on the minimization of some cost functional is a popular way of
obtaining the MAP estimator bxMAP. The availability of efficient numerical methods for
convex and nonconvex optimization partially explain the success of such methods [36,38,
66,69]. The MAP estimator in (4.17a) can be reformulated as

bxMAP = arg max
x∈RN

¦
px|y (x |y)

©

= arg min
x∈RN

�
D (x) +φu (Dx)

	
,

(4.18a)

where

D (x) = −
M∑

m=1

log
�

py|z(ym | zm)
�
, (4.18b)

φu (Dx) = −
N∑

n=1

log
�

pu

�
[Dx]n

��
. (4.18c)

The term D is the data term and φu the regularization term.

In the AWGN, model the MAP estimation reduces to the popular regularized least-squares
minimization problem

bxMAP = arg min
x∈RN

(
1
2
‖y− z‖2

2 +σ
2

N∑

n=1

φu

�
[Dx]n

�
)

, (4.19)

where z ∈ Rm is given in (4.10).

The estimator in (4.19) clearly illustrates the connections between the standard varia-
tional methods and our stochastic model. In particular, in the framework of the Lévy
process, the Brownian motion yields the classical Tikhonov regularizer. The Lévy process
with Laplace increments provides the ℓ1–based TV regularizer. Finally, the Lévy-flight pro-
cess results in a log–based regularizer that is linked to the limit case of the ℓp relaxation
as p tends to zero [65, 70]. Such regularizers have been shown to be effective in several
problems of the recovery of sparse signals [38,66]. In [41] the authors have proposed an
efficient method for solving the regularized-least-squares–based MAP denoising of Lévy
processes. We also point out that the MAP estimation of compound Poisson processes
yields a trivial solution due to a point mass at zero.

4.5 Message-Passing Estimation

4.5.1 Exact Formulation

In this section, we specify the MMSE estimator bxMMSE in (4.17b) for the signals under the
Lévy-process model. Unfortunately, due to the high-dimensionality of the integral, this
estimation is intractable in the direct form. We propose to use the sum-product belief-
propagation (BP) [62] method to efficiently approximate the marginalization of the pos-
terior (4.16), whose direct computation is intractable otherwise. The BP–based message-
passing methods have successfully been used in numerous inference problems in statistical
physics, computer vision, channel coding, and signal processing [24,62–64,71–75].

In order to apply the BP, we construct the bipartite factor-graph G = (V, F, E), structured
according to the posterior distribution in (4.16). We illustrate in Figure 4.3 an example
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. . .

. . .

1 2 3 4 N xN

pu ([Dx]N )

N +MN + 2N + 1

py|z(yM | zM )

Figure 4.3: Factor-graph representation of the posterior distribution (4.16) with ms = 2.
In the graph, square factor nodes represent the probability densities and circled variable
nodes represent the unknowns. The functions µl

2 and µr
2 represent beliefs at the variable

node 2.

of a factor-graph for ms = 2. The graph consists of two sets of nodes, the variable nodes
V = {1, . . . , N} (circles), the factor nodes F = {1, . . . , N +M} (squares), and a set of edges
E linking variables to the factors they participate in. To introduce the BP algorithm, we
define the functions µl

n
and µr

n
, which denote the messages exchanged along the edges

of the graph. These messages—often referred to as beliefs—are in fact pdfs representing
the desirable state of the variable node n. We also define for all n ∈ (1 . . . N) and j =

1+ (n− 1)/ms the function

ηn(x) =

¨
py |z(y j | x), when j ∈ N
1, otherwise.

(4.20)

Whenever the component xn has a corresponding measurement, the function ηn is equiva-
lent to the probability distribution of the noise. Otherwise, ηn is equivalent to the constant
function.

Given the measurements y ∈ RM and the functions ηn and pu, the steps of the BP estima-
tion are

1. Initialization: Set

µl
1(x) = pu(x), (4.21a)

µr
N
(x) = 1. (4.21b)

2. Message Updates: For n= 1, . . . , N − 1, compute

µl
n+1(x)∝

∫

R

pu(x − z)ηn(z)µ
l
n
(z) dz, (4.22a)

µr
N−n
(x)∝

∫

R

pu(z − x)η j(z)µ
r
j
(z) dz, (4.22b)

where j = N − n+ 1. As in (4.16), the symbol ∝ denotes identity after normalization
to unity. Since the pdf pu is symmetric, the expressions can be rewritten in terms of
the convolutions µl

n+1 ∝ pu ∗ηnµ
l
n

and µr
N−n
∝ pu ∗η jµ

r
j
.

3. Result: For n= 1, . . . , N , compute

�bxMMSE

�
n =

∫

R

x pxn|y (x |y) dx , (4.23a)

where the marginal pdf is obtained by

pxn|y (x |y)∝ µ
l
n
(x)µr

n
(x)ηn(x). (4.23b)
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The proposed update rules recursively marginalize the posterior distribution, reducing
intractable high-dimensional integration into 2N convolutions. It is well-known that BP
gives exact marginal probabilities for all the nodes in any singly connected graph. Conse-
quently, for our problem the solution of the algorithm coincides with bxMMSE.

4.5.2 Fourier-Domain Alternative

The BP algorithm presented in Section 4.5.1 assumes availability of a closed-form expres-
sion for the pdf pu. Unfortunately this form is often unavailable, since the distribution is
defined by its characteristic function p̂u obtained by the Lévy-Khintchine formula (4.1).
When the general shape of the pdf is unknown, a naïve numerical evaluation of the in-
verse Fourier-transform of the characteristic function can lead to unexpected results. As
an example, consider the compound Poisson process. The characteristic function (4.3)
describes the distribution of the increments, but does not generally admit a closed-form
expression of its inverse Fourier transform. Moreover, it results in a pdf containing a
probability mass (a Dirac delta function) at zero, which needs to be taken into account
explicitly for a correct numerical inversion.

Fortunately, the BP algorithm presented above can readily be performed in the frequency
domain. The message-update equations are obtained by the convolution property of the
Fourier transform, which amounts to switching the role of multiplications and convolu-
tions in (4.22) and (4.23b). The final estimation step is also simplified by applying the
moment property ∫

R

xn f (x) dx = jn
dn

dωn
f̂ (ω)

����
ω=0

, (4.24)

where f̂ (ω) =
∫
R

f (x)e−jωx dx is the Fourier transform of f .

1. Initialization: Set

µ̂l
1(ω) = p̂u(ω), (4.25a)

µ̂r
N
(ω) = δ(ω), (4.25b)

where δ is the Dirac delta function.

2. Message updates: For n= 1, . . . , N − 1, compute

µ̂l
n+1(ω)∝ p̂u(ω) · (η̂n ∗ µ̂l

n
)(ω), (4.26a)

µ̂r
N−n
(ω)∝ p̂u(ω) · (η̂ j ∗ µ̂r

j
)(ω), (4.26b)

where j = N − n+ 1. The symbol ∝ denotes identity after normalization by the zero
frequency component. The functions η̂n represent the Fourier transform of (4.20).

3. Result: For n= 1, . . . , N , compute

�bxMMSE

�
n = j

d

dω
p̂xn|y (ω |y)

����
ω=0

, (4.27a)

where the characteristic function p̂xn|y (ω |y) of the marginalized posterior is obtained
by

p̂xn|y (ω |y)∝
�
µ̂l

n
∗ µ̂r

n
∗ η̂n

�
(ω). (4.27b)

Note that (4.27a) and (4.27b) can be evaluated with a single integral. This is achieved by
reusing convolutions in (4.26) and evaluating the derivative only at zero.
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4.5.3 Implementation

In principle, the BP equations presented above yield the exact MMSE estimator for our
problem. However, due to the existence of continuous-time integrals in the updates, they
cannot be implemented in the given form. To obtain a realizable solution, we need to
choose some practical discrete parameterization for the messages exchanged in the al-
gorithm. The simplest and the most generic approach is to sample the functions and
represent them on a uniform grid with finitely many samples. In our implementation, we
fix the support set of the functions to

�
−KΩ,εΩ, KΩ,εΩ

�
Z
. We retain only these samples

for which f (x) ≥ ε. Thus, the total number of samples for representing the function
depends on both the truncation parameter ε > 0 and on the sampling step Ω > 0. It is
given by LΩ,ε = 2KΩ,ε + 1. The proper parameter values depend on the distribution to
represent and on the measurements y. Then, both time- and frequency-domain versions
can be obtained by approximating continuous integrals by standard quadrature rules. In
our implementation, we use Riemann sums to approximate the integrals.

4.6 Experimental Evaluation

We now present several experiments with the goal of comparing various signal-estimation
methods. The performance of the estimator is judged based on the MSE given by

MSE ¬ 10 log10

�
1

N
‖x− bx‖2

2

�
, (4.28)

where x,bx ∈ RN . We concentrate on the four Lévy processes discussed in Section 4.3.2
and set the parameters of these processes as

– Brownian Motion: The increments are generated from a standard Gaussian distribu-
tion with un = [Dx]n ∼N (0,1).

– Compound Poisson Process: We concentrate on sparse signals and set the mass prob-
ability to P

�
un = 0

�
= e−λ = 0.9. The size of the jumps follow the standard Gaussian

distribution.

– Laplace Increment Process: The increments are generated from the Laplace distribu-
tion of scale λ = 1.

– Lévy Flight: We set the distribution of the increments to be Cauchy (α= 1) with scale
parameter ρ = 1.

4.6.1 AWGN Denoising

In the first set of experiments, we consider the denoising of Lévy processes in AWGN.
We compare the performance of several popular estimation methods over a range of noise
levels σ2. We perform 1000 random realization of the denoising problem for each value of
σ2 and plot the average MSE in Figures 4.4–4.7. The signal length is set to N = M = 200.
The proposed message-passing estimator is compared with the regularized least-squares
estimators

bx= arg min
x∈RN

(
1
2
‖y− x‖2

2 +τ

N∑

n=1

φu

�
[Dx]k

�
)

, (4.29)

where D is a finite-difference matrix and τ > 0 is the regularization parameter optimized
for the best MSE performance.

The curve labeled LMMSE corresponds to the MSE optimal linear estimator, which can
be obtained by setting the potential function φu (x) = x2 [76]. The TV method corre-
sponds to the potential function φu (x) = |x | and can be efficiently implemented by the
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Figure 4.4: Denoising of Brownian motion.
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Figure 4.5: Denoising of compund Poisson process.

FISTA [36]. The Log estimator corresponds to the potential functionφu (x) = log
�

x2 + ε
�

,
where the parameter ε > 0 controls the sparsity of the signal. Log-based regulariz-
ers have been shown to outperform traditional ℓ1-based regularizers in various applica-
tions [38,66]. In our experiments, we fix ε = 1, which corresponds to the MAP estimator
for the Lévy-flight process with Cauchy increments. The Log-based denoising was imple-
mented efficiently by the algorithm described in [41].

It is well known that the LMMSE estimator is optimal for Brownian motion. In Figure 4.4,
it is precisely matched by the message-passing MMSE estimator. The worst performance
is observed for TV regularization, which yields piecewise-constant solutions by removing
small variations of the signal. The performance of the Log-based method is significantly
better; it preserves important details by allowing small variations of the signal.

In Figure 4.5, we observe excellent MSE performance of TV for compound Poisson pro-
cesses over many noise levels. This happens because the piecewise-constant solution of
TV estimator is well matched to such signals. In this experiment, we have also measured
the average running times for all the algorithms. For example, for σ2 = 1 the average es-
timation times for LMMSE, TV, Log, and MMSE were 0.03, 0.05, 0.01, and 0.29 seconds,
respectively. The theoretical relevance of the compound Poisson process is extensively
discussed in [61].
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Figure 4.6: Denoising of a Lévy process with Laplace increments.
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Figure 4.7: Denoising of Lévy-flight process.

In Figure 4.6, we observe a surprisingly poor performance of TV, which corresponds to the
MAP estimator for Lévy processes with Laplace increments. This highlights the fact that,
in some situations, a MAP estimator can result in suboptimal MSE performance.

We observe that LMMSE performs poorly for the Lévy-flight process in Figure 4.7. It fails
to preserve signal edges, which results in a suboptimal MSE performance for all noise
levels. Both TV and Log methods, which are known to be edge-preserving, yield results
close to the MMSE estimator (within 0.2 dB for Log). For such signals, the Log-based
regularizers implement the MAP estimator.

The message-passing algorithm considered in this chapter computes the marginals of the
posterior distribution. The algorithm yields the MMSE estimator by finding the mean of
the marginalized distribution. But the posterior distribution actually provides much more
information. For example, the algorithm can predict the MSE of the reconstruction by
computing the variance of the posterior

var
�

xn |y
�
= E

�
x2

n
|y
�
− (
�bxMMSE

�
n)

2,

where
�bxMMSE

�
n is given in (4.27). The second moment can be evaluated by using the

moment property (4.24). The capability to predict the MSE of the reconstruction is use-
ful to complement the solution of the estimator with a confidence interval. In Table 4.1,
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Table 4.1: MMSE Prediction.

Prior Noise (σ2) Oracle MSE (dB) Predicted MSE (dB)
Gaussian 0.1 −10.74 −10.73± 5.4× 10−5

1 −3.54 −3.49± 5.9× 10−5

10 1.85 1.95± 6.5× 10−5

Cauchy 0.1 −10.37 −10.34± 0.03
1 −1.54 −1.53± 0.11

10 6.15 6.22± 0.21
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Figure 4.8: Ten-fold interpolation of Lévy processes from AWGN measurements. From
top to bottom: (a) Brownian motion; (b) compound Poisson process; (c) Lévy process
with Laplace increments; (d) Lévy flight process. Surprisingly, for all priors the optimal
estimator appears to be a piecewise linear function.

the MSE predicted by the algorithm is presented for Gaussian and Cauchy increment pro-
cesses. For comparison, we also provide the oracle MSE obtained by comparing the true
signal x with bx. The average predicted MSE is obtained from 1000 random realizations of
each process. Table 4.1 also provides the standard deviation of the predicted MSE values
around the mean. This illustrates the accuracy of the predicted MSE values across noise
levels.

4.6.2 Signal Interpolation

In Figure 4.8, we illustrate the interpolation of four types of Lévy processes from noisy
measurements. We assume AWGN of variance σ2 = 1 and set the interpolation rate to
ms = ∆s/∆e = 10. Given 10 noisy measurements, this results in 91 estimated values.
An interesting observation is that the MSE optimal interpolator seems to yield piecewise-
linear results, independently of the process considered. In fact, it is known that, for
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Table 4.2: Interpolation of Lévy processes: MSE for different noise levels.

Prior Noise (σ2) LMMSE (dB) MMSE (dB)
Gaussian 0.1 −4.9315 −4.9315

1 −1.3866 −1.3866
10 3.4221 3.4221

Compound Poisson 0.1 −11.3233 −12.7016
1 −6.3651 −6.8164

10 −1.5267 −1.6012
Laplace 0.1 −2.4691 −2.4724

1 0.2644 0.2279
10 4.9509 4.9406
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Figure 4.9: Estimation of the compound Poisson process from quantized measurements.
We compare the standard LMMSE against MMSE, thereby illustrating the suboptimality of
standard linear reconstructions.

Brownian motion, piecewise-linear interpolation is optimal [77]. Note that this does not
imply that the estimator is itself linear, in the sense of being homogeneous and additive—
in general, it is not.

In Table 4.2, we compare the MSE performance of message-passing estimators with linear
estimators for the interpolation problem with ms = 2. Each value in the table is obtained
by averaging over 1000 problem instances. For the interpolation problem, the average
estimation MSE for the Lévy-flight process is not defined and can only be characterized
conditioned on a given y. Therefore, this process was omitted from the table

4.6.3 Estimation from Quantized Samples

We next consider the highly nonlinear problem of estimating Lévy processes from quan-
tized measurements (4.14). To do so, we generate a compound Poisson process of length
N = 200. An AWGN of variance 0.1 is added to the signal prior to quantization. The
quantizer is uniform with granular region of length 2‖y‖∞. It is centered at the origin.

In Figure 4.9, we compare the MSE performance of the message-passing estimator with
the standard LMMSE estimator. The parameter τ of the linear estimator was optimized for
the best MSE performance. In this figure, we plot the mean of the MSE from 1000 prob-
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lem instances for several quantization levels K . For such nonlinear measurement channels,
the message-passing estimator yields significant improvements in the reconstruction per-
formance over the standard linear estimator.

4.7 Summary

We have presented an in-depth investigation of the Lévy-process framework for modeling
signals with sparse derivatives. We have also characterized the corresponding statisti-
cal estimators. Lévy processes are fundamental members of a recently proposed family of
stochastic processes for the continuous-domain modeling of sparse signals. Our key contri-
bution is a simple message-passing algorithm for the MMSE estimation of Lévy processes
from noisy measurements. The proposed algorithm can handle a large class of priors,
including those that do not have closed-form pdfs. Moreover, it can incorporate a large
class of noise distributions, provided that the noise components are independent among
themselves. The algorithm has also the ability to handle signal-dependent noise. Due to
the tree-like structure of the underlying factor graph, when the messages are continuous-
time functions, the message-passing algorithm obtains the MMSE estimator of the signal.
This motivates its application as a benchmark to judge the optimality of various existing
gradient–based estimators including TV- and Log-regularization algorithms.
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Chapter 5

Efficient Approximations to MMSE with
Adaptive GAMP

5.1 Overview

In this chapter, we take a step beyond denoising by considering a more general forward
model that involves the measurement matrix H. We will, however, make an assumption
that our signal x can be perfectly decoupled with some orthogonal wavelet transform W.
This simplifying assumption allows us to concentrate on estimating the wavelet coefficiets
w = Wx under the combined forward operator Hwav = HWT . Nonetheless, in order to
keep notations simple, we will overload the matrix notation H and the vector notation
x to denote Hwav and w, respectively. Consequently, in the sequel, our aim will be on
estimating a vector x with independent components from measurements y.

We introduce a novel method called adaptive generalized approximate message passing

(adaptive GAMP), which enables the joint learning of the unknown statistical parame-
ters of the problem along with the estimation of the signal x. The method can be used
to approximate both MAP and MMSE solutions under generalized linear forward models
consisting of a known linear transform followed by a probabilistic measurement chan-
nel. Our first theoretical contribution proves that for large independent and identically
distributed (i.i.d.) Gaussian measurement matrices 1, the asymptotic componentwise be-
haviour of adaptive GAMP is predicted by a simple set of scalar equations called state

evolution (SE) equations. We then show that adaptive GAMP yields asymptotically con-
sistent parameter estimates, when maximum-likelihood estimation can be performed in
each step. This implies that the algorithm achieves a reconstruction quality equivalent
to the oracle algorithm that knows the correct parameter values. Remarkably, this result
applies to essentially arbitrary parametrizations of the unknown distributions, including
nonlinear and non-Gaussian ones. Our algorithm thus provides a systematic, general and
computationally efficient method applicable to a large range of generalized linear mod-
els 2.

5.2 Introduction

Consider the estimation of a random vector x ∈ RN from the measurement model illus-
trated in Figure 5.1. The random vector x, which is assumed to have i.i.d. components

1. Note that for orthogonal W and i.i.d. Gaussian H, the combined matrix Hwav = HWT also has i.i.d. Gaus-
sian elements.

2. This chapter is based on our paper [78]
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Figure 5.1: Measurement model considered.

xn ∼ px , is passed through a known linear transform that outputs z = Hx. The compo-
nents of y ∈ RM are generated by the componentwise transfer function py |z . We address
the problem of the estimation of x when the distributions px and py|z have finite number
of unknown parameters, θθθ x and θθθ z , that must be learned during the process.

Such joint-estimation and learning problems with linear transforms and component-wise
nonlinearities arise in a range of applications, including empirical Bayesian approaches to
inverse problems in signal processing, linear regression, and classification. It is equally
relevant for Bayesian compressed sensing for the estimation of sparse vectors x from un-
derdetermined measurements [60]. Also, since the parameters in the output transfer
function py |z can model unknown nonlinearities, this problem formulation can be applied
to the identification of linear-nonlinear cascade models of dynamical systems, in particular
for neural spike responses [79–81].

When the distributions px and py |z are known, there are a number of estimation meth-
ods available. In recent years, there has been significant interest in approximate message

passing (AMP) and related methods based on Gaussian approximations of belief propaga-
tion (BP) [24, 72, 74, 82–85]. These methods originate from CDMA multiuser detection
problems and have received considerable recent attention in the context of compressed
sensing [9,24,72,74,83–86]. The Gaussian approximations used in AMP are also closely
related to expectation propagation techniques [87, 88], but with additional simplifica-
tions that exploit the linear coupling between the variables x and z. The key benefits of
AMP methods are their computational simplicity, their broad range of application, and,
for certain large random H, their exact asymptotic performance characterizations with
testable conditions for optimality [74,82,85]. We consider the generalized AMP (GAMP)
method [24] that extends the algorithm in [72] to arbitrary output distributions py |z .

Although the current formulation of AMP and GAMP methods is attractive, in practice,
one rarely knows the prior and noise distributions exactly. The expectation-maximization–
based (EM) approach [89,90] overcomes this limitation by jointly learning the parameters
(θθθ x ,θθθ z) along with the estimation of the vector x. EM-GAMP inspired our work in [10].
While simulations indicate excellent performance, no analysis of these methods is avail-
able in the literature. This chapter provides a unifying analytic framework for such AMP–
based joint estimation and learning methods. Our main contributions here are as follows:

– The generalization of the GAMP method of [24] to a class of algorithms we call adap-

tive GAMP that enable the joint estimation of the parameters θθθ x and θθθ z along with
vector x. The methods are computationally fast and general. In addition, adaptive
GAMP includes the EM-GAMP algorithms of [89–92] as special cases.

– The exact characterization of the asymptotic behavior of adaptive GAMP. We show
that, similar to the analysis of the AMP and GAMP algorithms in [24, 74, 82, 85], the
component-wise asymptotic behavior of adaptive GAMP can be described by a simple
set of scalar state-evolution (SE) equations.

– The demonstration of the asymptotic consistency of adaptive GAMP with maximum-
likelihood (ML) parameter estimation. We show that, when the ML parameter estima-
tion is computed exactly, the estimated parameters converge to the true values and the
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performance of adaptive GAMP asymptotically coincides with the performance of the
oracle GAMP algorithm that knows the correct parameter values. Remarkably, this re-
sult applies to essentially arbitrary parameterizations of the unknown distributions px

and py |z , thus enabling provably consistent estimation on non-convex and nonlinear
problems.

– The experimental evaluation of the algorithm for the problems of learning sparse pri-
ors in compressed sensing and of identification of linear-nonlinear cascade models in
neural spiking processes. Our simulations illustrate the performance gain of adaptive
GAMP and its asymptotic consistency.

5.2.1 Related Literature

The adaptive GAMP method proposed here can be seen as a generalization of the EM
methods in [89–92]. In [89, 90], the prior px is described by a generic L-term Gaussian
mixture (GM) whose parameters are identified by an EM procedure [93]. The expectation

step or E-step is performed by GAMP, which can approximately determine the marginal
posterior distributions of the components xn given the observations y and the current
parameter estimates of the GM distribution px . A related EM-GAMP algorithm has also
appeared in [91,92] for the case of certain sparse priors and AWGN outputs. Simulations
in [89, 90] show remarkably good performance and computational speed for EM-GAMP
over a wide class of distributions, particularly in the context of compressed sensing. Also,
using arguments from statistical physics, Krzakala et al. [91,92] present SE equations for
the joint evolution of the parameters and vector estimates and confirm them numerically.

As discussed in Section 5.4.2, EM-GAMP is a special case of adaptive GAMP with a par-
ticular choice of the adaptation functions. Therefore, one contribution of our work is to
provide a theoretical basis for the EM-GAMP methodology. In particular, Theorem 5.2
provides a rigorous justification of the SE analysis in [91, 92] along with extensions to a
broader class of input and output channels and adaptation methods.

An alternate method for joint learning and estimation has been presented in [94], which
assumes that the distributions on the source and output channels are themselves described
by graphical models with the parameters θθθ x and θθθ z appearing as unknown variables. The
method in [94], called hybrid-GAMP, iteratively combines standard loopy BP with AMP
methods. One avenue of future work is to see if our methodology here can be applied to
analyze the hybrid-GAMP methods as well.

Finally, it should be pointed out that, while the simultaneous recovery of unknown param-
eters is appealing conceptually, it is not a strict requirement. An alternate solution to the
problem is to assume that the signal belongs to a known class of distributions and to min-
imize the maximal mean-squared error (MSE) for the class. This minimax approach [95]
was proposed for the AMP recovery of sparse signals in [72]. Although minimax yields
estimators that are uniformly good over the entire class of distributions, there may be
a significant gap between the MSE achieved by the minimax approach and the oracle
algorithm that knows the distribution exactly. Indeed, reducing this gap was the main jus-
tification of the EM-GAMP methods in [89,90]. Due to its asymptotic consistency with ML
parameter estimation, adaptive GAMP provably achieves the performance of the oracle
algorithm.

5.3 Review of GAMP

Before describing the adaptive GAMP algorithm, it is useful to review the basic (non-
adaptive) GAMP. There are two important variants of GAMP:
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– Sum-product GAMP: This method is used for approximately computing the posterior
marginals

pxn|y(xn|y,θθθ x ,θθθ z), (5.1)

with respect to the joint density px|y. From these posterior marginals, one can compute
the MMSE estimator via the posterior means and variances,

bxn = E
�

xn | y,θθθ x ,θθθ z

�
(5.2a)

τxn
= var

�
xn | y,θθθ x ,θθθ z

�
. (5.2b)

The GAMP algorithm in this case is based on a Gaussian approximation of sum-product
loopy belief propagation.

– Max-sum GAMP: This variant is used to approximately compute the MAP estimate

bx ¬ argmax
x∈N

¦
px|y(x|y,θθθ x ,θθθ z)

©
, (5.3)

and is based on a quadratic approximation of the max-sum loopy belief propagation.

5.3.1 Sum-Product GAMP

We begin with a description of the most basic—and perhaps most important—variant
of GAMP, namely sum-product GAMP. Consider the observation model in Fig. 5.1 where
the componentwise probability density functions on the inputs and outputs have some
parametric form,

px(x |θθθ x), py|z(y |z,θθθ z), (5.4)

where θθθ x ∈ ΘΘΘx and θθθ z ∈ ΘΘΘz represent parameters of the densities and ΘΘΘx ⊆ Rdx and
ΘΘΘz ⊆ Rdz denote the corresponding parameter sets that are of finite dimensions. Now,
suppose that the components of x are i.i.d. with xn ∼ px(xn|θθθ x) and, conditional on
the transform output z = Hx, the components of the observations y have a likelihood
ym ∼ py |z(ym|zm,θθθ z). Then, the posterior joint probability density of x is given by

px|y(x|y,θθθ x ,θθθ z)∝
M∏

m=1

py|z(ym|[Hx]m,θθθ z)

N∏

n=1

px(xn|θθθ x), (5.5)

where ∝ denotes identity after normalization. The GAMP algorithm of [24] can be seen as
a class of methods for approximately estimating the vector x under this joint distribution
in the case when the parameters θθθ x and θθθ z are known.

The basic steps of the sum-product GAMP algorithm are shown in Algorithm 5.1. The
algorithm is an iterative procedure generating a sequence of estimates bxt , τt

x
representing

estimates of the posterior means and variances in (5.2).

Exact computation of the means and variance of the components xn and zm of the pos-
terior joint density (5.5) is generally intractable, since it involves a marginalization over
N variables. The main concept in the GAMP algorithm is to approximately reduce this
vector-valued estimation problem to a sequence of scalar mean and variance computa-
tions. Specifically, the expectations and variances in Algorithm 5.1 are to be taken with
respect to the probability density

p(xn|r t
n
,τt

r
,θθθ x)∝ px(xn|θθθ x)exp

�
−

1

2τt
r

|xn − r t
n
|2
�

, (5.6a)

p(zm|ym, pt
m

,τt
p
,θθθ z)∝ py|z(ym|zm,θθθ z)exp

 
−

1

2τt
p

|zm − pt
m
|2
!

. (5.6b)
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Algorithm 5.1: Sum-Product GAMP

input: the data y, the densities px and py|z with known θθθ x and θθθ z ,
a constant ‖H‖2

F
,

and an efficient implementation of H and HT

set: t ← 0, st−1← 0
bx0← E[x |θθθ x], τ

0
x
← var[x |θθθ x].

repeat
{Output node update}
τt

p
← ‖H‖2

F
τt

x
/M

pt ← Hbxt − st−1τt
p

bz t
m
← E[zm|ym, pt

m
,τt

p
,θθθ z], (m= 1, . . . , M)

τt
zm
← var[zm|ym, pt

m
,τt

p
,θθθ z], (m= 1, . . . , M)

st
m
← (z t

m
− pt

m
)/τt

p
, (m= 1, . . . , M)

τt
s
← (1/M)

∑
m(1−τt

zm
/τt

p
)/τt

p

{Input node update}
1/τt

r
← ‖H‖2

F
τt

s
/N

r
t ← bxt +τt

r
HT st

bx t+1
n
← E[xn|r t

n
,τt

r
,θθθ x], (n= 1, . . . , N)

τt+1
x
← (τt

r
/N)

∑
n var[xn|r t

n
,τt

r
,θθθ x]

until stopping criterion
return bxt+1

The densities (5.6a) and (5.6b) are the GAMP approximation of the posterior marginal
densities p(xn|y,θθθ x ,θθθ z) and pzm|y(zm|y,θθθ x ,θθθ z), respectively. Since these densities are
over one-dimensional random variables, even if their means and variances do not have
closed-form expressions, they can be computed via numerical integration. In addition, the
densities can be interpreted as posterior distributions on scalar random variables xn and
zm with respect to observations r t

n
and (ym, pt

m
) of the form

r t
n
= xn +N (0,τt

r
), xn ∼ px(xn|θθθ x) (5.7a)

ym ∼ py |z(ym|zm), zm ∼N (pt
m

,τt
p
). (5.7b)

Hence, computing the posterior mean and variance of xn is equivalent to a set of scalar
AWGN estimation problems. In this way, the sum-product GAMP algorithm reduces the
inherently vector-valued inference problem to a sequence of scalar AWGN estimation prob-
lems at the input and output, along with transform by H and HT . This is computation-
ally attractive since the algorithm involves no vector-valued estimation steps or matrix
inverses.

Of course, the GAMP algorithm is only an approximation of the true inference problem.
The convergence results of the algorithm are reviewed in Section 5.3.3; they can also be
found in references mentioned above.

5.3.2 General GAMP

As mentioned above, the sum-product GAMP algorithm is a particular instance of a more
general class of algorithms that includes the max-sum GAMP algorithm for MAP estima-
tion. To provide the most general results for the adaptive GAMP, we briefly review the
general (non-adaptive) GAMP algorithm. Full details of the general GAMP algorithm can
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Algorithm 5.2: General GAMP

input: the data y, estimation functions G t
x
, G t

s
and G t

z
,

parameter estimates θ̄θθ
t

x
and θ̄θθ

t

z
,

a constant ‖H‖2
F
,

and an efficient implementation of H and HT

set: t ← 0, st−1← 0 and select some initial values for bx0 and τ0
x
.

repeat
{Output node update}
τt

p
← ‖H‖2

F
τt

x
/M

pt ← Hbxt − st−1τt
p

bz t
m
← G t

z
(pt

m
, ym,τt

p
, θ̄θθ

t

z
), (m= 1, . . . , M)

st
m
← G t

s
(pt

m
, ym,τt

p
, θ̄θθ

t

z
), (m= 1, . . . , M)

τt
s
←−(1/M)

∑
m ∂ G t

s
(pt

m
, ym,τt

p
, θ̄θθ

t

z
)/∂ pt

m

{Input node update}
1/τt

r
← ‖H‖2

F
τt

s
/N

r
t ← bxt +τt

r
HT st

bx t+1
n
← G t

x
(r t

n
,τt

r
, θ̄θθ

t

x
), (n= 1, . . . , N)

τt+1
x
← (τt

r
/N)

∑
n ∂ G t

x
(r t

n
,τt

r
, θ̄θθ

t

x
)/∂ rn

until stopping criterion
return bxt+1

be found in [24]. For completeness, we restate the steps of the general GAMP algorithm
in Algorithm 5.2.

Comparing Algorithms 5.1 and 5.2, we see that there are two generalizations in the gen-
eral GAMP algorithm. First, the mean and variance computations of the sum-product
GAMP algorithm, Algorithm 5.1, are replaced with general estimation functions G t

x
, G t

s

and G t
z
. These estimation functions take the outputs r t and pt and generate the estimates

xt , st and zt . Their derivatives results in the variance terms τt
x

and τt
s
. It is shown in [24]

that with appropriate selection of these estimation functions, one can incorporate both
the sum-product and max-sum variants of the GAMP algorithm.

For the case of the sum-product GAMP, we can recover Algorithm 5.1 with the estimation
functions

G t
x
(r,τr ,θθθ x) ¬ E[x | r,τr ,θθθ x], (5.8a)

G t
z
(p, y,τp,θθθ z) ¬ E[z | p, y,τp,θθθ z], (5.8b)

G t
s
(p, y,τp,θθθ z) ¬

1

τp

�
G t

z
(p, y,τp,θθθ z)− p

�
, (5.8c)

where the expectations are with respect to the distributions in (5.6a) and (5.6b). It is
shown in [24] that the derivatives of these estimation functions agree with the variance
computations of Algorithm 5.1.

The second difference between the the sum-product GAMP algorithm in Algorithm 5.1
and the more general Algorithm 5.2 is that the fixed parameter values θθθ x and θθθ z are
replaced by a deterministic sequence of parameter values θ̄θθ

t

x
and θ̄θθ

t

z
. Of course, if the

parameters are known, there is no reason to change the parameter estimates on each
iteration. However, we need to consider this generalization to enable the study of the
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adaptive GAMP algorithm below.

5.3.2.1 Illustrative Example: AWGN Outputs with Sparse Priors As discussed, much of the
current interest in the AMP and GAMP methods have been in the context of compressed
sensing [24,72,74,83–85]. Thus, it is useful to briefly describe this particular application
in more detail. The original AMP formulations in [72,83,84] consider the special case of
AWGN output

ym = zm + em, em ∼N (0,σ2), (5.9)

where the additive noise em is i.i.d. and independent of z. In this case, as shown in [24],
the output updates in line (12) and 13 reduce to

st
m
=

ym − pt
m

τt
p
+σ2 , τt

s
=

1

τt
p
+σ2 . (5.10)

For Bayesian forms of compressed sensing, one then takes a sparse prior for the density
px . A common density is the Laplacian prior,

px(xn|λ) =
λ

2
e−λ|xn|.

In this case, the MAP estimate (5.3) corresponds to the classic LASSO estimate [96]. Then,
the equations for the estimation function G t

x
of Algorithm 5.2 reduce to the classic soft-

thresholding operator. In this way, the max-sum GAMP with a Laplacian prior reduces to
a variant of an iterative soft-thresholding algorithm discussed in Section 2.5.

5.3.3 State Evolution Analysis

In addition to its computational simplicity and generality, a key motivation of the GAMP
algorithm is that its asymptotic behavior can be precisely characterized when H is a large
i.i.d. Gaussian transform. The asymptotic behavior is described by what is known as a state

evolution (SE) analysis. By now, there are a large number of SE results for AMP-related
algorithms [24, 72, 74, 82–85]. Here, we review the particular SE analysis from [24, 97]
which is based on the framework in [85].

Assumption 5.1. Consider a sequence of random realizations of the general GAMP algo-

rithm, Algorithm 5.2, indexed by the dimension N, satisfying the following assumptions:

(a) For each N, the matrix H ∈ RM×N has i.i.d. components with Hmn ∼ N (0,1/M) and

the dimension M = M(N) is a deterministic function of N satisfying N/M → β for some

β > 0 as N →∞.

(b) The input vectors x and initial condition bx0 are deterministic sequences whose compo-

nents converge empirically with bounded moments of order s = 2k− 2 as

lim
N→∞

(x,bx0)
PL(s)
= (x , bx0), (5.11)

to some random vector (x , bx0) for some k ≥ 2. Loosely, this convergence implies that the

empirical distribution of the components of (x,bx0) converge to the distribution of (x , bx0).

A precise definition is given in Section 5.9.1.

(c) The output vectors z and y ∈ RM are generated by

z= Hx and ym = h(zm, em), (m= 1, . . . , M), (5.12)
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for some function h(z, e) and vector e ∈ RM representing an output distortion. It is

assumed that the output distortion vector e is deterministic, but empirically converges as

lim
N→∞

e
PL(s)
= e, (5.13)

where s = 2k− 2 is as in Assumption 5.1 (b) and e is some random variable. We let py |z
denote the conditional distribution of the random variable y = h(z, e).

(d) The estimation function G t
x
, and its derivative with respect to r, are Lipschitz continuous

in r at (τr ,θθθ x) = (τ̄
t
r
, θ̄θθ

t

x
), where τ̄t

r
is a deterministic parameter from the SE equations

below. A similar assumptions holds for G t
z
.

Assumption 5.1(a) simply states that we are considering large, Gaussian i.i.d. matrices H.
Assumptions (b) and (c) state that the input vector x and output disturbance e are mod-
eled as deterministic, but whose empirical distributions asymptotically appear as i.i.d. This
deterministic model is a feature of Bayati and Montanari’s analysis in [85]. Assumption
(d) is a mild continuity condition.

Note that, for now, there is no assumption that the true distribution of x or the true
conditional distribution of y given z must belong to the class of distributions (5.4) for any
parameters θθθ x and θθθ z . The analysis can thus model the effects of model mismatch.

Next, we define the sets of two vectors

ϑt
x
¬ {(xn, r t

n
, bx t+1

n
) : n= 1, . . . , N}, (5.14a)

ϑt
z
¬ {(zm,bz t

m
, ym, pt

m
) : m= 1, . . . , M}. (5.14b)

The first set ϑt
x

represents the components of the true, but unknown, input vector x, its
GAMP estimate bxt as well as r t . The second set ϑt

z
contains the components of the true,

but unknown, output vector z, its GAMP estimate bzt , as well as pt and the observed output
y. The sets ϑt

x
and ϑt

z
are implicitly functions of the dimension N .

The main result of [24] shows that if we fix the iteration t, and let N →∞, the asymptotic
joint empirical distribution of the components of ϑt

x
and ϑt

z
converges to random vectors

of the form
ϑ̄t

x
¬ (x , r t , bx t+1), ϑ̄t

z
¬ (z,bz t , y, pt). (5.15)

We precisely state the nature of convergence in Theorem 5.1 below. In (5.15), x is the
random variable in Assumption 5.1(b), while r t and bx t+1 are given by

r t = αt
r
x + v t , v t ∼N (0,ξt

r
), (5.16a)

bx t+1 = G t
x
(r t , τ̄t

r
, θ̄θθ

t

x
) (5.16b)

for some deterministic constants αt
r
, ξt

r
, and τ̄t

r
that are defined below. Similarly, (z, pt)∼

N (0,Kt
p
) for some covariance matrix Kt

p
, and

y = h(z, e), bz t = G t
z
(pt , y, τ̄t

p
, θ̄θθ

t

z
), (5.17)

where e is the random variable in (5.13) and Kt
p

contains deterministic constants.

The deterministic constants αt
r
, ξt

r
, τ̄t

r
and Kt

p
represent parameters of the distributions

of ϑ̄t
x

and ϑ̄t
z

and depend on both the distributions of the input and outputs as well as
the choice of the estimation and adaptation functions. The SE equations provide a sim-
ple method for recursively computing these parameters. The equations are best described
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algorithmically as shown in Algorithm 5.4. In order not to repeat ourselves, in Algo-
rithm 5.4, we have written the SE equations for adaptive GAMP: For non-adaptive GAMP,
the updates (5.32b) and (5.33a) can be ignored as the values of θ̄θθ

t

z
and θ̄θθ

t

x
are pre-

computed.

With these definitions, we can state the main result from [24].

Theorem 5.1. Consider the random vectors ϑt
x

and ϑt
z

generated by the outputs of GAMP

under Assumption 5.1. Let ϑ̄t
x

and ϑ̄t
z

be the random vectors in (5.15) with the parameters

determined by the SE equations in Algorithm 5.4. Then, for any fixed t, the elements of the

sets ϑt
x

and ϑt
z

converge empirically with bounded moments of order k as

lim
N→∞

ϑt
x

PL(k)
= ϑ̄t

x
, lim

N→∞
ϑt

z

PL(k)
= ϑ̄t

z
. (5.18)

where ϑ̄t
x

and ϑ̄t
z

are given in (5.15). In addition, for any t, the limits

lim
N→∞

τt
r
= τ̄t

r
, lim

N→∞
τt

p
= τ̄t

p
, (5.19)

also hold almost surely.

The theorem shows that the components of the vectors x and z, and their GAMP estimates
bxt and bzt have the same statistical distribution as random variables x , z, bx t and bz t in a
simple scalar equivalent system. This scalar equivalent model appears in several analyses
and can be thought of as a single-letter characterization [73] of the system. Remarkably,
this limiting property holds for essentially arbitrary distributions and estimation functions,
even the ones that arise from problems that are highly nonlinear or noncovex. From the
single-letter characterization, one can compute the asymptotic value of essentially any
component-wise performance metric such as mean-squared error.

5.3.4 State Evolution Analysis for Sum-Product GAMP

For the special case of the sum-product GAMP algorithm in Algorithm 5.1, the SE equa-
tions in Algorithm 5.4 reduce to a particularly simple form. The variance terms τ̄t

r
and ξt

r

in (5.32) are given by

τ̄t
r
= ξt

r
=

�
E

�
∂ 2

∂ p2 log
�

py|p(y|pt)
���−1

, (5.20a)

where the expectations are over the random variables (z, pt) ∼ N (0,Kt
p
) and y is given

in (5.17). The covariance matrix Kt
p

has the form

Kt
p
=


 βτx0 βτx0 − τ̄t

p

βτx0 − τ̄t
p
βτx0 − τ̄t

p


 , (5.20b)

where τx0 is the variance of x , and β > 0 is the asymptotic measurement ratio (For details
see Assumption 5.1). The scaling constant (5.32e) becomes αt

r
= 1. The update rule for

τ̄t+1
x

also simplifies to
τ̄t+1

x
= E

�
var
�

x |r t
��

, (5.20c)

where the expectation is over the random variables in (5.16). The SE equations for the
sum-product GAMP will be initialized with

τ̄0
p
= βτx0 (5.21)
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Algorithm 5.3: Adaptive GAMP

input: the data y, estimation functions G t
x
, G t

s
and G t

z
,

adaptation functions H t
x

and H t
z
,

a constant ‖H‖2
F
, and an efficient implementation of H and HT

set: t ← 0, st−1← 0 and select some initial values for bx0 and τ0
x
.

repeat
{Output node update}
τt

p
← ‖H‖2

F
τt

x
/M

pt ← Hbxt − st−1τt
p

bθθθ t

z
← H t

z
(pt ,y,τt

p
)

bz t
m
← G t

z
(pt

m
, ym,τt

p
, bθθθ t

z
), (m= 1, . . . , M)

st
m
← G t

s
(pt

m
, ym,τt

p
, bθθθ t

z
), (m= 1, . . . , M)

τt
s
←−(1/M)

∑
m ∂ G t

s
(pt

m
, ym,τt

p
, bθθθ t

z
)/∂ pt

m

{Input node update}
1/τt

r
← ‖H‖2

F
τt

s
/N

r
t ← xt +τt

r
HT st

bθθθ t

x
← H t

x
(r t ,τt

r
)

bx t+1
n
← G t

x
(r t

n
,τt

r
, bθθθ t

x
) (n= 1, . . . , N)

τt+1
x
← (τt

r
/N)

∑
n ∂ G t

x
(r t

n
,τt

r
, bθθθ t

x
)/∂ rn

until stopping criterion
return bxt+1

so that the initial value of the covariance matrix in (5.20b) is

K0
p
=


βτx0 0

0 0


 . (5.22)

5.4 Adaptive GAMP

The above review of the standard GAMP algorithms in Algorithms 5.1 and 5.2 shows that
the methods apply to the case when the parameters θθθ x and θθθ z in the distributions (5.4)
are known. The adaptive GAMP method proposed here, and shown in Algorithm 5.3, is an
extension of Algorithm 5.2 that enables simultaneous identification of finite dimensional
θθθ x and θθθ z along with estimation of x.

The key modification is the introduction of the two adaptation functions: H t
z

and H t
x
. In

each iteration, these functions output estimates, bθθθ t

z
and bθθθ t

x
of the parameters based on

the data pt , y, r t , τt
p

and τt
r
.

The basic GAMP algorithm in Algorithm 5.2 is a special case when the estimation functions
H t

x
and H t

z
output fixed values

H t
z
(pt ,y,τt

p
) = θ̄θθ

t

z
, H t

x
(r t ,τt

r
) = θ̄θθ

t

x
, (5.23)

for the pre-computed sequence of parameters θ̄θθ
t

x
and θ̄θθ

t

z
. We call these values precomputed

since, in the case of the non-adaptive GAMP algorithm, the parameter estimates θ̄θθ
t

x
and

θ̄θθ
t

z
do not depend on the data through the vectors pt , yt , and r

t . A particular case of the
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non-adaptive algorithm would be the oracle scenario, where θ̄θθ
t

x
and θ̄θθ

t

z
are set to the true

values of the parameters and do not change with the iteration number t.

However, the adaptive GAMP algorithm in Algorithm 5.3 is significantly more general and
enables a large class of methods for estimating the parameters based on the data. One
particular adaptation method is based on on maximum likelihood (ML) as described next.

5.4.1 ML Parameter Estimation

As one possible method to estimate the parameters, recall from Theorem 5.1 that the
empirical distribution of the components of r t converges weakly to the distribution of r t

in (5.16). Now, the distribution of r t only depends on three parameters – αt
r
, ξt

r
and θθθ x .

It is thus natural to attempt to estimate these parameters from the empirical distribution
of the components of r t and thereby recover the parameter θθθ x .

To this end, let φx(r,θθθ x ,αr ,ξr) be the log likelihood

φx(r,θθθ x ,αr ,ξr) ¬ log
�

pr(r|θθθ x ,αr ,ξr)
�

, (5.24)

where the right-hand side is the probability density of a random variable r with distribu-
tion

r = αr x + v, x ∼ px(·|θθθ x), v ∼N (0,ξr). (5.25)

Then, at any iteration t, we can attempt to obtain a ML estimate

bθθθ t

x
= H t

x
(r t ,τt

r
) ¬ arg max

θθθ x∈ΘΘΘx

(
max

(αr ,ξr )∈Sx (τ
t
r )

(
1

N

N∑

n=1

φx(r
t
n
,θθθ x ,αr ,ξr)

))
. (5.26)

Here, the set Sx(τ
t
r
) is a set of possible values for the parameters αr ,ξr . This set may

depend on the measured variance τt
r

and we will see its precise role below. The selection
of the sets is critical and discussed in detail in Section 5.6.

Similarly, the individual components of pt and y have the same distribution as (pt , y)

which depend only on the parameters Kp and θθθ z . Thus, we can define the likelihood

φz(p, y,θθθ z ,Kp) ¬ log
�

py,p(y, p|θθθ z ,Kp)
�

, (5.27)

where the right-hand side is the joint probability density of (p, y) with distribution

y ∼ py|z(·|z,θθθ z), (z, p)∼N (0,Kp). (5.28)

Then, we estimate θθθ z via the ML estimate

bθθθ t

z
= H t

z
(pt ,y,τt

p
) ¬ argmax

θθθ z∈ΘΘΘz

(
max

Kp∈Sz(τ
t
p)

(
1

M

M∑

m=1

φz(p
t
m

, ym,θθθ z ,Kp)

))
. (5.29)

Again, the set Sz(τ
t
p
) is a set of possible covariance matrices Kp.

5.4.2 Relation to EM-GAMP

Before discussing the convergence of the adaptive GAMP algorithm with ML parameter
estimation, it is useful to briefly compare the ML parameter estimation with the EM-
GAMP method proposed by Vila and Schniter [89, 90] and Krzakala et. al. [91, 92]. Both
EM-GAMP methods combine the Bayesian AMP or GAMP algorithms with a standard EM
procedure [93] as follows. First, the algorithms use the sum-product version of GAMP, so
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that the outputs provide an estimate of the posterior distributions on the components of
x given the current parameter values. From the discussion in Section 5.3.1, we know that
(5.6a) and (5.6b) can be taken as an approximations of the true posteriors of xn and zm

for a given set of parameter values θθθ x and θθθ z . Using the approximation, we approximately
implement the EM procedure to update the parameter estimate via a maximization

bθθθ t

x
= H t

x
(r t ,τt

r
) ¬ arg max

θθθ x∈ΘΘΘx

(
1

N

N∑

n=1

E

h
log px(xn|θθθ x)|r t

n
,τt

r
, bθθθ t−1

x

i)
, (5.30)

where the expectation is with respect to the distribution in (5.6a). In [89,90], the parame-
ter update (5.30) is performed only once every few iterations to allow bpt to converge to the
approximation of the posterior distribution of xn given the current parameter estimates.
In [91, 92], the parameter estimate is updated at every iteration. A similar procedure is
performed for the estimation of θθθ z .

We thus see that the EM-GAMP procedures in [89, 90] and in [91, 92] are both special
cases of the adaptive GAMP algorithm in Algorithm 5.3 with particular choices of the
adaptation functions H t

x
and H t

z
. As a result, our analysis in Theorem 5.2 below applies

to these algorithms as well and provides rigorous asymptotic characterizations of the EM-
GAMP performance. However, at the current time, we can only prove the asymptotic
consistency result for the ML adaptation functions (5.26) and (5.29) described above.

That being said, it should be pointed out that the EM-GAMP update (5.30) is generally
computationally much simpler than the ML updates in (5.26) and (5.29). For example,
when px is an exponential family, the optimization in (5.30) is convex. Also, the optimiza-
tions in (5.26) and (5.29) require searches over additional parameters such as αr and ξr .
Thus, an interesting avenue of future work is to apply the analysis result of Theorem 5.3
below, to see if the EM-GAMP method or some similarly computationally simple technique
can be developed which also provides asymptotic consistency.

5.5 Convergence and Asymptotic Consistency with Gaussian Transforms

5.5.1 General State Evolution Analysis

Before proving the asymptotic consistency of adaptive GAMP with ML adaptation, we first
prove a more general convergence result.

Assumption 5.2. Consider the adaptive GAMP algorithm running on a sequence of problems

indexed by the dimension N, satisfying the following assumptions:

(a) Same as Assumption 5.1(a) to (c) with k = 2.

(b) For every t, the adaptation function H t
x

is a functional over r satisfying the following

weak pseudo-Lipschitz continuity property: Consider any sequence of vectors r = r
(N) and

sequence of scalars τr = τ
(N)
r

, indexed by N satisfying

lim
N→∞

r
(N) PL(k)
= r t , lim

N→∞
τ(N)

r
= τ̄t

r
,

where r t and τ̄t
r

are the outputs of the state evolution. Then,

lim
N→∞

H t
x
(r(N),τ(N)

r
) = H t

x
(r t , τ̄t

r
).

Similarly, H t
z

satisfies analogous continuity conditions in τp and (y,p). See Section 5.9.1

for a general definition of weakly pseudo-Lipschitz continuous functionals.
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Algorithm 5.4: Adaptive GAMP State Evolution

Given the distributions in Assumption 5.1, compute the sequence of parameters as
follows:

– Initialization: Set t = 0 with

K0
x
= cov(x , bx0), τ̄0

x
= τ0

x
, (5.31)

where the expectation is over the random variables (x , bx0) in Assumption 5.1(b) and
τ0

x
is the initial value in the GAMP algorithm.

– Output node update: Compute the variables associated with the output nodes
Compute the variables

τ̄t
p
= βτ̄t

x
, Kt

p
= βKt

x
, (5.32a)

θ̄θθ
t

z
= H t

z
(pt , y, τ̄t

p
), (5.32b)

τ̄t
r
= −

�
E

�
∂

∂ p
G t

s
(pt , y, τ̄t

p
, θ̄θθ

t

z
)

��−1

, (5.32c)

ξt
r
= (τ̄t

r
)2E
h

G t
s
(pt , y, τ̄t

p
, θ̄θθ

t

z
)
i

, (5.32d)

αt
r
= τ̄t

r
E

�
∂

∂ z
G t

s
(pt , h(z, e), τ̄t

p
, θ̄θθ

t

z
)

�
, (5.32e)

where the expectations are over the random variables (z, pt)∼N (0,Kt
p
) and y is

given in (5.17).

– Input node update: Compute

θ̄θθ
t

x
= H t

x
(r t , τ̄t

r
), (5.33a)

τ̄t+1
x
= τ̄t

r
E

�
∂

∂ r
G t

x
(r t , τ̄t

r
, θ̄θθ

t

x
)

�
, (5.33b)

Kt+1
x
= cov(x , bx t+1), (5.33c)

where the expectations are over the random variables in (5.16).

(c) The scalar-valued function G t
x

and its derivative G′ t
x

with respect to r are continuous in

θθθ x uniformly over r in the following sense: For every ε > 0, t, τ∗
r

and θθθ ∗
x
∈ ΘΘΘx , there

exists an open neighborhood U of (τ∗
r
,θθθ ∗

x
) such that for all (τr ,θθθ x) ∈ U and r,

|G t
x
(r,τr ,θθθ x)− G t

x
(r,τ∗

r
,θθθ ∗

x
)|< ε,

|G′ t
x
(r,τr ,θθθ x)− G′

t

x
(r,τ∗

r
,θθθ ∗

x
)|< ε.

In addition, the functions G t
x

and G′ t
x

must be Lipschitz continuous in r with a Lipschitz

constant that can be selected continuously in τr and θθθ x . The functions G t
s
, G t

z
and their

derivatives G′ t
s

G′ t
z

satisfy analogous continuity assumptions with respect to p, y, τp and

θθθ z .

Although technical, assumptions (b) and (c) are mild continuity conditions that can be
satisfied by a large class of adaptation functionals and estimation functions. For example,
from the definitions in Section 5.9.1, the continuity assumption (b) will be satisfied for

67



5. EFFICIENT APPROXIMATIONS TO MMSE WITH ADAPTIVE GAMP

any functional given by an empirical average

H t
x
(r,τr) =

1

N

N∑

n=1

φ t
x
(rn,τr),

where, for each t, φ t
x
(rn,τr) is pseudo-Lipschitz continuous in r of order p and continuous

in τr uniformly over r. A similar functional can be used for H t
z
. As we will see in Section

5.5.2, the ML functionals (5.26) and (5.29) also satisfy the required conditions.

Theorem 5.2. Consider the random vectors ϑt
x

and ϑt
z

generated by the outputs of the adap-

tive GAMP under Assumption 5.2. Let ϑ̄t
x

and ϑ̄t
z

be the random vectors in (5.15) with the

parameters determined by the SE equations in Algorithm 5.4. Then, for any fixed t, the

components of ϑt
x

and ϑt
z

converge empirically with bounded moments of order k = 2 as

lim
N→∞

ϑt
x

PL(k)
= ϑ̄t

x
, lim

N→∞
ϑt

z

PL(k)
= ϑ̄t

z
, (5.34)

where ϑ̄t
x

and ϑ̄t
z

are given in (5.15). In addition, for any t, the limits

lim
N→∞

θθθ t
x
= θ̄θθ

t

x
, lim

N→∞
θθθ t

z
= θ̄θθ

t

z
, (5.35a)

lim
N→∞

τt
r
= τ̄t

r
, lim

N→∞
τt

p
= τ̄t

p
, (5.35b)

also hold almost surely.

The result is a natural generalization of Theorem 5.1 and provides a simple extension
of the SE analysis to incorporate the adaptation. The SE analysis applies to essentially
arbitrary adaptation functions. It particular, it can be used to analyze both the behavior of
the adaptive GAMP algorithm with either ML and EM-GAMP adaptation functions in the
previous section.

5.5.2 Asymptotic Consistency with ML Adaptation

We now use Theorem 5.2 to prove the asymptotic consistency of adaptive GAMP with
the ML parameter estimation described in Section 5.4.1. To guarantee consistency of
the adaptive GAMP algorithm, we need to impose certain identifiability conditions. To
understand the conditions, given parameters (θθθ x ,αr ,ξr) and (θθθ z ,Kp), let

pr(·|θθθ x ,αr ,ξr), py,p(·|θθθ z ,Kp) (5.36)

be the distributions of the random variables r and (y, p) in (5.25) and (5.28), respectively.

Definition 1. Consider a family of distributions, {px(x |θθθ x) : θθθ x ∈ΘΘΘx}, a set Sx of parame-

ters (αr ,ξr) of a Gaussian channel, and the function φx(r,θθθ x ,αr ,ξr). We say that px(x |θθθ x)

is identifiable with Gaussian outputs with parameter set Sx and function φx if:

(a) The sets Sx and ΘΘΘx are compact.

(b) For any true parameters θθθ ∗
x
∈ΘΘΘx , and (α∗

r
,ξ∗

r
) ∈ Sx , the maximization

bθθθ x = argmax
θθθ x∈ΘΘΘx

�
max

(αr ,ξr )∈Sx

¦
E

�
φx(r,θθθ x ,αr ,ξr)|θθθ ∗x ,α∗

r
,ξ∗

r

�©�
, (5.37)

is well-defined, unique and returns the true value, bθθθ x = θθθ
∗
x
. The expectation in (5.37) is

with respect to the distribution r ∼ pr(·|θθθ ∗x ,α∗
r
,ξ∗

r
) in (5.36).
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(c) For every θθθ x and αr , ξr , the function φx(r,θθθ x ,αr ,ξr) is pseudo-Lipschitz continuous

of order k = 2 in r. In addition, it is continuous in θθθ x ,αr ,ξr uniformly over r in the

following sense: For every ε > 0 and bθθθ x , bαr , bξr , there exists an open neighborhood U of
bθθθ x , bαr , bξr , such that for all (θθθ x ,αr ,ξr) ∈ U and all r,

|φx(r,θθθ x ,αr ,ξr)−φx(r, bθθθ x , bαr , bξr)|< ε.

Definition 2. Consider a family of conditional distributions, {py|z(y |z,θθθ z) : θθθ z ∈ ΘΘΘz} gen-

erated by the mapping y = h(z, e,θθθ z) where e ∼ pe is some random variable and h(z, w,θθθ z)

is a scalar-valued function. Let Sz be a set of covariance matrices Kp and let φz(y, p,θθθ z ,Kp)

be some function. We say that the conditional distribution family py|z(·|·,θθθ z) is identifiable
with Gaussian inputs with covariance set Sz and function φz if:

(a) The parameter sets Sz and ΘΘΘz are compact.

(b) For any true parameter θθθ ∗
z
∈ΘΘΘz and true covariance K∗

p
, the maximization

bθθθ z = argmax
θθθ z∈ΘΘΘz

¨
max
Kp∈Sz

n
E

h
φz(y, p,θθθ z ,Kp)|θθθ ∗z ,K∗

p

io«
, (5.38)

is well-defined, unique and returns the true value, bθθθ z = θθθ
∗
z
, The expectation in (5.38) is

with respect to (y, p)∼ py,p(·|θθθ ∗z ,K∗
p
).

(c) For every θθθ z and Kp, the function φz(y, p,θθθ z ,Kp) is pseudo-Lipschitz continuous in

(p, y) of order k = 2. In addition, it is continuous in θθθ z ,Kp uniformly over p and y.

Conditions (a) and (c) in both definitions are mild continuity and boundedness conditions.
The main requirements is condition (b). Qualitatively, the definitions state that if r and
(y, p) are generated by models of the form (5.25) and (5.28), then the parameters in
those models can be estimated through maximization of the functions φx and φz . The
functions φx and φz can be the log likelihood functions (5.24) and (5.27), although we
permit other functions as well, since the maximization may be computationally simpler.
Such functions are sometimes called pseudo-likelihoods. We will discuss these conditions
and the role of the sets Sx and Sz in more detail in Section 5.6.

Assumption 5.3. Let px(x |θθθ x) and py |z(y|z,θθθ z) be families of distributions and consider

the adaptive GAMP algorithm, Algorithm 5.3, run on a sequence of problems, indexed by the

dimension N satisfying the following assumptions:

(a) Same as Assumption 5.1(a) to (c) with k = 2. In addition, the distributions for the

vector x is given by px(·|θθθ ∗x) for some true parameter θθθ ∗
x
∈ ΘΘΘx and the conditional

distribution of y given z is given by py|z(y |z,θθθ ∗
z
) for some true parameter θθθ ∗

z
∈ΘΘΘz .

(b) Same as Assumption 5.2(c).

(c) The adaptation functions are set to (5.26) and (5.29).

Theorem 5.3. Consider the outputs of the adaptive GAMP algorithm with ML adaptation as

described in Assumption 5.3. Then, for any fixed t,

(a) The components of ϑt
x

and ϑt
z

in (5.14) converge empirically with bounded moments of

order k = 2 as in (5.34) and the limits (5.35) hold almost surely.

(b) In addition, if (αt
r
,ξt

r
) ∈ Sx(τ

t
r
), and the family of distributions {px(·|θθθ x) : θθθ x ∈ΘΘΘx} is

identifiable in Gaussian noise with parameter set Sx(τ
t
r
) and pseudo-likelihood φx , then

lim
N→∞

bθθθ t

x
= θ̄θθ

t

x
= θθθ ∗

x
(5.39)

almost surely.
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(c) Similarly, if Kt
p
∈ Sz(τ

t
p
) for some t, and the family of distributions py|z(·|θθθ z), θθθ z ∈ΘΘΘz

is identifiable with Gaussian inputs with parameter set Sz(τ
t
p
) and pseudo-likelihood φz

then

lim
N→∞

bθθθ t

z
= θ̄θθ

t

z
= θθθ ∗

z
(5.40)

almost surely.

Proof: See Section 5.9.3.

Remarkably, the theorem shows that for a very large class of the parameterized distri-
butions, adaptive GAMP with ML adaptation is able to asymptotically estimate the cor-
rect parameters. Moreover, there is asymptotically no performance loss between adaptive
GAMP and a corresponding oracle GAMP algorithm that knows the correct parameters in
the sense that the empirical distributions of the algorithm outputs are described by the
same SE equations.

5.5.3 Computational Issues

While Theorem 5.3 shows that adaptive GAMP with ML adaptation can recover consistent
parameter estimates, the ML optimizations in (5.26) and (5.29) theoretically need to be
computed exactly. In general, these optimizations will be non-convex. This requirement
can be seen as the main disadvantage of the ML adaptation proposed here relative to the
EM-GAMP methods in [89–92]: while the proposed ML adaptation may have guaranteed
consistency, the optimizations in each iteration may be non-convex. The EM iterations, in
general are simpler.

Indeed, in the simulations in Section 5.7, we will need to approximate the optimization
either through gradient ascent or other nonlinear optimization methods. Thus, the theory
will not hold exactly. However, we will still observe a close match between the adaptive
GAMP with an oracle GAMP with the correct parameters. Moreover, the ML adaptation
is a non-convex optimization only over a number of variables only equal to the number
of unknown parameters in θθθ x and θθθ z , not the vectors x and z. Thus, for many practical
problem, the overall optimization can be significantly simpler than the original non-convex
problem.

5.6 Identifiability and Parameter Set Selection

In addition to the numerical optimization issues, Theorem 5.3 also imposes certain restric-
tions on the sets Sx and Sz over which the ML optimization must be performed. On the one
hand, Theorem 5.3 requires that, to guarantee consistency, the sets must be sufficiently
large to ensure that, for some iteration t, either (αt

r
,ξt

r
) ∈ Sx(τ

t
r
) or Kt

p
∈ Sz(τ

t
p
). On the

other hand, as we will see now, the sets may need to be constrained in order to satisfy the
identifiability conditions in Definitions 1 and 2. In this section, we briefly provide some
examples to illustrate under what cases these conditions can be met.

As discussed in the previous section, the main challenge in meeting the identifiability
requirements in both Definitions 1 and 2 is condition (b). To understand this condition,
we begin with the following simple lemma.

Lemma 5.1. Consider the distributions pr and py,p in (5.36).

(a) When φx is the log-likelihood function in (5.24), then condition (b) of Definition 1 is

satisfied if the mapping

(θθθ x ,αr ,ξr) 7→ pr(·|θθθ x ,αr ,ξr) (5.41)

is one-to-one in the set θθθ x ∈ΘΘΘx and (αr ,ξr) ∈ Sx .
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(b) Similarly, when φz is the log-likelihood function in (5.27), then condition (b) of Defi-

nition 2 is satisfied if the mapping

(θθθ z ,Kp) 7→ py,p(·|θθθ z ,Kp) (5.42)

is one-to-one in the set θθθ z ∈ΘΘΘz and Kz ∈ Sz .

Proof: See Section 5.9.4.

Lemma 5.1 essentially states that if the true likelihood functions are used, then identifia-
bility is equivalent to the parametrizations of the distributions r and (y, p) in (5.25) and
(5.28) being unique. That is, with sufficient observations of these variables, we should
be able to uniquely recover the parameter values. To understand this in this context of
the adaptive GAMP algorithm, recall from the state evolution analysis, that the compo-
nents of the vectors r

t and (y,pt) are asymptotically distributed as r or (y, p) in (5.25)
and (5.28), respectively. Thus, if the parametrizations in (5.41) or (5.42) are not one-to-
one, two different parameters values may give rise to the same asymptotic distributions
on r

t and (y,pt). In this case, the adaptation functions in (5.26) and (5.29) that base
the parameter estimates on r

t and (y,pt), cannot hope to distinguish between two such
parameter values. On the other hand, if the parametrizations are one-to-one, the lemma
shows that the ML parameter estimation will be able to correctly identify the parameter
values. We now provide some examples.

5.6.1 Gaussian Mixtures

Suppose that x is a K-term Gaussian mixture with distribution,

x ∼N (µk,τk) with probability pk,

with the unknown parameters being θθθ x = {(µk,τk, pk) : k = 1, . . . , K}. Then, the variable
r in (5.25) will also be a Gaussian mixture, but with different components

r ∼N (αrµk,α2
r
τk + ξr) with probability pk.

It is easy to check that two parameters θθθ x and θθθ ′
x

will generically result in the same
distribution on r if and only if

p′
k
= pk, α′

r
µ′

k
= αrµk, (5.43a)

(α′
r
)2τ′

k
+ ξr = α

2
r
τk + ξr , (5.43b)

for k = 1, . . . , K . That is, the component means, variances and probabilities must match.

Now, θθθ x has 3K parameters, so (θθθ x ,αr ,ξr) has a total of 3K + 2 parameters. Since
(5.43) has 3K constraints, the mapping (5.41) would in general need two additional
constraints to be one-to-one to meet condition (b) of Definition 1. As one example for
such constraints, we could know a priori that x has a known mean and variance, thereby
providing two constraints. Alternatively, we could know that one of the mixtures, say
k = 1, is strictly zero so that µ1 = τ1 = 0. This requirement would also provide two
additional constraints. In either of these two examples, we need no additional constraints
on the set Sx to meet the conditions of Lemma 5.1. Alternatively, if Sx can be restricted in
some manner, then we could relax those assumptions.
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Figure 5.2: Reconstruction of a Bernoulli-Gaussian signal from noisy measurements. The
average reconstruction MSE is plotted against (a) measurement ratio M/N and (b) AWGN
variance σ2. The plots illustrate that adaptive GAMP yields considerable improvement
over ℓ1–based LASSO estimator. Moreover, it matches the performance of oracle GAMP
that knows the prior parameters.

5.6.2 AWGN output

Now consider an AWGN output channel where py|z is given by

y = z + e, e ∼N (0,σ2), (5.44)

where e is independent of z. Here, the unknown parameter is θθθ z = σ
2. Then, given a

covariance matrix Kp, the distribution py,p in (5.36) is given by

(y, p)∼N (0,Q), Q= Kp +

�
σ2 0
0 0

�
,

which is uniquely specified by the covariance matrix Q. In this case, if we know the
(1, 1)-element of Kp, we can determine σ2 from (1,1) element of Q.

5.6.3 Initialization

One case where the covariance matrix Kt
p

could be known is in the initial step of the
algorithm. Suppose, for example, that we know the mean and variance of x , the random
variable describing the components of x. That is, the mean and variance of the input
distribution px(·|θθθ x) is the same for all values of θθθ x ∈ ΘΘΘx . In this case, even though we
do not know the value of the parameter, we can perform the initialization in line 5 for the
sum-product GAMP algorithm in Algorithm 5.1. Then, from the state evolution equations
in Section 5.3.4, we would then know the initial covariance matrix Kt

p
for t = 0 as given

in (5.22).

5.7 Experimental Evaluation

5.7.1 Estimation of a Bernoulli-Gaussian input

Recent findings [98] suggest that there is considerable value in learning of priors px in the
context of compressed sensing, which considers the estimation of sparse vectors x from
underdetermined measurements (M < N) . It is known that estimators such as LASSO
offer certain optimal min-max performance over a large class of sparse distributions [99].
However, for many particular distributions, there is a potentially large performance gap
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between LASSO and MMSE estimator with the correct prior. This gap was the main mo-
tivation for the work of Vila and Schniter [89, 90] which showed large gains of the EM-
GAMP method due to its ability to learn the prior.

Here, we illustrate the performance and asymptotic consistency of adaptive GAMP in a
simple compressed sensing example. Specifically, we consider the estimation of a sparse
vector x ∈ RN from M noisy measurements

y= Hx+ e= z+ e,

where the additive noise e is random with i.i.d. entries em ∼ N (0,σ2). Here, the “out-
put" channel is determined by the statistics of e, which are assumed to be known to the
estimator. So, there are no unknown parameters θθθ z .

As a model for the sparse input vector x, we assumed that the components are i.i.d. with
the Bernoulli-Gaussian distribution,

xn ∼
�

0 prob = 1−ρ,
N (0,σ2

x
) prob = ρ

(5.45)

where ρ represents the probability that the component is non-zero (i.e. the vector’s spar-
sity ratio) and σ2

x
is the variance of the non-zero components. The parameters θθθ x =

(ρ,σ2
x
) are treated as unknown.

Now, the Gaussian mixture in (5.45) has only two unknown parameters: ρ and σ2
x
. As

described in Section 5.6.1, this mixture is sufficiently constrained so that if we apply
the full ML estimation in (5.26) with no restrictions in the set Sx , we can identify the
parameters correctly. We thus use this ML adaption in the first iteration and the above
theory suggests that the algorithm should recover the correct parameters right away.

However, in our implementation, we continue to update the parameters at all iterations
since there may be parameter errors on finite sample sizes. However, to simplify the ML
adaptation, we can restrict the set selection Sx for iterations t > 1 as follows. Assuming
the parameters were selected correctly up to some iteration t − 1, the adaptive GAMP
algorithm should behave the same as an oracle sum-product GAMP algorithm with the
correct parameters. Now, as described in Section 5.3.4, for the sum-product GAMP, the SE
equations simplify so that αt

r
= 1 and ξt

r
= τ̄t

r
. Thus, the parameters αt

r
and ξt

r
do not

need to be estimated, and (5.26) conveniently simplifies to

Hx(r,τr) = argmax
θθθ x∈ΘΘΘx

(
1

N

N∑

n=1

log
�

pr(rn|θθθ x ,τr)
�
)

, (5.46)

where ΘΘΘx = [0,1] × [0,+∞). In our implementation, we approximate the ML adapta-
tion (5.46) with the EM update (5.30), which is run for several iterations. At each iteration

of adaptive GAMP, we run iteratively the EM updates either until ‖bθθθ t

x
− bθθθ t−1

x
‖2

2/‖bθθθ
t−1

x
‖2

2 ≤
10−4 for 3 consecutive iterations, or for a maximum of 200 iterations.

Fig. 5.2 illustrates the performance of adaptive GAMP on signals of length N = 400 gener-
ated with the parameters θθθ x = (ρ = 0.2,σ2

x
= 5). The performance of adaptive GAMP is

compared to that of LASSO with MSE optimal regularization parameter, and oracle GAMP
that knows the parameters of the prior exactly. For generating the graphs, we performed
1000 random trials by forming the measurement matrix H from i.i.d. zero-mean Gaussian
random variables of variance 1/M . In Figure 5.2(a), we keep the variance of the noise
fixed to σ2 = 0.1 and plot the average MSE of the reconstruction against the measurement
ratio M/N . In Figure 5.2(b), we keep the measurement ratio fixed to M/N = 0.75 and
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plot the average MSE of the reconstruction against the noise variance σ2. For complete-
ness, we also provide the asymptotic MSE values computed via SE recursion. The results
illustrate that GAMP significantly outperforms LASSO over the whole range of M/N and
σ2. Moreover, the results corroborate the consistency of adaptive GAMP which nearly
achieves the reconstruction quality of oracle GAMP. Note also that in Figure 5.2 the av-
erage reconstruction times—across all realizations and undersampling rates—were 0.35,
0.06, and 0.22 seconds for LASSO, oracle GAMP, and adaptive GAMP, respectively. The
results indicate that adaptive GAMP can be an effective method for estimation when the
parameters of the problem are difficult to characterize and must be estimated from data.

5.7.2 Estimation of a Nonlinear Output Classification Function

As second example, we consider the estimation of the linear-nonlinear-Poisson (LNP) cas-
cade model [81]. The model has been successfully used to characterize neural spike
responses in early sensory pathways of the visual system. In the context of the LNP cas-
cade model, the vector x ∈ RN represents the linear filter, which models the linear recep-
tive field of the neuron. AMP techniques combined with the parameter estimation have
been recently proposed for neural receptive field estimation and connectivity detection
in [100].

As in Section 5.7.1, we model x as a Bernoulli-Gaussian vector with unknown parameters
θθθ x = (ρ,σ2

x
). To obtain the measurements y, the vector z = Hx is passed through a

component-wise nonlinearity u specified by

u(z) =
1

1+ e−z
. (5.47)

The final measurement vector y is generated by a measurement channel with a conditional
density of the form

py |z(ym|zm,θθθ z) =
f (zm)

ym

ym!
e− f (zm), (5.48)

where f denotes the nonlinearity given by

f (z;θθθ z) = exp

 
r∑

i=1

θz,iu
i−1(z)

!
.

Adaptive GAMP can now be used to also estimate vector of polynomial coefficients θθθ z ,
which together with x, completely characterizes the LNP system.

The estimation of θθθ z is performed with ML estimator described in Section 5.4.1. We
assume that the mean and variance of the vector x are known at iteration t = 0. As
discussed in Section 5.6.3, this implies that for sum-product GAMP the covariance K0

p
is

initially known and the optimization (5.29) simplifies to

Hz(p,y,τp) = argmax
θθθ z∈ΘΘΘz

(
1

M

M∑

m=1

log
�

py(ym|θθθ z)
�
)

, (5.49)

where ΘΘΘz ⊂ Rr . The estimation of θθθ x is performed as in Section 5.7.1. As before, for iter-
ation t > 0, we assume that the maximizations (5.46) and (5.49) yield correct parameter

estimates bθθθ t

x
= θθθ x and bθθθ t

z
= θθθ z , respectively. Thus we can conclude by induction that

for t > 0 the adaptive GAMP algorithm should continue matching oracle GAMP for large
enough N . In our simulations, we implemented (5.49) with a gradient ascend algorithm
and run it until convergence.
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Figure 5.3: Identification of linear-nonlinear-Poisson cascade model. The average recon-
struction MSE is plotted against the measurement ratio M/N . This plots illustrates near
consistency of adaptive GAMP for large N .

In Fig. 5.3, we compare the reconstruction performance of adaptive GAMP against the
oracle version that knows the true parameters (θθθ x ,θθθ z) exactly. We consider the vector x
generated with true parameters θθθ x = (ρ = 0.1,σ2

x
= 30). We consider the case r = 3

and set the parameters of the output channel to θθθ z = [−4.88, 7.41, 2.58]. To illustrate
the asymptotic consistency of the adaptive algorithm, we consider the signals of length
N = 1000 and N = 10000. We perform 10 and 100 random trials for long and short
signals, respectively, and plot the average MSE of the reconstruction against M/N . As
expected, for large N , the performance of adaptive GAMP is nearly identical (within 0.15)
to that of oracle GAMP. For this experiment the average reconstruction times for N = 1000
were 120.76 and 1031.5 seconds for oracle and adaptive GAMP, respectively, where the
output updates were responsible for the majority of the computation time.

5.8 Summary

We have presented an adaptive GAMP method for the estimation of i.i.d. vectors x ob-
served through a known linear transforms followed by an arbitrary, component-wise ran-
dom transform. The procedure, which is a generalization of a popular EM-GAMP method-
ology, estimates both the vector x as well as parameters in the source and component-wise
output transform. In the case of large i.i.d. Gaussian transforms, it is shown that the adap-
tive GAMP method with ML parameter estimation is provably asymptotically consistent in
that the parameter estimates converge to the true values. This convergence result holds
over a large class of models with essentially arbitrarily complex parameterizations. More-
over, the algorithm is computationally efficient since it reduces the vector-valued estima-
tion problem to a sequence of scalar estimation problems in Gaussian noise. We believe
that this method is applicable to a large class of linear-nonlinear models with provable
guarantees can have applications in a wide range of problems. We have mentioned the
use of the method for learning sparse priors in compressed sensing.

There are however several limitations that may be addressed in future work. Most signifi-
cantly, the SE results are currently limited to large i.i.d. matrices. However, many matrices
in practice are not well-modeled as large i.i.d. Recent work of [101] has attempted to un-
derstand the behavior of GAMP in non-asymptotic settings and an avenue of future work
is to see if these results can be extended to adaptive GAMP.
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Also, a critical assumption in our analysis is that the parameters θθθ x and θθθ z are finite di-
mensional and whose dimensions do not grow. Another avenue of work would be see if the
methods can be extended to non-parametric estimation of the densities in the adaptation
steps or estimation with growing numbers of parameters.

Finally, as we discussed in Section 5.5.3, the ML adaptation is generally non-convex and
thus must often be approximated. An open question is what tractable, approximate meth-
ods can be applied while guaranteeing consistency.

5.9 Appendix

5.9.1 Convergence of Empirical Distributions

Bayati and Montanari’s analysis in [85] employs certain deterministic models on the vec-
tors and then proves convergence properties of related empirical distributions. To apply
the same analysis here, we need to review some of their definitions. We say a function
φ : Rr → Rs is pseudo-Lipschitz of order k > 1, if there exists an L > 0 such for any x,
y ∈ Rr ,

‖φ(x)−φ(y)‖ ≤ L(1+ ‖x‖k−1 + ‖y‖k−1)‖x− y‖.

Now suppose that for each N = 1,2, . . ., the set v(N) is a set of vectors

v(N) = {vi(N) : i = 1, . . . ,ℓ(N)}, (5.50)

where each element vi(N) ∈ Rs and ℓ(N) is the number of elements in the set. Thus, v(N)

can itself be regarded as a vector with sℓ(N) components. We say that v(N) empirically

converges with bounded moments of order k as n→∞ to a random vector V on Rs if: For
all pseudo-Lipschitz continuous functions, φ, of order k,

lim
N→∞

1

N

N∑

n=1

φ(vn(N)) = E[φ(V)]<∞.

When the nature of convergence is clear, we may write (with some abuse of notation)

v(N)
PL(k)→ V as n→∞ or lim

N→∞
v(N)

PL(k)
= V.

Finally, let P s
k

be the set of probability distributions on Rs with bounded kth moments,
and suppose that H : P s

k
→ ΘΘΘ is a functional P s

k
to some topological space ΘΘΘ. Given a

set v(N) as in (5.50), write H(v) for H(pv) where pv is the empirical distribution on the
components of v. Also, given a random vector V with distribution pV write H(V) for H(pV).
Then, we say that the functional H is weakly pseudo-Lipschitz continuous of order k if

lim
N→∞

v(N)
PL(k)
= V=⇒ lim

N→∞
H(v(N)) = H(V),

where the limit on the right hand side is in the topology of ΘΘΘ.

5.9.2 Proof of Theorem 5.2

We use the tilde superscript on quantities such as x̃t , r̃t , τ̃t
r
, p̃t , τ̃t

p
, s̃t , and z̃t to denote

values generated via a non-adaptive version of the GAMP. The non-adaptive GAMP algo-
rithm has the same initial conditions as the adaptive algorithm (i.e. x̃0 = bx0, τ̃0

p
= τ0

p
, s̃−1 =

76



5.9. Appendix

s−1 = 0), but with bθθθ t

x
and bθθθ t

z
replaced by their deterministic limits θ̄θθ

t

x
and θ̄θθ

t

z
, respectively.

That is, we set

z̃t
m
= G t

z
(pt

m
, ym,τt

p
, θ̄θθ

t

z
), s̃t

m
= G t

s
(pt

m
, ym,τt

p
, θ̄θθ

t

z
),

x̃t+1
n
= G t

x
(r t

n
,τt

r
, θ̄θθ

t

x
).

This non-adaptive algorithm is precisely the standard GAMP method. The results in that
paper show that the outputs of the non-adaptive algorithm satisfy all the required limits
from the SE analysis. That is,

lim
N→∞

ϑ̃t
x

PL(k)
= ϑ̄t

x
, lim

N→∞
ϑ̃t

z

PL(k)
= ϑ̄t

z
,

where ϑ̃t
x

and ϑ̃t
z

are the sets generated by the non-adaptive GAMP algorithm:

ϑ̃t
x
¬

¦
(xn, r̃ t

n
, x̃ t+1

n
) : n= 1, . . . , N

©
,

ϑ̃t
z
¬

¦
(zm, z̃ t

m
, ym, p̃t

m
) : m= 1, . . . , M

©
.

The limits (5.34) are now proven through a continuity argument that shows that the adap-
tive and non-adaptive quantities must asymptotically agree with one another. Specifically,
we will start by proving that the following limits holds almost surely for all t ≥ 0

lim
N→∞

∆t
x
= lim

N→∞

1

N
‖bxt − x̃t‖k

k
= 0, , (5.51a)

lim
N→∞

∆t
τp
= lim

N→∞
|τt

p
− τ̃t

p
|= 0 (5.51b)

where ‖ · ‖k is usual the k-norm. Moreover, in the course of proving (5.51), we will also
show that the following limits hold almost surely

lim
M→∞

∆t
p
= lim

M→∞

1

M
‖pt − p̃t‖k

k
= 0, (5.52a)

lim
N→∞

∆t
r
= lim

N→∞

1

N
‖r t − r̃

t‖k
k
= 0, (5.52b)

lim
M→∞

∆t
s
= lim

M→∞

1

M
‖st − s̃t‖k

k
= 0, (5.52c)

lim
M→∞

∆t
z
= lim

M→∞

1

M
‖bzt − z̃t‖k

k
= 0, (5.52d)

lim
N→∞

∆t
τr
= lim

N→∞
|τt

r
− τ̃t

r
|= 0, (5.52e)

lim
N→∞

bθθθ t

x
= θ̄θθ

t

x
, (5.52f)

lim
N→∞

bθθθ t

z
= θ̄θθ

t

z
, (5.52g)

The proof of the limits (5.51) and (5.52) is achieved by an induction on t. Although we
only need to show the above limits for k = 2, most of the arguments hold for arbitrary
k ≥ 2. We thus present the general derivation where possible.

To begin the induction argument, first note that the non-adaptive algorithm has the same
initial conditions as the adaptive algorithm. Thus the limits (5.51) and (5.52c) hold for
t = 0 and t = −1, respectively.

We now proceed by induction. Suppose that t ≥ 0 and the limits (5.51) and (5.52c)
hold for some t and t − 1, respectively. Since H has i.i.d. components with zero mean
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and variance 1/M , it follows from the Marčenko-Pastur Theorem [102] that its 2-norm
operator norm is bounded. That is, there exists a constant CA such that almost surely we
have

lim
N→∞

‖H‖k ≤ CA, lim
N→∞

‖HT‖k ≤ CA. (5.53)

This bound is the only part of the proof that specifically requires k = 2. From (5.53), we
obtain

‖pt − p̃t‖k = ‖Hbxt −τt
p
st−1 −Hx̃t + τ̃t

p
s̃t−1‖k

= ‖H(bxt − x̃t) +τt
p
(s̃t−1 − st−1) + (τ̃t

p
−τt

p
)s̃t−1‖k

≤ ‖H(bxt − x̃t)‖k + |τt
p
|‖s̃t−1 − st−1‖k + |τ̃t

p
−τt

p
|‖s̃t−1‖k

(a)
≤‖H‖k‖bxt − x̃t‖k + |τt

p
|‖s̃t−1 − st−1‖k + |τ̃t

p
−τt

p
|‖s̃t−1‖k

≤ CA‖bxt − x̃t‖k + |τt
p
|‖st−1 − s̃t−1‖k + |τt

p
− τ̃t

p
|‖s̃t−1‖k (5.54)

almost surely, where (a) is due to the norm inequality ‖Hx‖k ≤ ‖H‖k‖x‖k. Since k ≥ 1,
we have that for any positive numbers a and b

(a+ b)k ≤ 2k(ak + bk). (5.55)

Applying the inequality (5.55) into (5.54), we obtain

1

M
‖pt − p̃t‖k

k
≤

1

M

�
CA‖bxt − x̃t‖k + |τt

p
|‖st−1 − s̃t−1‖k +∆

t
τp
‖s̃t−1‖k

�k

≤ 2kCA

N

M
∆t

x
+ 2k|τt

p
|k∆t−1

s
+ 2k(∆t

τp
)k
�

1

M
‖s̃t−1‖k

k

�
. (5.56)

Now, since s̃t and τ̃t
p

are the outputs of the non-adaptive algorithm, they satisfy the limits

lim
N→∞

1

M
‖s̃t‖k

k
= lim

N→∞

1

M

M∑

m=1

|s̃t
m
|k = E

�
|S t |k

�
<∞, (5.57a)

lim
N→∞

τ̃t
p
= τ̄t

p
<∞. (5.57b)

Now, the induction hypotheses state that ∆t
x
, ∆t−1

s
and ∆t

τp
→ 0. Applying these along the

bounds (5.57a), and the fact that N/M → β , we obtain (5.52a).

To establish (5.52g), we first prove the empirical convergence of (pt ,y) to (pt , y). Towards
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this end, let φ(p, y) be any pseudo-Lipschitz continuous function φ of order k. Then
�����

1

M

M∑

m=1

φ(pt
m

, ym)−E
�
φ(pt , y)

�
�����

≤
1

M

M∑

m=1

��φ(pt
m

, ym)−φ(p̃t
m

, ym)
��

+

�����
1

M

M∑

m=1

φ(p̃t
m

, ym)−E
�
φ(pt , y)

�
�����

(a)
≤

L

M

M∑

m=1

�
1+ |pt

m
|k−1 + |p̃t

m
|k−1 + |ym|k−1

�
|pt

m
− p̃t

m
|

+

�����
1

M

M∑

m=1

φ(p̃t
m

, ym)−E
�
φ(pt , y)

�
�����

(b)
≤ LC∆t

p
+

�����
1

M

M∑

m=1

φ(p̃t
m

, ym)−E
�
φ(pt , y)

�
����� . (5.58)

In (a) we use the fact that φ is pseudo-Lipschitz, and in (b) we use Hölder’s inequality
|bxT y|= ‖x‖k‖y‖q with q = p/(p− 1). The constant is defined as

C ¬


 1

M

M∑

m=1

�
1+ |pt

m
|k−1 + |p̃t

m
|k−1 + |ym|k−1

�



k/(k−1)

≤
1

M

M∑

m=1

�
1+ |pt

m
|k−1 + |p̃t

m
|k−1 + |ym|k−1

�k/(k−1)

≤ const×

1+

�
1

M



pt


k

k

� k−1
k

+

�
1

M



p̃t


k

k

� k−1
k

+

�
1

M
‖y‖k

k

� k−1
k


 , (5.59)

where the first step is from Jensen’s inequality. Since (p̃t ,y) satisfy the limits for the
non-adaptive algorithm, we have:

lim
N→∞

1

M
‖p̃t‖k

k
= lim

N→∞

1

M

M∑

m=1

|p̃t
m
|k = E

�
|pt |k

�
<∞ (5.60a)

lim
N→∞

1

M
‖y‖k

k
= lim

N→∞

1

M

M∑

m=1

|ym|k = E
�
|y |k
�
<∞ (5.60b)

Also, from the induction hypothesis (5.52a), it follows that the adaptive output must
satisfy the same limit

lim
N→∞

1

M
‖pt‖k

k
= lim

N→∞

1

M

M∑

m=1

|pt
m
|k = E

�
|pt |k

�
<∞. (5.61)

Combining (5.58), (5.59), (5.60), (5.61), (5.52a) we conclude that for all t ≥ 0

lim
N→∞

(pt ,y)
PL(k)
= (pt , y). (5.62)
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The limit (5.62) along with (5.51b) and the continuity condition on H t
z

in Assumption
5.1(d) prove the limit in (5.52g).

The limit (5.52a) together with continuity conditions on G t
z

in Assumptions 5.1 show
that (5.52c), (5.52d) and (5.52e) hold for t. For example, to show (5.52d), we consider
the limit M →∞ of the following expression

1

M
‖bzt − z̃t‖k

k
=

1

M
‖G t

z
(pt ,y,τt

p
, bθθθ t

z
)− G t

z
(p̃t ,y,τt

p
, θ̄θθ

t

z
)‖k

k

(a)
≤

L

M
‖pt − p̃t‖k

k
= L∆t

p
,

where at (a) we used the Lipschitz continuity assumption. Similar arguments can be used
for (5.52c) and (5.52e).

To prove (5.52b), we proceed exactly as for (5.52a). Due to the continuity assumptions on
Hx , this limit in turn shows that (5.52f) holds almost surely. Then, (5.51a) and (5.51b) fol-
low directly from the continuity of Gx in Assumptions 5.1, together with (5.52b) and (5.52f).
We have thus shown that if the limits (5.51) and (5.52) hold for some t, they hold for t+1.
Thus, by induction they hold for all t.

Finally, to establish (5.34), let φ be any pseudo-Lipschitz continuous function φ(x , r, bx),
and define

εt
¬

�����
1

N

N∑

n=1

φ(xn, r̃ t
n
, x̃ t+1

n
)−E

�
φ(x , r t , bx t+1)

�
����� , (5.63)

which, due to convergence of non-adaptive GAMP, can be made arbitrarily small by choos-
ing N large enough. Then, consider

�����
1

N

N∑

n=1

φ(xn, r̂ t
n
, bx t+1

n
)−E

�
φ(x , r t , bx t+1)

�
�����

≤ εt
N
+

1

N

N∑

n=1

��φ(xn, r̂ t
n
, bx t+1

n
)−φ(xn, r̃ t

n
, x̃ t+1

n
)
��

(a)
≤εt

N
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(5.64)

where L, L′ are constants independent of N and

M̂ t+1
x
¬

1

N



x̂t+1
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, M̂ t
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¬

1
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r t


k
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In (a) we use the fact that φ is pseudo-Lipshitz, in (b) we use ℓp-norm equivalence ‖x‖1 ≤
N1−1/p‖x‖k and Hölder’s inequality |bxT y| = ‖x‖k‖y‖q with q = p/(p − 1). By applying
of (5.51a), (5.52b) and since, M̂ t+1

x
, M̃ t+1

x
, M̂ t

r
, and M̃ t

r
converge to a finite value we can

obtain the first equation of (5.34) by taking N →∞. The second equation in (5.34) can
be shown in a similar way. This proves the limits (5.34).

Also, the first two limits in (5.35) are a consequence of (5.52f) and (5.52f). The second
two limits follow from continuity assumptions in Assumption 5.1(e) and the convergence
of the empirical distributions in (5.34). This completes the proof.

5.9.3 Proof of Theorem 5.3

Part (a) of Theorem 5.3 is an application of Theorem 5.2. To apply this general result,
first observe that Assumptions 5.3(a) and (c) immediately imply the corresponding items
in Assumptions 5.2. So, we only need to verify the continuity condition in Assumption
5.2(b) for the adaptation functions in (5.26) and (5.29).

We begin by proving the continuity of H t
z
. Fix t, and let (y(N),p(N)) be a sequence of

vectors and τ(N)
p

be a sequence of scalars such that

lim
N→∞

(y(N),p(N))
PL(p)
= (y, pt) lim

N→∞
τ(N)

p
= τ̄t

p
, (5.65)

where (y, pt) and τ̄t
p

are the outputs of the state evolution equations. For each N , let

bθθθ (N)
z
¬ H t

z
(y(N),p(N),τ(N)

p
). (5.66)

We wish to show that bθθθ (N)
z
→ θθθ ∗

z
, the true parameter. Since bθθθ (N)

z
∈ΘΘΘz and ΘΘΘz is compact,

it suffices to show that any limit point of any convergent subsequence is equal to θθθ ∗
z
. So,

suppose that bθθθ (N)
z
→ bθθθ z to some limit point bθθθ z on some subsequence bθθθ (N)

z
.

From bθθθ (N)
z

and the definition (5.29), it follows that

1

M

M∑

m=1

φz(p
(N)
m

, y (N)
m

, bθθθ (N)
z

,Kp)≥
1

M

M∑

m=1

φz(p
(N)
m

, y (N)
m

,θθθ ∗
z
,Kp), (5.67)

where Kp ∈ Sz(τ
(N)
p
) is the solution of the first maximization of (5.29). Now, since τ(N)

p
→

τ̄t
p

and bθθθ (N)
z
→ bθθθ z , we apply the continuity condition in Definition 2(c) to obtain

lim inf
N→∞

1

M

M∑

m=1

h
φz(p

(N)
m

, y (N)
m

, bθθθ z ,Kp) −φz(p
(N)
m

, y (N)
m

,θθθ ∗
z
,Kp)

�
≥ 0. (5.68)

Also, the limit (5.65) and the fact that φz is pseuedo-Lipschitz continuous of order k

implies that
E[φz(p

t , y, bθθθ z ,Kp)]≥ E[φz(p
t , y,θθθ ∗

z
,Kp)]. (5.69)

But, Property (b) of Definition 2 shows that θθθ ∗
z

is the unique maxima of the right-hand
side, so

E[φz(p
t , y, bθθθ z ,Kp)] = E[φz(p

t , y,θθθ ∗
z
,Kp)], (5.70)

with bθθθ z = θθθ
∗
z
. Since this limit point is the same for all convergent subsequences, we see

that bθθθ (N)
z
→ θθθ ∗

z
over the entire sequence. We have thus shown that given limits (5.65), the

outputs of the adaptation function converge as

H t
z
(y(N),p(N),τ(N)

p
) = bθθθ (N)

z
→ θθθ ∗

z
= H t

z
(y, pt , τ̄t

p
).
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Thus, the continuity condition on H t
z

in Assumption 5.2(b) is satisfied. The analogous
continuity condition on H t

x
can be proven in a similar manner.

Therefore, all the conditions of Assumption 5.2 are satisfied and we can apply Theorem
5.2. Part (a) of Theorem 5.3 immediately follows from Theorem 5.2.

So, it remains to show parts (b) and (c) of Theorem 5.3. We will only prove (b); the proof
of (c) is similar. Also, since we have already established (5.35), we only need to show
that the output of the SE equations matches the true parameter. That is, we need to show
θ̄θθ

t

x
= θθθ ∗

x
. This fact follows immediately from the selection of the adaptation functions:

θ̄θθ
t
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x
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(5.71)

(d)
= θθθ ∗

x
(5.72)

where (a) follows from the SE equation (5.33a); (b) is the definition of the ML adaptation
function H t

x
when interpreted as a functional on a random variable r t ; (c) is the definition

of the random variable r t in (5.16) where v t ∼ N (0,ξt
r
); and (d) follows from Defini-

tion 1(b) and the hypothesis that (α∗
r
,ξ∗

r
) ∈ Sx(τ̄

t
r
). Thus, we have proven that θ̄θθ

t

x
= θθθ ∗

x
,

and this completes the proof of part (b) of Theorem 5.3. The proof of part (c) is similar.

5.9.4 Proof of Lemma 5.1

We will just prove part (a). The proof of (b) is similar. Suppose that r ∼ pr(·|θθθ ∗x ,α∗
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be the expected value of φx under the true parameters for r. According to Definition 1(b),
we need to show that L is maximized uniquely at (θθθ ∗
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). To this end, consider any

other parameter set (θθθ x ,αr ,ξr). Then, if φx is the log-likelihood function in (5.24),
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where (a) follows from the definition of L; (b) follows from the fact that φx is the log
likelihood in (5.24) and (c) is the Kullback-Liebler divergence. Now, if

(θθθ ∗
x
,α∗

r
,ξ∗

r
) 6= (θθθ x ,αr ,ξr),

the hypothesis that the map (5.41) is one-to-one implies that the two distributions in
(5.73) are not equal. Therefore, the Kullback-Liebler divergence will be strictly positive
[103] and thus the function L is uniquely maximized at (θθθ ∗

x
,α∗

r
,ξ∗

r
).
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Chapter 6

Numerical Evaluation

6.1 Introduction

In this chapter, we report several numerical results comparing some of the methods that
were discussed in the previous chapters. In particular, we are interested in evaluating
the performance of the GAMP algorithm discussed in Chapter 5 against wavelet– and
gradient–based MAP approaches. We will focus on linear inverse problems and consider
two types of measurement matrices: (a) compressive sensing matrices with i.i.d. Gaussian
elements; (b) matrices representing a periodic convolution. The former scenario consti-
tutes an ideal setting for message-passing algorithms and is useful for understanding the
performance bounds of GAMP. The latter represents a more realistic setting that illustrates
the potential of message-passing for solving practical inverse problems.

Apart from the measurement model, we will also consider two distinct types of signals:
statistical signals generated from a known distribution px, and some standard test im-
ages. In the latter case, we face the common difficulty in applying statistical estimation
to imaging: the true statistical distribution of an image is rarely known. To circumvent
this problem, we first postulate a family of priors {px(·|θθθ x) | θθθ x ∈ ΘΘΘx}, then pick θθθ x that
maximizes the likelihood of a given image x under px. In Chapter 5, we showed that this
type of maximum-likelihood (ML) fitting can be done in a fully automated and consis-
tent fashion for i.i.d. Gaussian measurement matrices when using adaptive GAMP. In this
chapter, however, we will opt for an oracle fitting scenario that uses x to directly learn the
parameters θθθ x . The advantage of such approach is that it does not depend on the type of
the measurement matrix H, and thus allows us to concentrate on the actual performance
of GAMP.

We observed that under ML fitting MAP–based estimators consistently yield suboptimal
SNR performances. For example, when ML learning of Laplace parameter λ is combined
with TV-regularized reconstruction, the result loses most of the visual details, which nega-
tively affects the SNR. Thus, the SNR of MAP–based algorithms on test images is typically
boosted by picking the parameter θθθ x that minimizes the MSE.

6.2 Compressive Sensing

We start by evaluating the performance of several reconstruction algorithms for solv-
ing the standard compressive sensing problem y = Hx + e, where e is AWGN at input
SNR¬ 10 log10

�
‖Hx‖2/‖e‖

�
= 30 dB, and measurement matrix H is drawn with i.i.d.

N (0,1/M) entries [104,105].

In the first experiment, illustrated in Figure 6.1, we recover an i.i.d. signal x generated
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Figure 6.1: Reconstruction of an i.i.d. Laplace signal from noisy linear measurements.
The average reconstruction SNR is plotted against the measurement rate M/N . The plot
illustrates the superior performance of sum-product GAMP with Gaussian random forward
models.

(a) (b)

(c) (d)

Figure 6.2: Illustration of a reconstructed i.i.d. Laplace signal for a measurement ratio of
M/N = 0.9, the upper-left 8× 8 crop being shown. (a) original, (b) LMMSE: 9.80 dB, (c)
MAP: 10.78 dB, (d) GAMP: 11.49 dB.

from the Laplace distribution

px(x) =
λ

2
e−λ|x |,

where λ > 0 is the scale parameter. We fix the signal size to 32 × 32 and set λ = 1.
We compare the SNR performance of GAMP against two standard statistical estimators,
linear MMSE (LMMSE) and MAP, at different measurement ratios M/N . The LMMSE solu-
tion bxLMMSE is obtained by minimizing ℓ2-regularized least-squares cost with MSE optimal
regularization parameter, while the MAP solution bxMAP corresponds to the minimization
ℓ1-regularized least-squares cost. The latter is also known as least absolute shrinkage

and selection operator (LASSO) [96]. Both estimators can be efficiently computed via
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Figure 6.3: Reconstruction of an i.i.d. Bernoulli-Gaussian signal of sparsity ρ = 0.3 from
noisy linear measurements. The average reconstruction SNR is plotted against the mea-
surement rate M/N . The plot illustrates the superior performance of sum-product GAMP
for Gaussian random forward models.

(a) (b)

(c) (d)

Figure 6.4: Illustration of a reconstructed i.i.d. Bernoulli-Gaussian signal of sparsity ρ =
0.3 for a measurement ratio of M/N = 0.8, the upper-left 8× 8 crop being shown. (a)
original, (b) LMMSE: 5.22 dB , (c) LASSO: 20.98 dB, (d) GAMP: 29.97 dB.

the FISTA method summarized in Algorithm 2.6. The GAMP algorithm here refers to
the sum-product version summarized in Algorithm 5.1, which we use to approximate the
MMSE estimator bxMMSE. The curves in Figure 6.1 were obtained by averaging the results
of 100 instances of the problem. The results illustrate that MMSE estimator computed via
GAMP outperforms both MAP and LMMSE estimators over the whole range of M/N . At
lower measurement rates, we observe the superior performance of LMMSE compared to
MAP, which corroborates the suboptimality of ℓ1-norm regularization for the recovery of
Laplace signals. A particular instance for M/N = 0.9 is illustrated in Figure 6.2, where
the first 8× 8 pixels from the top-left corner of the image are shown. Visual inspection
suggests that Laplace signals are not sparse, which explains the difficulty of recovering
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.5: Compressive sensing reconstruction of 128 × 128 Lena for a measurement
ratio of M/N = 0.7. (a) original, (b) wavelet decomposition, (c) ortho-ℓ2: 7.71 dB, (d)
ortho-ℓ1: 17.81 dB, (e) ortho-GAMP: 19.41 dB, (f) CS-ℓ2: 7.80 dB, (g) CS-ℓ1: 21.02 dB,
(h) TV: 22.46 dB, (i) CS-GAMP: 23.52 dB.

them when M < N .

In the second experiment, illustrated in Figure 6.3, the sparse signal is generated from the
i.i.d. Bernoulli-Gaussian distribution

px(x) = ρG (x; 1) + (1−ρ)δ(x),

where ρ ∈ [0, 1] is the sparsity ratio, G is the Gaussian probability density function,
and δ is the Dirac delta function. We fix the sparsity ratio to ρ = 0.3, and compare
GAMP against three other methods: LMMSE, LASSO, as well as the support aware MMSE
estimator labeled genie. The regularization parameter λ of LASSO was optimized for
the best SNR performance. The curves in Figure 6.3 were also obtained by averaging
the results from 100 instances of the problem. As expected, the results illustrate the
suboptimal performance of LMMSE for the recovery of sparse signals. On the other hand,
GAMP significantly outperforms LASSO, which is currently considered as the algorithm of
choice for the recovery of sparse signals. We can also see that for the high measurement
ratios M/N , GAMP approaches the performance of the support aware MMSE estimator. A
specific instance at M/N = 0.8 is illustrated in Figure 6.2, where the first 8×8 pixels from
the top-left corner of the image are shown. This visual result corroborates the SNR values;
the reconstruction obtained with GAMP is sharper than the one obtained with LASSO.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.6: Compressive sensing reconstruction of 128× 128 Cameraman for a measure-
ment ratio of M/N = 0.7. (a) original, (b) wavelet decomposition, (c) ortho-ℓ2: 10.00
dB, (d) ortho-ℓ1: 21.77 dB, (e) ortho-GAMP: 22.54 dB, (f) CS-ℓ2: 10.12 dB, (g) CS-ℓ1:
24.25 dB, (h) TV: 25.20 dB, (i) CS-GAMP: 26.62 dB.

In Figures 6.5, 6.6, and 6.7, we consider reconstruction of three test images Lena, Camera-

men, and Lung, respectively, for the measurement ratio M/N = 0.7. We compare seven re-
construction strategies: orthogonal-wavelet with ℓ2-regularization (ortho-ℓ2), orthogonal-
wavelet with ℓ1-regularization (ortho-ℓ1), orthogonal-wavelet with GAMP (ortho-GAMP),
cycle-spinning with ℓ2-regularization (CS-ℓ2), cycle-spinning with ℓ1-regularization (CS-
ℓ1), total-variation regularization (TV), and cycle-spinning with GAMP (CS-GAMP). For
the transform, we used Haar wavelet-transform with 4 decomposition levels. When ap-
plying cycle-spinning we considered 16 horizontal and 16 vertical adjacent shifts (256
possible shifts in total). We assumed a separable Bernoulli-Gaussian prior for GAMP, where
the sparsity ratio and the variance of the Gaussian components were learned from the true
signal, separately for each channel, using EM procedure [93]. Regularization parameters
of other algorithms were tuned for the best SNR performance.

The results on test images illustrate that within the class of orthogonal wavelet-domain
methods GAMP yields the best SNR performance, while ℓ2–based method yields the worst.
We also observe that cycle-spinning significantly boosts the performance of wavelet–domain
estimation. For example, CS-ℓ1 significantly outperforms ortho-GAMP for all images. We
finally see the superior performance of TV compared to all wavelet-domain methods, ex-
cept for CS-GAMP, which yields the solutions with the highest SNR for all considered
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.7: Compressive sensing reconstruction of 128 × 128 Lung for a measurement
ratio of M/N = 0.7. (a) original, (b) wavelet decomposition, (c) ortho-ℓ2: 7.68 dB, (d)
ortho-ℓ1: 22.05 dB, (e) ortho-GAMP: 23.30 dB, (f) CS-ℓ2: 8.37 dB, (g) CS-ℓ1: 25.66 dB,
(h) TV: 26.37 dB, (i) CS-GAMP: 27.74 dB.

images.

6.3 Image Deconvolution

In this section, we evaluate the potential of GAMP for solving wavelet-based deconvolu-
tion problems, and compare our approach to sparsity-promoting reconstruction based on
the ℓ1-norm. In particular, our forward operator H corresponds to a convolution with a
Laplacian kernel. Such deconvolution is common in phase microscopy, where it is ob-
tained via the transport-of-intensity equation (TIE) [106]. Originating from the parabolic
wave equation, TIE links the phase image to the variations in the intensity induced by
wave propagation. Specifically, TIE grants an experimental access to the Laplacian of the
phase by acquiring three defocused images via moving the stage of the microscope [107].

Theorem 5.1 shows that for i.i.d. Gaussian H the convergence of GAMP is assured via the
state evolution equations. Unfortunately, for generic measurement matrices H the algo-
rithm may diverge. Although, comprehensive convergence analysis of GAMP for general H
is still an open question, some important ideas were presented by Rangan et al. in [108].
In particular, they showed that for Gaussian prior and noise the local convergence of both
MAP and MMSE variants of GAMP can be guaranteed with a minor modification to the
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Figure 6.8: Deconvolution of a sparse 64 × 64 Bernoulli-Gaussian image. The average
reconstruction SNR is plotted against the input SNR. The plot illustrates the superior MSE
performance of GAMP over LASSO and LMMSE.

(a) (b)

(c) (d)

Figure 6.9: Deconvolution of a sparse Gauss-Bernoulli image with ρ = 0.1, at input SNR
of 15 dB; the upper-left 8×8 crop is shown. (a) original, (b) convolved, (c) LASSO: 18.67
dB, (d) GAMP: 20.04 dB.

algorithm that damps the updates. Therefore, here, we use iteration dependent damping
proportional to 1/

p
t, which closely resembles to the strategy used for the convergence

proof of cycle spinning in Theorem 3.1.

In the first set of experiments, we consider the restoration of a sparse i.i.d. Bernoulli-
Gaussian image of size 64× 64 that has a sparsity ratio equal to ρ = 0.1. Each nonzero
value is drawn from the zero-mean Gaussian distribution of variance 1. Our measure-
ments consist in the circular convolution between the original image and a Laplacian
kernel with the addition of AWGN. In Figure 6.8, we compare the deconvolution perfor-
mance of GAMP with the above Bernoulli-Gaussian prior against LMMSE and LASSO. The
regularization parameter λ used in the latter method was optimized for best SNR perfor-
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(a) (b)

(c) (d)

Figure 6.10: Deconvolution of 256×256 Cameraman. (a) original, (b) convolved, (c) TV:
16.12 dB, (d) CS-GAMP: 16.15 dB.

mance. The results indicate that for the problem considered, GAMP outperforms LASSO
over the whole range of input SNRs. A particular instance at input SNR equal to 15 dB is
illustrated in Figure 6.9, where the first 8× 8 pixels from the top-left corner of the image
are shown.

The problem of image restoration is considered next on the standard test images Camera-

man and Lena. We compare GAMP against TV-regularized reconstruction that was consid-
ered for TIE microscopy by Bostan et al. in [107]. For GAMP, the sparsifying domain W
is set to the Daubechies4-wavelet basis with 5 decomposition levels. As before, for each
wavelet coefficient, our approach assumes Bernouilli-Gaussian statistics with a learned
sparsity ratio and variance. The performance of GAMP–based wavelet estimation is also
boosted with cycle-spinning (we label the algorithm CS-GAMP) that uses 32 horizontal
and 32 vertical adjacent shifts (1024 total shifts). The results are provided in Figures 6.10
and 6.11 for an input SNR of 30 dB. The results illustrate the competitiveness of GAMP
with TV both visually and in terms of SNR.

6.4 Discussion

In this chapter, we performed several numerical simulations comparing GAMP–based MMSE
estimator with other MAP–based approaches. In particular, Section 6.2 considered com-
pressive sensing scenario, where the measurement matrix H has i.i.d. Gaussian elements.
State evolution analysis in Theorem 5.1 shows that for such measurement matrices, inter-
mediate quantities computed by GAMP admit precise statistical interpretation. In a way,
this indicates that such inverse problems represent an ideal scenario, where GAMP is ex-
pected to perform at its best. Indeed, our simulations confirm that for compressive sensing
GAMP yields state-of-the-art performance by largely outperforming other methods.

In image reconstruction with GAMP, the best performance was obtained when the method
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(a) (b)

(c) (d)

Figure 6.11: Deconvolution of 256× 256 Lena. (a) original, (b) convolved, (c) TV: 10.92
dB, (d) CS-GAMP: 10.93 dB.

was used in conjunction with cycle spinning (CS-GAMP). Nonetheless, we note that the
success of CS-GAMP is purely empirical and the method still requires theoretical conver-
gence analysis similar to the one for ISTA in Theorem 3.1. Accordingly, the development
of convergence results for CS-GAMP is an important topic for future research.

In Section 6.3, we considered a more practical setting applicable to phase microscopy,
where the measurements correspond to periodic convolution with a Laplacian kernel. Un-
fortunately, for such H the convergence of GAMP is still not theoretically understood. Our
experimental results, however, indicate that GAMP significantly outperforms LMMSE and
LASSO for the recovery of sparse statistical signals. Moreover, the results on test images
show that GAMP makes wavelet-domain estimation competitive with TV.

The central conclusion from our simple evaluations here is that GAMP has an immense
potential for becoming a method of choice for statistical resolution of inverse problems.
There are, however, two crucial aspects of the algorithm that still require extensive theo-
retical investigation: its convergence and MSE optimality for arbitrary matrices H. Addi-
tionally, future work might consider extending GAMP beyond i.i.d. priors in some basis, in
order to accommodate more powerful priors that are becoming common in imaging [109].
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Chapter 7

A Novel Nonlinear Framework for
Optical Phase Tomography

7.1 Introduction

In this chapter, we leave the world of linear inverse problems by formulating and solving
a nonlinear alternative for optical tomographic microscopy. In particular, we present a
novel technique for quantitatively estimating the distribution of the refractive index in a
3D object from measurements of the transmitted wave-field. Refractive index can be used
to study internal structure, as well as physical properties of nearly transparent objects such
as cells or tissues. Its accurate estimation is thus an important topic in biomicroscopy.

Most approaches for estimating the refractive index rely on various approximations to
linearize the relationship between the refractive index and the measured wave-field [2].
For example, one standard approach interprets the phase of the transmitted wave-field
as a line integral of the refractive index along the propagation direction and uses the
filtered back-projection algorithm for reconstructing it [110]. Another approach relies
on the Fourier diffraction theorem to establish a Fourier transform–based relationship
between the measured field and the refractive index [111]. Such linear forward models
are typically valid only for objects that are weakly scattering; their application on highly
contrasted or large objects often results in estimates of poor resolution.

Contrary to the standard linear approaches, here, we propose a nonlinear forward model
based on modelling the physics of wave-field propagation. In particular, we rely on a pop-
ular technique in optics called beam propagation method (BPM), which is extensively used
for modelling diffraction and propagation effects of waves [112]. Accordingly, BPM pro-
vides a more accurate model than its linear counterparts, when scattering effects cannot
be neglected. We thus develop a statistical algorithm that relies on BPM for modelling the
measurements and on TV for modelling the signal. The central element of our approach
is a novel time-reversal scheme for computing the derivative of the transmitted wave-field
with respect to the distribution of refractive index. We validate our algorithm on simu-
lations as well as on experimentally measured data. To the best of our knowledge, our
approach is the first successful method that can handle this type of nonlinear forward
models on such a large scale imaging problem.

This chapter is composed of two main parts. The first part is devoted to BPM in gen-
eral. Specifically, in Section 7.2, we introduce the inhomogeneous Helmholtz equation
that completely characterizes the wave-field at all spatial positions in a time-independent
form [113]. We then describe the important paraxial simplification of the Helmholz equa-
tion, which is often used for describing the propagation of electromagnetic waves. Sec-
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tion 7.3 introduces the Fourier–based variant of BPM as a computational technique for
solving the simplified Helmholz equation. The second part of the chapter focuses on the
iterative image reconstruction model based on the nonlinear BPM forward model. The
algorithm developed in Section 7.4 estimates the refractive index by minimizing a cost
function, where the data-term is based on BPM and the regularizer promotes gradient-
sparsity of the estimate. Fundamentally, the algorithm relies on the computation of the
derivatives of the forward model with respect to the refractive index, which will be pre-
sented in a great detail. We finally close the chapter by presenting some experimental
results in Section 7.5.

7.2 Inhomogeneous Wave Equation

Consider the inhomogeneous Helmholtz equation [113]
�
∆+ k2(r) I

�
u(r) = 0, (7.1)

where r = (x , y, z), u is the total wave-field at r, ∆ = (∂ 2/∂ x2 + ∂ 2/∂ y2 + ∂ 2/∂ z2) is
the Laplacian, I is the identity operator, and k = 2π/λ is the wavenumber of the field. We
will write

k(r) = k0n(r) = k0(n0 +δn(r)), (7.2)

where k0 = 2π/λ0 = ω/c0 = ω
p
µ0ε0 is the wavenumber in the free space, c0 ≈ 3× 108

m/s is the speed of light in free space, µ0 and ε0 are permeability and permittivity of free
space, respectively. The quantity n is the refractive index of the sample, which we have
written in terms of the refractive index of the medium n0 and the perturbation δn due to
inhomogeneities in the object. We next develop the paraxial Helmholtz equation for the
complex envelope a(r) of the paraxial wave 1

u(r) = a(r)ejk0n0z . (7.3)

One way to regard (7.3) is to say that it corresponds to a plane wave propagating along z

in the medium, modulated by the complex amplitude a. Now consider

∂ 2

∂ z2 u(r) =
∂

∂ z

��
∂

∂ z
a(r)

�
ejk0n0z + jk0n0a(r)ejk0n0z

�
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��
∂ 2

∂ z2 a(r)

�
+ 2jk0n0

�
∂

∂ z
a(r)

�
− k2

0n2
0a(r)

�
.

By using this expression and by substituting (7.3) into (7.1), we obtain
�
∆+ k2(r) I

�
u(r)

=

�
∆⊥ +

∂ 2

∂ z2 + 2jk0n0

∂

∂ z
− k2

0n2
0 I+ k2

0

�
n2

0 + 2n0 δn(r) + (δn(r))2
�

I

�
a(r)ejk0n0z

=

�
∆⊥ +

∂ 2

∂ z2 + 2jk0n0

∂

∂ z
+ 2k2

0n0 δn(r) I+ k2
0 (δn(r))2 I

�
a(r)ejk0n0z = 0,

where ∆⊥ = ∂
2/∂ x2 + ∂ 2/∂ y2. We will now introduce two simplifications. The first is

the slowly varying envelope approximation (SVEA), which is valid when |(∂ 2/∂ z2)a| ≪

1. A wave is said to be paraxial if its wavefront normals are paraxial rays (i.e. where sin(θ )≈ θ is valid). The
variation of a with position must be slow within the distance of a wavelength, so that the wave approximately
maintains its underlying plane-wave nature.

94



7.3. Fourier Beam Propagation

|k0n0(∂ /∂ z)a| and allows us to suppress the second derivative of a in z [113]. In the
second simplification, we ignore the term (δn)2. We thus obtain

∂

∂ z
a(r) =

�
j

1

2k0n0
∆⊥ + jk0 δn(r) I

�
a(r). (7.4)

7.3 Fourier Beam Propagation

BPM is a class of algorithms designed for calculating the optical field distribution in space
or in time given initial conditions 2. The paraxial Helmholz equation (7.4) is an evolution
equation in which the space coordinate z plays the role of the evolution parameter.

7.3.1 Derivation

We start by rewriting (7.4) in operator form

∂

∂ z
a(r) = D {a} (r) +N {a} (r), (7.5)

where

D= j
1

2k0n0
∆⊥ and N= jk0 δn(r) I.

Note that the operator D is linear and translation-invariant (LTI), while the operator N
corresponds to a pointwise multiplication. The formal solution of (7.5) is a complex ex-
ponential 3

a(x , y, z) = e(D+N)za(x , y, 0). (7.6)

The operators exp(Dz) and exp(Nz) do a priori not commute; however, Baker-Campbell-
Hausdorff formula [114] can be applied to show that the error from treating them as if
they do will be of order δz2 if we are taking a small but finite z step δz. This suggests the
following approximation

a(x , y, z +δz) = eNδzeDδza(x , y, z). (7.7)

Now, it is possible to get explicit expressions for the diffraction exp(Dδz) and refraction
exp(Nδz) operators, since they are independent. Diffraction is handled in the Fourier
domain as

a(ωx ,ωy , z +δz) = e
−j

ω2
x+ω

2
y

2k0n0
δz

a(ωx ,ωy , z), (7.8)

which can also be expressed for a fixed z with a 2D Fourier transform

a(x , y, z +δz) =F−1

¨
F {a(·, ·, z)} (ωx ,ωy) e

−j
ω2

x+ω
2
y

2k0n0
δz

«
(x , y, z +δz). (7.9)

For refraction, we get

a(x , y, z +δz) = ejk0(δn(x ,y,z))δza(x , y, z), (7.10)

which amounts to a simple multiplication with a phase mask in the spatial domain.

2. We thank Alexandre Goy and Ioannis Papadopoulos, members of the Optics Laboratory at EPFL, for for-
mally initiating us into the world of BPM. We also thank the head of the Optics Laboratory Prof. Demetri Psaltis.

3. Note that for an operator T, we define a new operator eTz in terms of the series expansion eTz =∑∞
n=0

zn

n!
Tn. Therefore, for a(r), we write eTz{a}(r) =

∑∞
n=0

zn

n!
Tn{a}(r)
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The BPM for simulating waves propagating at larger angles was derived by Feit and Fleck
in [115]. By relying on their results, we can replace the diffraction step (7.9) by a more
refined alternative

a(x , y, z +δz) (7.11)

=F−1



F {a(·, ·, z)} (ωx ,ωy) e

−j

 
ω2

x+ω
2
y

k0n0+
p

k2
0 n2

0−ω
2
x−ω2

y

!
δz



 (x , y, z +δz).

It is important to note that if the solution exists for an arbitrary initial condition a0 ¬

a(x , y, z = 0), it implies that a0 does not depend on a(r), which means that BPM that
solves this problem ignores reflections.

7.3.2 Implementation

We consider the 3D volume [−Lx/2, Lx/2] × [−L y/2, L y/2] × [0, Lz] that we refer to
as computational domain. The domain is sampled with steps δx ,δ y , and δz, which
will result in Nx , Ny , and K samples, respectively. We will additionally use the following
matrix-vector notations

– x: samples of the refractive-index distribution δn in the computational domain.

– y: samples of the complex wave-field a.

– S: non-linear forward operator that implements BPM and maps the refractive index
distribution into the complex wave-field y= S(x).

We use the index k to refer to the quantities described above at the k-th slice along the
optical axis z. For simplicity, we assume that all 2D quantities at the k-th slice are stored in
a vector. Then, given the initial input field y0 = S0(x) and the refractive index distribution
x, the total field {yk}k∈[1...K] can be computed recursively as follows

Sk(x) = diag
�
pk(xk)

�
H Sk−1(x). (k = 1, . . . , K) (7.12)

Here, H denotes the diffraction operator corresponding to (7.11); it is implemented by
taking the DFT of the input field, multiplying it by a frequency-domain phase mask, and
taking the inverse DFT. The vector pk(xk) = ejk0 δz xk , which depends on k-th slice of the
refractive index xk, accounts for a phase factor corresponding to the implementation of
the refraction step (7.10).

Figure 7.1 illustrates a simulation where a plane-wave of λ = 561 nm with a Gaussian
amplitude is propagated in immersion oil (n0 = 1.518 at λ = 561 nm) with an angle
of π/32 with respect to optical axis z. The computational domain of dimensions Lx =

L y = Lz = 36.86 µm is sampled with steps δx = δ y = δz = 144 nm. In (a)–(c) we
illustrate the propagation of the wave-field in immersion oil, while in (d)–(f) we illustrate
the propagation when a spherical bead of diameter 10 µm with refractive index n= 1.548
is immersed in the oil. As we can see in (f) even for a relatively week refractive index
contrast of δn = 0.03, one can clearly observe the effects of scattering on the magnitude
of the wave-field.

7.4 Iterative Reconstruction

In practice, the input field y0 is known and the output field yK is measured using a holo-
graphic technique that gives access to the full complex-valued wave-field. Our goal is to
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(a) (b) (c)

(d) (e) (f)

Figure 7.1: Propagation of a plane-wave of λ = 561 nm in immersion oil with n0 = 1.518
simulated with BPM. (a–c) Propagation in oil. (d–f) Immersion of a 10 µm bead of n =

1.548 at λ = 561 nm. (a, d) x-y slice of the beam magnitude at z = Lz/2, (b, e) x-y slice
of the beam phase at z = Lz/2. (c, f) x-z slice of the beam magnitude at y = 0. The circle
in (f) illustrates the boundary of the bead at y = 0. Scale bar, 10 µm.

recover x from a set of L views {yℓ
K
}ℓ∈[1...L] corresponding to input fields {yℓ0}ℓ∈[1...L]. To

perform estimation, we minimize the following regularized least-squares function

C (x) = D(x) +φ(x) (7.13a)

=
1

L

L∑

ℓ=1

Dℓ(x) +φ(x) (7.13b)

=
1

2L

L∑

ℓ=1



yℓ
K
− Sℓ

K
(x)


2

2 +φ(x), (7.13c)

where φ is one of the sparsity-promoting regularizers discussed in Chapter 2.

7.4.1 Derivation of the Gradient

The gradient of the data termD with respect to x is required for MAP–based reconstruction
algorithm. Accordingly, we now derive a recursive algorithm for computing this quantity 4.
For simplicity, we consider the scenario of a single view and thus drop indices ℓ from
the subsequent derivations. The final formula can be easily generalized for an arbitrary
number of views L.

We start by expanding the least-squares function as follows

D(x) =
1

2



yK − SK(x)


2

(7.14a)

=
1

2



yK ,yK

�
−Re

�

SK(x),yK

�	
+

1

2



SK(x),SK(x)

�
, (7.14b)

4. We thank Cédric Vonesch for establishing the recursive computation formula for the gradient.
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Algorithm 7.1: Time-reversal scheme for computing ∇DH

input: input field y0, output field yK ,
and current estimate of the refractive-index distribution bx.

output: the gradient [∇D(bx)]H .
algorithm:

1. Compute the total field by= S(bx) using the Beam propagation recursion (7.12),
keeping all the intermediate wave-fields byk = Sk(bx) in memory.

2. Compute the residual rK = byK − yK and set sK = 0.

3. Compute s0 =
�
∂

∂ x
SK(bx)

�H
rK using the following iterative procedure

a) sk−1 = sk +
�
∂

∂ x
pk(bxk)

�H
diag

�
H byk−1

�
rk, (k = K , . . . , 1).

b) rk−1 = HHdiag
�

pk(bxk)
�
rk, (k = K , . . . , 1).

4. Return [∇D(bx)]H = Re{s0}.

0 500 1000
10

0

10
2

10
4

iterations (t)

co
st

Figure 7.2: Reconstruction of a 10 µm bead of refractive index 1.548 at λ = 561 nm in
immersion oil with n0 = 1.518 from BPM simulated measurements. Evolution of the cost
function C (bxt) during the reconstruction over 1000 iterations.

where 〈x,z〉 = zHx, where Hermitian transposition H is due to the complex nature of the
quantities. We would like to compute the gradient of this expression. We introduce a
convention

∂

∂ x j

S(x) =




∂

∂ x j

[S(x)]1
...

∂

∂ x j

[S(x)]M


 . (7.15)

Then, the gradient is given by

∇D(x) =
�
∂D(x)
∂ x1

. . .
∂D(x)
∂ xN

�
= Re

��
SK(x)− yK

�H

�
∂

∂ x
SK(x)

��
, (7.16)
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fhat

(a) (b) (c) (d)

(e) (f) (g) (h)

z

x

y

Figure 7.3: Reconstruction of a 10 µm bead of refractive index 1.548 at λ = 561 nm in
immersion oil with n0 = 1.518 from BPM simulated measurements. (a–d) True refractive
index distribution. (e–h) Reconstructed refractive index distribution: SNR = 22.74 dB.
(a, e) A 3D rendered image of the bead. (b, f) x-y slice of the bead at z = Lz/2. (c, g) z-x
slice of the bead at y = 0. (d, h) z-y slice of the bead at x = 0. Scale bar, 10 µm.

where

∂

∂ x
SK(x) =

�
∂

∂ x1
[SK(x)] . . .

∂

∂ xN

[SK(x)]

�

=




∂

∂ x1
[SK(x)]1 . . . ∂

∂ xN

[SK(x)]1
...

...
...

∂

∂ x1
[SK(x)]M . . . ∂

∂ xN

[SK(x)]M


 .

In practice, we are interested in a column vector

[∇D(x)]H = Re

¨�
∂

∂ x
SK(x)

�H �
SK(x)− yK

�
«

. (7.17)

Therefore, we need to derive a tractable algorithm to compute (7.17). By looking at
(7.12), we see that

∂

∂ x
Sk(x) =

∂

∂ x

�
diag

�
pk(xk)

�
H Sk−1(x)

�

= diag
�
H Sk−1(x)

�� ∂
∂ x

pk(xk)

�
+ diag

�
pk(xk)

�
H

�
∂

∂ x
Sk−1(x)

�
.
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Algorithm 7.2: Minimizes: C (x) = (1/L)
∑L

ℓ=1Dℓ(x) +φ(x)
input: data {yℓ}ℓ∈[1...L], initial guess bx0, steps {γt}t∈N, parameter L̃ ∈ [1 . . . L]

and efficient implementation of {∇Dℓ}ℓ∈[1...L] and proxφ .
set: t ← 1, s0← bx0, k0← 1
repeat

Select uniformly at random L̃ views indexed by {ℓi}i∈[1... L̃]

zt ← st−1 − (γt/ L̃)
∑ L̃

i=1∇Dℓi
(st−1) (stochastic gradient step)

bxt ← proxφu
(zt ;γ) (prox step)

kt ← 1
2

�
1+
p

1+ 4k2
t−1

�

st ← bxt + ((kt−1 − 1)/kt)(bxt − bxt−1)

t ← t + 1
until stopping criterion
return bxt

Then, we have that
�
∂

∂ x
Sk(x)

�H

(7.18)

=

�
∂

∂ x
Sk−1(x)

�H

HHdiag
�

pk(xk)
�
+

�
∂

∂ x
pk(xk)

�H

diag
�

H Sk−1(x)
�

,

where the vector v contains complex conjugated elements of vector v. Also, note that for
k = 0, we have �

∂

∂ x
S0(x)

�H

= 0. (7.19)

7.4.2 Recursive Computation of Gradient

Based on the recursion (7.18), we obtain a practical implementation of (7.17), which is
summarized in Algorithm 7.1. Conceptually, our metod is similar to error backpropagation

algorithm extensively used to train neural networks [116]. Similarly to backpropagation,
we compute the gradient by propagating the error in a time-reversed fashion.

7.4.3 Iterative Estimation Algorithm

By relying on gradient, we propose a novel stochastic variant of FISTA, summarized in
Algorithm 7.2, that iteratively estimates the refractive index distribution x. One notable
difference of Algorithm 7.2 with respect to the standard FISTA in Algorithm 2.9 is that the
gradient is only computed with respect L̃ ≤ L measurements selected uniformly at random
in each iteration from the complete set of measurements {yℓ

K
}ℓ∈[1...L]. This stochastic gra-

dient approach [117] reduces the per-iteration cost of reconstruction significantly; more-
over, since gradient computation is highly parallelizable the number L̃ can be adapted to
match the number of available computing units. We also set the steps of the algorithm
proportional to 1/

p
t to assure its local convergence.

7.5 Numerical Evaluation

In the first experiment, we verify the performance of our reconstruction algorithm based
on our recursion summarized in Algorithm 7.1. In particular, we consider the reconstruc-
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(a) (b) (c)

z

x

y

(d)

(e) (f) (g) (h)

Figure 7.4: Reconstruction of a 10 µm bead of refractive index 1.588 at λ = 561 nm in
immersion oil with n0 = 1.518 from real measurements obtained with an tomographic
diffraction microscope. (a–d) Reconstruction using our algorithm. (e–h) Reconstruction
using filtered back projection algorithm. (a, e) A 3D rendered image of the bead. (b, f)
x-y slice of the bead at z = 21.17 µm. (c, g) z-x slice of the bead at y = −2.30 µm. (d,
h) z-y slice of the bead at x = 0.58 µm. Scale bar, 10 µm.

tion of a simple 10 µm bead of refractive index n = 1.548 at λ = 561 nm immersed into
oil of refractive index n0 = 1.518. We simulate L = 61 measurements with equally spaced
angles in [−π/8,π/8] with BPM. Angles are with respect to optical axis z in dimension x .
The dimensions of computational domain are set to Lx = L y = 36.86 µm and Lz = 18.45
µm and it is sampled with steps δx = δ y = δz = 144 nm. Reconstruction is performed
by finding a local solution to the following minimization problem

min
x

(
C (x) =

1

2L

L∑

ℓ=1



yℓ
K
− Sℓ

K
(x)


2

2 +τTV(x)

)
(7.20)

subject to {0≤ x≤ 0.1} ,

where τ > 0 is the regularization parameter. For this experiment, the regularization
parameter was set to τ = 0.01. For all our experiments, we set L̃ = 8. We illustrate the
convergence of our minimization algorithm, in Algorithm 7.2, in Figure 7.2, where we
plot the cost in (7.20) during 1000 iterations.

In Figure 7.3, we illustrate the true and estimated refractive index distributions. After
1000 iterations the signal-to-noise ratio (SNR) of the estimate is 22.74 dB. The visual
quality of the reconstruction is excellent. In particular, we observe the ability of our
method to correct for the missing cone due to limited angle of illumination. It yields a
much better resolution along z-axis compared to filtered back projection (FBP) approach
used in [110].

We next validated our BPM–based forward model and reconstruction algorithm with data

101



7. A NOVEL NONLINEAR FRAMEWORK FOR OPTICAL PHASE TOMOGRAPHY

acquired with an experimental setup of a optical tomographic microscope. The setup splits
a laser source of λ = 561 nm into the reference and sample beams that are combined
into a hologram, which is subsequently used to extract the complex wave-field at the
measurement plane [112]. The sample is a 10 µm polystyrene bead of refractive index
n = 1.588 at λ = 561 nm immersed in oil with a refractive index of n0 = 1.518 so that
the refractive index contrast is δn = 0.07. The data was obtained by obtaining L = 61
measurements with angles in the range [−32.16◦, 30.80◦]. The estimate is obtained by
solving the problem (7.20), with the regularization parameter set to τ = 10. The result,
illustrated in Figures 7.4 (a)–(d), was obtained by initializing our iterative algorithm with
the solution of FBP [118] performed on the phase of the measured wave-field. Such warm
initialization is useful due to non-convex nature of our optimization problem. In the x-
y slice at z = 21.17 µm, the bead reconstructed with our method has the diameter of
approximately 10.08 µm and average refractive index of 0.067. At exactly same plane,
FBP–based solution obtains a bead of slightly smaller diameter, but with refractive index
of 0.075. As we can see, our method significantly improves on the FBP–based solution and
corrects the missing cone visible in Figures 7.4 (g) and (h).

7.6 Summary

In this chapter, we have demonstrated a novel iterative method for estimating the refrac-
tive index distribution of a 3D object from measurements of the transmitted wave-field.
The core of our method is a nonlinear forward model, which is based on simulating the
physical propagation of electromagnetic waves with BPM. Our estimate is obtained by
minimizing the discrepancy between the measured wave-fileds and those computed with
BPM. To compensate for the ill-posedness of the problem, we also regularize our solution
with TV. We have validated our forward model by reconstructing a polystyrene bead with
a known refractive index distribution.

The results presented in this chapter are still very fresh and preliminary. Yet, they show
for the first time the feasibility of using a nonlinear forward model in a practical imaging
modality such as tomographic microscope. The next step is to replace the polystyrene
bead with a cell or a multicellular organism. One also needs to perform more systematic
comparisons between our BPM–based method and the linear approaches. Depending on
the signals considered, one can imagine using other regularizers discussed in this thesis.
Current implementation of our algorithm requires several hours of running time; however,
one can imagine significant reductions via the usage of GPU–based techniques that are
similar to those used to train neural networks.
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Chapter 8

Conclusions

In this thesis, we presented a collection of new and competitive ideas for the resolution of
inverse problems. In the first section below, we summarize the main contributions of our
work. In the second section, we discuss the potential areas of interest for future research
related to our work.

8.1 Summary of Results

Justification and improvement of cycle spinning: We provided the first theoretical
justification of the popular cycle spinning technique in the context of linear inverse prob-
lems. The proof is general and can be used to develop and analyze algorithms relying on
compound regularization. We also introduced the idea of consistent cycle spinning, which
amounts to imposing certain linear constraints on estimated wavelet coefficients when
the transform is redundant. These constraints enforce Parseval’s norm relation, which,
in turn, allows for statistical interpretation of the solution. We have empirically demon-
strated statistical MAP and MMSE estimation under consistent cycle spinning for signals
with sparse derivatives.

Lévy processes and optimal recovery of signals with sparse derivatives: Availability
of an analog generative signal model is very convenient for assessing the performances
of reconstruction methods. To that end, we introduced a continuous-domain stochastic
framework for modelling signals with sparse derivatives. Its important aspects include
among other things the following: (a) statistical properties of its members are fully char-
acterized by the Lévy-Khintchine formula; (b) several popular algorithms can be inter-
preted as MAP estimators for our processes; (c) possibility to develop an MSE optimal
estimation algorithm. We succeeded in designing MMSE estimation algorithm and used
it to benchmark the performances of several reconstruction algorithms. In particular, we
demonstrated that the superior estimation performance of TV cannot be solely attributed
to its statistical MAP interpretation.

Novel adaptive version of GAMP: We presented the GAMP algorithm that can be used
to perform MAP and MMSE estimation of signals that can be decoupled in some basis.
Our numerical evaluations illustrated that under suitable conditions that are reminiscent
of compressive sensing GAMP can largely outperform other standard approaches. In par-
ticular, in imaging, the best performance is achieved when GAMP–based MMSE estimation
is combined with cycle spinning. We have also extended the traditional GAMP such that
it can learn unknown statistical parameters present in the inverse problem during the
reconstruction. We have proved that for i.i.d. Gaussian measurement models when learn-
ing is performed via the maximum-likelihood estimator, adaptive GAMP is asymptotically
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consistent.

A novel nonlinear framework for phase tomography: We developed a novel approach
for estimating the 3D refractive index distribution of an object with an optical tomographic
microscope. The difficulty of the problem lies in the nonlinear nature of the underlying
measurement process and on very high-dimensionality of the data. Our approach is based
on simulating the wave-field propagation through the object via the beam propagation
method. We provide a corresponding inverse problem formulation and develop a novel
iterative inversion algorithm. We demonstrate that our algorithm recovers the distribution
of the refractive index distribution on simulated as well as on experimentally measured
data. To the best of our knowledge, this is the first successful reconstruction algorithm
that can handle this kind of nonlinear model on such a large scale (3D) imaging problem.

8.2 Outlook

More sophisticated priors for imaging: Finding priors that can accurately model var-
ious types of natural images is still a major research topic that requires considerable at-
tention. In this thesis, we restricted ourselves to priors that assume independence in
some transform domain. One avenue would be to investigate the empirical success of the
patch–based methods such as nonlocal means [119] or BM3D [120]. An encouraging step
towards this direction was taken in [109], where the authors have constructed overcom-
plete frames formalizing BM3D image model. The latter can then be used in the context
of regularized resolution of linear inverse problems discussed in this thesis.

Extension and analysis of consistent cycle spinning: We have presented consistent
cycle spinning as a technique for enforcing norm equivalence between the image and the
redundant-transform domains. In particular, our transforms consisted of translations of
an orthogonal wavelet basis making the representation shift-invariant. However, the idea
can be applied more generally to any redundant representation. For example, Tekin et

al. [121] have used the concept to boost the performance of image denoising with steer-
able wavelet-transforms. One interesting direction would be to combine all the ingredients
by boosting MMSE consistent cycle spinning with successful redundant transforms such
as BM3D frames [109]

GAMP for larger classes of problems: As we saw in Chapter 6, the best empirical results
for linear inverse problems were obtained when combining GAMP with cycle spinning.
Practical applications of GAMP, however, are still at early stages and require further theo-
retical analysis. One related direction is the convergence of the algorithm. It was recently
shown by Rangan [108] that GAMP diverges for certain problems where the forward op-
erator is especially ill-posed. One strategy that we relied on and which is commonly used
to circumvent this issue is damping. Since by damping strongly, one also hampers the con-
vergence of the algorithm, there is a need for some theoretical alternatives to damping.

Another issue is that the current formulations of GAMP require a basis for whitening the
signal. For example, our experiments relied on wavelet-transforms to decouple the signal
components. Such approaches preclude the usage of other types of linear or nonlinear
operators such as TV. Two things that need to be done are as follows: (a) develop GAMP–
based algorithms relying on priors based on gradient-like operators; (b) theoretically jus-
tify the union between GAMP and cycle spinning in a way that is similar to our analysis in
Chapter 3.

Speedup and improvements for nonlinear forward models: Substantial speedups in
the BPM–based reconstruction is possible using parallelization on dedicated GPU units.
In fact, such parallelization is extensively used in backprojection–based deep learning
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algorithms for neural networks. There is no apparent obstacle that would prevent the
same strategy with our method to further speedup the reconstruction. We validated our
BPM–based reconstruction on a simple bead. However, the algorithm can and should be
applied for other types of data such as biological cells.
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