
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. C. N. Jones, président du jury
Prof. D. Bonvin, Dr G. François, directeurs de thèse

Prof. C. de Prada Moraga, rapporteur
Prof. M.-O. Hongler, rapporteur

Prof. R. Smith, rapporteur

Real-Time Optimization via Directional Modifier Adaptation,
with Application to Kite Control

THÈSE NO 6571 (2015)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 20 MARS 2015

 À LA FACULTÉ DES SCIENCES ET TECHNIQUES DE L'INGÉNIEUR
LABORATOIRE D'AUTOMATIQUE

PROGRAMME DOCTORAL EN GÉNIE ÉLECTRIQUE

Suisse
2015

PAR

Sean COSTELLO

Essentially, all models are wrong, but some are useful.

— George E. P. Box

The bulk of mankind is as well equipped for flying as thinking.

— Jonathon Swift

To my parents.

Acknowledgements
This thesis developed hand in hand with myself over the past five years. Many people

played a part, either by directly contributing to the thesis work, or by teaching and

encouraging me.

Firstly, I thank Professor Dominique Bonvin for his unwavering conviction in me and

a wonderfully run lab. Often, all I needed was encouragement, freedom, and a little

money, which you always provided! Hopefully some of your professionalism rubbed off

on me. I might very well have given the whole business up at some stage had it not been

for the long conversations with my co-supervisor, Dr. Grégory François. It is a pleasure

to work with such a friendly, tactful person. A special mention also goes to Gene Bunin,

my moral compass in all matters concerning research, whose enthusiasm for RTO kept

things interesting.

It is well known at EPFL that LA is a special place. I very much appreciated the support

given by all the permanent staff members. It would be impossible to set up high-quality

experiments without the support provided by Christophe and company, travel would

become a nightmare without Françine, and without Ruth there simply would be no LA!

Exercise sessions would fall apart without Sandra. Ali and Phillipe tirelessly explain and

re-explain control theory, or any kind of theory in the case of Phillipe, to anyone who

knocks on their door.

A special thanks goes to Professor Colin Jones for introducing me to the Swiss Kite Power

team. This was a turning point in my thesis. Corey Houle, Rolf Luchsinger and the rest

of the team inspired me with their passion. Thanks for letting me join in the fun. It

was also great to collaborate with Ioannis Lymperopoulos, an apparently inexhaustible

source of theoretical solutions to practical problems.

Many students worked with me on the kite project: Alex Mermoud, Enea Martinoli, Paul

Bertusi, Damien Benoît, Raphaël Waldis, Yannick Poffet, José Afonso Aires Mesquita

Jr. and Nikitas Rontsis. Thanks for your help, your extraordinary commitment to the

project, your stamina and patience during the long outdoor tests, and your friendship.

When everything went wrong during a testing session, as it often did, it was much easier

to pick up the pieces and put it right as a team.

My father has been a collaborator in every engineering project I’ve undertaken, and

i

Acknowledgements

this thesis is no exception. From helping me build my own kite board 12 years ago,

to helping me solder the kite prototype’s heavy-duty ground screws together just six

months ago, your practical know-how and encouragement is still as much in demand

as ever!

Living abroad, friends become family. You know who you are! Who can tell where

we’ll all be in years to come, but I hope we’ll still have time for a good singsong in the

mountains.

My family is my rock. Thanks to my parents and siblings for your support, reminding

me how to have a good laugh. Alice, you unwittingly arrived at just at the right moment

to put things in perspective. Finally, a huge thanks to Giorgia for your infinite patience

and encouragement.

Morges, 12 January 2015 Sean Costello

ii

Abstract
The steady advance of computational methods makes model-based optimization an

increasingly attractive method for process improvement. Unfortunately, the available

models are often inaccurate. The traditional remedy is to update the model parameters,

but this generally leads to a difficult parameter estimation problem that must be solved

on-line, and the resulting model may still poorly predict the process optimum. An

iterative real-time optimization method called Modifier Adaptation overcomes these ob-

stacles by directly incorporating plant measurements into the optimization framework,

in the form of constraint values and plant-gradient estimates.

Experimental gradient estimation is the main difficulty encountered when applying

Modifier Adaptation. The experimental effort required to estimate plant gradients

increases along with the number of plant inputs. This tends to make the method

intractable for processes with many inputs. The main methodological contribution of

this thesis is a new algorithm called ‘Directional’ Modifier Adaptation, which handles the

gradient-estimation problem by estimating plant derivatives only in certain privileged

directions. By spending less effort on gradient estimation, the algorithm can focus

on optimizing the plant. A ‘Dual’ Directional Modifier Adaptation is proposed, which

estimates these ‘directional’ derivatives using past operating points. This algorithm

exhibits fast convergence to a neighborhood of the plant optimum, even for processes

with many inputs.

Modifier Adaptation also makes use of an approximate process model. Another diffi-

culty which may be encountered is that this model’s inputs differ from those of the real

process. The second methodological contribution is ‘Generalized’ Modifier Adaptation,

a framework for dealing with the case where the model’s inputs differ from those of

the plant. This approach circumvents remodeling the system. For example, General-

ized Modifier Adaptation allows an open-loop process model to be used to optimize a

closed-loop plant, without having to model the controller.

The Dual Directional Modifier Adaptation method is applied to a purpose-built experi-

mental kite system. Kites are currently being developed into a radical new renewable-

energy technology. Large-scale applications include pulling ships and generating

iii

Abstract

electricity from wind at altitudes beyond the reach of conventional wind turbines.

While kites were traditionally manually controlled, these new applications require au-

tonomous operation. The first challenge is to design reliable control algorithms for

kites, capable of dealing with noise, wind disturbances, and time delays. The control al-

gorithm keeps the kite flying a periodic path, at very high speeds. The second challenge

is to choose this path in order to maximize the energy extracted from the wind.

During this thesis, a small autonomous kite system was constructed. Thirty days of

experimental testing were carried out, over the space of two years. A new modeling

hypothesis was validated, linking steering deflections to a decrease in the kite’s lift/drag

ratio. A path-following controller was implemented, capable of achieving good, robust

path-following performance, despite significant time delay. The only real-time mea-

surement required by the control algorithm is the kite’s position, which, in this work,

was obtained simply by measuring the angle of the kite’s tether.

A two-layer optimizing control scheme was implemented on the experimental kite

system. Dual Directional Modifier Adaptation was used to periodically update the

reference path tracked by the path-following controller, in order to maximize the kite’s

average tether tension. Despite extremely high noise levels, the algorithm was able to

locate the optimal reference path in only 10 minutes, while ensuring that a minimum-

altitude constraint was never violated. The resulting average tether tension is about

20% higher than that obtained following the optimal path computed using the model.

An experimental study comparing the average tether tension obtained using different

reference paths confirms the importance of path shape, and validates the optimal

solution reached by the Dual Directional Modifier Adaptation algorithm.

Key words: Real-Time Optimization, Control, Airborne Wind Energy, Kite Power.

iv

Résumé
Avec les progrès des méthodes computationnelles, l’optimisation numérique devient

une méthode de plus en plus attractive pour l’amélioration des procédés. Malheureuse-

ment, les méthodes classiques d’optimisation nécessitent qu’un modèle du procédé

soit disponible, lequel est souvent imprécis, notamment pour les procédés industriels.

Ainsi, les variables optimales déterminées à l’aide du modèle ne sont généralement pas

optimales pour le procédé réel. L’optimisation en temps réel est la famille de méthodes

pour lesquelles on utilise les mesures disponibles sur le procédé étudié pour corriger,

directement ou indirectement, les entrées optimales prédites par le modèle. La solution

traditionnelle est de corriger les paramètres du modèle, et de ré-optimiser le modèle

ainsi corrigé. Pour cela il est nécessaire d’estimer la valeur de ces paramètres en temps

réel, ce qui est souvent difficile à implémenter. De plus, même si cette correction des

paramètres est réalisable en pratique, la capacité du modèle à prédire les conditions

d’optimalité du procédé réel peut toujours s’avérer insuffisante.

Une méthode itérative pour l’optimisation en temps réel appelée ‘Modifier Adaptation’(ci-

après MA) surmonte ces obstacles en utilisant des mesures, typiquement la valeur

mesurée des contraintes et l’estimation des gradients du procédé, directement au

niveau de la formulation du problème d’optimisation numérique.

Estimer des gradients expérimentaux est la difficulté principale rencontrée lors de

l’application de MA à un procédé réel. La quantité de données expérimentales néces-

saire pour estimer ces gradients croît avec le nombre d’entrées du procédé. Ceci rend

la méthode difficilement applicable pour des procédés avec de nombreuses entrées.

La contribution méthodologique principale de cette thèse est une nouvelle méthode

appelée ‘Directional’ Modifier Adaptation (ci-après D-MA), qui propose de résoudre ce

problème en n’estimant les gradients expérimentaux que selon certaines directions priv-

ilégiées. En dépensant moins d’effort sur l’estimation des gradients, l’accent est donc

mis sur l’optimisation du procédé. Un algorithme appelé Dual Directional Modifier

Adaptation (ci-après Dual D-MA) est développé. Dual D-MA optimise le procédée, tout

en assurant que les points d’opération passées puissent servir pour estimer le gradient

directionnelle avec fiabilité. Cet algorithme converge rapidement au voisinage de la

solution optimale pour le procédé réel, même pour un procédé avec de nombreuses

v

Abstract

entrées.

Même si MA utilise des mesures, il utilise néanmoins également un modèle du procédé.

Une deuxième difficulté survient quand les entrées de ce modèle ne sont pas les mêmes

que celles du procédé réel. La deuxième contribution méthodologique de cette thèse

est ‘Generalized’ Modifier Adaptation (ci-après G-MA), une méthode qui permet de

traiter ce cas. Il est démontré que G-MA permet d’éviter la ré-modélisation du procédé.

Ainsi, G-MA permet, par exemple, qu’un modèle en boucle ouverte soit utilisé pour

optimiser un procédé en boucle fermée, sans devoir modéliser la boucle de rétroaction.

L’algorithme Dual D-MA est appliqué à un système de cerf-volant expérimental. Les

cerfs-volants, (i.e. les ‘kites’), sont en voie de devenir une nouvelle technologie pour

l’exploitation de l’énergie éolienne. Les applications à grande échelle incluent la traction

de navires et la génération d’électricité en exploitant le vent à des altitudes hors de

portée des éoliennes conventionnelles.

Alors que les cerfs-volants traditionnels, de loisir, sont dirigés manuellement, un fonc-

tionnement complétement autonome est nécessaire pour produire de l’énergie avec

des kites. Le premier défi est de concevoir des algorithmes de contrôle fiables pour les

cerfs-volants, capables de fonctionner malgré des hauts niveaux de bruit, des retards

purs, et des perturbations dues au vent. L’algorithme de contrôle doit maintenir la voile

sur une trajectoire cyclique, malgré le fait qu’elle se déplace à très haute vitesse.

Un système de cerf-volant autonome de petite échelle a été construit pendant cette

thèse. En deux ans, trente jours d’expériences à l’extérieur ont été effectués. Une

nouvelle hypothèse de modélisation des kites a été validée, qui lie les déflections de

pilotage à une diminution de la finesse (le rapport portance/trainée) du cerf-volant. Un

contrôleur capable de suivre différentes trajectoires a été implémenté sur le système

expérimental. Les expériences illustrent la fiabilité de ce contrôleur, en dépit de retards

purs importants. La seule mesure utilisée par le contrôleur est la position de la voile.

Dans ce travail, cette position est toute simplement dérivée au moyen de l’angle du

câble reliant le cerf-volant à la terre.

Une approche à deux niveaux a été implémentée pour à la fois contrôler et optimiser le

système expérimental. Dual D-MA met périodiquement à jour la trajectoire de référence

qui sert de consigne au contrôleur, afin de maximiser la tension moyenne dans le câble.

Malgré un niveau de bruit très élevé, l’algorithme a pu trouver la trajectoire de référence

optimale pour la voile réelle en seulement 10 minutes, en assurant le respect de la

contrainte sur l’altitude minimale. La tension moyenne résultante est environ 20% plus

grande que celle obtenue en suivant la trajectoire optimale calculée avec le modèle

du procédé. Une étude expérimentale comparant la tension produite par différentes

trajectoires confirme l’importance de la forme de la trajectoire. Cette étude confirme en

outre que la trajectoire à laquelle Dual D-MA converge correspond bien à l’optimum du

vi

Abstract

procédé réel.

Mots clefs: Optimisation en temps réel, Automatique, Airborne Wind Energy, Cerfs-

Volants.

vii

Contents

Acknowledgements i

Abstract (English/Français) iii

List of figures xiii

List of tables xvii

1 Introduction 1

1.1 Motivation . 1

1.1.1 Real-Time Optimization . 1

1.1.2 Kite Control . 4

1.2 State of the Art . 6

1.2.1 Real-Time Optimization . 6

1.2.2 Kite Control . 9

1.3 Contributions of the Thesis . 11

1.3.1 Main Contributions . 11

1.3.2 Secondary Contributions . 12

1.4 Organization of the Thesis . 12

2 Preliminaries 13

2.1 Static Optimization . 14

2.2 Dynamic Optimization . 15

2.3 Modifier Adaptation . 17

2.3.1 Basic Modifier Adaptation . 17

2.3.2 Gradient Estimation . 20

2.3.3 Dual Control . 21

2.4 Kite Dynamics . 24

3 Generalized Modifier Adaptation 29

3.1 Motivating Examples . 29

3.1.1 Incineration Plant . 29

ix

Contents

3.1.2 Controlled Plant . 31

3.2 Generalized Modifier Adaptation . 32

3.2.1 Basic Generalized Modifier Adaptation (G-MA) 33

3.2.2 Linearized Generalized Modifier Adaptation 36

3.2.3 Filtering the Modifier Terms . 38

3.3 Simulated Example: Williams-Otto Reactor 39

3.4 Conclusions . 43

4 Directional Modifier Adaptation 45

4.1 Basic Idea . 46

4.1.1 Directional Derivatives . 46

4.1.2 Choosing the Privileged Directions 50

4.2 Dual Directional Modifier Adaptation . 53

4.2.1 Gradient Estimation using Previous Measurements 54

4.2.2 Dual Directional-MA Algorithm . 56

4.3 Simulated Case Study: Large-Scale Power Kite 58

4.3.1 Plant Description . 58

4.3.2 Model of the Controlled Kite . 60

4.3.3 RTO Design Procedure . 60

4.3.4 RTO Results . 62

4.4 Conclusions . 64

5 Application to a Small-Scale Experimental Kite Prototype 69

5.1 Experimental Setup: Small-Scale Kite Prototype 70

5.1.1 Motivation . 70

5.1.2 Physical System . 71

5.1.3 Software . 74

5.1.4 Field Testing . 76

5.2 Modeling and State Reconstruction . 78

5.2.1 The Velocity Angle . 78

5.2.2 State Reconstruction . 80

5.2.3 Experimental Characterization of the Kite’s Turning Behavior . . . 83

5.3 Path-Following Control . 85

5.3.1 Adaptive Prediction . 86

5.3.2 Velocity-Angle Control . 90

5.3.3 Guidance Strategy . 94

5.4 Real-Time Optimization . 98

5.4.1 RTO Algorithm . 98

5.4.2 RTO Results . 106

x

Contents

5.5 Conclusions . 109

6 Conclusions and Perspectives 113

6.1 Conclusions . 113

6.1.1 Methodology . 113

6.1.2 Application . 114

6.2 Perspectives . 115

6.2.1 Methodology . 115

6.2.2 Application . 116

A CSTR Balance Equations 119

B Closed-loop Kite Model 121

Bibliography 132

Curriculum Vitae 133

xi

List of Figures

2.1 Feasible regions corresponding to the dual constraint: a) given by the

convex relaxation of Equation (2.3.17), b) given by Equation (2.3.20). uk+1

is constrained to the shaded region. 24

2.2 Spherical coordinate system for the kite position. The x and y axes are

horizontal, while the z-axis points skywards. The kite is tethered to the

origin. The wind is aligned with the x axis. 26

3.1 The steam cycle of the 80-MW incineration plant. 30

3.2 Model and plant inputs for the incineration plant. 31

3.3 Closed-loop plant to be optimized and, for comparison, the open-loop

model that is available. 31

3.4 The controlled CSTR. 40

3.5 Open-loop model of the CSTR. 41

3.6 Evolution of the plant inputs c during the first 20 iterations of the general-

ized MA scheme for Cases I-III. Solid = G-MA, Dashed = LG-MA. In each

case, the starting point, which is the nominal optimal solution, is marked

by a roman numeral. The contour lines represent the plant profit. The

shaded region is infeasible for the plant due to the constraint on X A . Black

dot = plant optimum. 42

3.7 The profit as a function of the iteration number k. Blue/red/green = Cases

I/II/III. Solid = G-MA, Dashed = LG-MA. 42

3.8 The constraints on X A and XG as a function of the RTO iteration number

k. Blue/red/green = Cases I/II/III. Solid = G-MA, Dashed = LG-MA. The

dotted line indicates Gp,1 = 0. 43

4.1 Kite optimal paths: path corresponding to u∗
p (red); model optimal path

corresponding to u∗(θ0) (black); path variations produced by steps in the

privileged input directions, corresponding to u∗(θ0)+∆maxUr,i , for i = 1

(dashed blue) and i = 2 (solid blue); height constraint (dot-dashed). 61

xiii

List of Figures

4.2 Noise error affecting the directional derivative estimate ζd (dashed), and

truncation error ζT (solid) as a function of the distance between the points

used to estimate ∆. 63

4.3 True noise-free (solid) and and measured noisy (dots) average line tension

(equal to −φp(uk) and −φ̃p(uk), respectively) as functions of the RTO

iteration number k for nr = 2. The plant optimum (equal to −φp(u∗
p)) is

also shown (dashed). 64

4.4 Gradient estimation error in the first privileged direction |∇Ur,1φE,k −
∇Ur,1φp(uk)| (solid), with its standard deviation

√
UT

r,1Σ
φ

E,k Ur,1 calculated

online (shaded), along with the desired threshold value σT OL (dashed). 65

4.5 Gradient estimation error in the first privileged direction |∇Ur,2φE,k −
∇Ur,2φp(uk)| (solid), with its standard deviation

√
UT

r,2Σ
φ

E,k Ur,2 calculated

online (shaded), along with the desired threshold value σT OL (dashed). 66

4.6 Directional derivatives for the plant cost ∇Ur,iφp(uk) for i = 1 (solid) and

i = 2 (dashed) as functions of the RTO iteration number. 66

4.7 All the paths corresponding to uk , k = 1, . . .60, (black) for r = 2, as well as

the plant optimal path u∗
k (red) and the height constraint (dot-dashed). . 67

4.8 True noise-free (solid) and and measured noisy (dots) average line tension

(equal to −φp(uk) and −φ̃p(uk), respectively) as functions of the RTO

iteration number k for nr = 4. The plant optimum (equal to −φp(u∗
p)) is

also shown (dashed). 67

5.1 The ground station. 72

5.2 The kite (a Flysurfer Viron). 73

5.3 The parallelized structure of the software running on the laptop. Each box

is a process, whose execution period is indicated in the upper right-hand

corner. Arrows signify inter-process communication, and are annotated

by the communication method. 75

5.4 Testing locations (red circles), and the two winds used for testing. 77

5.5 The estimate of the kite’s spherical position coordinate ϑ̂, inferred directly

from measurements in real-time (dashed). The non causal reconstruction

ϑNC (solid). 81

5.6 The real-time estimate of the kite’s velocity γ̂, calculated according to

Equation 5.2.14 (dashed), compared with the non-causal reconstruction

γNC (solid). 82

5.7 The scaled steering input, δ× gs (dashed), with gs = 1.1 rad·m−2, and

− γ̇NC
c

ωNC
k r

(solid), while the kite flies regular figure-of-eights. 83

xiv

List of Figures

5.8 The lift-to-drag ratio vs. the magnitude of the steering-deflection set-

point, estimated from experimental data using Equation (5.2.19) (circles),

and then fitted to these points according to Equation (5.2.18) (dashed). 85

5.9 Block diagram of the control structure. 85

5.10 The system viewed from the path-following controller’s point of view. . . 87

5.11 The structure of the path-following controller. 88

5.12 Performance of the adaptive prediction algorithm during an experiment:

the prediction ϑ̂′(t) (dashed), the signal we are trying to predict ϑ̂(t +d ′Ts)

(solid), and the non-delay-compensated estimate ϑ̂(t) (dotted). 90

5.13 Performance of the adaptive prediction algorithm during an experiment:

the prediction ϕ̂′(t) (dashed), the signal we are trying to predict ϕ̂(t+d ′Ts)

(solid), and the non-delay-compensated estimate ϕ̂(t) (dotted). 91

5.14 Performance of the adaptive prediction algorithm during an experiment:

the prediction γ̂′(t) (dashed), the signal we are trying to predict γ̂(t+d ′Ts+
ddTs) (solid), and the non-delay-compensated estimate γ̂(t) (dotted). . . 91

5.15 Performance of the velocity-angle control loop during autonomous figure-

of-eights with adaptive prediction. The reference signal γr (dashed), and

the controlled variable γ̂′ (solid). 92

5.16 Performance of the velocity-angle control loop during autonomous figure-

of-eights without adaptive prediction. The reference signal γr (dashed),

and the controlled variable γ̂ (solid). 93

5.17 Path-following controller: illustration of the kite’s position relative to the

reference path (all projected onto the {N ,W } plane, shown in Figure 2.2).

b is the kite’s position, and br(l1) and br(l2) are the two points on the path

at which the path’s tangent is perpendicular to the line joining the kite

position to that point. 94

5.18 The kite’s position (dots) during 10 minutes of autonomous flight, tracking

the high, narrow reference path shown in red. The kite is restrained to

flying on the gray quarter sphere. 96

5.19 The kite’s position (dots) during 10 minutes of autonomous flight, tracking

the reference path shown in red. 97

5.20 The kite’s position (dots) during 10 minutes of autonomous flight, tracking

the wide reference path shown in red. 97

5.21 Reference path for different values of u′
1 = {−0.2,−0.1,0,0.1,0.2}, with

u′
2 = 0. 99

5.22 Reference path for different values of u′
2 = {−0.2,−0.1,0,0.1,0.2}, with

u′
1 = 0. 100

5.23 The block diagram of the implemented RTO scheme. This is executed

every Navg figure-of-eights to update the reference path. 101

xv

List of Figures

5.24 The kite’s altitude and the measured line tension during 6 minutes follow-

ing a constant reference path (blue). The minimum attained altitude and

the average line tension per path cycle (black). 102

5.25 The wind speed measured at the ground station during the experiment

shown in Figure 5.24 (blue), and the average wind speed per reference-

path cycle (black dots). 103

5.26 The wind speed measured at the ground station over a 30-minute period. 103

5.27 The spectrum of the wind-speed variations, estimated from the signal in

Figure 5.26. 104

5.28 Navg = 1 (dashed with crosses), Navg = 7 (solid with circles). During this

experiment the kite followed a constant reference path. 104

5.29 Standard deviation of the process noise affecting the average line-tension

measurement vs. Navg, based on the data shown in Figure 5.28. 105

5.30 Performance of the RTO algorithm with Navg = 7. Each circle is the aver-

age/minimum value for the tension/altitude during Navg path cycles. The

dotted line indicates the minimum height constraint. The RTO algorithm

was activated during the shaded iterations. The total experiment lasted 29

minutes, and the RTO algorithm was active for 17 minutes. 107

5.31 The RTO decision variable, u′
1 (dashed), and u′

2 (solid) during the experi-

ment shown in Figure 5.30. 108

5.32 Estimate of the plant cost gradient, ∇φ′
E,k during the experiment shown

in Figure 5.30. Component in the u′
1 direction (dashed) and in the u′

2

direction (solid). 108

5.33 Contour plot of the average line tension in kg (shading) per figure-of-eight

vs. u′. At each of the data points (circles), the average line tension during

10 minutes of experimental data was recorded. The surface was estimated

by performing a piecewise-cubic interpolation of these data points. . . . 109

5.34 Contour plot of the attainable average line tension, as shown in Figure 5.33.

The path taken by the Dual D-MA algorithm (red), and the algorithm’s

initial point (green dot). 110

xvi

List of Tables

3.1 Values of the plant parameters and the two fixed model parameters. The

other model parameters are variable, as shown in Table 3.2, to generate

the investigation cases I-III. 41

3.2 Values of the variable model parameters for three different cases 43

4.1 Plant and model parameter values. The uncertain model parameters θ are

highlighted. 58

4.2 Optimization Parameters . 60

4.3 Uncertainty intervals for the uncertain model parameters. 60

4.4 Values of the design parameters for dual D-MA in the kite example. 61

5.1 Parameter values for the small-scale experimental kite system (for the

Flysurfer Viron kite) . 87

5.2 Uncertainty intervals for the uncertain model parameters. 99

5.3 Values of the design parameters for the Dual D-MA algorithm. 105

xvii

1 Introduction

1.1 Motivation

1.1.1 Real-Time Optimization

The operators of industrial processes are continually faced with choices. For example,

the operator in the control room of Lausanne’s incineration plant asks himself: “Will

we produce more electricity today if I increase the steam turbine’s intermediate bleed

pressure by 1 bar?” For the operator of an emulsion-polymerization batch reactor in

Geneva, the question is: “If I maintain the reactor at its maximum temperature for

30 minutes longer, the reaction will take place faster, but will the average molecular

weight of my polymer still be acceptable?” Researchers at EPFL studying fuel cells

ask themselves: “For the current power demand, what hydrogen-to-oxygen fuel ratio

will maximize the cell’s electrical efficiency?” These questions are often tackled by

constructing a mathematical model of the system. However, as engineers know, models

are rarely perfect. In any case, processes evolve over time. The model of the incineration

plant that was calibrated over the winter will no longer be correct during a mid-summer

heat-wave. Likewise, raw materials obtained from a different supplier will behave

differently in the polymerization reactor, throwing a carefully calibrated model off the

mark. These processes need continuous monitoring and adjustment in order to keep

them operating optimally; this is the aim of Real-Time Optimization (RTO). In a broad

sense RTO refers to any means of actively adjusting a process in order to optimize

its performance, in response to disturbances and process variations. This thesis is

concerned with RTO using mathematical models and measurements.

Industry is increasingly turning to RTO for three reasons. Firstly, RTO improves process

efficiency (and hence profitability). Globalization is leading to increasingly competitive

markets. More competition requires processes to operate more efficiently in order to

1

Chapter 1. Introduction

remain profitable. For example, in Europe the classic thermal power plant is actively

being replaced by far more efficient cogeneration (combined heat and power) power

plants. Many new gas-turbine power plants in Europe are of the combined-cycle type,

again in the interest of efficiency and, ultimately, profitability. Efficiency requires not

only an efficient design, but also an efficient operating strategy, which is what RTO

provides. Secondly, RTO is ideal for reacting to process variability. Process operating

conditions are nowadays much more variable than in the past. In today’s liberal markets,

prices and product specifications change rapidly. A process may need to constantly

adapt its mode of operation in response to its varying economic context. Electricity

prices are a good example of this variability. When the market price is low, hydro-electric

dams in Switzerland completely reverse their mode of operation, consuming electricity

to pump water back uphill. Thirdly, RTO can ensure industrial processes satisfy operat-

ing constraints, and that their products satisfy a growing number of norms and safety

regulations. For example, environmental regulations are much more stringent than in

the past. Processes emissions must be actively monitored and any violation can result

in severe financial penalties. Europe’s largest steel works in Taranto, Italy, currently risks

being shut down for violating emissions regulations.

There is potential for significant improvement in RTO algorithms. Increased global

competitiveness, causing more frequent changes in plant operation, along with staffing

reductions and tighter budgets, means industry requires more effective, easier to imple-

ment RTO algorithms than the current state-of-the-art (Darby et al., 2011). The current

industry standard, the two-step approach, is to regularly update the parameters of the

process model, and then to recompute the optimal mode of operation. However, this

technique has a number of important drawbacks. Improved RTO algorithms should

address the following issues:

1. Constraint satisfaction is paramount, as often, violating constraints can have

harsh economic consequences (for example if emissions exceed regulatory levels).

The industry standard for RTO, the two-step approach, cannot guarantee that

operational constraints are satisfied (unless they are actively monitored by a lower

level dynamic controller) as they may be poorly predicted by an incorrect model.

2. Online diagnostics: It is important to know why the RTO algorithm takes certain

steps, and whether it has in fact reached an optimal solution for the plant. Due

to a structurally incorrect model, the two-step approach may not satisfy any

optimality measure for the plant (Forbes et al., 1994). It may even lead to a

degradation in performance compared to not performing RTO!

3. Convergence speed of the RTO algorithm is crucial. This is determined by the

2

1.1. Motivation

number of operational changes required before reaching a neighborhood of the

plant optimum. In general, a settling time must be respected between operational

changes. The assumption in RTO is that disturbance variations and parameter

drift occur slowly with respect, not only to this settling time, but also with respect

to the time the RTO algorithm takes to converge, allowing time-invariant models

to be used. For example, disturbances may vary on a daily basis for a plant with a

30-minute settling time. Thus, the optimal operating conditions vary on a daily

basis, and the RTO algorithm in this case should converge in no more than several

hours, otherwise it cannot reject the optimality loss due to the daily variations

affecting the plant.

4. Design process: The RTO design process should be relatively methodological and

straightforward, as the person implementing RTO may not possess detailed in-

sight into the process at hand. As the majority of modern RTO algorithms are

reportedly based on rigorous process models (Darby et al., 2011), a methodologi-

cal RTO design procedure should be based upon straightforward steps using this

model.

In addition, it is desirable to develop RTO methods that do not require frequent online

parameter estimation. Parameter estimation is certainly useful as it improves the quality

of the process model, which may then be used for other off-line analyses. However, the

accurate, automated estimation of many model parameters as required by the two-step

approach is not only extremely complicated to implement, it is also at odds with the

RTO layer’s optimization objectives. If the model contains many uncertain parameters,

it is difficult to ensure sufficient excitation in order to estimate these parameters, and

doing so will detract from reaching the optimization objective.

An alternative RTO algorithm called Modifier Adaptation (MA) has emerged in response

to the shortcomings of the two-step approach. This algorithm has been applied to

a number of industrially relevant systems, with promising results. In particular MA

provides an optimality guarantee for the real process. However, several barriers remain

to widely applying MA to complex industrial processes. Firstly, MA requires the sen-

sitivity of the plant to small changes in the operating conditions, i.e. experimental

plant gradients, to be estimated. The estimation of these experimental plant gradients

required by MA prohibits its application to processes with many inputs. Secondly, MA

relies on the use of a model linking the plant inputs to performance. However, while

the plant inputs (i.e. the variables available to optimize the plant) may be set-points,

not all the control loops regulating a large plant can be accurately modeled, and it is

possible that only an open-loop model of the process is available. Alternatively, a partial

model of the process may be available. In both situations the model inputs will not be

3

Chapter 1. Introduction

the same as the plant inputs, a situation which, up until now, could not be handled by

MA.

1.1.2 Kite Control

Currently, the gap between the actual energy-production capacity and the projected

energy demand is one of the most serious global problems. It is predicted (International

Energy Agency, 2014) there will be a 40% increase in global energy demand between

2012 and 2040. Electricity demand is expected to increase by 80% over the same period.

Even this enormous increase in demand will not mean energy needs are met worldwide.

It is predicted that in 2040, in sub-Saharan Africa alone, 530-million people will still

remain without electricity.

The ever-increasing global thirst for energy is rapidly consuming the earth’s fossil-fuel

reserves. While energy production from renewable sources is expected to increase

significantly between now and 2040, unfortunately it is predicted that fossil fuels will

continue to dominate the power sector. This will obviously lead to a fuel shortage in

the future, and in addition, the widespread use of fossil fuels pollutes the environment

and is driving climate change. The renewable energy sector is expanding in response

to the threats of an impending fuel crisis, environmental damage and climate change.

While this is positive, it must be placed in the perspective of our increasing energy needs.

Current renewable energy technologies are not expected to break our reliance on fossil

fuels. Indeed, the current forecast, which takes into consideration the new national and

international policies aimed at halting climate change, predicts that annual fossil-fuel

consumption will increase between now and 2040.

Wind is one of the most promising renewable energy sources. A global study based on

experimental data estimated that the world’s energy demand could be entirely satisfied

using conventional wind turbines by exploiting only 20% of the world’s land sites with

suitably strong (class 3 or greater) winds (Archer and Jacobson, 2005). As Archer and

Jacobson (2005) estimate that only 13 % of the world’s land area is class 3 or greater, this

means that wind turbines installed on roughly only 2 % of the world’s land area could

produce an amount of electricity equal to the world’s energy demand. However, in most

locations the cost of wind energy is still significantly higher than that of energy produced

from fossil sources. This is due to the high material and installation costs associated with

wind turbines, and to the difficulty in identifying sites that are both remote enough and

windy enough. This is why, despite the relative maturity of conventional wind-turbine

technology, wind power only accounts for about 2% of global electricity production.

It is likely that only a breakthrough in renewable-energy production methods will put

4

1.1. Motivation

an end to our reliance on fossil fuels. ‘Airborne Wind Energy’ is one of the radically

different concepts currently being investigated. The aim is to exploit the fact that

wind strength and regularity increases with altitude (Roberts et al., 2007; Archer, 2013;

Van den Berg, 2005). Wind power density, which is proportional to the wind-speed

squared, increases significantly with altitude close to the earth’s surface. At a height of

500-1000 meters, the mean wind power density is, on average, roughly four times that at

50-150 meters (Fagiano and Milanese, 2012; Archer and Caldeira, 2009). The foremost

concept for harnessing high-altitude wind power is by using kites. These are wings,

ranging from flexible para-glider type designs to rigid composite aircraft wings, attached

to the ground by a flexible tether. By flying perpendicular to the wind, similarly to the

blades of a wind turbine, the wing experiences a large aerodynamic force. This force

is transmitted to the ground via the tether, where it can be used to drive a generator,

by slowly unreeling the tether. In a second phase, a small percentage of the generated

electricity is used to reel the kite back in, while it remains static, generating very little

tether force. This is known as pumping-cycle operation (Ruiterkamp and Sieberling,

2013). An alternative method is to place small, electricity producing wind turbines on

the kite itself (Lind, 2013). Powerful kites have wider application than for electricity

production; kite-propelled craft regularly break the world speed-sailing record and very

large kites are even being used to propel cargo ships (Erhard and Strauch, 2013a).

A number of significant technical barriers must be overcome for kite generators to

become a viable option. These range from designing suitable wings, to building robust

all-weather ground stations. The automatic control of the kite is one of the most

fundamental challenges. The type of kite used for power generation is inherently

unstable; if it is not constantly steered, it will crash in a matter of seconds. An ‘autopilot’

must keep the kite flying in a wide variety of wind conditions. The control task is

complicated to a large extent by the sensing challenges. Despite recent advances in

compact inertial measurement units, it remains difficult to accurately determine the

position and orientation of a kite flying at speeds in excess of 150 km/h and experiencing

accelerations over 15 Gs. What is more, unlike the blades of a wind turbine which must

move in a circle, a kite can follow many different flight paths. The path the kite flies

determines how much power is produced. Thus, in addition to keeping the kite from

crashing, the autopilot must ensure the kite follows a path that is efficient for power

production.

5

Chapter 1. Introduction

1.2 State of the Art

1.2.1 Real-Time Optimization

The process industry is comprised of both continuous plants operating at near steady

state, and transient plants. Batch, or semi-batch processes (François and Bonvin,

2013b) are examples of transient processes. These processes are typically multi variable,

nonlinear and affected by measurement noise and process disturbances. In addition,

they are subject to safety constraints (such as maximum temperatures or pressures),

equipment constraints (such as actuator limits, compressor speeds or power saturation),

quality constraints (such as product specifications) and environmental constraints

(typically emissions levels). On-line computer-aided operation is widely used to manage

these complex processes (Cutler and Perry, 1983; Darby et al., 2011). In addition to

computer-aided multivariable control, computerized RTO can be used to track the

plant’s optimal operating conditions. These are likely to change over time due to gradual

process change (for example, due to heat exchanger fouling or mechanical wear), low-

frequency disturbances (such as climate variations or demand fluctuations), a changing

economic context, or changes in production goals. To date, a large number of successful

RTO application have been reported (Marlin and Hrymak, 1997; Darby et al., 2011), and

it remains a very active research field.

Srinivasan et al. (2003a) gives a comprehensive review of RTO techniques and divides

them into two categories: ‘model-based’ and ‘model-free’ techniques, depending on

whether or not the process model is used explicitly for on-line calculations. Heuristic

model-free evolutionary-search techniques were developed first (Box and Draper, 1969).

These techniques use plant data to find ‘improving directions’ for the plant inputs. Since

these techniques require no process model and only simple calculations, they can be

implemented readily. However, evolutionary operation has difficulty handling large

numbers of inputs, process constraints and complex nonlinear behavior. More recent

model-free technique’s are Self-Optimizing Control (SOC) (Skogestad, 2000; Alstad

and Skogestad, 2007) and NCO tracking (François et al., 2005; Srinivasan and Bonvin,

2007), which use a process model off-line to select controlled variables that lead to

near-optimal operation via multivariable feedback control.

Increased computational power led to the development of the original model-based

algorithm, the so-called two-step approach (Chen and Joseph, 1987; Jang et al., 1987).

Two steps are repeated online, namely, parameter estimation to update the model

and optimization of the updated model to compute the optimal inputs. Although

this approach can handle arbitrarily complex systems with many inputs, it is fairly

computationally intensive. Despite the popularity of the two-step method, Forbes et al.

6

1.2. State of the Art

(1994) and Forbes and Marlin (1996) proved that the employed model must satisfy

extremely stringent ‘model adequacy’ conditions for the RTO scheme to converge to the

plant optimum. These conditions will almost never be satisfied in a practical setting,

and in practice, there is no way of verifying them either. Agarwal (1997), Gao and

Engell (2005b), and Marchetti (2009) showed that, in the presence of structural plant-

model mismatch, parameter estimation may be ineffective and can even lead to worse

performance than if no RTO was performed at all!

The pitfalls of the two-step approach are, for the most part, theoretical. In practice, it

is likely, although this cannot be guaranteed, to perform well if a structurally accurate

model with few uncertain parameters is available. It is the default RTO algorithm for

industrial applications (Darby et al., 2011). However the two-step approach is unlikely

to perform well if the model is quite inaccurate, or if the parameter estimation prob-

lem is difficult to solve, or if there are simply too many uncertain parameters in the

model. For this reason, another class of model-based algorithm, which addresses the

issues associated with the two-step approach, has developed in parallel. Roberts (1979)

proposed a method called ‘Integrated System Optimization and Parameter Estimation’

(ISOPE), which uses measurements to update both the model parameters and the gra-

dient of the cost function in the optimization problem to be solved on-line. It is thanks

to these gradient modifiers that ISOPE can guarantee plant optimality in the presence

of plant-model mismatch. A number of researchers have improved and extended the

ISOPE algorithm over the next 20 years, and a good review of this development is given

by Roberts (1995).

Tatjewski (2002) significantly simplified ISOPE by eliminating the parameter estimation

step. This simpler algorithm was further refined to handle general plant constraints by

Gao and Engell (2005a). Finally, Marchetti et al. (2009) provided a solid theoretical basis

for the simplified ISOPE algorithm, by comprehensively dealing with tuning, conver-

gence and optimality conditions. The result is the ‘Modifier Adaptation’ (MA) algorithm

that has been successfully applied to a number of reasonably complex industrially rele-

vant systems that include an experimental solid-oxide fuel-cell stack (Bunin et al., 2012),

the simulated heat and power system of a sugar and ethanol plant (Serralunga et al.,

2013), and a simulated oxygen-consumption plant (Navia et al., 2012). MA uses modifier

terms to correct the values and the gradients of the cost and constraint functions in

the model-based optimization problem. Many aspects of MA have been investigated

further, such as approaches to deal with the estimation of gradients (Bunin et al., 2013;

Marchetti, 2013; Rodger and Chachuat, 2011; Navia et al., 2013), extension to closed-loop

systems (Costello et al., 2014), extension to discontinuous systems (Serralunga et al.,

2014), use of convex models to ease the numerical optimization and enforce model

7

Chapter 1. Introduction

adequacy (François and Bonvin, 2013a), use of second-order modifiers (Faulwasser

and Bonvin, 2014), and even promising preliminary results on sufficient conditions for

global convergence (Bunin, 2014; Faulwasser and Bonvin, 2014).

Many RTO methods have primarily been developed for the more widespread continuous

processes, but there is also a significant interest in applying RTO to transient processes,

and the process control literature is rich with applications to semi-batch chemical

processes (Ruppen et al., 1998; Filippi-Bossy et al., 1989; Ubrich et al., 1999), such

as batch polymerization (Kadam et al., 2007; François et al., 2004; Zafiriou and Zhu,

1990; Clarke-Pringle and Mac Gregor, 1998), batch distillation (Welz et al., 2008), and

fed-batch bio-processes (Visser et al., 2000; Bodizs et al., 2007). A review of RTO for

transient processes is given by Bonvin et al. (2002). It is generally more difficult to

apply RTO to a transient process, simply because it never reaches a steady state. The

process model is dynamic, the model-based optimization problem is an optimal-control

problem, and the measurements are distributed in time. Many of the RTO methods for

continuous processes have at least to some extent been adapted to handle transient

processes, such as the two-step approach for dynamic systems (Filippi-Bossy et al.,

1989), dynamic ISOPE (Roberts, 1995), and dynamic SOC (de Oliveira et al., 2013; Jäschke

et al., 2011). On the other hand, some RTO methods were specifically designed for the

unique characteristics of transient processes, such as NCO tracking (Srinivasan and

Bonvin, 2007), and optimizing variations of iterative learning control (Ge et al., 2000;

Xiong and Zhang, 2005). Unfortunately none of these techniques are perfect, or even

generally applicable. As is the case for continuous processes, the two-step approach may

perform poorly if the model is structurally incorrect. In order to guarantee optimality,

both dynamic ISOPE and optimizing iterative learning control rely on the repeated

identification of a linear time-varying process model, yet this model is very difficult to

obtain. Dynamic SOC, just like static SOC, requires an accurate disturbance model and

is based on the assumption that the disturbances and the plant-model mismatch are

small. NCO tracking assumes the optimal solution is comprised of a particular sequence

of arcs, yet this sequence can change due to plant-model mismatch.

Scant attention has been paid to applying MA to transient processes. MA uses measure-

ments to estimate the manner in which the process performance is locally influenced

by the plant inputs, i.e. to estimate the plant gradients. For a transient process, the

plant inputs are infinite-dimensional functions (usually of time), rather than finite-

dimensional vectors (Deshpande et al., 2012), and it is unclear how the plant gradients

should be obtained. One workaround is simply not to use gradient correction terms,

conserving only the constraint bias (Marchetti et al., 2007). While this may work very

well for certain processes, it may also perform poorly for others, as this approach cannot

8

1.2. State of the Art

provide any optimality guarantee for the plant upon convergence. Another approach

is to parametrize the plant inputs using a finite-dimensional vector, which, at least in

theory, allows plant gradients to be calculated with respect to the parameterizing vector.

However, if the dimensionality of the parameterizing vector is large, it is unrealistic

to estimate plant gradients, as the experimental cost would be prohibitive. The ap-

proach proposed by Chachuat et al. (2009) is to combine MA with the ‘parsimonious’1

parametrization from NCO tracking (Srinivasan and Bonvin, 2007) . This parsimonious

parametrization exploits the fact that the solutions to dynamic optimization problems

have a particular structure. Process intuition, or robustness analysis using the model,

often confirms that this structure is unlikely to change for any ‘likely’ disturbance or

plant-model mismatch scenario. The result is a small number of RTO decision variables.

While attractive, this is a ‘tailor-made’ solution for each process, often requiring a high

level of process insight.

1.2.2 Kite Control

A dynamically flying kite is a fast, unstable system influenced by unpredictable wind

disturbances. It is a testament to the difficulty of stabilizing a kite during dynamic flight

that the first successful account of experimental kite control was published in 2013

(Erhard and Strauch, 2013a), 33 years after research on kite power began (Loyd, 1980).

Initial development in the field of kite control was to a large extent focused on Nonlinear

Model Predictive Control (NMPC) (Diehl, 2001; Ilzhöfer et al., 2007; Canale et al., 2010).

This seemed a logical choice, given the complex nature of the control problem, the

presence of numerous operating constraints, and the likelihood of significant time

delays in a practical implementation. However, to date, there is no reported practical

implementation of an NMPC controller for kites. This is probably in part due to the

inaccuracy of existing kite models, particularly for kites made from flexible material,

as NMPC relies heavily upon the model. While attempts have been made to accurately

model the behavior of a flexible kite (Breukels et al., 2013; Gohl and Luchsinger, 2013),

the result is a very complex, high-dimensional model, unsuitable for NMPC.

When it comes to practical implementation, simpler geometric approaches have so

far proved more successful than NMPC. Indeed, a number of experimentally-validated

geometric control laws have very recently been published. Baayen and Ockels (2012)

observed that a simple control scheme should aspire to control the kite’s direction of

1 The parsimonious parametrization used in NCO tracking segments the optimal solution into different
arcs. A control structure ensures that any active path constraints are tracked during the appropriate arcs.
Typically, it is then sufficient to adapt the switching times between the different arcs from one batch to the
next, in order to optimize the plant’s performance and satisfy terminal constraints.

9

Chapter 1. Introduction

motion, referred to as the velocity angle (this is defined in Chapter 5). They combined

an on-line system-identification algorithm with a Lyapunov-based control law. The

control law attempts to choose the kite’s velocity angle such that it smoothly attains

the prescribed target trajectory. An additional contribution was to elegantly exploit the

concept of geodesic curvature to simplify the problem of tracking on a sphere. Although

the approach showed promise in simulation, in practice it proved unable to cope with

time delays and actuator constraints. Erhard and Strauch (2013a) developed a simple,

robust cascade controller for kites, which was tested by years of sea trials on large vessels.

Essentially, a low-level proportional controller regulates the kite’s orientation (i.e. the

direction the kite is pointing), while a higher-level guidance controller chooses the bang-

bang reference orientation signal, based on the kite’s current position. This results in a

horizontal figure-of-eight pattern, which is generally considered to be the most efficient

type of path for extracting energy from the wind. The resulting controller has only a

few tuning parameters, however the effect of these parameters on the kite’s trajectory

is difficult to determine a priori. A very similar cascade-control strategy was proposed

and experimentally validated on a small prototype by Fagiano et al. (2014). The primary

controlled variable was the kite’s velocity angle in this case, which was again regulated

by a simple low-level linear controller. The guidance strategy alternately directs the kite

towards one of two points, producing the classic figure-of-eight pattern. The tuning

parameters in this case can be used to choose the height, width and inclination of the

figure-of-eight. The authors extended this control law to also handle the retraction

phase for a pumping-cycle generator, and successfully implemented the algorithm on a

power-producing prototype (Zgraggen et al., 2014).

Jehle and Schmehl (2014) proposed a more advanced path-following controller using a

nonlinear guidance-law and successfully tested it on a 20kW pumping-cycle prototype.

Feedback linearization is used to design a lower-level velocity-angle controller. The

guidance law aims to minimize the cross-track error, taking into account the kite’s

current velocity angle, the path’s direction, and the curvature of the path. Successful

implementation of a path-following controller is also reported by Ruiterkamp and

Sieberling (2013), this time via way-point tracking for rigid wings.

While several control solutions for kites now exist, and the most advanced of these

are even capable of tracking relatively arbitrary paths, the path-planning problem is

still very much unsolved. Intelligent path planning is important because, although

the kite is free to follow almost any flight path, it is the flight path that directly deter-

mines the aerodynamic force the kite experiences, and hence the power generated.

Experimental studies (Zgraggen et al., 2013) have confirmed that the path taken by

the kite significantly affects the power it can generate. The path-planning problem

10

1.3. Contributions of the Thesis

results in an interesting optimal control problem that has been studied by a number

of authors (Diehl, 2001; Houska and Diehl, 2006, 2007; Williams et al., 2008; Argatov

and Silvennoinen, 2010; Dadd et al., 2011). While these studies yield useful qualitative

results, only an approximate optimal path can be calculated off-line using the simplified

models these studies employ. Recently, more detailed models are being employed (Horn

et al., 2013), particularly for rigid wings for which modeling is more straightforward.

Nonetheless, modeling for kites is still quite approximate, and it is questionable whether

a purely model-based approach can really calculate optimal paths for a real system. It

would be difficult, if not impossible, to ensure a model could perfectly describe wind

gradients (which vary depending on weather and location) and the kite’s behavior in all

flight conditions. Indeed, the only currently available experimental study uses a much

more modest, ad-hoc approach to tune the path the kite follows; Zgraggen et al. (2013)

proposed an algorithm that adjusts the height and lateral position of the kite’s path in

real time, using experimental data only. These two parameters are essentially optimized

on-line using a primitive gradient-search algorithm.

1.3 Contributions of the Thesis

The main contributions of this thesis are a novel RTO methodology, and its experimental

validation. However, the experimental work with kites became something of a passion,

and a long and fruitful foray into the domain of kite modeling and control led to some

secondary contributions in these domains.

1.3.1 Main Contributions

• A reformulation of the standard MA algorithm, called ‘Generalized’ MA, that

allows it to be applied to a process whose inputs are not the same as the inputs of

the available model.

• A novel ‘dual directional-MA’ (Dual D-MA) algorithm that can be used to optimize

processes with many inputs, and in particular, transient processes.

• Experimental results demonstrating that a two-layer optimizing control scheme

based on Directional MA can significantly increase the performance of a repetitive

transient process, in this case a power kite flying a repetitive pattern.

11

Chapter 1. Introduction

1.3.2 Secondary Contributions

• A new experimentally validated modeling relationship for kites, linking the de-

crease in the kite’s lift-to-drag ratio to the steering deflection.

• An experimentally validated path-following controller for kites, which is capable

of accurately tracking arbitrary paths despite significant time delay. The controller

only requires measurements of the kite’s line angles, or alternatively, of the kite’s

position.

1.4 Organization of the Thesis

The next chapter presents a number of preliminary results upon which the rest of this

thesis is built. This includes the MA algorithm and a dynamic model for kites.

Chapter 3 develops the Generalized MA method. Two alternative approaches are de-

scribed, and they are illustrated and compared on a simulated continuous reactor.

Chapter 4 contains the main methodological contribution of this thesis, Directional MA.

The basic principle is first explained, and some important theoretical properties are

demonstrated. Then a practically applicable Dual D-MA algorithm, which integrates

a novel gradient estimation method, is developed. The method is illustrated on a

simulated dynamically flying kite.

Chapter 5 applies the Dual D-MA algorithm to an experimental small-scale kite system.

In fact, this chapter describes the entire implementation of a two-layer optimizing

control scheme, including system modeling, state estimation, delay compensation,

path-following control and, finally, RTO via Dual D-MA.

Chapter 6 concludes the thesis, and discusses the perspectives for future work.

12

2 Preliminaries

RTO methods can be applied either to continuous processes, or to transient (discontin-

uous) processes. In the case of continuous processes, the RTO scheme aims to find the

optimal steady-state values for the plant inputs, which often correspond to set-points

for lower-level controllers. If the process is operated in transient mode, a steady state

is intentionally never reached, and the RTO layer attempts to find the optimal time-

varying profiles for the plant inputs. In this thesis, only periodic transient systems are

considered, such as repeated batch or semi-batch reactors. It is only at the end of each

period that the effect of the current input profile on the cost and constraints can be

determined, so each RTO iteration corresponds to one period.

Static optimization theory provides a framework for characterizing a continuous pro-

cess’s optimal operating conditions, and the properties of an optimal solution are

described in Section 2.1. Transient processes, on the other hand, are treated by the the-

ory of dynamic optimization. However, in this thesis, dynamic optimization problems

will be approximated by static optimization problems. The approximation procedure

for a typical dynamic optimization problem is described in Section 2.2. If a model of the

process is available, numerical optimization can be used to approximately compute the

optimal operating conditions. It is an approximate solution because the model never

perfectly matches the real process. The MA algorithm, which compensates for this

mismatch using measurements, is described in Section 2.3. Finally, a model to describe

a dynamically flying kite is described in Section 2.4.

13

Chapter 2. Preliminaries

2.1 Static Optimization

The problem of finding optimal steady-state operating conditions for a continuous

process is typically expressed mathematically as:

u∗
p := argmin

u
φp (u)

subject to gp (u) ≤ 0 , (2.1.1)

where u is the nu-dimensional vector of inputs, φp is the cost function and gp is the ng -

dimensional vector of process constraints. Here, the subscript (·)p indicates a quantity

related to the plant, and this will be referred to as the plant optimization problem. It

is assumed throughout this thesis that φp and gp are twice continuously differentiable.

Throughout this thesis, the ‘inputs’ are the degrees of freedom available to optimize

the process. For example, these may be flow rates, feed rates, voltages or set-points for

low-level controllers.

Theorem 2.1.1 (KKT Necessary Conditions). Let u∗
p be a (local) optimum of Problem

2.1.1, and assume that u∗
p is a regular point of the constraints, that is, the active con-

straints are linearly independent:

rank

(
diag(gp)

∂gp

∂u

)
= ng . (2.1.2)

Then, there exist unique values for the ng -dimensional vector of Lagrange multipliers, ν,

such that the following first-order Karush-Kuhn-Tucker (KKT) conditions hold at u∗
p:

gp ≤ 0, (2.1.3)

νT gp = 0, (2.1.4)

ν≥ 0, (2.1.5)
∂Lp

∂u
= 0, (2.1.6)

with the Lagrangian function defined as: Lp(u,θ,ν) =φp(u,θ)+νT gp(u,θ).

Proof. See, for example, (Luenberger and Ye, 2008).

The four KKT conditions are referred to as the primal feasibility, complementary slack-

ness, dual feasibility and stationarity conditions, respectively (in the order given above).

These conditions must hold at any local minimum that is also a regular point of the

constraints. As these conditions are not sufficient, they may be satisfied by a point that

is not a local minimum.

14

2.2. Dynamic Optimization

2.2 Dynamic Optimization

Many industrial processes never operate at steady state. This is the case for batch and

semi-batch chemical process, which account for an important portion of the process

industry. Robot manipulators performing repetitive tasks, and power-producing kites

flying repetitive paths do not reach an equilibrium state either. These are periodic

transient processes. The problem of finding optimal operating conditions for a transient

process can be expressed mathematically as follows (Srinivasan et al., 2003b):

w∗
p(·) := argmin

w(·)
Jp

(
w(·))

subject to Sp(t ,w(·)) ≤ 0 ∀ t ∈ [0, t f],

Tp(w(·)) ≤ 0, (2.2.1)

where Jp is the terminal cost (note that problems with a running cost can be refor-

mulated into this form), w(t) is the nw -dimensional time-varying vector of decision

variables at time t , Sp is the vector of path constraints, and Tp is the vector of terminal

constraints. The notation w(·) is used to indicate the function mapping t to w, for all

t ∈ [0, t f]. The theory of dynamic optimization deals with the solution to this problem,

and a continuous-time equivalent of the KKT necessary conditions, called Pontryagin’s

Maximum Principle, exists. However, complex dynamic optimization problems are

generally discretized and approximated by static optimization problems, because a

static optimization problem is much easier to solve numerically.

The discretization process involves representing the (infinite-dimensional) input func-

tion w(·) using a finite-dimensional input vector u (i.e. parameterizing the input profile).

This is commonly done by first dividing the time horizon into ns control stages:

t0 < t1 < t2 < ·· · < tns = t f , (2.2.2)

and then using low-order polynomials on each interval

w(t) =P(t , û j), t j−1 ≤ t < t j ∀ j ∈ {1,2, . . .ns}, (2.2.3)

with the vector û j ∈Rnw×(M+1) and the polynomial function P of order M . The discrete

decision variable is the vector:

u =

û1

û2

...

ûns

 ∈ Rnu , (2.2.4)

15

Chapter 2. Preliminaries

with nu = ns ×nw × (M +1).

The function w(·) is now parametrized by u through the relationship W of the form:

w(t) =W(t ,u) :=
{
P(t , û j) for t j−1 ≤ t < t j ∀ j ∈ {1,2, . . .ns}

}
. (2.2.5)

In a similar manner, the continuous (infinite-dimensional) path constraints Sp can be

approximated by point-wise constraints, i.e. they are only enforced at nc time instants,

called here collocation times:

ĝi (u) = Sp (ti ,W(·,u)) , i = 1,2, . . . ,nc . (2.2.6)

The cost and constraint function for the discretized problem then read:

φp(u) = Jp (W(·,u)) , (2.2.7)

gp(u) =

ĝ1(u)

ĝ2(u)
...

ĝnc (u)

Tp (W(·,u))

. (2.2.8)

If the discretization is sufficiently dense (i.e. nu and nc are sufficiently large), then the

optimal vector of decision variables for the discretized problem, u∗
p, results in near-

optimal performance, that is,

Jp

(
W(·,u∗

p)
)
' Jp

(
w∗

p(·)
)

. (2.2.9)

In addition, the constraint violation in-between constraint collocation points is negligi-

ble:

Sp

(
t ,W(·,u∗

p)
)
/ 0 ∀ t ∈ [0, t f]. (2.2.10)

It is important to note that the dimensionality of u is invariably quite large after this

discretization procedure. Even for M = 0, which corresponds to a piecewise-constant

input parametrization, for a typical dynamic optimization problem it is necessary to

choose nu > 20 in order to ensure Conditions (2.2.9) and (2.2.10) are satisfied.

16

2.3. Modifier Adaptation

2.3 Modifier Adaptation

2.3.1 Basic Modifier Adaptation

The functions φp and gp are usually not known accurately, as only the models φ and g

are available. Consequently, an approximate solution to the original problem (2.1.1) is

obtained by solving the following model-based problem:

u∗(θ) := argmin
u

φ (u,θ)

subject to g (u,θ) ≤ 0, (2.3.1)

where θ is an nθ-dimensional vector of uncertain model parameters. If the model

matches the plant perfectly, solving Problem (2.3.1) provides a solution to Problem (2.1.1).

Unfortunately, this is rarely the case, since the structure of the model functions φ and

g as well as the nominal values, θ0, for the uncertain model parameters are likely to

be incorrect. This structural and parametric mismatch implies that the model-based

optimal input u∗(θ) will probably not correspond to u∗
p, not only for θ = θ0, but for any

values of the model parameters θ.

MA collects process information to correct for the differences between the plant and the

model optimization problems. This is done by applying successively different values of

u to the plant, each time waiting for the plant to settle to steady state and observing its

performance. The measured cost and constraints corresponding to the input uk at the

kth iteration are:

φ̃p(uk) =φp(uk)+dφ

k (2.3.2)

g̃p, j (uk) = gp, j (uk)+d g , j
k , ∀ j ∈ [1, . . . ,ng] (2.3.3)

where dφ

k and d g , j
k are realizations of a zero-mean random variable for the cost and

the j th constraint, respectively, with the corresponding variances σ2
φ and σ2

g , j . This

stochastic component represents high-frequency noise due to measurement noise and

high-frequency disturbances affecting the plant. The process measurements are used

to iteratively modify the model-based problem (2.3.1) in such a way that, upon conver-

gence, the necessary conditions of optimality (NCO) for the modified problem match

those for the plant-based problem (2.1.1). This is made possible by using modifiers that,

at each iteration, are computed as the differences between the measured and predicted

values of the constraints and the measured and predicted cost and constraint gradients.

This forces the cost and constraints in the model-based optimization problem to locally

17

Chapter 2. Preliminaries

match those of the plant. In its simplest form, the algorithm proceeds as follows:

Algorithm 2.3.1: Modifier Adaptation (Marchetti et al., 2009)

Initialize the modifier terms: the ng -dimensional vector of zeroth-order constraint

modifiers ε0 = 0, the nu-dimensional vector of first-order cost modifiersλφ0 = 0, and the

(nu ×ng) matrix of first-order constraint modifiers λg
0 = 0. Choose the modifier filter

matrices Kε,Kφ,Kg, typically diagonal matrices with eigenvalues in the interval (0,1].

Also, choose arbitrarily u0 = 0.

for k = 1 →∞

1. Solve the modified model-based optimization problem

uk := argmin
u

φm,k−1(u)

subject to gm,k−1(u) ≤ 0, (2.3.4)

where the modified cost and constraints are given by

φm,k (u) :=φ(u,θ0)+ (λφk)T (u−uk), (2.3.5)

gm,k (u) := g(u,θ0)+εk + (λg
k)T (u−uk). (2.3.6)

The subscript (·)m indicates a quantity that has been modified.

2. Apply the input uk to the plant to obtain φ̃p(uk) and g̃p(uk).

3. Obtain an estimate of the plant cost gradient, ∇φE,k , and the plant constraint

gradient, ∇gE,k (these gradient estimates are for the current operating point uk).

The gradients must be estimated using measurements collected at no less than

nu different operating points close to uk (to be further discussed in Section 2.3.2).

4. Update the modifier terms using the following first-order filter equations1:

εk := (Ing −Kε)εk−1 +Kε
(
g̃p(uk)−g(uk ,θ0)

)
, (2.3.7)

λ
φ

k
:= (Inu −Kφ)λφk−1 +Kφ

(∇φE,k −∇φ(uk ,θ0)
)T . (2.3.8)

λ
g
k

:= (Inu −Kg)λg
k−1 +Kg (∇gE,k −∇g(uk ,θ0)

)T , (2.3.9)

end

1There is also a variant of the MA algorithm which filters the inputs, rather than the modifier terms
(Marchetti, 2009).

18

2.3. Modifier Adaptation

The MA algorithm’s most attractive property is that, if the scheme converges, then,

under ideal circumstances, it will do so to a KKT point for the plant.

Theorem 2.3.1 (KKT matching). Let the gain matrices Kε,Kφ,Kg be nonsingular. Assume

no high-frequency noise and perfect gradient estimates, i.e. ∇φE,k = ∇φp(uk),∇gE,k =
∇gp(uk). If Algorithm 2.3.1 converges, with u∞ := limk→∞uk being a KKT point for the

modified problem (2.3.4), then u∞ is also a KKT point for the plant optimization problem

(2.1.1).

Proof. See Marchetti et al. (2009).

Note that, while the KKT-matching property is a very desirable property for a RTO

algorithm, it remains a theoretical result. In a real application, due to high-frequency

noise, the algorithm will converge to a neighborhood of the plant optimum.

The KKT matching theorem guarantees that, if MA converges, it will converge to a plant

KKT point. But can the algorithm converge to the plant optimum? In the field of RTO,

this is referred to as the ‘Model Adequacy’ question (Forbes and Marlin, 1996). In the

case of MA, the process model {φ,g} is called adequate if values for the modifiers ε,λφ

and λg can be found such that a fixed point of the MA algorithm 2.3.1 coincides with

the plant optimum u∗
p. This results in a (fairly relaxed) requirement that the model must

satisfy.

Theorem 2.3.2 (Model Adequacy). Let u∗
p be the unique plant optimum, which is as-

sumed to be a regular point for the na
g active constraints. The process model is adequate

for use in MA if the reduced Hessian of the cost function φ is positive definite at u∗
p:

ZT (∇2φ
)

Z > 0, (2.3.10)

where the columns of Z ∈ Rnu×(nu−na
g) are a set of basis vectors for the null space of the

Jacobian of the active constraints in the model-based optimization problem (2.3.1).

Proof. See Marchetti et al. (2009).

The Model Adequacy Condition is automatically satisfied if the model cost function is

convex. Indeed, François and Bonvin (2013a) propose a method to enforce the Model

19

Chapter 2. Preliminaries

Adequacy Condition for a general non-linear model cost function by using convex

approximations.

We now know that MA will only converge to a plant KKT point, and that, assuming

the model-adequacy criterion is met, it can converge to the plant optimum. But will

the MA scheme converge at all? This is a difficult question to answer. Both necessary

and sufficient conditions have been proposed for the convergence of MA (Marchetti

et al., 2009; Faulwasser and Bonvin, 2014; Bunin, 2014). Unfortunately, none of these

conditions are very satisfactory from a practical point of view, as they are generally

impossible to verify/enforce in practice. The exponential filter matrices Kε,Kφ,Kg are

the tuning parameters that influence convergence. These matrices should be chosen

with real, positive eigenvalues in the interval (0,1]. Larger eigenvalues encourage more

rapid convergence, but may also cause oscillating behavior, or a failure to converge at

all. Smaller eigenvalues result in the MA algorithm taking more cautious steps, making

convergence more likely, but slower. Currently, the only viable option is to tune these

filter matrices through simulation or experimental trials.

Finally, note that an innovative method named‘Nested’ Modifier Adaptation has re-

cently been proposed (Navia et al., 2014, 2013), which completely avoids the gradient

estimation step. Rather, the gradient modifiers λφk and λ
g
k are determined at each

iteration by an unconstrained gradient-free optimization routine, such as the simplex

method. This optimization routine adjusts the gradient modifiers at each RTO iteration

in order to optimize the plant’s measured performance. While this conveniently avoids

gradient estimation, the drawback is that the gradient-free optimization algorithm must

optimize the plant using nu(ng +1) decision variables. Due to this large number of

decision variables, it may take many RTO iterations to converge to the plant optimum.

2.3.2 Gradient Estimation

In terms of implementation, gradient estimation is of more concern than theoretical

convergence results. This is certainly the most difficult aspect of applying MA in practice.

In the general context of RTO, gradient estimates can be obtained in many different

manners (François et al., 2012; Mansour and Ellis, 2003; Bunin et al., 2013). Here, the

discussion is limited to the techniques that have been most associated with MA. The

basic method is to use finite differences. For example, using the forward finite-difference

formula, the derivative of the plant cost2 in the i th direction of the input space, i.e. the

2Only the cost gradient is considered in this section. The procedure for estimating the constraint
gradients is identical.

20

2.3. Modifier Adaptation

i th element of ∇φE,k , is estimated as:

(
∂φ

∂ui

)
E,k

= φ̃p(uk +δui)− φ̃p(uk)

‖δui‖
, (2.3.11)

where δui is a vector aligned with the i th input direction. This generally requires nu

additional evaluations of the plant cost around each RTO point. Depending on the

values of nu and the plant settling time, the experimental cost may be unacceptable.

An alternative consists of computing the gradients solely from measurements collected

at previously visited RTO points. For example, given nu +1 past input/measurement

pairs, the cost gradient can be estimated by fitting a vector to the data (Marchetti et al.,

2010):

∇φE,k =

φ̃p(uk)− φ̃p(uk−1)

φ̃p(uk)− φ̃p(uk−2)
...

φ̃p(uk)− φ̃p(uk−nu)

T

U−1
k−1(uk), . (2.3.12)

with Uk (u) = [u−uk ,u−uk−1, . . . ,u−uk−nu+1]. The matrix inverse in the above equation

will become ill conditioned if the past points do not extend evenly in all directions of

the input space. This ill conditioning can lead to very erroneous gradient estimates.

Another technique, which does not require matrix inversion, is the rank-1 Broyden

update (Rodger and Chachuat, 2011). In this case, the gradient estimate is updated in

one direction only at each RTO iteration:

∇φE,k =∇φE,k−1 +
φ̃p(uk)− φ̃p(uk−1)−∇φE,k−1(uk −uk−1)

‖uk −uk−1‖2 (uk −uk−1)T . (2.3.13)

Finally, it is worth noting that there is no redundancy in any of the above gradient

estimation methods: in the cases of the finite-differences technique and Equation

(2.3.12), nu measurements are used to estimate an nu-dimensional gradient, while the

Broyden update uses 1 measurement to preform a rank-1 update. This means that the

methods are not well suited to dealing with significant high-frequency noise.

2.3.3 Dual Control

While it might appear that by using previously visited RTO points the gradients can be

estimated ‘for free’, that is, without any additional experimental burden, in reality the

steps taken by the RTO algorithm must be severely constrained to ensure good gradient

estimates. ‘Dual MA’ algorithms attempt to guarantee accurate gradient estimates at

21

Chapter 2. Preliminaries

every iteration, by including constraints on the quality of the gradient estimates in

the modified model-based optimization problem (Marchetti et al., 2010; Rodger and

Chachuat, 2011; Marchetti, 2013)3. These Dual MA algorithms have two objectives:

a) optimize the process, b) ensure accurate gradient estimates. Unfortunately, as we

will see, these are usually conflicting objectives. A new ‘dual’ constraint gd,k−1(u) ≤ 0

is added to the model-based problem (2.3.4) in the MA algorithm. The aim of this

constraint is to guarantee the accuracy of the gradient estimates. Two different dual

constraint are discussed next, each one specific to the gradient-estimation method

being used. In both cases, two distinct types of error are distinguished: the truncation

error and the noise error. The truncation error occurs due to the curvature of the plant

cost function, while all the gradient estimation equations in the preceding section

assume it is locally linear. The noise error is due to the high-frequency noise affecting

the measurements.

The first formulation was devised by Marchetti et al. (2010), and is specifically tailored

to the case where the gradient is estimated using Equation (2.3.12). The authors proved

that, at iteration k, the gradient estimation error is bounded as follows:

‖∇φE,k −∇φp(uk)‖ ≤ εt
k (u)+εn

k (u), (2.3.14)

where εt
k (u) is the truncation error bound, and εn

k (u) is the noise error bound.

The truncation error bound is given by:

εt
k (u) = σmax

2

∥∥[(u−uk)T (u−uk), . . . , (u−uk−nu+1)T (u−uk−nu+1)]U−1
k (u)

∥∥ , (2.3.15)

where σmax is an upper bound on the spectral radius of the Hessian of the plant cost

function. Roughly speaking, εt
k (u) increases along with the maximum of the distances

between all pairs of points in the set {u,uk ,uk−1, . . . ,uk−nu+1}. Hence, to keep the trun-

cation error small, the past nu +1 points must be sufficiently close to each other. The

noise error bound is given by:

εn
k (u) = δ

lmin(u)
, (2.3.16)

where lmin(u) is the shortest distance between all possible pairs of complement affine

subspaces that can be generated from S = [u,uk ,uk−1, . . . ,uk−nu+1] (Marchetti et al.,

2010), and δ is the maximum noise value that can occur. Thus, in this case, it is assumed

that the noise affecting the cost measurement in Equation (2.3.2) is interval bounded.

3 This is in analogy to the concept of ‘dual control’ in the field of adaptive control, whereby there is a
dichotomy between more excitation for better identification (exploration) and less excitation for better
control (exploitation).

22

2.3. Modifier Adaptation

Roughly speaking, lmin(u) is the minimum of the orthogonal distances between each

individual point in the set {u,uk ,uk−1, . . . ,uk−nu+1} and the hyperplane passing through

the remaining points. Hence, in order to keep the noise error small, the past nu −1 input

moves should be approximately orthogonal to each other and no two points should

be too close to each other. The additional (scalar) ‘dual’ constraint that is added to the

modified model-based optimization problem is:

gd,k (u) = εt
k (u)+εn

k (u)−εmax, (2.3.17)

which, as can be seen from Equation (2.3.14), should ensure that the maximum gradient

error does not surpass the value εmax. Note that this constraint can be non-convex and,

for that reason, Marchetti et al. (2010) also proposes a simple convex relaxation. Also,

note that while only the error affecting the cost gradient estimate was discussed here,

this constraint also ensures the gradient estimation error remains bounded.

A second formulation of the dual constraint, proposed by Rodger and Chachuat (2011),

is specifically tailored to the case when the gradient is estimated using Equation (2.3.13).

In this approach, two additional constraints are required. A first constraint aims to

reduce the truncation error:

g t
k (u) = 1− (u−uk)TΓTΓ(u−uk), (2.3.18)

where Γ is typically a diagonal matrix. This simple constraint ensures that each new

point is sufficiently distant from the preceding operating point. A second constraints

aims to reduce the noise error:

g n
k (u) = min

{(
αT

k (u−uk)+
√
αT

kΣ
TΣαk

)
,
(
−αT

k (u−uk)+
√
αT

kΣ
TΣαk

)}
, (2.3.19)

where αk is any non-zero vector orthogonal to the previous nu −1 input moves, and Σ

defines an ellipsoid around uk outside which the next operating point must lie. Thus,

reducing the noise error requires each input move to be both sufficiently large, and

approximately orthogonal to the past nu−1 input moves. In this case, the dual constraint

is a combination of the truncation-limiting constraint and the noise-limiting constraint:

gd,k (u) =
[

g t
k (u) g n

k (u)
]T

. (2.3.20)

The feasible regions corresponding to both types of dual constraint for the nu = 2 case

are shown in Figure 2.1, for typical values of the tuning parameters in these constraints.

Both constraints are similar: due to the trade off between truncation error and noise

error, the next input move must neither be too large, nor too small. Also, the next input

23

Chapter 2. Preliminaries

Figure 2.1: Feasible regions corresponding to the dual constraint: a) given by the convex
relaxation of Equation (2.3.17), b) given by Equation (2.3.20). uk+1 is constrained to the
shaded region.

move must be approximately orthogonal to the past nu −1 input moves. If past operat-

ing points are used for gradient computation, then there is no doubt these constraints

are necessary to ensure the gradient estimate does not become very inaccurate. How-

ever, the dual constraints severely handicap the MA algorithm; by conflicting with the

optimization objective, they negatively impact convergence towards the plant optimum.

In order to optimize the process, the MA algorithm should move in the one direction

that most improves performance without violating constraints. However, the dual con-

straints forbid moving in just one direction, instead requiring the exact opposite: that

the MA algorithm should explore all directions of the input space. The larger nu , the

more directions must be explored in order to ensure accurate gradient estimates, and

hence the more the dual constraints interfere with the optimization objective. Thus, the

larger the number of input variables, the slower the plant optimum is reached.

2.4 Kite Dynamics

Dynamic models are the basic prerequisite for applying advanced control and opti-

mization methods to kites. Flexible-kite modeling is still relatively immature compared

to the modeling of airplanes. The modeling of rigid kites is actually much easier, as a

mature aerodynamic theory already exists for rigid wings. The Airborne Wind Energy

community is divided over the question of flexible vs. rigid wings. Flexible-wing kite

designs for sports have been on the market for several decades. They are cheap, light,

and very robust. However, they are not particularly efficient, although efforts are being

made to improve their efficiency (Gohl and Luchsinger, 2013). Rigid wings, on the other

hand, are expensive and delicate, but aerodynamically efficient. Given the focus on

24

2.4. Kite Dynamics

flexible kites in the Swiss Kite Power group (SKP), flexible kites are the application in

this thesis.

Flexible kites can be divided into two categories: ram-air kites, and tube kites. Although

both types of kite behave in a qualitatively similar manner, more accurate modeling

techniques are usually specific to one type or the other. Para-gliders and certain types of

parachute are ram-air wings. The basic principle is that onrushing air enters an opening

at the front of the wing, inflating it. The wing can be extremely light as it is the pressure

of the onrushing air that provides structural rigidity, and the wing itself is made of light,

flexible material. Although some of the modeling knowledge specific to para-gliders

is now being applied to ram-air kites Dunker (2013), this has not been the traditional

modeling approach in the Airborne-Wind-Energy field, as the addition of a fixed tether

significantly modifies the dynamics of a ram-air wing. Tube kites use inflatable tube

bladders to give the kite a semi-rigid structure. These kites were initially developed

for kite surfing, where the kite often falls into the water and must float. The inflated

bladders also act as structural support for the kite, which allows a greater variety of wing

shapes to be considered. Modeling the fine details of how tube kites behave is extremely

complex (Breukels, 2010; Breukels et al., 2013), as the wing shape will deform depending

on the flight mode, leading to constantly changing aerodynamic properties.

Much progress has been made in modeling flexible-kite dynamics during the last decade

(Diehl, 2001; Houska and Diehl, 2006; Dadd et al., 2010; Breukels, 2010; Erhard and

Strauch, 2013b; Gohl and Luchsinger, 2013; Gros and Diehl, 2013; Breukels et al., 2013;

Bosch et al., 2013; Paulig et al., 2013). Models can be constructed with anything from 3

to several-hundred states. However, the aerodynamics of a kite are a) very difficult to

model precisely, and b) very dependent on the kite design. There are many complex

and sometimes unpredictable factors affecting a flexible kite’s flight: tether dynamics,

moisture on the wing, wind gradients, wind gusting, stretching and deformation of

the kite. For that reason even the most detailed models cannot claim to be perfect,

and certainly for the purposes of controller design and optimization it is doubtful

whether the use of very complex models is necessary, or even beneficial. The two simple

models that are typically used for controller design and path optimization are the well-

established point-mass model (Diehl, 2001; Fagiano et al., 2014) and the kinetic model

recently proposed by Erhard and Strauch (2013a) (henceforth referred to as the ‘Erhard

Model’). Both models are general enough to apply to both ram-air kites and tube kites. If

the correct parameters are used, both models will predict qualitatively similar behavior.

However, the kinetic model is simpler and more intuitive. As opposed to the point-mass

model, which is more geometric in nature, the kinetic model has only two aerodynamic

parameters that can be calculated for a real system using straightforward experiments.

25

Chapter 2. Preliminaries

wind

Figure 2.2: Spherical coordinate system for the kite position. The x and y axes are
horizontal, while the z-axis points skywards. The kite is tethered to the origin. The wind
is aligned with the x axis.

In addition, the experimentally validated Erhard Model has been successfully used in

an industrial setting to design control algorithms for very large kites.

This section describes the Erhard Model; the equations are taken from Erhard and

Strauch (2013a). While the system to be optimized may be a kite pulling a ship, or an

electricity-producing ‘pumping’ kite, the basic model is for a kite attached to a fixed

point by a fixed-length tether, as shown in Figure 2.2. This basic model can then be

adapted to include the effects of a moving tether point (for a kite pulling a ship), or a

varying tether length (for a ‘pumping’ kite).

The kite’s fixed, inertial, right-hand coordinate system is depicted in Figure 2.2. The

kite’s position in Cartesian coordinates is given by:

p = r

cosϑ

sinϑsinϕ

sinϑcosϕ

 , (2.4.1)

where r is the (constant) length of the kite’s tether, and ϑ andϕ are spherical coordinates

for the kite’s position, using the x-axis as the zenith. In this thesis, the kite’s position is

often represented as a projection onto the {N ,W } plane shown in Figure 2.2. The plane is

defined by the two orthogonal vectors êW =
[

0 1 0
]T

and êN =
[
−sin ϑ̄ 0 cos ϑ̄

]T
,

which are tangent to the sphere upon which the kite can move at the point {ϑ,ϕ} = {ϑ̄,0}.

26

2.4. Kite Dynamics

The dynamic equations for the model are:

ϑ̇= wap

r

(
cosψ− tanϑ

E

)
, (2.4.2)

ϕ̇=− wap

r sinϑ
sinψ, (2.4.3)

ψ̇= wapgsδ+ ϕ̇cosϑ, (2.4.4)

where ψ is the kite orientation, gs is the turning constant, and E is the kite’s lift-to-

drag ratio. The steering deflection, δ, is the system’s manipulated variable. wap is the

magnitude of the apparent wind projected onto the plane that is normal to p, and is

given by:

wap = wE cosϑ, (2.4.5)

where w is the wind speed at the kite’s current altitude. A number of different wind-

shear models exist, which describe the variation of wind speed with altitude. One of the

most common is the power law (Archer, 2013):

w = wref(z/zref)
a , (2.4.6)

where a is the surface friction coefficient, wref is the reference wind speed at the refer-

ence altitude zref, and z is the kite altitude. Finally, the line tension is given by

T =
(

1

2
ρAw2

)
(E +1)

√
E 2 +1cos2ϑ. (2.4.7)

27

3 Generalized Modifier Adaptation

In the previous chapter we saw that Modifier Adaptation (MA) uses measurements to

implement affine corrections to the cost and constraint functions in the model-based

optimization problem, while the uncertain parameters in the model are kept fixed. MA

has been designed to resolve plant-model mismatch, yet the model must still satisfy

two conditions:

1. have the same inputs as the plant,

2. predict a locally convex cost function at the plant optimum (Theorem 2.3.2).

Condition (2) tends to be satisfied by any reasonable model and its enforcement is

discussed by François and Bonvin (2013a). On the other hand, Condition (1) may not

necessarily be satisfied, and two examples of systems where this is the case are given

in Section 3.1. Section 3.2 presents a ‘Generalized MA’ theory to deal with this issue.

Finally, the algorithm is illustrated on a simulation case study in Section 3.3.

3.1 Motivating Examples

3.1.1 Incineration Plant

I was involved in developing a process model that did not satisfy Condition 1. The plant

is the steam cycle of Lausanne’s 80-MW incineration plant (Tridel), a combined heat-

and-power regenerative Rankine cycle. Energy released by incinerating refuse is used to

heat water to 400◦C at 50 bar, which drives a turbine to generate electricity. Steam is

bled from the turbine at two intermediate stages and passed through heat exchangers

that heat water for district heating. A simplified diagram of the system is show in Figure

3.1. The optimization objective is to adjust the pressures, temperatures and mass flow

29

Chapter 3. Generalized Modifier Adaptation

A

Turbine

Bo
ile

r

Pump

CondenserHeat
Exchanger

district
heating in

A

B

C

district
heating out

Figure 3.1: The steam cycle of the 80-MW incineration plant.

rates of the two intermediate bleeds from the turbine in order to maximize the electrical

efficiency for a given district heating demand.

The available system model has the following five inputs: the temperature and mass

flowrate at point A, TA and w A ; the temperature and mass flowrate at point B, TB and

wB ; and the mass flowrate at point C, wC . All the unknown variables in the steam cycle

can be calculated if these five variables are specified first. These five variables were

chosen as the model inputs, not necessarily because they correspond to the operator’s

inputs, but because they help solve the system equations for this complex cycle. In

fact, it was later established that, from the operator’s point of view, the plant has only

two real inputs, the pressure at point A, p A , and the pressure at point B, pB . These are

the only variables the operator can adjust in order to optimize the plant’s performance.

The block diagrams for the model and the plant are shown in Figure 3.2. The model

has more inputs than the plant because certain relationships between variables are not

modeled: 1) reliable equations for modeling the steam turbine are not available, and 2)

it is not known how the control loop that adjusts wC is implemented. As a result, the

model is missing three equations, which results in three additional inputs. Furthermore,

note that the true plant inputs are not among the model inputs. Although the model is

useful for off-line numerical optimization and computation of u = [TA, wA,TB, wB, wC],

it cannot be used for standard MA to compute the plant inputs c = [pA, pB] because

Condition 1 is not satisfied.

Improving the model such that it encompasses the same set of inputs as the plant would

require detailed models of the turbine and the controller for wC , which, unfortunately,

are not available. The manner in which the model equations are solved would also need

30

3.1. Motivating Examples

Model

Plant

Figure 3.2: Model and plant inputs for the incineration plant.

Open-Loop

Plant

Open-Loop

Model

Controller

closed-loop plant

Figure 3.3: Closed-loop plant to be optimized and, for comparison, the open-loop
model that is available.

to be changed. Hence, it is difficult to reformulate the model such that its inputs u are

the same as those of the plant, c. However, as we will see in this chapter, re-modeling is

not necessary, and MA can be generalized such that the model can be used in its current

form. This is particularly convenient because measurements (which are in abundance

for this system) can be used to compensate for the missing modeling information.

3.1.2 Controlled Plant

Closed-loop systems, where only the open-loop plant has been modeled, will not satisfy

Condition 1. As an example, consider the controlled plant shown in Figure 3.3. A

model will allow the computation of the optimal manipulated variables u∗. However,

since the plant is operated in closed loop, there is no direct way of manipulating u to

enforce optimality. Although the model can be used to predict the optimal values of the

controlled variables y(u∗), choosing c = y(u∗) as the setpoint for the closed-loop plant

will not result in optimal operation. This is because a) u∗ is not the plant optimum due

to plant-model mismatch, and b) in any case u∗ will not be applied to the open-loop

31

Chapter 3. Generalized Modifier Adaptation

plant, as, even if the controller is perfect, yp(u∗) 6= y(u∗).

In standard MA, the open-loop plant inputs are perturbed to estimate the gradients of

the plant cost and constraints. This eventually leads to obtaining the optimal open-loop

plant inputs u∗
p. For closed-loop systems, we are interested in determining the optimal

set-points c∗p, since optimality of the closed-loop system is sought. Furthermore, the

plant gradients can be estimated with respect to these setpoints (and not u). Fortunately,

the fact that the model can predict the controlled variables, and thus also the setpoints

required to achieve a certain performance, provides the link to the closed-loop plant.

The only way to apply standard MA is to re-model the closed-loop plant such that

the setpoints become the inputs. This may be achieved by modeling the steady-state

behavior of the controller with a law of the form:

u = Fc
(
y(u),c

)
. (3.1.1)

For a given c, these nu equations can be solved for u, allowing φ(u) and g(u) to be

calculated. Alternatively, an ideal controller can be assumed, which ensures:

y(u)−c = 0. (3.1.2)

These nc equations can be solved for u if nu = nc , where nc is the number of controlled

variables. Even if one of the above approaches can be applied (which is not always

the case), it is likely to result in a closed-loop model that is difficult to evaluate in

real time, as it will involve solving a system of nu equations. This is likely to result

in increased computation time per model evaluation, which can be problematic for

on-line optimization.

The “Generalized MA" framework presented in the next section avoids this onerous re-

modeling, while nonetheless guaranteeing that the optimal plant setpoints are reached

upon convergence.

3.2 Generalized Modifier Adaptation

We show next how standard MA can be altered to optimize a plant which does not

have the same inputs as the available model. The aim is to avoid having to re-model

the system. We consider the case where the plant cost function Φp(c) and constraint

functions Gp(c) are expressed in terms of the nc plant inputs. Generalized modifier

adaptation can be applied under the following circumstances:

32

3.2. Generalized Modifier Adaptation

1. The model cost function φ(u) and constraint functions g(u) have nu inputs u,

with nu ≥ nc .

2. A model, y(u), which approximately models the mapping from u to c is available.

Two algorithms are introduced, each one with a different way of computing the gradient

modifiers from the estimates of the plant gradients,
∂Φp

∂c and
∂Gp

∂c , and the gradients

computed from the open-loop model, ∂φ∂u and ∂g
∂u . Since these gradients are computed

with respect to different variables, they cannot be compared directly. The first algorithm,

Generalized Modifier Adaptation (G-MA), computes the modifiers in the space of the

plant inputs c. For this, the model gradients ∂φ
∂c and ∂g

∂c are computed by inverting

the relationship ∂y
∂u . This is the most obvious manner in which to adapt Standard MA.

It is shown that if G-MA converges, it will do so to a KKT point for the plant. G-MA

requires a nonlinear term to be inserted into the optimization problem to be solved

on-line. This may introduce local minima, or make the problem more difficult to solve

numerically. ‘Linearized’ G-MA (LG-MA) addresses this issue, by using a linearization of

the problematic nonlinear term. The resulting algorithm computes the modifiers in the

space of the model inputs u by expressing the plant gradients
∂Φp

∂c and
∂Gp

∂c in terms of u.

It is demonstrated that LG-MA also guarantees that convergence can occur to only a

KKT point for the plant.

3.2.1 Basic Generalized Modifier Adaptation (G-MA)

The model gradients are, logically, calculated with respect to the model inputs u. How-

ever, the plant gradients can only be evaluated with respect to the plant inputs c. The

method now described expresses the model gradients with respect to the plant inputs,

by inverting the modeled relationship between u and c, y(u). This allows the model and

plant gradients to be compared to yield modifier terms.

Algorithm 3.2.1: Generalized MA

Initialize the modifier terms: the ng -dimensional vector of zeroth-order modifiers

ε0 = 0, the nc -dimensional vector of first-order cost modifiers λφ0 = 0, and the (nc ×ng)

matrix of first-order gradient modifiers λg
0 = 0. Also, choose arbitrarily c0 = 0.

for k = 1 →∞

33

Chapter 3. Generalized Modifier Adaptation

1. Solve the modified model-based optimization problem (P1):

uk := argmin
u

φm,k−1(u),

subject to gm,k−1(u) ≤ 0, (3.2.1)

where the modified cost and constraints are given by

φm,k (u) :=φ(u)+
(
λ
φ

k

)T
(y(u)−ck), (3.2.2)

gm,k (u) := g(u)+εk +
(
λ

g
k

)T
(y(u)−ck). (3.2.3)

2. Update the plant inputs ck := y(uk), to obtain Φ̃p(ck) and G̃p(ck).

3. Estimate the plant cost gradient, ∇cΦE,k , and the plant constraint gradient, ∇cGE,k ,

at the current operating point ck . Note that these gradients are with respect to the

plant inputs c.

4. Calculate the modifiers for the next iteration:

εk := G̃p(ck)−g(uk), (3.2.4)

(λφk)T :=∇cΦE,k −
∂φ

∂u
(uk)

(
∂y

∂u
(uk)

)+
, (3.2.5)

(λg
k)T :=∇cGE,k −

∂g

∂u
(uk)

(
∂y

∂u
(uk)

)+
, (3.2.6)

with (·)+ indicating the Moore-Penrose pseudo inverse. To encourage conver-

gence, these modifiers may also be filtered using a low-pass filter before being

incorporated into problem (P1). This is further discussed in Section 3.2.3.

end

We claim that, at least under ideal circumstances, all fixed points of this iterative proce-

dure are KKT points for the plant.

Theorem 3.2.1. [Plant optimality for G-MA]

If G-MA converges, it will do so to a KKT point for the plant, provided there is no high-

frequency noise and the gradient estimates are perfect.

Proof: Consider the iterative scheme upon convergence, i.e. limk→∞ uk = u∞. We will

first derive relationships between φm,k and gm,k and the plant cost and constraints

34

3.2. Generalized Modifier Adaptation

Φp and Gp.1 Upon convergence, due to assumption of perfect gradient estimates,

∇cΦE,∞ = ∂Φp

∂c , and thus:

(λφ∞)T = ∂Φp

∂c
− ∂φ

∂u

(
∂y

∂u

)+
. (3.2.7)

The gradient of the cost function φm,∞ in Problem (P1) is

∂φm,∞
∂u

= ∂φ

∂u
+ (λΦ∞)T ∂y

∂u
, (3.2.8)

which, using (3.2.7), gives:

∂φm,∞
∂u

= ∂φ

∂u
+

(
∂Φp

∂c
− ∂φ

∂u

(
∂y

∂u

)+)
∂y

∂u
. (3.2.9)

Multiplying both sides of this equation by
(
∂y
∂u

)+ ∂y
∂u and using the identity(

∂y
∂u

)+ ∂y
∂u =

((
∂y
∂u

)+ ∂y
∂u

)2
yields:

∂φ̃m,∞
∂u

((
∂y

∂u

)+ ∂y

∂u

)
= ∂Φp

∂c

∂y

∂u

(
∂y

∂u

)+ ∂y

∂u
(3.2.10)

= ∂Φp

∂c

∂y

∂u
. (3.2.11)

The same argument can be used to show that

∂gm,∞
∂u

((
∂y

∂u

)+ ∂y

∂u

)
= ∂Gp

∂c

∂y

∂u
. (3.2.12)

From the definition of εk (Equation (3.2.4)), and assuming G̃p(c∞) = Gp(c∞), one can

write:

g̃m,∞(u∞)= g(u∞)+Gp(c∞)−g(u∞)

= Gp(c∞). (3.2.13)

Now, since by definition u∞ is a KKT point for Problem (P1), ∃ ν≥ 0 such that

∂φm,∞
∂u

+νT ∂gm,∞
∂u

= 0 . (3.2.14)

1The function arguments will be dropped in the following derivation as all functions are evaluated at
the stationary point corresponding to u∞ and c∞ = y(u∞).

35

Chapter 3. Generalized Modifier Adaptation

It follows from equations (3.2.11) and (3.2.12) and assuming r ank
(
∂y
∂u

)
= nc that

∂Φp

∂c
+νT ∂Gp

∂c
= 0 . (3.2.15)

Hence the dual feasibility and the stationarity KKT conditions are satisfied for the plant.

The KKT conditions for Problem (P1) also state that νT gm,∞ = 0. As we have shown that

gm,∞ = Gp, it follows that

νT Gp = 0. (3.2.16)

Thus, both the primal feasibility and the complementary slackness KKT conditions are

satisfied for the plant. As all four KKT conditions are satisfied, c∞ is a KKT point for the

plant.

3.2.2 Linearized Generalized Modifier Adaptation

G-MA is the most immediately obvious way to adapt standard MA to deal with the plant

and the model having different inputs. However, Problem (P1) contains additional

nonlinear terms due to the introduction of y(u) into the modified cost and constraint

functions (see Equations (3.2.2) and (3.2.3)). The addition of these nonlinear terms can

make Problem (P1) more difficult to solve, or, even worse, introduce local minima. For

that reason, a second method, LG-MA, is developed, which only introduces affine terms

into the modified optimization problem.

A Taylor-series expansion of the second term in the modified cost function in Problem

(P1) with respect to u, around uk , gives:

φm,k (u)=φ(u,θ0)+ (λφk)T (y(u)−ck) (3.2.17)

=φ(u,θ0)+ (λφk)T
(
∂y

∂u
(uk)

)
(u−uk)+O

(
(u−uk)2) . (3.2.18)

A new gradient modifier, λL,φ, is defined as:

(
λL,φ)T

:= (λφk)T
(
∂y

∂u
(uk)

)
=∇cΦE,k

∂y

∂u
(uk)− ∂φ

∂u
(uk)

(
∂y

∂u
(uk)

)+ ∂y

∂u
(uk). (3.2.19)

Using this new modifier, a new modified cost function can be defined:

φL
m,k (u) :=φ(u,θ0)+ (λL,φ

k)T (u−uk) (3.2.20)

36

3.2. Generalized Modifier Adaptation

This is, by definition, a linear approximation of the modified cost function in G-MA:

φL
m,k (u) =φm,k (u)+O

(
(u−uk)2) . (3.2.21)

The same development may be carried out for the constraint function, yielding the

following algorithm:

Algorithm 3.2.2: Linearized Generalized Modifier Adaptation (LG-MA)

Initialize the modifier terms: the ng -dimensional vector of zeroth-order modifiers

ε0 = 0, the nu-dimensional vector of first-order cost modifiersλL,φ
0 = 0, and the (nu×ng)

matrix of first-order gradient modifiers λL,G
0 = 0. Also, choose arbitrarily u0 = 0.

for k = 1 →∞

1. Solve the modified model-based optimization problem (P2):

uk := argmin
u

φL
m,k−1(u),

subject to gL
m,k−1(u) ≤ 0, (3.2.22)

where the modified cost and constraints are given by

φL
m,k (u) :=φ(u,θ0)+ (λL,φ

k)T (u−uk), (3.2.23)

gL
m,k (u) := g(u,θ0)+εk + (λL,g

k)T (u−uk). (3.2.24)

2. Update the plant inputs ck := y(uk), to obtain Φ̃p(ck) and G̃p(ck).

3. Estimate the plant cost gradient, ∇cΦE,k , and the plant constraint gradient, ∇cGE,k .

4. Calculate the modifiers for the next iteration:

εk := G̃p (ck)−g(uk), (3.2.25)(
λ

L,φ
k

)T
:=∇cΦE,k

∂y

∂u
(uk)− ∂φ

∂u
(uk)

(
∂y

∂u
(uk)

)+ ∂y

∂u
(uk), (3.2.26)(

λ
L,g
k

)T
:=∇cGE,k

∂y

∂u
(uk)− ∂g

∂u
(uk)

(
∂y

∂u
(uk)

)+ ∂y

∂u
(uk). (3.2.27)

end

One interpretation of LG-MA is that gradients of the model cost and constraints are

37

Chapter 3. Generalized Modifier Adaptation

‘corrected’ only in those directions that locally influence ∂y
∂u . To this end, the post multi-

plication by
(
∂y
∂u (uk)

)+ ∂y
∂u (uk) removes any components of ∂φ∂u (uk) and ∂g

∂u (uk) in the null

space of ∂y
∂u (uk).

Despite the linearization used in passing from G-MA to LG-MA, it can be shown that

the attractive property of converging only to a plant KKT point is conserved.

Theorem 3.2.2. [Plant optimality for LG-MA]

If LG-MA converges, it will do so to a KKT point for the plant, provided there is no high-

frequency noise and the gradient estimates are perfect.

Proof: Based on the definition of (λL,φ)T , it follows upon convergence that

∂φL
m,∞
∂u

= ∂φ

∂u
+

(
∂Φp

∂c
− ∂φ

∂u

(
∂y

∂u

)+)
∂y

∂u
= ∂φm,∞

∂u
, (3.2.28)

and by the same logic
∂gL

m,∞
∂u = ∂gm,∞

∂u . Thus the gradient of the modified cost and con-

straints is identical for both Methods A and B. This means that the optimality proof for

G-MA also applies to LG-MA, from Equation (3.2.9) onwards.

3.2.3 Filtering the Modifier Terms

The filtering of the modifiers has not been discussed so far in this chapter. In practice,

this is an essential add-on to the algorithms presented here, as it tends to improve the

chances of convergence. For example, in the case of G-MA (the procedure is identical

for LG-MA) , the filtered modifiers λ̄
φ

k ,λ̄
g
k and ε̄k are obtained by adding an additional

step after Step 4:

5. Filter the modifiers:

ε̄k+1 = (Ing −Kε)ε̄k−1 +Kεεk . (3.2.29)

λ̄
φ

k+1 = (Inc −Kφ)λ̄
φ

k−1 +Kφλ
φ

k , (3.2.30)

λ̄
g
k+1 = (Inc −Kg)λ̄

g
k−1 +Kg λ

g
k , (3.2.31)

where Kε,Kφ and Kg are the filter matrices.

38

3.3. Simulated Example: Williams-Otto Reactor

The filtered modifiers are then used to compute the modified cost and constraint

functions in Step 1 of the next iteration:

φm,k (u) :=φ(u)+ (λ̄
φ

k)T (y(u)−ck), (3.2.32)

gm,k (u) := g(u)+ ε̄k + (λ̄
g
k)T (y(u)−ck). (3.2.33)

Just as for standard MA, the filter matrices should be chosen with real positive eigenval-

ues in the interval (0,1].

3.3 Simulated Example: Williams-Otto Reactor

The method is illustrated on the Williams-Otto Reactor (Williams and Otto, 1960). We

will use the model from Roberts (1979), which has become a standard test problem

for real-time optimization techniques (Marchetti et al., 2010). Although the original

problem is an open-loop reactor, here the aim is to optimize the reactor in closed loop.

The open-loop plant is an ideal continuous stirred-tank reactor with the following

reactions:

A+B
k1→C , k1 = k10e−E1/(RT), (3.3.1)

C +B
k2→ P +E , k2 = k20e−E2/(RT), (3.3.2)

C +P
k3→G , k3 = k30e−E3/(RT). (3.3.3)

The (open-loop) plant inputs are chosen as u = [FA ,FB ,T]T , that is, the feed rates of A

and B , and the reactor temperature. However, the degrees of freedom (inputs) of the

controlled plant are the controller set-points c = [X A,s,FB ,s]T for the mass fraction of A

in the reactor and the feed rate of B . The desired products are P and E and the reactor

mass holdup is 2105 kg.

A rather poor controller adjusts FA , FB and T in the following manner:

• FB = FB ,s +2, that is, there is an offset between FB and FB ,s.

• FA = FB
2.4 , that is, FA is proportional to FB .

• T is manipulated so as to meet the setpoint X A,s, however there is a large steady-

state offset:

X A = 1.5X A,s . (3.3.4)

The block diagram of the controlled CSTR is shown in Figure 3.4.

39

Chapter 3. Generalized Modifier Adaptation

Open-loop

CSTRController

closed-loop plant

Figure 3.4: The controlled CSTR.

The available model is a two-reaction approximation of the open-loop plant:

A+2B
k∗

1→ P +E , k∗
1 = k∗

10e−E∗
1 /(RT), (3.3.5)

A+B +P
k∗

2→G , k∗
2 = k∗

20e−E∗
2 /(RT), (3.3.6)

with the parameters k∗
10, k∗

20, E∗
1 and E∗

2 . Three different nominal models will be con-

sidered, depending on the values taken by the parameters E∗
1 and E∗

2 , the parameters

k∗
10 and k∗

20 being fixed. The material balance equations for both the plant and the

model are given in Appendix A. From the implementation point of view, the controller

is considered to be unknown. In particular, no knowledge is available regarding the

manner in which FA is manipulated.

The profit function to be maximized is

Profit =1143.38XP (FA +FB)+25.92XE (FA +FB)

−76.23FA −114.34FB , (3.3.7)

where XP and XE are the mass fractions of the products P and E . There are two opera-

tional constraints:

X A ≤ 0.09, (3.3.8)

XG ≤ 0.6. (3.3.9)

The cost and constraint functionsΦp(cs), Gp(cs), φ(u) and g(u) are constructed by com-

bining the above profit and constraint functions with the plant and model equations,

respectively. Table 3.1 gives the numerical values of the plant parameters and the fixed

model parameters. The input-output representation of the open-loop model is shown

in Figure 3.5. The model can be used to approximately compute a) the values of the

controlled variables c, and thus the setpoints for the controlled reactor that would lead

to particular inputs u, and b) the resulting cost and constraint values.

40

3.3. Simulated Example: Williams-Otto Reactor

Open-loop

CSTR model

Figure 3.5: Open-loop model of the CSTR.

Table 3.1: Values of the plant parameters and the two fixed model parameters. The other
model parameters are variable, as shown in Table 3.2, to generate the investigation cases
I-III.

parameter unit value
k10 s−1 1.660×106

k20 s−1 7.212×108

k30 s−1 2.675×1012

E1 kJ mol−1 5.5427×104

E2 kJ mol−1 6.9280×104

E3 kJ mol−1 9.2377×104

k∗
10 s−1 6.7157×104

k∗
20 s−1 1.0341×105

Figures 3.6-3.8 show the performance of G-MA and LG-MA with three different nominal

models as given in Table 3.2. The RTO scheme is initialized at the nominal optimal

solution and proceeds towards the plant optimum. The three trajectories labeled I, II

and III correspond to the use of the three models in Table 3.2. Diagonal filter matrices,

with eigenvalues of 0.2, were used in Equations (3.2.30) to (3.2.31). Both algorithms

converge rapidly to the optimal solution for the plant, where the constraint on X A is

active (X A = 0.09, which results in X A,s = 0.06). The main observation to be made is that

both algorithms behave very similarly. This is to be expected, as we proved in Section

3.2.2 that LG-MA is a linearized version of G-MA. Hence, either algorithm can be used,

bearing in mind that LG-MA is computationally advantageous.

Note that, for this simulation study, the finite-difference method is used to estimate

plant gradients. At the kth iteration, three different values of cs are applied to the plant,

ck , ck + [∆X A,s,0]T and ck + [0,∆FB ,s]T , where ∆X A,s and ∆FB ,s are small perturbations.

The gradient estimate is then computed as:

∇cΦE,k =
 Φp(ck+[∆X A,s,0]T)−Φp (ck)

∆X A,s
Φp(cs,k+[0,∆FB ,s]T)−Φp(ck)

∆FB ,s

 . (3.3.10)

Hence, each RTO iteration actually corresponds to application of three different sets of

inputs to the plant.

41

Chapter 3. Generalized Modifier Adaptation

6 8 10 12 14 16 18

0

5

10

15

20

25

−
3
5
0

−
23

0

−
110

10

130

130

XA,s x 100 (-)

F
B
,s
(k
g
·
s−

1
)

I

II

III

Figure 3.6: Evolution of the plant inputs c during the first 20 iterations of the generalized
MA scheme for Cases I-III. Solid = G-MA, Dashed = LG-MA. In each case, the starting
point, which is the nominal optimal solution, is marked by a roman numeral. The
contour lines represent the plant profit. The shaded region is infeasible for the plant
due to the constraint on X A . Black dot = plant optimum.

0 2 4 6 8 10 12 14 16 18 20

−300

−200

−100

0

100

200

300

RTO iteration, k (-)

P
ro
fi
t,

−
Φ
p
(-
)

Figure 3.7: The profit as a function of the iteration number k. Blue/red/green = Cases
I/II/III. Solid = G-MA, Dashed = LG-MA.

42

3.4. Conclusions

Table 3.2: Values of the variable model parameters for three different cases

Case E∗
1 (kJ mol−1) E∗

2 (kJ mol−1)
I 8050 12500
II 8100 12500
III 8100 12300

0 5 10 15 20

−2.5

−2

−1.5

−1

−0.5

0

RTO iteration, k

X
m
a
x

A
−
X

A
(-
)

0 5 10 15 20

−0.5

−0.4

−0.3

−0.2

−0.1

0

RTO iteration, k (-)

X
m
a
x

G
−
X

G
(-
)

Figure 3.8: The constraints on X A and XG as a function of the RTO iteration number
k. Blue/red/green = Cases I/II/III. Solid = G-MA, Dashed = LG-MA. The dotted line
indicates Gp,1 = 0.

3.4 Conclusions

Modifier Adaptation relies on a model of the process. It is typically assumed that the

model and the plant have the same inputs. As the real-life example of an incineration

plant showed, this assumption may not hold in practice. In addition, it was shown

that closed-loop systems, for which only an open-loop model is available, will also

violate this assumption. Obtaining a new model with the same inputs as the plant may

not be feasible when the process is complex or the control system is not fully known.

Generalized MA avoids remodeling the system, and this at no extra computational cost.

It follows that a broader class of process-optimization problems can be tackled with

MA.

This chapter has shown that Generalized MA conserves the valuable KKT matching

property, i.e. convergence will only occur to a plant KKT point. The simulation results

reveal that both methods presented in this Chapter perform very similarly. Thus, it is

recommended that LG-MA be used, as it is computationally advantageous.

43

4 Directional Modifier Adaptation

In Chapter 1 we saw that a number of challenges currently face the field of RTO, namely:

i) guaranteeing constraint satisfaction, ii) providing online diagnostics to understand if

a point is in fact the plant optimum, iii) fast convergence, and iv) straightforward design

procedures. The Modifier Adaptation (MA) method satisfies points i), ii) and iv), but

not necessarily point iii). As discussed in Section 2.3.3, if the plant has many inputs, the

speed of convergence of the RTO algorithm to the plant optimum will generally be very

slow using the standard MA algorithm. This is because an accurate estimate of the plant

gradients with respect to all the plant inputs must be available at each iteration. To

obtain the gradient estimates, at each RTO iteration, there must be a number of nearby

past operating points equal to or greater than the number of plant inputs. What is more,

these past input moves must be linearly independent, i.e. all directions in the plant’s

input space must have been explored. This fundamental requirement applies even if a

dual-control approach is used. As a result, the MA algorithm cannot progress directly

towards the plant optimum, as this would imply moving in only one direction of the

plant’s input space. Instead, it must move slowly and cautiously, exciting all directions

of the plant’s input space. In many cases, such slow convergence towards the plant

optimum is not acceptable. The plant optimum is constantly evolving due to slowly

time-varying disturbances and process drift. If the RTO algorithm cannot converge to

the plant optimum significantly faster than the rate at which the plant optimum itself

changes, then it has little hope of tracking it.

This chapter proposes a Directional Modifier Adaptation (D-MA) method, which is

designed to converge towards the plant optimum significantly faster than standard MA.

The idea is to estimate the plant gradients only in privileged directions of the input space.

This ‘directional’ gradient estimation requires far fewer past measurement points. As a

result, D-MA can focus less on exploring the input space for gradient estimation, and

more on optimizing the plant. The D-MA algorithm has the following characteristics:

45

Chapter 4. Directional Modifier Adaptation

1. Constraint satisfaction is ensured upon convergence, even for large numbers of

complex constraints.

2. Plant optimality with respect to a subset of the plant inputs is guaranteed upon

convergence, despite the use of an inaccurate model.

3. Rapid convergence is enforced, even in the presence of significant noise. The

convergence speed is independent of the number of plant inputs.

4. Straightforward design procedure using the available model.

The chapter is structured as follows. Section 4.1 presents the novel D-MA algorithm and

examines its properties. In addition, a theoretically motivated approach is presented

for calculating the privileged directions in which to estimate plant derivatives. Section

4.2 presents a Dual D-MA algorithm, which simultaneously estimates the plant gradient

and searches for the plant optimum. Finally, this algorithm is applied to the challenging

problem of optimizing the flight path of a power-generating kite in Section 4.3.

4.1 Basic Idea

This section presents a very simple, novel method to circumvent the prohibitive experi-

mental cost of estimating plant gradients when nu is large, as is typically the case for

complex continuous processes and discretized dynamic-optimization problems. The

idea is that rather than estimating the full gradient of the plant cost and constraints,

only a directional derivative (i.e. the gradient in certain directions) is estimated.

4.1.1 Directional Derivatives

This chapter makes extensive use of directional derivatives. While the directional deriva-

tive is sometimes defined as being the derivative of a vector function with respect to

variations in one direction only, here it will be defined with respect to variations in a

subspace of directions:

Definition 4.1.1 (Directional Derivative). The (n f ×nr)-dimensional directional deriva-

tive of a n f -dimensional vector function f is:

∇Ur f(u) := ∂f(u+Urr)

∂r

∣∣∣∣
r=0

, (4.1.1)

where Ur = [δu1 · · · δur] is an nu ×nr matrix, the columns of which contain the nr < nu

directions in the input space that the directional derivative is evaluated in, and the

dimension of r is nr .

46

4.1. Basic Idea

Note that in the limiting case where nr = nu , the directional derivative thus defined is

simply the gradient (usually referred to as the Jacobian if n f > 1), of the vector function.

Indeed, the directional derivative can be derived from the gradient:

Property 4.1.1. Applying the chain rule to Equation (4.1.1) yields:

∇Ur f(u) = ∂f(u+Urr)

∂r

∣∣∣∣
r=0

=∇f(u+Urr)
∂(u+Urr)

∂r

∣∣∣∣
r=0

=∇f(u)Ur.

(4.1.2)

The directional derivative can be considered a partial gradient. It embodies information

about how the function varies (locally) in certain directions of the function’s input space.

A function’s variability in a particular direction, x, is typically calculated as: ∇f(u)x. If

x ∈C (Ur), then this can also be calculated using the directional derivative in place of

the full gradient:

Property 4.1.2.

∇Ur f(u)U+
r x =

∇f(u)x x ∈C (Ur)

0 x ∉C (Ur)
, (4.1.3)

where C (Ur) is the column space of Ur.

Property 4.1.2 follows from Property 4.1.1 by noting that

UrU+
r x =

x x ∈C (Ur)

0 x ∉C (Ur)
. (4.1.4)

The D-MA algorithm is essentially the standard MA algorithm, with gradients replaced

by directional derivatives. The idea is that it is easier to obtain an experimental estimate

of a directional derivative than a full gradient.

Algorithm 4.1.1: Algorithm: Directional Modifier Adaptation (D-MA)

For the basic D-MA algorithm, the following modifications are applied to the relevant

steps in the standard MA algorithm (Algorithm 2.3.1):

Initialize: In addition, choose a matrix of ‘privileged’ input directions Ur, in which

to estimate plant derivatives. Section 4.1.2 explains how to choose Ur.

3. This step is replaced by the following:

47

Chapter 4. Directional Modifier Adaptation

Estimate the directional derivative of the plant cost, ∇UrφE,k , and the plant con-

straints, ∇Ur gE,k , at the current operating point uk . These derivatives must be

estimated using measurements collected at no less than nr successive operating

points close to uk . This can be done using finite differences or the novel approach

proposed in Section 4.2. Estimate the cost gradient as:

∇φE,k =∇φ(uk)(Inu −UrU+
r)+∇UrφE,k U+

r , (4.1.5)

and likewise for the constraint gradient estimate.

Note that if the estimated directional derivative is accurate, ∇UrφE,k =∇Urφp(uk) and,

according to property (4.1.2), Equation (4.1.5) implies that:

∇φE,kδu =
∇φp(uk)δu δu ∈C (Ur)

∇φ(uk)δu δu ∉C (Ur)
. (4.1.6)

The gradient estimate matches the plant gradient in the nr privileged directions, and the

model gradient in all the other directions. D-MA allows the user to choose which input

directions the MA algorithm will pay particular attention to. Although D-MA will not, in

general, reach a point satisfying the KKT conditions for the plant, if it converges, it will

do so to a point where the plant performance cannot (locally) be improved by adapting

u in any of the privileged directions. This is formalized in the following theorem:

Theorem 4.1.1 (Directional Optimality upon Convergence). If perfect plant directional-

derivative estimates are available, and in the absence of noise, any point u∞ that the

D-MA algorithm converges to will be such that r = 0 is a KKT point for the following

problem:

min
r

φp (u∞+Urr)

s.t. gp (u∞+Urr) ≤ 0 . (4.1.7)

Proof. Upon convergence of the D-MA algorithm

ε∞ = gp(u∗
∞)−g(u∗

∞), (4.1.8)

assuming noise-free constraint measurements. Also, according to Equations (2.3.9) and

48

4.1. Basic Idea

(2.3.8): (
λ
φ
∞

)T =∇φE,∞−∇φ(u∞,θ0), (4.1.9)(
λ

g
∞

)T =∇gE,∞−∇g(u∞,θ0). (4.1.10)

Equation (4.1.8) implies that the constraint for the modified model-based optimization

problem (2.3.4) matches that of the plant at u∞:

gm,∞(u∞) = gp(u∞). (4.1.11)

Also, the KKT conditions for the modified optimization problem (2.3.4) must be satisfied

upon convergence. Hence,

gm,∞(u∞) = gp(u∞) ≤ 0, (4.1.12)

and there exists a ν≥ 0 s.t.

νi gm,∞,i (u∞) =νi gp,i (u∞) = 0, ∀i = 1, . . . ,ng , (4.1.13)

and

∇φm,∞(u∞)+νT ∇gm,∞(u∞) = 0 (4.1.14)

=⇒ ∇φ(u∞,θ0)+
(
λ
φ
∞

)T +νT
(
∇g(u∞,θ0)+ (

λ
g
∞

)T
)
= 0 (4.1.15)

=⇒ ∇φE,k +νT ∇gE,k = 0. (4.1.16)

Post-multiplying Equation (4.1.16) by Ur and using Equation (4.1.5) yields:

∇UrφE,∞+νT ∇Ur gE,∞ = 0. (4.1.17)

Assuming perfect gradient estimates, i.e. ∇UrφE,∞ =∇Urφp(u∞) and∇Ur gE,∞ =∇Ur gp(u∞),

and using Definition 4.1.1, yields:

∂φp(u∞+Urr)

∂r
+νT

∂gp(u∞+Urr)

∂r

∣∣∣∣
r=0

= 0. (4.1.18)

Since u∞+Urr obviously equals u∞ when r = 0, Equations (4.1.12)and (4.1.13) mean

that the primal- and dual-feasibility conditions for Problem (4.1.7) are satisfied at r = 0.

Together with the fact that Equation(4.1.18) shows the satisfaction of the stationarity

KKT condition for Problem (4.1.7) at r = 0, this proves that r = 0 is a KKT point for

Problem (4.1.7).

49

Chapter 4. Directional Modifier Adaptation

4.1.2 Choosing the Privileged Directions

The most important aspect of D-MA is the choice of the nr privileged directions (the

columns of Ur). D-MA acts at two levels. It will a) adapt the input in any directions

necessary to ensure constraint satisfaction, and b) try to improve the cost by adapting

the decision variables u in the privileged directions. It is important to note that, regard-

less of Ur, constraint satisfaction (upon convergence) is ensured. While the available

model may be inaccurate (for example it may predict a cost value with 50% error for

a given input u), it is assumed that it describes the main optimization trade-offs, and

gives a reasonable indication of the effect of uncertain parameters on the optimal so-

lution. Simple tendency models (Filippi-Bossy et al., 1989), if well designed (i.e. with

optimization and parametric analysis in mind), can fulfill these requirements. MA for

constrained problems attempts to match the Lagrangian gradient for the modified

model-based optimization problem with that of the plant-based problem. Hence, in

the case of MA, parametric analysis of the model should be used to study the effect of

parameter variations on the Lagrangian’s gradient. If all likely parameter variations only

cause notable change in the Lagrangian gradient in a few directions, then it will suffice

to only estimate the gradient in these few directions. This is formalized in the following

theorem.

Theorem 4.1.2 (Optimal Gradient Directions for Small Parametric Uncertainty). Con-

sider small parametric plant-model mismatch, that is, φp(u) = φ(u,θp) and gp(u) =
g(u,θp) with θp = θ0+∆θ. Then, in the absence of noise and assuming perfect directional-

derivative estimates, the plant optimal solution u∗
p is a fixed point for the D-MA algorithm

if the direction matrix is chosen as:

Ur = ∂2L

∂u∂θ
(u∗(θ0),ν∗(θ0),θ0) ∈Rnu×nθ , (4.1.19)

where L(u,ν,θ) =φ(u,θ)+νT g(u,θ) is the Lagrangian, u∗(θ0) is the nominal optimal

solution, and ν∗(θ0) are the corresponding Lagrange multipliers for the model-based

problem.

Proof. A sufficient condition for u∞ to be a fixed point for the D-MA algorithm is that

it satisfies the first-order KKT conditions for the modified model-based optimization

problem (2.3.4), assuming it is not a non-minimum stationary point for this problem.

The stationary KKT conditions mean ∃ ν such that:

∂L

∂u
(u∞,ν,θ0)+ (λφ∞)T +νT (λg

∞)T = 0, (4.1.20)

50

4.1. Basic Idea

with

(λφ∞)T =∇φE,∞−∇φ(u∞,θ0)

= (∇UrφE,∞−∇Urφ(u∞,θ0))U+
r , (4.1.21)

where Equation (4.1.21) is obtained by combining the definition of the gradient estimate

(4.1.5) with the definition of the gradient modifiers (2.3.8) upon convergence. In the

same manner, the constraint gradient modifiers upon convergence are:

(λg
∞)T = (∇Ur gE,∞−∇Ur g(u∞,θ0))U+

r . (4.1.22)

In addition, the primal and dual feasibility KKT conditions for the modified model-based

problem must be satisfied. Due to the matching of the modified model constraints and

the plant constraints upon convergence, these conditions are:

gp(u∞) ≤ 0, νT gp(u∞) = 0. (4.1.23)

We now show that u∞ = u∗
p satisfies Conditions (4.1.20) and (4.1.23), with ν=ν∗

p. Firstly,

as u∗
p is a KKT point for the plant, Conditions (4.1.23) are satisfied. Also, u∗

p satisfies the

stationary KKT condition for the plant optimization problem, which reads:

∇φp(u∗
p)+ (ν∗

p)T ∇gp(u∗
p) = 0. (4.1.24)

Since L(u∗
p,ν∗

p,θp) =φ(u∗
p,θp)+ν∗T

p g(u∗
p,θp) =φp(u∗

p)+ν∗T

p gp(u∗
p), it follows that:

∂L

∂u
(u∗

p,ν∗
p,θp) =∇φp(u∗

p)+ (ν∗
p)T ∇gp(u∗

p) = 0. (4.1.25)

Developing this into a Taylor series around θ0 leads to:

∂L

∂u
(u∗

p,ν∗
p,θ0)+∆θT ∂2L

∂u∂θ

T

(u∗
p,ν∗

p,θ0)+O(∆θ2) = 0. (4.1.26)

Note that as (u∗
p −u∗(θ0)) and (ν∗

p −ν∗(θ0)) depend linearly on ∆θ, which is a standard

result from parametric sensitivity analysis (Fiacco, 1983):

∂2L

∂u∂θ
(u∗

p,ν∗
p,θ0)= ∂2L

∂u∂θ
+ ∂

∂u

(
∂2L

∂u∂θ

)
∂u∗

∂θ
∆θ+

∂

∂ν

(
∂2L

∂u∂θ

)
∂ν∗

∂θ
∆θ

∣∣∣∣
(u∗(θ0),ν∗(θ0),θ0)

+O(∆θ2) (4.1.27)

= ∂2L

∂u∂θ
(u∗(θ0),ν∗(θ0),θ0)+O(∆θ) (4.1.28)

= Ur +O(∆θ), (4.1.29)

51

Chapter 4. Directional Modifier Adaptation

and using the matrix identity XT = XT XX+, we can write:

∆θT ∂2L

∂u∂θ

T

(u∗
p,ν∗

p,θ0)=∆θT ∂2L

∂u∂θ

T

(u∗
p,ν∗

p,θ0)UrU+
r +O(∆θ2). (4.1.30)

Equation (4.1.26) can now be written as:

∂L

∂u
(u∗

p,ν∗
p,θ0)+∆θT ∂2L

∂u∂θ

T

(u∗
p,ν∗

p,θ0)UrU+
r +O(∆θ2) = 0 (4.1.31)

=⇒ ∂L

∂u
(u∗

p,ν∗
p,θ0)+∇

(
φ(u∗

p,θp)−φ(u∗
p,θ0)

)
UrU+

r

+(ν∗
p)T ∇

(
g(u∗

p,θp)−g(u∗
p,θ0)

)
UrU+

r +O(∆θ2) = 0 (4.1.32)

=⇒ ∂L

∂u
(u∗

p,ν∗
p,θ0)+∇Ur

(
φ(u∗

p,θp)−φ(u∗
p,θ0)

)
U+

r

+(ν∗
p)T ∇Ur

(
g(u∗

p,θp)−g(u∗
p,θ0)

)
U+

r +O(∆θ2) = 0. (4.1.33)

If it is assumed that the gradient estimate is perfect, i.e. ∇UrφE,∞ = ∇Urφp(u∞) =
∇Urφ(u∗

p,θp) (and likewise for the constraint gradient estimates), and that O(∆θ2) ≈ 0,

this becomes:

∂L

∂u
(u∞,ν∗

p,θ0)+ (λφ∞)T + (ν∗
p)T (λg

∞)T = 0, (4.1.34)

with the modifier terms defined as in Equations (4.1.21) and (4.1.22) (recalling that

u∞ = u∗
p). Hence, Condition (4.1.20) is satisfied, and u∗

p is a fixed (stationary) point for

the D-MA algorithm.

This result provides a theoretical motivation for using parametric sensitivity analysis

to determine the adaptation directions. From the practical point of view, several sim-

ulation case studies have confirmed that, even when there is significant parametric

mismatch, this approach systematically chooses very appropriate adaptation directions.

Indeed, as shown in the example of Section 4.3, it can even yield nearly ‘optimal’ adap-

tation directions when there is structural plant-model mismatch. It will not usually

be necessary to use all of the nθ directions given by ∂2L
∂u∂θ (u∗(θ0),ν∗(θ0),θ0). Marchetti

(2013) proves that “when the available cost and constraint gradients are estimated quan-

tities, the loss in cost induced will be determined by the resulting error in the gradient of

the Lagrangian function”.

Theorem 4.1.3 (Optimality Loss due to Lagrangian Gradient Error). The optimality loss

52

4.2. Dual Directional Modifier Adaptation

due to a small Lagrangian gradient error is:

φp(u∗
p)−φp(u∗(θ0)) =−εT Aε+O(ε3) (4.1.35)

ε= ∂Lp

∂u
(u,ν)− ∂L

∂u
(u,ν,θ0) (4.1.36)

where L(u,ν,θ) =φ(u,θ)+νT g(u,θ) and Lp(u,ν) =φp(u)+νT gp(u) are Lagrangians for

the model-based and the plant-based problems, respectively, and A depends on the plant

equations.

Proof. See Marchetti (2013).

Hence, the optimality loss is approximately proportional to a weighted norm of the

Lagrangian gradient error, meaning larger Lagrangian gradient error will result in more

optimality loss. Singular value decomposition(SVD) can be used to single out those di-

rections in which the Lagrangian gradient will be most affected by parameter variations.

If θmax
i and θmin

i are the maximum and minimum expected values of the uncertain

parameter θi , the effect of a normalized parameter variation on the gradient of the

Lagrangian is given by the following transformation:

UΣVT = ∂2L

∂u∂θ
(u∗(θ0),ν∗(θ0),θ0)diag(θmax

1 −θmin
1 , . . . ,θmax

nθ
−θmin

nθ
), (4.1.37)

where U, Σ and V are the matrices of the ordered SVD, i.e. the elements (singular

values) σ1,σ2, . . . on the diagonal of Σ descend in magnitude. Ur can be chosen as

the first nr < nθ columns of U, which are those directions corresponding to the nr

largest singular values. The number of directions, nr , should be chosen such that

σnr +1 <<σnr . This ensures that the maximum variation of the Lagrangian gradient in

the neglected directions due to parametric mismatch is relatively small (and thus the

resulting optimality loss is negligible).

4.2 Dual Directional Modifier Adaptation

An efficient MA implementation should use all available information, for example all

appropriate past measurements, to estimate experimental derivatives. This section

develops a ‘dual control’ approach to D-MA that not only optimizes the plant, but also

ensures an accurate directional-derivative estimate can be calculated using the past

operating points. Firstly, a gradient estimation technique is proposed that combines

information from all available measurements in the vicinity of the current RTO point.

53

Chapter 4. Directional Modifier Adaptation

The measurements are reconciled in a statistically optimal manner to maximally reject

the effect of noise. A confidence interval is obtained for the gradient estimate, as its

variance (which is minimized by the estimation procedure) is also calculated. Secondly,

an excitation-rewarding term is added to the modified model-based optimization prob-

lem. This term incites the RTO algorithm to take steps that will improve the gradient

estimate in the privileged directions.

4.2.1 Gradient Estimation using Previous Measurements

The method proposed here is iterative. At each RTO iteration, a reliable gradient estimate

is constructed, starting with the nominal model gradient. The past measurements are

integrated into the gradient estimate one at a time. Using the measured cost at the

current RTO point uk and that at a previous RTO point, u j , the directional derivative in

the one direction δu = u j−uk

‖u j−uk‖ can be estimated as

∇δuφE=
φ̃p(u j)− φ̃p(uk)

‖u j −uk‖
(4.2.1)

=∇δuφp(uk)+
dφ

j −dφ

k

‖u j −uk‖
+O

(‖u j −uk‖
)

. (4.2.2)

If ‖u j −uk‖ is sufficiently small, the last term (the truncation error) can be neglected,

and

σ2
E = var {∇δuφE} =

2σ2
φ

‖u j −uk‖2 . (4.2.3)

This estimate of the directional derivative can be combined with an existing gradient

estimate, ∇φold, using a weighted rank-1 (Broyden) update to give the new gradient

estimate:

∇φnew =∇φold +κ(∇δuφE −∇φoldδu)δuT , (4.2.4)

with the variance matrix

Σnew = (Inu −κδuδuT)Σold(Inu −κδuδuT)+κ2σ2
EδuδuT . (4.2.5)

The variance of the new gradient estimate in the δu direction is var {∇φnewδu} =
δuTΣnewδu. The optimal value of κ is given by the following theorem.

Proposition 4.2.1 (Optimal Weighted Broyden Update). The value of κ that minimizes

54

4.2. Dual Directional Modifier Adaptation

the variance of the gradient estimate in the δu direction is:

κ= δuTΣoldδu

δuTΣoldδu+σ2
E

(4.2.6)

Proof. The variance of the new gradient estimate in the δu direction is:

δuTΣnewδu = (1−κ)2δuTΣoldδu+κ2σ2
E. (4.2.7)

By differentiating the expression with respect to κ, it follows that the value of k given in

Equation (4.2.6) minimizes this variance.

If the nominal model gradient is used as the initial gradient estimate, the following

algorithm is obtained (note that it is similar for the constraint gradient estimates):

Algorithm 4.2.1: Algorithm: Iterative weighted-Broyden-update gradient estimator

Initialize: Initialize ∇φold and Σold with the model gradient ∇φ(uk ,θ0) and the esti-

mated model gradient covariance Σφ0 .

for ∀ j such that ‖u j −uk‖ <∆r
max

1. δu = u j−uk

‖u j−uk‖

2. Compute ∇δuφE and σ2
E using Equations (4.2.1) and (4.2.3).

3. Compute κ according to Equation (4.2.6).

4. Compute ∇φnew and Σnew using Equations (4.2.4) and (4.2.5).

5. ∇φold =∇φnew and Σold =Σnew.

end

∇φE,k =∇φold

Σ
φ

E,k =Σold

Note that ∆r
max ensures that only past measurements sufficiently close to the current

RTO point are used for the gradient estimate. This limits truncation error.

55

Chapter 4. Directional Modifier Adaptation

4.2.2 Dual Directional-MA Algorithm

The following is the practically applicable RTO algorithm advocated in this chapter. It

combines the concepts of directional derivatives, dual control, and statistically optimal

gradient estimates with the existing MA technique. The algorithm has two objectives: 1)

optimize the real process, 2) ensure the gradient estimate in the privileged directions

is precise. The idea is to introduce an additional reward term into the cost function of

the optimization problem to be solved on-line. The reward term encourages the RTO

algorithm to move in any of the privileged directions for which only a poor gradient

estimate is available.

Algorithm 4.2.2: Algorithm: Dual Directional Modifier Adaptation (Dual D-MA)

Initialize: Choose Ur using the method in Section 4.1.2. Choose a positive reward factor,

c0, and set the initial reward coefficient c = 0. Initialize ε0 = 0, λg
0 = 0, λφ0 = 0. Choose

the modifier filter matrices Kε,Kg,Kφ as (typically) diagonal matrices with eigenvalues

in the interval (0,1]. Initialize u0 with a conservative input (one that is unlikely to violate

the plant constraints). Select values for ∆max and ∆r
max. Choose the desired gradient

estimate variance in the privileged directions, σ2
T OL and set δ̄u = 0.

for k = 1 →∞

1. Solve the modified model-based optimization problem

uk :=argmin
u

φm,k−1(u)

s.t. gm,k−1(u) ≤ 0, (4.2.8)

‖u−uk−1‖ ≤∆max . (4.2.9)

where the modified cost and constraints are given by

φm,k (u) :=φ(u,θ0)+ (λφk)T (u−uk)− c|δ̄u
T

(u−uk)|2, (4.2.10)

gm,k (u) := g(u,θ0)+εk + (λg
k)T (u−uk). (4.2.11)

The last term in the modified cost function is the aforementioned reward term. It

rewards steps in the direction δ̄u, which is decided in step 4.

2. Apply the input uk to the plant to obtain φ̃p(uk) and g̃p(uk).

3. Use the gradient estimation algorithm in Section 4.2.1 to compute, from the

previous RTO measurements, the cost gradient estimate at the current operating

point ∇φE,k , and the estimate of the gradient of each constraint ∇gi ,E,k . The

56

4.2. Dual Directional Modifier Adaptation

algorithm will also calculate the variance of the cost gradient estimate ΣφE,k and

the variance of each constraint gradient estimate Σgi

E,k , ∀ i = 1, . . . ,ng .

4. Get the direction in the column space of Ur that maximizes the estimated variance

of the Lagrangian1:

δ̄u ∈ argmax
δu

δuTΣL
E,kδu

s.t . ‖δu‖ = 1,

δu ∈C (Ur), (4.2.12)

where ΣL
E,k =

(
Σ
φ

E,k +
∑ng

i=1νiΣ
gi

E,k

)
is the variance matrix of the Lagrangian gradi-

ent estimate (ν is the Lagrange multiplier obtained in Step 1).

5. if δ̄u
T
ΣL

E,k δ̄u > σ2
T OL

c = c0

else

c = 0

end

6. Calculate the modifier terms for the next iteration according to Equations (2.3.7),

(2.3.9) and (2.3.8).

end

Essentially the algorithm proceeds in the same manner as standard MA but uses the

novel gradient estimation technique. However, if the accuracy of the gradient estimate

in the privileged directions does not satisfy the required tolerance, a quadratic reward

term is added to the model-based optimization problem to encourage the RTO algo-

rithm to move in the direction that will most improve the gradient estimate. This is

different to past dual MA approaches that used constraints to enforce sufficient exci-

tation. While constraints are often approximated by additional cost terms in the field

of optimization, the distinction is particularly important here, as, in our experience,

excitation constraints can result in an infeasible optimization problem. Section 4.3.3

illustrates how the algorithm parameters can be chosen in a methodological fashion.

1Note that the solution to problem (4.2.12) is the (normalized) dominant eigenvector of
UrUT

r Σ
L
E,k−1UrUT

r .

57

Chapter 4. Directional Modifier Adaptation

4.3 Simulated Case Study: Large-Scale Power Kite

Chapter 1 discussed the motivations for optimally controlling a power-producing kite

during dynamic flight. While an approximate optimal path can be calculated off-line

using a simplified model, the problem of determining the optimal path for the real kite

in real time is still an open problem. This section applies Dual D-MA to a simulated kite

system, showing not only that the method could efficiently address this problem, but

also that Dual D-MA can rapidly optimize an uncertain system with a large number of

inputs.

4.3.1 Plant Description

The system is a large kite on a fixed-length tether. The objective is to maximize the

average line tension by adjusting the repetitive path flown by the kite.

The (simulated) plant is described by the Erhard Model given in Section 2.4. The kite’s

lift-to-drag ratio, E , is modeled using the following law:

E = E0 − cδ2. (4.3.1)

where E0 is the lift/drag ratio when δ= 0, and c is the turning penalty factor. This law

will be further justified in Chapter 5. The plant parameters are given in Table 4.1. They

are similar to those of a number of Airborne Wind Energy prototypes currently under

development (Ruiterkamp and Sieberling, 2013; Fritz, 2013; van der Vlugt et al., 2013).

For plotting purposes in this chapter, the kite position is projected onto the {N ,W }

plane defined in Section 2.4, with ϑ̄= 0.3 radians.

Table 4.1: Plant and model parameter values. The uncertain model parameters θ are
highlighted.

Parameter Plant value Nominal model value Unit
r 250 250 m
A 25 25 m2

ρ 1.2 1.2 kg ·m−3

E0 6 4.5 -
gs 5×10−3 7×10−3 rad ·m−2

c .06 .02 m−2

zref 10 10 m
wref 8 8 m · s−1

a .15 -
∆w 1×10−3 s−1

58

4.3. Simulated Case Study: Large-Scale Power Kite

As the kites used for power generation are highly unstable, a controller must continu-

ously adjust the steering deflection δ to ensure the kite does not crash. For the purpose

of this simulation study, we assume that a ‘perfect’ path-following controller ensures

that the kite follows a periodic reference path, {ϑr(l),ϕr(l)}, l ∈ [0,1], where l is the nor-

malized path length. This allows performance optimization to be focused on, without

control errors biasing the results. The optimization variable is the reference path to

be chosen. The aim is to maximize the average thrust, T̄ , obtained by following the

reference path:

T̄ := 1

tf − t0

∫ tf

t0

T d t , (4.3.2)

where t0 and tf are the initial and final times for one cycle of the path. The average thrust

T̄ depends on the periodic reference path, which is a continuous function of the path

length. Hence, this is in fact an optimal control problem, which must be discretized to

apply RTO. To this end, the RTO decision variables are chosen as a finite set of points on

the reference path:

u =
[
ϑr(0) ϕr(0) ϑr(1

N) ϕr(1
N) ϑr(2

N) ϕr(2
N) · · ·ϑr(N−1

N) ϕr(N−1
N)

]T
,

(4.3.3)

where N = nu/2 (for this simulation study nu = 40 is used). The kite must respect a

height constraint z(l) := r sin(ϑ(l))cos
(
φ(l)

)≥ zmin and a maximum steering-deflection

constraint |δ(l)| ≤ δmax , at every point on the path. These constraints are also dis-

cretized:

gz =

1− z(0)/zmin

1− z(1
N)/zmin

1− z(2
N)/zmin
...

1− z
(N−1

N

)
/zmin

, gδ =

|δ(0)|/δmax −1

|δ(1
N)|/δmax −1

|δ(2
N)|/δmax −1

...

|δ(N−1
N

) |/δmax −1

. (4.3.4)

The RTO layer aims to solve the following discretized plant optimization problem:

u∗
p = argmin

u
φp(u) :=− T̄

cT

s.t. gp(u) :=
[

gz

gδ

]
≤ 0, (4.3.5)

where cT = (1
2ρA

)
r 2w2

ref is a scaling factor to make the cost dimensionless. Note also

that the input u is also dimensionless, as the spherical co-ordinates for the kite position

59

Chapter 4. Directional Modifier Adaptation

are in radians. While it is not explicitly stated in the above formulation, T̄ ,gz and gδ
depend on u through the Erhard Model’s dynamic equations. The manner in which

these quantities are calculated for a given reference path is described in Appendix B. The

parameters of the optimization problem are given in Table 4.2. The cost and constraint

measurements are corrupted with about 3 % zero-mean noise.

Table 4.2: Optimization Parameters

Parameter Value Unit
zmin 12.5 m
δmax 7.5 m
σφ 0.2 -
σg .002 -

4.3.2 Model of the Controlled Kite

The available model is also based upon the Erhard Model, however a different wind law

is used, given by the simple linear law:

w = wref + (z − zref)∆w, (4.3.6)

where ∆w is the rate of change of wind speed with altitude. Regardless of the value of

zref and ∆w chosen, this simplistic model cannot account for the plant nonlinear wind

profile (i.e. there is structural plant-model mismatch). In addition, the nominal values

of the model parameters (given in Table 4.1) are substantially different from the actual

plant values (i.e. there is parametric plant-model mismatch).

4.3.3 RTO Design Procedure

The preferred directions Ur are chosen exactly as described in Section 4.1.2, with the

parameter uncertainty intervals given in Table 4.3. The diagonal matrix of singular

Table 4.3: Uncertainty intervals for the uncertain model parameters.

Parameter Minimum value Maximum value Unit
E0 3 6 -
gs 2×10−3 11×10−3 rad ·m−2

c .01 .08 m−2

∆w 0 .025 s−1

60

4.3. Simulated Case Study: Large-Scale Power Kite

values Σ in Equation (4.1.37) contains two very dominant singular values (almost 100

times larger than the other singular values). Hence, this analysis reveals that likely

parameter variations will overwhelmingly affect the gradient of the Lagrangian in these

two directions. As the aim of the gradient modifiers in MA is to reject any error in

the Lagrangian gradient (which is justified by more theoretical arguments in Section

4.1.2), Ur was duly chosen as the directions (the columns of U in Equation (4.1.37))

corresponding to the two dominant singular values. The path variations corresponding

to the two chosen directions are shown in Figure 4.1. Their ‘orthogonality’ can be

observed as follows: roughly speaking, one variation makes the path fatter and lower,

while the other makes it fatter and higher.

−0.6−0.4−0.200.20.40.6

−0.2

−0.1

0

0.1

0.2

0.3

W (rad)

N
(r
a
d
)

Figure 4.1: Kite optimal paths: path corresponding to u∗
p (red); model optimal path

corresponding to u∗(θ0) (black); path variations produced by steps in the privileged
input directions, corresponding to u∗(θ0)+∆maxUr,i , for i = 1 (dashed blue) and i = 2
(solid blue); height constraint (dot-dashed).

Table 4.4: Values of the design parameters for dual D-MA in the kite example.

Parameter Value
nr 2
∆max 0.03
∆r

max 0.06

Σ
φ
0 322 × Inu

Σ
g
0 322 × Inu

σTOL 3.5
c0 1

The remaining parameters for the dual D-MA algorithm (given in Table 4.4) are chosen

by performing a number of mock RTO simulations where the plant is approximated by

61

Chapter 4. Directional Modifier Adaptation

the model with different values for the uncertain model parameters. These simulations

must generally be carried out to validate the RTO scheme before applying it to the real

process. Nonetheless, it is also useful to study the effect of several parameters in a

simplified analytic fashion. For example, to see the effect of ∆max, consider the error

when the cost directional derivative is estimated using Equation (4.2.1) and the two

points uk and u j . According to Equation (4.2.3) if ∆= ‖u j −uk‖, the standard deviation

of the noise error is:

ζd =
p

2σφ
∆

. (4.3.7)

Also, the truncation error can be approximated as:

ζT =∆ ·H , (4.3.8)

where H is the maximum curvature of the model cost function in the space of privi-

leged directions at the nominal optimal solution, that is, the maximum eigenvalue of

U+
r ∇2φ(u∗(θ0),θ0)Ur. Figure 4.2 plots these two error terms as functions of ∆. There is

a trade-off, namely, too large a value of ∆will result in an unacceptable truncation error,

while too small a value of ∆ increases the noise error. The maximum step size for the

Dual D-MA algorithm was chosen as ∆max = 0.03, i.e. the point at which the truncation

error and the noise error are roughly equivalent. This ensures that, at each iteration, the

last step taken by the Dual D-MA algorithm will provide a directional gradient estimate

that is not overly contaminated by truncation error. Note that the reward factor c in

Equation (4.2.10) will encourage the algorithm to take as large a step as is allowed by

∆max, which helps reduce the noise error. The radius used to define ‘close’ points that

can be used to estimate the current gradient is chosen as ∆r
max = 2×∆max . Again, this

choice is a trade-off, a smaller value of ∆r
max means that fewer points can be used by the

gradient-estimation algorithm (reducing the quality of the gradient estimate), while a

larger value increases the truncation error.

A relatively large value was chosen for the variance of the error affecting the nominal

model gradients, Σφ0 =Σg
0 = 322 × Inu , i.e. this is three times the variance (neglecting

truncation error) of a derivative calculated using only two points (Figure 4.2). Thus,

the dual D-MA algorithm will tend to ‘trust’ experimental information more than the

model.

4.3.4 RTO Results

Figure 4.1 shows that the model optimal solution (calculated with the nominal parame-

ter values) is significantly different from the plant optimal solution, with the optimality

62

4.3. Simulated Case Study: Large-Scale Power Kite

0 0.05 0.1

0

5

10

15

20

25

30

∆ (-)

g
ra
d
ie
nt

er
ro
r
(-
)

Figure 4.2: Noise error affecting the directional derivative estimate ζd (dashed), and
truncation error ζT (solid) as a function of the distance between the points used to
estimate ∆.

loss

φp(u∗
p)−φp(u∗(θ0))

φp(u∗
p)

= 29 %. (4.3.9)

After about 10 iterations, the Dual D-MA algorithm has reduced this optimality loss to

about 5 % (Figure 4.3), despite a significant amount of noise. This is very fast, given

that the kite takes roughly 15 seconds to complete one cycle of the path, with one RTO

iteration per cycle.

As can be seen from Figures 4.4 and 4.5, since the desired gradient accuracy σTOL is not

achieved within 60 iterations, the algorithm continues to take steps in the privileged

directions to further improve the gradient estimate. These figures also show that the

gradient error calculated in real time is quite accurate.

Figure 4.6 shows that the plant directional derivatives in the privileged directions are

driven close to 0. This is particularly true for the Ur,2 direction (see Figure 4.1), which is

the main direction the algorithm needs to adapt in to reach the plant optimal solution.

Hence, the Dual D-MA converges to the vicinity of a directionally optimal point for the

plant, as predicted by Theorem 4.1.1. What is more, as can be seen from Figure 4.7, Dual

D-MA not only achieves near-optimality for the plant, but also converges to the vicinity

of the optimal path for the plant.

For the sake of comparison, the algorithm performance with nr = nθ = 4 is shown in

Figure 4.8. As could be expected, the convergence is slower, as the algorithm must excite

the process in more directions (of which all are not necessarily improving directions)

to maintain a good estimate of the plant directional derivative. This demonstrates the

effectiveness of using the singular-value decomposition given in Equation (4.1.37) to

select the privileged directions.

63

Chapter 4. Directional Modifier Adaptation

0 10 20 30 40 50 60

5.5

6

6.5

7

7.5

8

8.5

9

9.5

k

av
er
a
g
e
li
n
e
te
n
si
o
n
,
T̄
/
c T

(-
)

Figure 4.3: True noise-free (solid) and and measured noisy (dots) average line tension
(equal to −φp(uk) and −φ̃p(uk), respectively) as functions of the RTO iteration number
k for nr = 2. The plant optimum (equal to −φp(u∗

p)) is also shown (dashed).

4.4 Conclusions

The gradient estimates used in MA represent a very logical diagnostic tool that allows

the operator to assess whether the current operating point is optimal for the plant. In

addition, if the current point is not optimal, gradient estimates provide an improving

direction, and can eventually ensure that an optimal point for the plant is attained.

However, for a process with many inputs, standard MA is crippled by the experimental

cost of gradient estimation, which is likely to result in slow convergence to the plant

optimum.

The solution put forward in this chapter is to estimate directional derivatives rather than

full gradients. Compared to MA, the resulting D-MA algorithm devotes significantly less

effort to gradient estimation, and hence converges much faster. The method, which

was proven to guarantee constraint satisfaction and directional optimality upon conver-

gence, has a straightforward design procedure using the available model. Furthermore,

a novel way of optimally combining gradient estimates allows the model gradients to be

reconciled with experimental data at each RTO iteration. The challenging case study of

a dynamically flying power-generating kite has demonstrated rapid convergence to the

vicinity of the plant optimal solution, despite significant high-frequency noise and both

structural and parametric plant-model mismatch.

64

4.4. Conclusions

0 10 20 30 40 50 60

0

5

10

15

20

25

30

35

k

g
ra
d
ie
nt

er
ro
r
(-
)

Figure 4.4: Gradient estimation error in the first privileged direction |∇Ur,1φE,k −
∇Ur,1φp(uk)| (solid), with its standard deviation

√
UT

r,1Σ
φ

E,k Ur,1 calculated online
(shaded), along with the desired threshold value σT OL (dashed).

In summary, D-MA is specifically tailored to complex processes with many inputs, for

which an approximate model containing a number of uncertain parameters is available.

Can an the algorithm handle real-life conditions? The answer is given in the next chapter,

which treats the application of the algorithm to an experimental kite-system.

65

Chapter 4. Directional Modifier Adaptation

0 10 20 30 40 50 60

0

5

10

15

20

25

30

35

k

g
ra
d
ie
nt

er
ro
r
(-
)

Figure 4.5: Gradient estimation error in the first privileged direction |∇Ur,2φE,k −
∇Ur,2φp(uk)| (solid), with its standard deviation

√
UT

r,2Σ
φ

E,k Ur,2 calculated online
(shaded), along with the desired threshold value σT OL (dashed).

0 10 20 30 40 50 60

0

5

10

15

20

25

30

k

p
la
nt

d
ir
ec
ti
o
n
a
l
d
er
iv
a
ti
ve

(-
)

Figure 4.6: Directional derivatives for the plant cost ∇Ur,iφp(uk) for i = 1 (solid) and
i = 2 (dashed) as functions of the RTO iteration number.

66

4.4. Conclusions

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

−0.2

−0.1

0

0.1

0.2

0.3

W
(r
a
d
)

N (rad)

Figure 4.7: All the paths corresponding to uk , k = 1, . . .60, (black) for r = 2, as well as the
plant optimal path u∗

k (red) and the height constraint (dot-dashed).

0 10 20 30 40 50 60

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

k

av
er
a
g
e
li
n
e
te
n
si
o
n
,
T̄
/
c T

(-
)

Figure 4.8: True noise-free (solid) and and measured noisy (dots) average line tension
(equal to −φp(uk) and −φ̃p(uk), respectively) as functions of the RTO iteration number
k for nr = 4. The plant optimum (equal to −φp(u∗

p)) is also shown (dashed).

67

5 Application to a Small-Scale Experi-

mental Kite Prototype

As recently as 2012, there were virtually no experimental results on modeling and control

for kites. Thus, with the help of several students, I constructed a small-scale experi-

mental kite system (in fact the system described here is the second prototype). The

system was built to: a) validate modeling hypotheses, b) devise path-following con-

trollers, c) optimize the path using RTO. All three aims were achieved over the course

of three years, and the results are presented in this chapter. However, the field of kite

control has changed significantly since 2012. Very recently, a number of publications

experimentally validated simple laws to describe a kite’s turning behavior and pro-

posed experimentally-validated control-strategies for flying figure-of-eight’s (Erhard

and Strauch, 2013a; Fagiano et al., 2014; Jehle and Schmehl, 2014; Ruiterkamp and

Sieberling, 2013). The results given here are presented in the context of these recent

developments, as they are still a fair contribution to the current state-of-the art. In

particular, a novel modeling law linking steering deflections to a reduction of the kite’s

lift-to-drag ratio is proposed and experimentally validated. A path-following controller

is developed that requires only measurements of the kite’s position, in contrast to other

approaches which require the kite’s attitude and velocity to be measured. This controller

is specifically designed to cope with significant time delay, and is demonstrated experi-

mentally to be extremely robust. Finally, the Dual D-MA RTO methodology developed

in the previous chapter is successfully implemented. An experimental study on the

effect of path shape on line tension confirms that the RTO algorithm reaches the plant

optimum.

The chapter is structured as follows: Section 5.1 describes the experimental setup: the

hardware, the software and the outdoor testing conditions. Section 5.2 develops a very

simple dynamic model of the system, explains how the model states are calculated from

the measurements, and experimentally identifies the model parameters. Section 5.3

presents a path-following controller for kites, encompassing an adaptive prediction

69

Chapter 5. Application to a Small-Scale Experimental Kite Prototype

algorithm to compensate for delay, and a ‘vector-field’ path-following control algorithm

specifically adapted for kites. Finally, Section 5.4 describes the experimental implemen-

tation of Dual D-MA, with particular emphasis on mitigating the effect of noise. Note

that all graphs in this chapter display experimental data.

5.1 Experimental Setup: Small-Scale Kite Prototype

5.1.1 Motivation

A number of different control and optimization problems exist in kite power, just as

there are several different kite-power concepts. The aim during this work was to develop

generally applicable dynamic models, controllers and RTO strategies. The experimental

setup was chosen to be a small kite on a fixed-length line, with a control objective of

maximizing the average line tension. The justification was the following:

• Testing with the small-scale prototype can be carried out alone over the course

of a day, in any small field. The number of potential test-sites within an hour’s

drive of EPFL are significant, including a number of beaches, which typically offer

the steadiest winds (preferable for modeling experiments) in onshore conditions.

In crosswind flight the kite’s front line is straight as, due to its short length, it

experiences little drag and its mass is negligible compared to the line tension. This

is exploited to measure, from the ground, the kite’s position with great accuracy,

which further allows the kite’s velocity and orientation to be estimated. In this

manner, the delicate problem of placing sensors on the kite is avoided. The

negligible line drag allows the kite’s pitch and the steering deflection it experiences

to be precisely controlled.

• Small kites with an almost identical design to those used for power generation are

available (it is rather the power-generating kites that copied the small kites). As

the Reynolds number of both a 3-m2 kite and a 300-m2 kite in crosswind flight

ensures turbulent flow (Dadd et al., 2011), there are unlikely to be significant

differences between their aerodynamic properties, and hence their behavior.

• Fixed line-length flying is perfectly sufficient to develop dynamic kite-models for

crosswind flight. The kite’s behavior is studied with respect to the apparent wind

(the wind it experiences). By flying the kite on a fixed-length tether in a variety

of wind speeds, the kite’s behavior for a full range of apparent wind speeds and

angles can be studied. For the same reason, a control algorithm that handles a

kite on a fixed-length tether in a variety of wind conditions, could also be used for

the traction phase of a pumping-cycle kite-power generator.

70

5.1. Experimental Setup: Small-Scale Kite Prototype

• As for the question of optimal paths, while there is no strict equivalence between

the problems of maximizing the average line-tension for a fixed-line kite, and

maximizing the component of the average line-tension in a particular direction

(the objective with kites on boats (Skysails GmBH)), or maximizing the product of

the line-tension and the reel-out speed (the objective during the traction phase

of pumping-cycle generation), I have studied the solutions to these problems in

detail (partly published in (Costello et al., 2013)) and the optimal solutions tend

to be very similar. It can be expected that a RTO algorithm that works well for the

average line-force maximization problem could be applied to the other problems

with some adaptation.

The experimental system is designed to be complementary to the Swiss Kite Power

group’s large-scale testing platform. The size and complexity of the large-scale platform

gives birth to additional engineering and human challenges. Testing with the large

platform involves co-ordinating several people and transporting a lot of machinery to a

very large, deserted test-site. Switzerland has very few such sites; most tests take place

near the summit of the Chasseral in the Jura mountain range. The wind here is relatively

gusty (irregular), and snow prevents testing for half of the year. Accurately measuring

the kite’s position, velocity and orientation is complicated by the long line-lengths,

requiring (fragile) on-board sensors with their own power supply, and communication

to a ground station. Actuation of the kite cannot always be precisely controlled due

to the significant curvature in the long lines. All these issues (which are closely linked

to design decisions, and hence platform dependent) must be addressed in a full-scale

system. Using a small-scale system allows us to bypass these problems, and focus

exclusively on dynamic modeling, control and path optimization for the kite.

5.1.2 Physical System

The ground station and the kite are shown in Figures 5.1 and 5.2.

Two standard commercial power kites were used: A 2.5-m2 Flysurfer Viron and a 3.5-m2

HQ Apex. Both are three-line1 kites; one front line takes about 90% of the force generated

by the kite, the two lightly-tensioned rear lines allow the kite to be maneuvered. There

are two degrees of freedom to operate the kite: a) adjusting the difference between

the lengths of the rear lines allows the kite to be steered left or right, b) adjusting the

length of the front line allows the kite to be accelerated or decelerated by changing its

angle-of-attack relative to the onrushing air. In this case, only the steering degree of

1This type of kite is often termed a 4-line kite also, as there are 4 attachment points on the kite. However,
the two front lines join together, and there are only 3 attachment points on the control bar.

71

Chapter 5. Application to a Small-Scale Experimental Kite Prototype

front-line angle-measurement rod

anchor lines

left steering-line

right steering-line

steering reel

angular

encoders

Figure 5.1: The ground station.

freedom is adjusted automatically. The length of the front line is maintained constant

throughout each experiment. Unless the wind is extremely light, 3-line kites fly very

well with the length of the front line kept constant.

The ground station is a wedge-shaped structure built from aluminium profiles. The

lines coming from the kite are lead through three small eyes placed closely together.

This ensures that as the kite moves around, and hence the angle of the lines changes,

the relative lengths of the lines will not vary. The front line passes through an adjustable

blocking device (a block followed by a clam cleat) which is attached to a load cell for

measuring the tension in the front line. In this manner the length of the front line

can be adjusted at the beginning of each experiment to suit the wind conditions and

the geometry of the kite being tested. The angle of the front line between the station

and the kite is measured by a 1-m long carbon-fiber rod with a small ring at the end,

through which the front line passes. The angle of the rod, from which the line angle

can be inferred, is measured by two incremental rotary encoders. The rear lines are

wound in opposite directions around a reel, which is turned by a 400-Watt DC motor.

Rotating the reel shortens one line, while lengthening the other. The interior of the

structure houses the electronics for the motor, the load cell and the encoders. The total

weight of the ground station is 30kg, allowing it to be displaced by a single person. As

the ground station is very light relative to the load generated by the kite (up to 300 kg),

it must be securely anchored to the ground. Four purpose-built steel ground screws

72

5.1. Experimental Setup: Small-Scale Kite Prototype

front line

right steering-line

left steering-line

Figure 5.2: The kite (a Flysurfer Viron).

73

Chapter 5. Application to a Small-Scale Experimental Kite Prototype

inserted 50 cm into the ground and a system of ratchet tie-downs are used. A number

of additional items make up the experimental platform. A high-precision ultrasonic

anemometer mounted on a 3 m pole measures the wind speed and direction. A laptop

computer is connected (interfaced by appropriate electronics) to each measurement

device and to the motor-control unit. The different devices are powered by a 220-V AC

petrol generator, a 70-V DC power supply and a 5-V DC power supply.

The system is designed for loads of up to 200 kg. For the given kite sizes (which are the

smallest 3-line power kites on the market), this allows testing in up to 15 m · s−1 wind.

Nonetheless, all the components are over-dimensioned and the station has survived

peak loads in excess of 300 kg.

The DC motor actuating the rear lines can adjust the difference in line length very

rapidly (at a nominal rate of 2 m · s−1 with a tension difference of 20 kg, and several

times faster for short periods of time). Position control is handled by a PID algorithm

running on a dedicated micro-controller with a sampling frequency of 10 kHz. An

incremental encoder attached to the motor’s shaft measures the motor’s position. The

reel’s position is inferred from this, with extremely high accuracy due to the motor’s

high gearbox ratio. The powerful motor means the position control loop is very fast,

with a settling time of around 30 ms (this varies slightly depending on the kite being

used and the wind strength).

The accuracy of the various sensors is paramount for an autonomous system. In theory,

the encoders measuring the angle of front line are accurate enough to provide the kite’s

position to within ±5 cm, if 35 m lines are used. Furthermore, it is estimated that the

slight curvature of the front line induced by aerodynamic drag is likely to introduce and

error of at most ±10 cm. The load-cell measures the front-line tension with an accuracy

of ±0.2 N. Given that the front line tension is typically at least 200 N, this error of ±0.1 %

is negligible.

5.1.3 Software

Software running on the laptop reads and logs the sensor signals and calculates a

position set point for the motor controller. The four main processes running in parallel

are shown in Figure 5.3 (this is a simplification, as in reality a number of additional

processes handle data retrieval from the anemometer, the load cell, and the joystick).

Note, that a parallel division of tasks is essential, as a) different tasks must execute at

different frequencies, and b) this way critical processes, such as the autopilot, do not

get held up by other tasks.

74

5.1. Experimental Setup: Small-Scale Kite Prototype

Autopilot

30 ms

RTO

LABVIEW MATLAB (instance 1) MATLAB (instance 2)

Measurement and

Actuation

30 ms

User Interface

100 ms

queues

(shared memory)

Active-X

COM interface UDP link

Figure 5.3: The parallelized structure of the software running on the laptop. Each
box is a process, whose execution period is indicated in the upper right-hand corner.
Arrows signify inter-process communication, and are annotated by the communication
method.

• User Interface reads any user input from either the joystick or the keyboard, and

graphs measurement data and other useful signals. With its time-consuming

graphics to display, and given that it is interacting with a (relatively slow) human,

this process is executed relatively infrequently.

• Measurement and Actuation updates the manipulated variable, namely the set

point for the motor’s position. At each iteration the sensors are read, state estima-

tion is performed, and the system states are sent to the Autopilot process, which

returns a desired steering input. This desired steering input is translated into a

position set point for the motor and is sent to the motor controller. Alternatively,

if the system is in ‘manual’ mode, the (filtered) joystick position is used to decide

the motor’s position set point. Finally, if the option to save data is activated, the

current values of all measurements, state estimates and controller parameters are

saved to file (in reality this data is placed in memory, and transfered to a file once

the option to save data is deactivated). The execution frequency of this process

is 33 Hz, roughly an order of magnitude larger than the bandwidth of the kite’s

states during flight.

75

Chapter 5. Application to a Small-Scale Experimental Kite Prototype

• Autopilot embodies the cascade control algorithm to be described in Section 5.3.

Based on the kite’s current states, this algorithm calculates the necessary steering

input in order for the kite to follow a reference path. This process also keeps

track of the average values of several signals over the past Navg repetitions of the

reference path that the kite follows. Every Navg repetitions, this data is transmitted

to the RTO process, which returns a new value of the reference path.

• RTO periodically adjusts the reference path in order to optimize the kite’s perfor-

mance using the algorithm to be described in Section 5.4.

One important consequence of the software structure is the introduction of delay. The

first such delay is the ‘execution delay’ τe due to the execution time of the Measurement

and Actuation process: on average the updated motor position set point is commu-

nicated to the motor controller 20 ms after the beginning of this process. The second

software-induced delay affects the RTO algorithm. By the time the RTO process has

finished executing and sent a reply (a new reference path for the kite) to the Autopilot

process, the kite has already partly completed another cycle of the previous reference

path. The new reference path is only used once the kite has finished this cycle. The

result is a delay of 1 cycle affecting the RTO algorithm.

5.1.4 Field Testing

During 2013 and 2014, the experimental system was used for 28 day-long tests, in 8

different locations. A further 7 tests were aborted upon reaching the test location due to

insufficient wind. The testing locations along with the wind directions used for the tests,

are shown in Figure 5.4. 30 % of the tests were dedicated to equipment troubleshooting

and modeling, 50 % were spent on the control algorithm, and 20 % were spent on RTO.

The testing location has a large influence on the control and RTO algorithms’ perfor-

mances, as the wind is strongly influenced by the local terrain. For example, achieving

robust control performance in the mountains was more difficult, as the wind strength

and direction varied rapidly. The steadiest wind was encountered on lake sides with an

onshore wind, however, unfortunately the lake sides in Switzerland are invariably either

built-up or forested. Many tests were carried out at Evionnaz (VS), which sits on the floor

of the deep Rhone valley, right at a narrowing. This narrowing results in a Venturi effect,

producing strong thermal winds almost every second day in summer. Unfortunately,

the wind here is extremely gusty (meaning it varies significantly over short periods of

time, of the order of several minutes, or even tens-of-seconds). The most recent tests,

accounting for the majority of the results presented here, were carried out on the plain

above Lac Léman, either in the communes of Penthaz (VD) or Echichens (VD), during

76

5.1. Experimental Setup: Small-Scale Kite Prototype

Bise

Venturi

Figure 5.4: Testing locations (red circles), and the two winds used for testing.

77

Chapter 5. Application to a Small-Scale Experimental Kite Prototype

episodes of north-easterly wind (‘la Bise’). In both cases the tests were carried out in flat

fields, with virtually no obstructions to windward for at least 500 m. The gustiness of

the wind experienced by the kite in this case is medium: as it is coming from the land it

is far more gusty than the wind experienced at sea or along a coastline, however it is

steadier than the wind to be found in the mountains.

5.2 Modeling and State Reconstruction

In order to employ the Erhard model introduced in Section 2.4, it is necessary to a)

measure (or estimate) the states used by this model in real time, b) experimentally

identify the free model parameters for the system. The states used in this model are the

position and the orientation of the kite. Although the position of the kite is measured, our

experimental setup does not measure the orientation of the kite (this would require an

on-board inertial sensor). From the model equations it would seem essential to measure

the kite’s orientation accurately, as this is the only state that can be directly influenced

by (i.e. whose first derivative depends upon) the steering deflection. Indeed, the control

algorithm proposed by Erhard and Strauch (2013a) uses the kite’s orientation as the

basic controlled variable. While the kite’s orientation is no doubt a useful measurement

in any situation, it is not actually essential for control during crosswind flight. During

crosswind flight the kite is moving rapidly, and the aim is to control the kite’s direction

of motion, rather than its orientation. Thus we define an alternative state variable, the

velocity angle, which is closely related to the kite’s orientation. In fact, we will show that

under normal conditions, the kite’s orientation is approximately the same as its velocity

angle. In addition, the resulting model is even simpler than that proposed by Erhard

and Strauch (2013a). The velocity angle can be inferred from a sequence of past position

measurements, albeit at the cost of introducing delay.

5.2.1 The Velocity Angle

The assumptions upon which the model in Section 2.4 is based are only valid if the kite

is flying roughly crosswind (when tanϑ
E << 1). During crosswind flight the speed of the

kite is several times that of the wind speed. We will now show that assuming crosswind

flight allows the model to be further simplified. We begin by introducing the velocity

angle:

γ= tan−1
(
ϕ̇sinϑ

ϑ̇

)
. (5.2.1)

78

5.2. Modeling and State Reconstruction

This is the angle of the kite’s velocity in the plane that is tangent to the sphere at the kite’s

current position. Developing the expression for the velocity angle (using Equations

2.4.2 and 2.4.3) gives:

γ= tan−1

(
−sinψ

cosψ− tanϑ
E

)
(5.2.2)

As tanϑ
E << 1 in crosswind flight, we have that:

γ'−ψ. (5.2.3)

In other words, we have shown that, not surprisingly, the kite flies crosswind in roughly

the same direction as it is pointing. Next we examine the kite’s speed ‖ṗ‖ when trav-

eling crosswind (we recall that p is the kite’s position in x, y, z coordinates, defined by

Equation 2.4.1) . The kite’s speed relative to the tether length (i.e. in rad · s−1) is:

ωk := ‖ṗ‖
r

=
√(

ϕ̇sinϑ
)2 + (

ϑ̇
)2

. (5.2.4)

Now inserting the differential Equations 2.4.2 and 2.4.3 gives:

ωk=
√(

−wap

r
sinψ

)2
+

(
wap

r

(
cosψ− tanϑ

E

))2

, (5.2.5)

= wap

r

√(
sinψ

)2 +
(
cosψ− tanϑ

E

)2

. (5.2.6)

Finally, as tanϑ
E << 1 in crosswind flight:

ωk '
wap

r
= w

r
E cosϑ. (5.2.7)

Thus, during crosswind flight the kite’s speed approximately depends only on the posi-

tion, and not the orientation, of the kite.

Using the definition of γ (Equation 5.2.1) and the kite’s angular velocity (Equation

(5.2.4)) we can now write a simplified dynamic model for the kite:

ϑ̇=ωk cosγ, (5.2.8)

ϕ̇= ωk

sinϑ
sinγ, (5.2.9)

γ̇=−(
ωkr gsδ+ ϕ̇cosϑ

)
, (5.2.10)

ωk =
w

r
E cosϑ. (5.2.11)

This model will henceforth be referred to as the ‘Cart Model’. The dynamics are now

79

Chapter 5. Application to a Small-Scale Experimental Kite Prototype

exactly those of a cart driving on a sphere, whose speed we cannot directly control.

If unlimited steering action is assumed, any path can be achieved, but in reality the

steering deflection is bounded. Note that, if a constant E is assumed (which is reason-

able if the model is to be used to design steering controllers, but not for tether-force

optimization) the input required to follow any (smooth) path [ϑ(l),ϕ(l)] can be easily

computed, although it may not satisfy the maximum-steering-deflection constraint.

Also, as ϕ̇cosϑ is usually small relative to ωkr gsδ in Equation (5.2.10), the turn rate is

roughly proportional to the steering deflection. This observation has also been made by

Fagiano et al. (2014) and Jehle and Schmehl (2014).

5.2.2 State Reconstruction

The first step towards controlling the system is to be able to reconstruct the states of

the Cart Model, {ϑ,ϕ,γ}, from measurements. It is much easier to reconstruct the states

retrospectively, after an experiment, using both past and future data to reconstruct the

states at a particular time instant. This non-causal approach probably yields quite a

good estimate of the states, and in this work it will be assumed that the states can be

reconstructed perfectly in this fashion. During real-time operation, only current and

past measurements are available, making non-causal reconstruction impossible. The

result is a less-than-perfect estimate of the states. Luckily, this estimate can be compared

with the non-causal reconstruction in order to understand exactly how imperfect it is.

Non-causal reconstruction

The kite’s estimated position at each sampling instant, p̂[n], is calculated from the

encoder signals. The position signal is filtered with a non-causal filter with a cut-off

frequency of 5 Hz2. The logic is that the kite’s movement is visually observed to be

smooth. The kite, although light, has a certain inertia. Regardless of the steering

deflections applied, it cannot change its direction of motion instantaneously. Therefore,

any high frequency components present in p̂[n] must be due to measurement noise,

and should be removed by filtering. The resulting non-causal estimate of the kite’s

position is pNC, where ‘NC’ stands for non-causal. Converting the non-causally filtered

position to spherical coordinates yields ϑNC and ϕNC.

2 This is achieved by taking the Discrete Fourier Transform of the signal, multiplying the resulting
frequency-domain signal by an appropriately sized Hann window, then moving back into the time domain
with the Inverse Discrete Fourier Transform

80

5.2. Modeling and State Reconstruction

335.8 336 336.2 336.4 336.6 336.8 337 337.2 337.4 337.6 337.8

0.45

0.5

0.55

0.6

0.65

0.7

0.75

time (s)

ϑ
(r
a
d
)

Figure 5.5: The estimate of the kite’s spherical position coordinate ϑ̂, inferred directly
from measurements in real-time (dashed). The non causal reconstruction ϑNC (solid).

Applying a centered derivative formula to pNC yields:

ṗNC[n] = pNC[n +1]−pNC[n −1]

2Ts
, (5.2.12)

from which we can obtain ϑ̇NC, ϕ̇NC, and ωNC
k = ‖ṗNC‖

r . Note that the notation [n − i]

represents a delay of a discrete signal by i sampling periods. The velocity angle can now

be calculated as:

γNC = tan−1
(
ϕ̇NC sinϑNC

ϑ̇NC

)
. (5.2.13)

Applying the centered derivative formula to γNC yields γ̇NC. Finally, wNC
ap is estimated by

projecting (ṗNC−w̄) onto the plane orthogonal to pNC , where w̄ is the average measured

wind vector during the experiment in question.

Real-time reconstruction

The position of the kite is inferred from the angle of the front line, which is measured by

the line-angle measurement rod shown in Figure 5.1. As this line is under great tension

during crosswind flight, and the length of the line is relatively short, the line is extremely

straight. If the only source of error were the very slight curvature of the line due to

gravity and aerodynamic drag, then the position of the kite could be calculated with an

accuracy of ±15 cm. Unfortunately, a further source of error, vibrations, complicates

matters slightly. The spherical position coordinate ϑ̂ reconstructed in real time during

81

Chapter 5. Application to a Small-Scale Experimental Kite Prototype

327.5 328 328.5 329 329.5 330 330.5 331 331.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

time (s)

γ
(r
a
d
)

Figure 5.6: The real-time estimate of the kite’s velocity γ̂, calculated according to Equa-
tion 5.2.14 (dashed), compared with the non-causal reconstruction γNC (solid).

an experiment is compared with the non causally reconstructed signal in Figure 5.5. The

real-time signal is slightly ‘jittery’; this is due to noise caused by vibrations of the kite

line and the line-angle measurement rod. The kite’s actual position, which is assumed

to correspond to the non-causal reconstruction, will vary quite smoothly, due to the

kite’s inertia. The standard deviation of the ‘measurement noise’ affecting both ϑ̂ and

ϕ̂ can be estimated as σϑ =σϕ ' .01 rad. The standard deviation of the resulting error

affecting the estimate of the kite’s absolute position is ±50 cm.

A very simple method is used to estimate γ from the kite’s measured position. At the

sampling instant n, an estimate of the kite’s velocity in cartesian coordinates, ̂̇p, is

obtained by solving the following least-squares problem:

{̂̇p, â} = argmin
{ṗ, a}

2dd∑
j=0

∥∥(
a− j Tsṗ

)− p̂[n − j]
∥∥2 (5.2.14)

where â is an estimate of the kite’s current position which is not used. Solving this prob-

lem fits a line to the last 2dd +1 position estimates, and the velocity vector associated

with the fit is ̂̇p. Note that the estimate of the kite’s velocity obtained in this manner has

a delay of τd = ddTs. Given that the bandwidth of the velocity-angle signal is about 3 Hz,

the truncation error that occurs from using a linear fit over several points at intervals

of 30 ms is relatively small compared to the error induced by the position estimates’

measurement noise. The velocity angle is then calculated as:

γ̂= tan−1

(̂̇ϕsin
(
ϑ̂
)

̂̇ϑ
)

. (5.2.15)

82

5.2. Modeling and State Reconstruction

327 328 329 330 331 332

−0.4

−0.2

0

0.2

0.4

0.6

time (s)

(r
a
d
·
m

−
1
)

Figure 5.7: The scaled steering input, δ× gs (dashed), with gs = 1.1 rad·m−2, and − γ̇NC
c

ωNC
k r

(solid), while the kite flies regular figure-of-eights.

The velocity angle estimated in this manner during an experiment is shown in Fig.

5.6. For comparison, the non-causal reconstruction is also shown. It can be seen that

the velocity angle estimated in real time lags the ‘ideal’ non-causal estimate by about

ddTs =60 ms, as in this case dd = 2. In addition the signal obtained in real time is

contaminated by high-frequency noise. The standard deviation of the noise affecting γ̂

can be estimated as σγ = var {γ̂−γ} ' .05 rad.

5.2.3 Experimental Characterization of the Kite’s Turning Behavior

Understanding the turning behavior of the kite is clearly fundamental if the kite’s path

is to be controlled. Let the ‘corrected’ turning rate be defined as:

γ̇c = γ̇+ ϕ̇cosϑ. (5.2.16)

The cart model (Equation (5.2.10)), establishes the following proportional relationship:

γ̇c

ωkr
=−gsδ. (5.2.17)

Although a demonstration is not given here, note that this implies that the curvature

of the kite’s path is proportional to the steering deflection, δ. The constant gs can be

estimated from experimental data as shown in Figure 5.7, by finding the value of gs

that results in the two signals overlaying each other. Two important phenomena can be

observed from this figure. Firstly, γ̇c

ωkr is only approximately proportional to the steering

83

Chapter 5. Application to a Small-Scale Experimental Kite Prototype

input δ. Secondly, there is a significant delay between a change in the steering deflection

and the resultant change in the turning rate. This delay is due to the inertia of the kite,

which is neglected in the kinetic cart model, and it shall be referred to as the inertia

delay, τI.

From a path-optimization viewpoint, it is important to understand the effect turning

has upon line tension, as the optimization objective is to maximize line tension. In

the Erhard Model, the line tension depends on the angle between the tether and the

wind, ϑ, and the lift-to-drag ratio, E , where E is constant. Erhard and Strauch (2013a)

demonstrated that this is a reasonable approximation if the model is used for controller

design. Indeed, from a control point of view, it is important to precisely control the

kite’s direction of motion. The lift-to-drag ratio mostly influences the kite’s speed (and

the ensuing line tension), which is of secondary importance for the control algorithm.

However, Equation (2.4.7) from the Erhard Model implies that the line tension depends

only on the kite’s position. This equation also implies that there is an optimal position

(or positions), which depends on the wind gradient and the model parameters, that

maximizes the line tension. If the Erhard Model is to be believed, the kite should be

kept close to this optimal position by aggressively steering the kite. However, during

experiments, it was observed that steering deflections cause a reduction in tether

tension. This is particularly noticeable for very large steering deflections, which will

almost cause the kite to stall, drastically reducing the apparent wind speed, and hence

the tether tension. Thus, the tether tension does not depend on the kite’s position only,

but also on the steering deflection currently being applied. The following empirical law

is proposed to model this behavior:

E = E0 − cδ2, (5.2.18)

where c is a constant that determines how much the kite’s lift-to-drag ratio is penalized

for a steering deflection. The basic idea is that a kite steers either by banking (like

an airplane), or by increasing the angle of attack on one side of the kite, or through a

combination of both. Banking misaligns the kite’s aerodynamic-force vector and the

tether, causing a reduction in tether tension. Increasing the angle of attack on one

side of the kite will tend to decrease the kite’s overall lift-to-drag ratio. Both of these

effects can be modeled as a decrease in E which depends on the steering deflection

δ. A quadratic penalty term was chosen as it best fit the experimental data. So-called

‘bang-bang’ experiments were carried out, during which the magnitude of the input

was maintained constant, while an operator commuted the sign (steering direction)

between positive and negative (left and right) to keep the kite flying fast through the air.

Based on Equation (2.4.5),the lift-to-drag ratio corresponding to each value of |δ| was

84

5.3. Path-Following Control

0 0.2 0.4 0.6 0.8

2

2.5

3

3.5

4

input magnitude, |δ| (m)
li
ft
-t
o
-d
ra
g
ra
ti
o
,
E

(-
)

Figure 5.8: The lift-to-drag ratio vs. the magnitude of the steering-deflection set-point,
estimated from experimental data using Equation (5.2.19) (circles), and then fitted to
these points according to Equation (5.2.18) (dashed).

encoder

signals state

reconstruction
path-following

controllerA/D

D/A

motor

position

controller

filter limiter

Figure 5.9: Block diagram of the control structure.

then estimated as:

E = 1

tf − t0

∫ tf

t0

wNC
ap

w̄ cosϑNC
d t . (5.2.19)

For each value of |δ|, a time period, tf − t0, of at least 1 minute (corresponding to more

than 30 turns of the kite) was used, and w̄ is the average measured wind speed between

t0 and tf. The results, along with the fitted curve for E , is shown in Fig. 5.8

5.3 Path-Following Control

The control structure, from the encoder signals to the voltage that is sent to the motor,

is shown in Figure 5.9. The state-reconstruction block was already described in Section

5.2.2. It estimates the kite’s position and velocity angle from the encoder signals. The

85

Chapter 5. Application to a Small-Scale Experimental Kite Prototype

estimates are contaminated by noise, and in the case of the velocity angle, are delayed.

The path-following controller, which is described in this section, computes a desired

steering input δc in order to follow the reference path {ϑr(·),ϕr(·)}. This reference path

is periodically updated by the RTO algorithm, to be described in Section 5.4.

The path-following controller’s output is low-pass filtered before being converted into a

position set-point for the motor. This filter, the only one in the entire control structure,

protects the motor (and the entire setup, as the motor is very powerful) by smoothing

any high-frequency components in δc. Abrupt changes in δc can either be caused by

the logic in the path-following controller, or by the high-frequency noise contaminating

the state estimates. This filter is essential, in fact removing it was observed to cause

unstable behavior. Very violent changes in the rear-line lengths can cause oscillations in

the front line, which in turn introduces even more high-frequency noise into the state

estimates. However, filtering has the unavoidable consequence of introducing delay,

due to the filter’s negative phase response, and it is important to characterize this delay.

Strictly speaking, filter delay is variable, as it depends not only on the order of the filter

and the cut-off frequency, but also on the frequency content of the signal being filtered.

However, as δc tends to have a bandwidth of about 2Hz, it is reasonable to assume a

constant value, τf, taken as the value of the filter’s group delay at a frequency of 1 Hz.

After δc is filtered, it is also limited to ensure the steering deflection applied to the

system is lower than a preset maximum value, δmax. The filtered, limited steering set

point, δs, is converted into a corresponding motor position set-point, θm
s , for the motor

controller. The motor controller regulates the voltage applied to the motor, vm, to

ensure that the motor position, θm, matches the set-point. Again, due to the time

response of the position control loop, a small time delay, τm, is introduced between

the steering deflection set-point δs, and the actual steering deflection δ. The model

parameters, including those estimated experimentally, are given in Table 5.1.

From the point of view of the path-following controller, the system to be controlled

incorporates not only the physical system approximated by the cart model, but also the

delays introduced at the software level and the state-reconstruction error. This ‘overall

system’ is depicted in Fig. 5.10.

5.3.1 Adaptive Prediction

A number of different time delays affect the system to be controlled, as shown in Figure

5.10, and the combined effect of these delays is non-negligible. There is a delay of about

260 ms before a change in δc causes a change in γ̂. Given that the kite reaches speeds of

40 m·s−1, in 260 ms the kite can travel up to 10 m. With a line length of 35 m, the span

86

5.3. Path-Following Control

Table 5.1: Parameter values for the small-scale experimental kite system (for the Fly-
surfer Viron kite)

Parameter Units Value
r m 35
gs rad ·m−2 1.1
c m−2 3.52

δmax m 0.4
E0 - 3.68
Ts ms 30
τe ms 20
τf ms 50
τd ms 60
τm ms 30
τI ms 120

Cart

 Model

+
+

+
+

+
+

D/A

A/D

path-following

controller

kite state reconstruction

filter
delay

limiter

inertia
delay

derivative
delay

motor
delay

Figure 5.10: The system viewed from the path-following controller’s point of view.

87

Chapter 5. Application to a Small-Scale Experimental Kite Prototype

+
-

guidance

strategy

adaptive

prediction

velocity-angle controller

Figure 5.11: The structure of the path-following controller.

of the entire path to be followed may be only 15 m! Not surprisingly, it was found that

satisfactory control performance could not be achieved without delay compensation.

If the model equations were completely accurate, delay compensation would simply

involve integrating the model equations forward in time. Unfortunately, as shown in

Figure 5.7, the dynamic equation accounting for the kite’s turning behavior is only a

very approximate relationship. Worse still, the turning coefficient gs varies significantly

with the wind speed and is very sensitive to adjustments of the length of the kite’s front

line (which are necessary to adapt to different wind conditions). For this reason, an

adaptive least mean squares (LMS) filter was used to obtain an improved relationship

between δs and ̂̇γ, capable of adapting to different flight conditions.

The LMS filter models the estimate of the kite’s corrected turning rate (defined in Equa-

tion (5.2.16)) using the following relationship:

̂̇γc[n] = (hn)Tδs[n], (5.3.1)

where δs[n] =
[
δs[n −d] δs[n −d −1] · · ·δs[n −d −nLMS]

]T
is the vector of past in-

puts, delayed by d sampling periods, nLMS is the filter length, and hn ∈ RnLMS is the

vector of filter weights. The value of d is selected such that dTs ' τm+τI+τd, that is, the

number of sampling periods delay between δs and γ̂ (see Figure 5.10). The estimation

error at each sampling period is:

en = γ̇c[n]− (hn)Tδs[n]. (5.3.2)

The filter weights are adapted at each sampling period in order to minimize the mean-

square estimation error, E [e2
n] . The Least-Mean-Squares gradient algorithm (LMS) was

used to find the optimal weights (Proakis and Manolakis, 2006). The filter coefficients

are recursively computed in order to minimize E [e2
n], using the following simple update

88

5.3. Path-Following Control

equation:

hn+1 = hn +µenδs[n], (5.3.3)

where µ is the step size.

Using this relationship linking δs to ̂̇γc, it is possible to predict what the kite states

will be several sampling periods into the future. This is necessary because, due to the

time delays, changes in δc will only begin to affect the kite’s behavior several sampling

periods later. Thus, decisions made by the path-following controller should be based

upon the states estimates in the future, rather than the current estimates. At sampling

instant n0, corresponding to time t0, the aim is to obtain the following predictions:

ϑ̂′[n0] ' ϑ̂[n0 +d ′] = ϑ̂(t0 +τf +τm +τI), (5.3.4)

ϕ̂′[n0] ' ϕ̂[n0 +d ′] = ϕ̂(t0 +τf +τm +τI), (5.3.5)

γ̂′[n0] ' γ̂[n0 +d ′+dd] = γ̂(t0 +τf +τm +τI +τd), (5.3.6)

where d ′Ts ' τf+τm+τI, and recalling that dd = Tsτd is the number of sampling periods

derivative delay. Essentially, obtaining these prediction will negate the effect of all

time delays except the execution delay, which is neglected. It may help to refer to

Figure 5.10 to understand this. The prediction is calculated in two steps. First, the

following equation is integrated forward in time by dd sampling periods, from n = n0 to

n = n0 +dd:

γ̇[n] = hT
n0
δs[n]− ̂̇ϕ[n0]cos

(
ϑ̂[n −dd]

)
, γ[n0] = γ̂[n0]. (5.3.7)

This yields γ̂+dd , which is actually an estimate of the kite’s velocity angle at the current

sampling instant n0, as this first step compensates for the derivative delay. The next

step predicts what the kite’s states will be d ′ sampling periods into the future. This is

achieved by integrating the following equations forward in time by d ′ sampling periods,

from n = n0 to n = n0 +d ′:

ϑ̇[n] =
(

w̄

r
E0 cos(ϑ[n])

)
cos

(
γ[n]

)
, ϑ[n0] = ϑ̂[n0], (5.3.8)

ϕ̇[n] =
(

w̄

r
E0 cos(ϑ[n])

)
sin

(
γ[n]

)
sin(ϑ[n])

, ϕ[n0] = ϕ̂[n0], (5.3.9)

γ̇[n] = hT
n0
δs[n +dd]− ϕ̇[n]cos(ϑ[n]) , γ[n0] = γ̂+dd , (5.3.10)

to yield ϑ′,ϕ′ and γ′, where w̄ is the average measured wind speed during the past 15

minutes3. Note that the differential equations for ϑ and ϕ are from the Cart Model

3 Note that this integration requires future values of δs, up until δs[n0 +τf]. These can be calculated

89

Chapter 5. Application to a Small-Scale Experimental Kite Prototype

688 689 690 691 692 693 694 695 696

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

ϑ
(r
a
d
)

time (s)

Figure 5.12: Performance of the adaptive prediction algorithm during an experiment:
the prediction ϑ̂′(t) (dashed), the signal we are trying to predict ϑ̂(t +d ′Ts) (solid), and
the non-delay-compensated estimate ϑ̂(t) (dotted).

(Equations 5.2.8 and 5.2.9), with the simplifying assumption that E = E0. Both integra-

tion steps are performed using the simple Euler Method, which integrates a differential

equation for a variable x forward in time according to: x[n +1] = x[n]+Tsẋ[n].

The performance of this prediction algorithm during an experiment is shown in Figures

5.12, 5.13 and 5.14. The prediction is not absolutely perfect, but it is certainly far more

accurate than using the non-delay-compensated state estimates. Indeed, the next

section demonstrates the importance of the prediction on control performance.

5.3.2 Velocity-Angle Control

The velocity-angle controller is a simple proportional feedback loop. The performance

during an experiment is shown in Figure 5.15. The closed-loop response is very good, as,

thanks to the adaptive prediction, Equation (5.2.17) holds, and the relationship between

the manipulated variable δc and the controlled variable γ̂′ is roughly that of a first-order

dynamical system.

The performance obtained during an early experiment without the adaptive prediction

is shown in Fig. 5.16. The oscillations around the reference signal are typical of propor-

tional control applied to a first-order system with significant time delay. An important

peculiarity of path-following control can be observed: oscillations in the controlled

variable cause oscillations in the reference signal! This is because the reference signal

from the current values of δc.

90

5.3. Path-Following Control

688 689 690 691 692 693 694 695 696

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

ϕ
(r
a
d
)

time (s)

Figure 5.13: Performance of the adaptive prediction algorithm during an experiment:
the prediction ϕ̂′(t) (dashed), the signal we are trying to predict ϕ̂(t +d ′Ts) (solid), and
the non-delay-compensated estimate ϕ̂(t) (dotted).

688 689 690 691 692 693 694 695 696

−3

−2

−1

0

1

2

3

γ
(r
a
d
)

time (s)

Figure 5.14: Performance of the adaptive prediction algorithm during an experiment:
the prediction γ̂′(t) (dashed), the signal we are trying to predict γ̂(t +d ′Ts+ddTs) (solid),
and the non-delay-compensated estimate γ̂(t) (dotted).

91

Chapter 5. Application to a Small-Scale Experimental Kite Prototype

75 80 85 90 95 100 105

−3

−2

−1

0

1

2

3

time (s)

ve
lo
ci
ty

a
n
g
le

(r
a
d
)

Figure 5.15: Performance of the velocity-angle control loop during autonomous figure-
of-eights with adaptive prediction. The reference signal γr (dashed), and the controlled
variable γ̂′ (solid).

depends on the kite’s position, so if the kite’s position oscillates around the desired po-

sition on the path due to control error, oscillations will tend to be introduced into the

reference signal also. These variations in the reference signal are likely to cause further

oscillations in the controlled variable, as the poorly performing controller tries to track

them. The overall effect is very poor path following, and for this reason, it was found

that the response of the velocity control loop must absolutely not overshoot or oscillate.

A similar observation regarding the detrimental effect of delay has been made by Jehle

and Schmehl (2014).

92

5.3. Path-Following Control

6820 6825 6830 6835

−3

−2

−1

0

1

2

3

time (s)

ve
lo
ci
ty

a
n
g
le

(r
a
d
)

Figure 5.16: Performance of the velocity-angle control loop during autonomous figure-
of-eights without adaptive prediction. The reference signal γr (dashed), and the con-
trolled variable γ̂ (solid).

93

Chapter 5. Application to a Small-Scale Experimental Kite Prototype

Figure 5.17: Path-following controller: illustration of the kite’s position relative to the
reference path (all projected onto the {N ,W } plane, shown in Figure 2.2). b is the kite’s
position, and br(l1) and br(l2) are the two points on the path at which the path’s tangent
is perpendicular to the line joining the kite position to that point.

5.3.3 Guidance Strategy

This section describes a simple ‘vector-field’ path-following controller for kites (or

any vehicle moving on a plane). This type of controller is popular in the unmanned-

aerial-vehicle (UAV) community, where it was recently developed to follow circular and

straight-line paths (or composites of these) (Nelson et al., 2007). Here, it is adapted to

follow arbitrary smooth paths (including paths that intersect themselves).

Firstly, the controller aims to control the position of the kite on the {N ,W } plane, as

defined in Section 2.4. Recall that this plane is tangent to the sphere upon which the

kite can move, at the point {ϑ̄,0}. This point is chosen as the intersection point of the

figure-of-eight reference path, i.e. the reference path’s center. Essentially, this plane

is a local approximation of the sphere, that allows us to consider the path-following

problem on a flat 2-D surface.

The kite’s position on the {N ,W } plane is defined as:

b = Tp, with T =
[
−sin ϑ̄ 0 cos ϑ̄

0 1 0

]
. (5.3.11)

The kite’s velocity in {x, y, z} coordinates is given by:

ṗ = r C

[
ϑ̇

ϕ̇sinϑ

]
, with C =

−sinϑ 0

cosϑsinϕ cosϕ

cosϕcosϑ −sinϕ

 . (5.3.12)

Now, using Equations 5.2.8 and 5.2.9, a relationship between γ and the kite’s velocity

94

5.3. Path-Following Control

vector projected onto the {N ,W } plane can be obtained:

ḃ = r TC

[
ϑ̇

ϕ̇sinϑ

]
, with

[
ϑ̇

ϕ̇sinϑ

]
=ωk

[
cosγ

sinγ

]
(5.3.13)

where we recall that ωk is the kite’s speed in rad·s−1. We define the kite’s velocity angle

on the {N ,W } plane as:

ζ=∠ḃ = tan−1
(

ḃW

ḃN

)
. (5.3.14)

The reference path (on the {N ,W } plane) is denoted br(l), where l is the path length. The

points on the path, li , at which the path’s tangent is perpendicular to the kite position

are br(li). The angle of the path at each point is denoted as:

ζi =∠
∂br

∂l
(li), (5.3.15)

while the vector pointing from the kite to each point is:

di
⊥ = br(li)−b. (5.3.16)

A desired velocity angle corresponding to each point is obtained with the classic vector-

field law (Nelson et al., 2007):

ζi
d = ζi +ζe

(
‖di

⊥‖
dmax

)β
× sgn

(
∠

(
di
⊥− ∂br

∂l
(li)

))
+α∂

2br

∂l 2 (li), (5.3.17)

where the entry velocity angle ζe and the coefficient β> 1 are tuning parameters. The

final term is a new (at least in the context of the vector-field controller) curvature-

compensation term that allows the controller to effectively follow a curved path. The

curvature of the path indicates the rate of change of the path’s angle (direction). Thanks

to the curvature compensation (which can be varied by adjusting α), the controller

anticipates curves in the path. Finally, the reference velocity angle is selected as the ζi
d

that is closest to the kite’s current velocity angle.

ζr = ζir

d , ir = argmin
i

|ζ−ζi
d|. (5.3.18)

The reference velocity angle in {N ,W } coordinates is translated back into a reference

signal for the velocity-angle control loop by inverting Equation 5.3.13:

γr = tan−1
(

x2

x1

)
, with x = (TC)−1

[
cosζr

sinζr

]
. (5.3.19)

95

Chapter 5. Application to a Small-Scale Experimental Kite Prototype

The path-following controller’s performance while following different reference paths

is shown in Figures 5.18, 5.19 and 5.20 . Each of these graphs represents 10 minutes of

experimental data, during which the kite flies roughly 150 loops. It can be seen that

the controller is very consistent, i.e. the path followed by the kite is very similar from

one loop to the next. The path followed by the kite is not exactly the reference path,

and there is a small but consistent error between the two. This is to be expected, and

is also the case for the other account of path-following control for flexible kites to be

found in the literature (Jehle and Schmehl, 2014). As long as the controller is consistent

and robust to wind variations, a small path-following error is not actually a problem, as

there is no practical motivation to control the kite’s path exactly.

0

10

20

30

−30
−20

−10
0

10
20

30

0

5

10

15

20

25

30

35

y (m)
x (m)

z

(
m
)

Figure 5.18: The kite’s position (dots) during 10 minutes of autonomous flight, tracking
the high, narrow reference path shown in red. The kite is restrained to flying on the gray
quarter sphere.

96

5.3. Path-Following Control

0

10

20

30

−30
−20

−10
0

10
20

30

0

5

10

15

20

25

30

35

y (m)
x (m)

z

(
m
)

Figure 5.19: The kite’s position (dots) during 10 minutes of autonomous flight, tracking
the reference path shown in red.

0

10

20

30

−30
−20

−10
0

10
20

30

0

5

10

15

20

25

30

35

y (m)
x (m)

z

(
m
)

Figure 5.20: The kite’s position (dots) during 10 minutes of autonomous flight, tracking
the wide reference path shown in red.

97

Chapter 5. Application to a Small-Scale Experimental Kite Prototype

5.4 Real-Time Optimization

The periodic reference path used by the path-following controller is modified while

the kite is flying. The RTO algorithm executes periodically (every Nav g cycles of the

reference path), each time specifying a new reference path. A slightly simplified version

of the Dual D-MA algorithm described in Chapter 4 was implemented in the RTO layer.

5.4.1 RTO Algorithm

The RTO scheme is designed using ‘full’ (unsimplified) model-based cost and constraint

functions, whose argument is a ‘full’, high-dimensional, vector of inputs, u. However,

on-line optimization is actually only carried out with respect to a lower-dimensional

vector of RTO inputs, u′. The ‘full’ model inputs are defined, identically to in Chapter 4,

as a finite set of points on the reference path:

u =
[
ϑr(0) ϕr(0) ϑr(1

N) ϕr(1
N) ϑr(2

N) ϕr(2
N) · · ·ϑr(N−1

N) ϕr(N−1
N)

]T
,

(5.4.1)

where N = nu/2 = 20. The ‘full’ optimization functions, φ and g, are defined as:

φ(u) :=− T̄

cT
, g(u) := 1− zL,r

zmin
≤ 0, (5.4.2)

where T̄ is the average line tension attained when following the reference path, calcu-

lated from u using the Erhard Model, as described in Appendix B, and zL,r is the lowest

altitude attained by the kite’s reference path, i.e.

zL,r = min
j=0,1,...N−1

r sin

(
ϑr

(
j

N

))
cos

(
ϕr

(
j

N

))
(5.4.3)

By fitting a spline to the points specified by u, the continuous reference path can be

expressed in terms of u:

{ϑr(·),ϕr(·)} =W(u). (5.4.4)

The sensitivity analysis described in Section 4.1.2 was applied to the ‘full’ cost and

constraint functions, φ and g. The uncertain model parameters, and their uncertainty

intervals, for the experimental system are given in Table 5.2. The resulting privileged

directions are very similar to those obtained for the simulated example in Chapter 4(this

is to be expected, as the large-scale simulation study in Chapter 4 was designed as a

scaled-up version of the small-scale prototype). Again, adaptation in two privileged

98

5.4. Real-Time Optimization

Table 5.2: Uncertainty intervals for the uncertain model parameters.

Parameter Nominal value Minimum value Maximum value Unit
E0 3.83 3 5 -
gs 1.1 .5 2 rad ·m−2

c 3.52 1.5 6 m−2

∆w 0.05 0 .1 s−1

directions is necessary to reject the optimality loss introduced by parameter variations,

leading to a matrix of privileged directions Ur ∈ Rnu×2. At this point, a simplification

is introduced with respect to the Dual D-MA algorithm presented in Chapter 4. The

reference path, which is provided for the path-following controller by the RTO layer, is

parametrized in the following manner:

{ϑr(·),ϕr(·)} =W(u∗(θ0)+UrRu′), (5.4.5)

where u′ ∈R2 is the vector of RTO inputs, and R is a 2×2 rotation matrix that is chosen

such that u′
1 principally affects the height of the reference path, while u′

2 affects its

width. The reference path for different values of u′ is shown in Figures 5.21 and 5.22.

From the practical point of view, allowing the RTO layer to adjust the path in these two

directions makes perfect sense. The height of the trajectory can be adjusted to suit the

wind shear. Increasing the width of the trajectory tends to increase the path’s curvature

at each point. Thus, the curvature can be adapted to suit the kite’s turning behavior.

0

20

−30
−20

−10
0

10
20

30

0

10

20

30

y (m)
x (m)

z

(
m
)

Figure 5.21: Reference path for different values of u′
1 = {−0.2,−0.1,0,0.1,0.2}, with u′

2 = 0.

The (simplified) model-based optimization problem that is modified and solved online

99

Chapter 5. Application to a Small-Scale Experimental Kite Prototype

0

20

−30
−20

−10
0

10
20

30

0

10

20

30

y (m)
x (m)

z

(
m
)

Figure 5.22: Reference path for different values of u′
2 = {−0.2,−0.1,0,0.1,0.2}, with u′

1 = 0.

by the Dual D-MA algorithm uses u′ as a vector of decision variables. This (simplified)

model-based problem is:

min
u′ φ′(u′) :=φ(

u∗(θ0)+UrRu′, θ0
)

subject to g′(u′) := g
(
u∗(θ0)+UrRu′, θ0

)≤ 0 . (5.4.6)

This is the model-based optimization problem that is used (and modified at each

iteration) by the Dual D-MA algorithm. The matrix of privileged directions to be used

with the simplified problem is U′
r = I2, i.e. experimental gradients are estimated in

all directions of the simplified problem’s decision-variable space. If translated into

words, the optimization aim is to adjust u′ in order to maximize the tether tension,

while ensuring the kite’s altitude is always above a minimum value.

The measured cost and constraint functions are defined as:

φ̃′
p(u′) :=− T̄

cT
, g̃′

p(u) := 1− zL

zmin
, (5.4.7)

where in this case T̄ is the average line tension measured during Navg cycles of the

reference path, cT = (1
2ρA

)
r 2w2

ref is a scaling factor to make the cost dimensionless, zL

is the lowest altitude attained by the kite during Navg cycles, and zmin = 1.8 m is the

minimum permissible altitude. The RTO scheme is represented using a block diagram in

Figure 5.23. First, the measured average line tension and minimum altitude is converted

into cost- and constraint-function values for the Dual D-MA algorithm, according to

Equation 5.4.7. The Dual D-MA algorithm computes the next 4 RTO inputs. These are

4Note that upon receiving the measurements from iteration k −1, the Dual D-MA algorithm actually

100

5.4. Real-Time Optimization

Dual D-MA

Figure 5.23: The block diagram of the implemented RTO scheme. This is executed every
Navg figure-of-eights to update the reference path.

then converted into a reference path, according to Equation 5.4.5.

It is important to characterize the noise affecting the measured cost- and constraint-

functions. The average line tension and the minimum altitude per path cycle are shown

in Figure 5.24 , while the kite followed the same reference path for 6 minutes. The

minimum height is relatively consistent (the variations are generally ±1 m), which can

be explained by the consistency of the path-following controller. However, the average

line tension is extremely variable, ranging from 60 kg to 120 kg, i.e. up to 35 % noise.

This would be considered ‘extreme’ noise in the RTO literature, where simulation studies

generally assume at most 10% measurement noise, and usually less. This noise is not

due to measurement error, as the load cell measuring the front line’s tension has an

error of ±.02 kg. Neither is it caused by variable controller performance, as the kite

follows almost exactly the same path during each cycle. Rather, the noise is caused

by wind variations. The wind speed measured at the ground station during the same

experiment is shown in Figure 5.25. The measured wind speed varies significantly over

time, and there is a rough correlation between the variations in the measured wind

speed and the line tension.

The wind measured over a longer period of time is shown in Figure 5.26, and the spec-

trum of the wind speed estimated from this data is shown in Figure 5.27. Unfortunately,

there is a significant amount of low-frequency wind speed variation. This results in

low-frequency variations affecting the average line tension per cycle, which can only be

removed to a limited extent with averaging or low-pass filtering. The measured wind

speed cannot be used to associate tension variations with wind speed variations, as on

a short time scale, there is poor correlation between the average tension produced by

the kite and the wind speed measured at the ground station. This does not mean the

wind-speed measurement on the ground is completely inaccurate, it is certainly a good

indication of the average wind speed, and the magnitude of the wind gusts, experienced

by the kite. The same rough trend in the wind-speed measurements in Figure 5.25 can

also be observed in the line tension in Figure 5.24. However, it suggests that the rapid

wind variations experienced by the kite are not necessarily the same, and do not occur

calculates the RTO inputs for iteration k +1. This is due to the delay caused by the Dual D-MA algorithm’s
calculation time.

101

Chapter 5. Application to a Small-Scale Experimental Kite Prototype

0 50 100 150 200 250 300 350 400

13

14

15

16

17

18

19

20

21

22

t (s)

H
ei
g
ht

(m
)

0 50 100 150 200 250 300 350 400

20

40

60

80

100

120

140

160

180

200

t (s)

T
en
si
o
n
(k
g
)

Figure 5.24: The kite’s altitude and the measured line tension during 6 minutes following
a constant reference path (blue). The minimum attained altitude and the average line
tension per path cycle (black).

102

5.4. Real-Time Optimization

0 50 100 150 200 250 300 350 400

2.5

3

3.5

4

4.5

5

5.5

6

t (s)

m
ea
su
re
d
w
in
d
sp
ee
d
(m

·
s−

1
)

Figure 5.25: The wind speed measured at the ground station during the experiment
shown in Figure 5.24 (blue), and the average wind speed per reference-path cycle (black
dots).

0 200 400 600 800 1000 1200 1400 1600 1800

2

2.5

3

3.5

4

4.5

5

5.5

t (s)

m
ea
su
re
d
w
in
d
sp
ee
d
(m

·
s−

1
)

Figure 5.26: The wind speed measured at the ground station over a 30-minute period.

103

Chapter 5. Application to a Small-Scale Experimental Kite Prototype

0 0.02 0.04 0.06 0.08 0.1 0.12

−25

−20

−15

−10

−5

0

5

10

15

20

frequency (Hz)

w
in
d
-s
p
ee
d
n
o
is
e
p
ow

er
(d
B
)

Figure 5.27: The spectrum of the wind-speed variations, estimated from the signal in
Figure 5.26.

at exactly the same time, as those measured on the ground.

The simple solution to dealing with noise, which is the one adopted here, is to partially

remove it via averaging. The effect of averaging the line tension over several cycles is

apparent in Figure 5.28. The (scaled) standard deviation of the measured line tension

vs. Navg is shown in Figure 5.29. Essentially, averaging the line tension over several path

cycles, as opposed to just one cycle, progressively reduces the noise to a manageable (if

still very high) level.

0 50 100 150 200 250 300 350 400 450

110

120

130

140

150

160

170

t (s)

T
en
si
o
n
(k
g
)

Figure 5.28: Navg = 1 (dashed with crosses), Navg = 7 (solid with circles). During this
experiment the kite followed a constant reference path.

104

5.4. Real-Time Optimization

1 2 3 4 5 6 7 8 9 10

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Navg

σ
{
T̄
}

E
{
T̄
}

Figure 5.29: Standard deviation of the process noise affecting the average line-tension
measurement vs. Navg, based on the data shown in Figure 5.28.

Table 5.3: Values of the design parameters for the Dual D-MA algorithm.

Parameter Value
nr 2
∆max 0.03
∆r

max 0.06

Σ
φ
0 202 × I2

Σ
g
0 52 × I2

σTOL .5
c0 1

Navg = 7 was chosen. The other parameters for the Dual D-MA algorithm were hand

tuned using a simulator of the system. These are given in Table 5.3.

105

Chapter 5. Application to a Small-Scale Experimental Kite Prototype

5.4.2 RTO Results

The RTO algorithm’s performance was tested over several day’s of experiments. In

general it performed reasonably well, each time converging to roughly the same ref-

erence path. In order to verify the algorithm’s performance, it is useful to test it many

times under near-identical conditions. Unfortunately this is complicated by the ever-

changing wind conditions, which often require slight adjustments to the experimental

setup. Increasing the kite’s angle of attack, or tuning the controller gain to ensure good

performance when the wind drops slightly, can modify the plant’s optimal solution.

Nonetheless, at one point several hours of continuous experiments were carried out

without any adjustments being made to the experimental setup, and these results are

presented next.

Figure 5.30 shows the tension and the kite’s altitude during 30 minutes of autonomous

flight. During the first 7 minutes (13 iterations) and the last 5 minutes (10 iterations),

the kite follows an unchanging reference path that is rather high and narrow, resulting

in a low average line tension, about 80 kg. The RTO algorithm markedly improves the

average line tension, increasing it to about 135 kg. It is interesting to note that the

minimum altitude constraint, which is very low, does not become active. The RTO

inputs during this experiment are shown in Figure 5.31. The zig-zagging behavior is

in part caused by the Dual D-MA algorithm exciting the process in order to estimate

experimental gradients, and in part due to the noisiness of the cost gradient estimate,

shown in Figure 5.32. Theoretically, the estimate of the cost gradient should tend

towards zero. In reality, the estimate is extremely noisy despite the significant averaging

(Navg = 7) used during this experiment to reduce the effect of noise. So how does the

Dual D-MA algorithm markedly improve the line tension using such a noisy gradient

estimate? While the noise contaminating the gradient estimate will cause the Dual

D-MA algorithm to zig-zag rather than move directly towards the plant optimum, it is

the average value of the gradient estimate which will determine the overall direction in

which the algorithm adapts the RTO inputs. It can be observed that during the first 15

RTO iterations (from k = 15 to k = 30), the estimate of the cost gradient is on average

positive in the u′
1 direction, and negative in the u′

2 direction. Thus the Dual D-MA

algorithm reduces u′
1 and increases u′

2 in order to reduce the cost function. Between

k = 30 and k = 40, the average value of the gradient estimate is approximately zero,

which explains why the RTO algorithm stays at roughly the same place.

In order to verify that the RTO algorithm did indeed converge to a neighborhood of

the plant optimum, an experimental study was carried out to see how the average

line tension varies with respect to the path followed by the kite. This consisted of

measuring the average line tension over 10 minutes for a variety of different paths. The

106

5.4. Real-Time Optimization

0 10 20 30 40 50 60

60

80

100

120

140

160

RTO iteration, k (-)

av
er
a
g
e
te
n
si
o
n
(k
g
)

0 10 20 30 40 50 60

0

5

10

15

20

RTO iteration, k (-)

m
in
im

u
m

a
lt
it
u
d
e
(m

)

Figure 5.30: Performance of the RTO algorithm with Navg = 7. Each circle is the aver-
age/minimum value for the tension/altitude during Navg path cycles. The dotted line
indicates the minimum height constraint. The RTO algorithm was activated during the
shaded iterations. The total experiment lasted 29 minutes, and the RTO algorithm was
active for 17 minutes.

107

Chapter 5. Application to a Small-Scale Experimental Kite Prototype

0 10 20 30 40 50 60

−0.1

−0.05

0

0.05

0.1

0.15

0.2

RTO iteration, k (-)

R
T
O

d
ec
is
io
n
va
ri
a
b
le
s
(r
a
d
)

Figure 5.31: The RTO decision variable, u′
1 (dashed), and u′

2 (solid) during the experi-
ment shown in Figure 5.30.

10 15 20 25 30 35 40

−100

−50

0

50

100

150

RTO iteration, k (-)

co
st

g
ra
d
ie
nt

es
ti
m
a
te

(-
)

Figure 5.32: Estimate of the plant cost gradient, ∇φ′
E,k during the experiment shown in

Figure 5.30. Component in the u′
1 direction (dashed) and in the u′

2 direction (solid).

108

5.5. Conclusions

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2

−0.1

−0.05

0

0.05

0.1

0.15

u
′

1

u
′ 2

80

90

100

110

120

130

Figure 5.33: Contour plot of the average line tension in kg (shading) per figure-of-eight
vs. u′. At each of the data points (circles), the average line tension during 10 minutes of
experimental data was recorded. The surface was estimated by performing a piecewise-
cubic interpolation of these data points.

resulting surface is shown in Figure 5.33. Note that the average measured wind speed

was relatively constant during the entire experimental study. Also, as it was carried out

immediately after the experiment shown in Figure 5.30, the conditions were essentially

the same as for the RTO experiment. It can be observed that the maximum attainable

average line tension is about 130 - 140 kg. It is interesting to note that the nominal

optimal solution that was calculated using the model, corresponding to u′
1 = u′

2 = 0,

results in an average line tension of about 115 kg. Thus, following the nominal optimal

path would result in an optimality loss of about 15-20 %. Figure 5.34 superimposes

the Dual D-MA algorithm’s path upon this contour. It can be seen that despite the zig-

zagging behavior, the algorithm converges to the neighborhood of the plant optimum.

5.5 Conclusions

This chapter described not only the experimental application of the Dual D-MA algo-

rithm developed in Chapter 4 to an autonomous kite prototype, but also the design

choices involved in constructing the prototype, the testing conditions, the modeling

process and the design of a path-following controller.

Based on this work, a number of interesting conclusions can be drawn regarding the

control and optimization of power kites. Firstly, while additional measurements are

certainly useful, good path-following control (of a kite flying roughly crosswind) can

109

Chapter 5. Application to a Small-Scale Experimental Kite Prototype

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2

−0.1

−0.05

0

0.05

0.1

0.15

u
′

1

u
′ 2

80

90

100

110

120

130

Figure 5.34: Contour plot of the attainable average line tension, as shown in Figure
5.33. The path taken by the Dual D-MA algorithm (red), and the algorithm’s initial point
(green dot).

be achieved using only measurements of the kite’s position. This is the case even if

there is significant system delay. The path-following performance could probably be

improved using techniques such as Iterative Learning Control, but it is doubtful whether

this is necessary. Secondly, the average line tension varies significantly depending on

the path followed by the kite, to the extent that serious attention should be given to

the kite’s path if efficiency is to be maximized. It is doubtful whether model-based

optimization alone can calculate an efficient path. Indeed, in this study, using the

model’s optimal path would have resulted in a 15-20 % reduction of the average line

tension, if compared to the plant’s optimal path, despite calibrating the model using

experimental data. It appears that a better solution would be to either fix the kite’s path

based on experimental studies, or to perform RTO if the path needs to be constantly

updated in response to process variations.

The Dual D-MA algorithm applied here is admittedly a slightly simplified version of the

full algorithm presented in Chapter 4. Simulations predicted that this simplification

might lead to a slight optimality loss compared to the full algorithm, but would render

it more robust to the extremely high level of noise present during the experiments. In

addition the computational power required by the simplified algorithm is roughly an

order of magnitude lower than that required by the full algorithm. The RTO method was

found to perform surprisingly well, given the high noise levels. This is one of the first

measurement-based experimental RTO studies in the literature to rely entirely upon

gradient estimates to optimize the plant, as the minimum-altitude constraint was not

active upon convergence.

110

5.5. Conclusions

Finally, the information given here, if combined with some basic engineering knowledge,

should be sufficient to construct a basic autonomous kite system. The main practical

observation that was made during the entire process, is that the field-testing is at least

as difficult and time consuming as constructing the physical system. A large number of

elements must fall into place for a successful field-test: good weather conditions, access

to a suitable terrain, no equipment failures, no software failures, no algorithmic ‘bugs’.

It was particularly important to ensure no algorithmic ‘bugs’ occurred, as debugging the

controller code in the middle of a field, on a tiny laptop screen, in sub-zero temperatures

while exposed to howling wind, is almost impossible. As the control and RTO algorithms

were being changed before every field test, the only solution was to rigorously verify all

code on a realistic simulator prior to each test.

111

6 Conclusions and Perspectives

6.1 Conclusions

6.1.1 Methodology

This thesis has demonstrated, both theoretically and experimentally, that the Modifier-

Adaptation (MA) concept can be applied to a process with many inputs, such as a

repetitive, transient process.

The first methodological development proposed here allows MA to be applied to pro-

cesses where the inputs of the plant and the model differ. The motivating examples of

an incineration plant and a general closed-loop system, show that this situation may

often occur. The proposed ‘Generalized’ MA algorithm preserves the attractive property

of achieving plant optimality upon convergence.

The second methodological development allows the MA concept to be applied to pro-

cesses with many inputs. Full MA for a system with many inputs is probably unrealistic.

Firstly, during the time that would be spent estimating the experimental gradients,

the process may evolve. Secondly, the difficulty of estimating experimental gradients

increases along with the number of inputs. In order to deal with the gradient estimation

problem, it is proposed to estimate gradients only in certain ‘privileged’ directions. The

resulting practically-applicable algorithm, Dual Directional-MA, is designed to converge

rapidly and to cope with process noise.

Experimental application to a complex system shows that the algorithm is imple-

mentable and can perform well in practice, despite extremely high noise levels. It

appears that this is the second experimental application of a Modifier Adaptation

methodology, and the first to a transient process. The application considered here

is also one of the first in the MA literature where experimental gradients are crucial

113

Chapter 6. Conclusions and Perspectives

for RTO. No constraints are active at the plant optimal solution, meaning that classic

constraint-control approaches would fail1. In the presence of noise, experimental gradi-

ent estimation, even with respect to a low number of inputs, is very challenging. While

the situation considered here was rather extreme (up to 35% noise), it cannot be called

abnormal, as very few other experimental studies have characterized noise from a RTO

standpoint.

6.1.2 Application

Based on this work, a number of conclusions can be drawn relating to the control and

optimization of kites. Firstly, this thesis demonstrates that it is possible to accurately

control a kite during dynamic flight using only measurements of the kite’s position. This

is because, as demonstrated in this thesis, it is possible to determine the kite’s attitude

from its position with reasonable accuracy during crosswind flight. This distinguishes

our approach from other control algorithms for kites that have very recently been

published; they require the kite’s attitude to be directly measured. Using only position

measurements is significant because, in some cases, it may eliminate the need for

sensors on the kite. This is because the kite’s position can be estimated, with an accuracy

dependent on the line length, from the line angles measured at the ground station.

As recently as 2012, there were no published accounts of experimental kite control,

and it was often believed that a very advance control strategy such as NMPC would be

necessary to control a dynamically flying kite. Here, it was demonstrated that good,

robust path-following performance can be achieved with a relatively simple guidance

strategy. Although the experiments never lasted more than a day, and the aim was

not to achieve endless autonomous flight, at times the kite flew autonomously for 4

hours continuously. Indeed, in reasonable wind conditions, there is no reason the

control algorithm would not keep the kite flying indefinitely. Due to the high speed of

kites, delay negatively impacts control performance. It is thus essential to compensate

for delay if the kite’s direction of motion is to be controlled accurately. Prediction

using a simple model was found to be sufficient for delay compensation; this made the

difference between robust path following and constant crashing.

Although theoretical analyses already exist, here the effect of path geometry upon the

average line tension was studied experimentally. It was shown that the average line

tension can vary by a factor of about 2, depending on the figure-of-eight followed

by the kite. RTO did a good job of optimizing the average line tension, despite the

1 Some lower-level constraints that are handled by the control layer, such as input bounds for the
steering deflection, may be active at times. However, these constraints are not indicative of an optimal
solution.

114

6.2. Perspectives

challenging, gusty conditions. When initialized at a poor initial path, it converged to the

neighborhood of the optimal path in roughly 10 min. Overall, RTO resulted in a 15-20 %

improvement compared to using the optimal solution calculated using the model.

6.2 Perspectives

6.2.1 Methodology

The MA family of methods is relatively developed from a theoretical perspective. At

this point, it is necessary to apply the methodology to experimental systems. On the

one hand, this will reveal where the real challenges lie, and provide motivation for

further improving the method. For example, the experimental application in this thesis

illustrates the difficulty of dealing with noise when estimating gradients. On the other

hand, industrial practitioners will be more likely to adopt these methods if they have

already been shown to work on real systems.

Experimental gradient estimation is most definitely the main difficulty facing MA, and

a great many other RTO algorithms. For processes with many inputs, the challenge is

to estimate gradients from sparse, noisy data points. Another challenge is estimating

gradients while the underlying process is changing over time. For example, in the case

of the kite, the wind speed may gradually increase. Using additional measurements

might radically improve gradient estimates in this case. In the case of the kite, wind-

speed measurements should indicate rising wind speeds. Essentially, it is necessary

to attribute the observed effect to a cause: is the process performance improving due

to the recent change in the RTO inputs? or is it due to a change in the disturbances

affecting the process? If an approximate model of the effect of disturbances upon the

system is available, it could probably be used to at least partially distinguish the effect

of disturbance variations from that of variations in the RTO inputs.

The D-MA methodology has proven both in simulation and experimentally to be a

capable RTO algorithm. Nonetheless, a number of methodological improvements could

certainly be made. The privileged directions for experimental gradient estimation

are currently calculated using a local sensitivity analysis around the nominal optimal

solution. While this was found to yield good results on the case studies considered, there

may be more ‘global’ ways of doing this. For example, in the field of SOC, simulation

studies are used to determine the effect of parameter variations over a wide range of

values (Skogestad, 2000). Another open question is how to translate operator experience

into a set of privileged directions.

115

Chapter 6. Conclusions and Perspectives

6.2.2 Application

The field of kite power is in a phase of intense evolution, and there are certainly very

interesting perspectives for control and RTO in this field.

Control

This thesis experimentally validates a path-following controller for kites. Although the

control law is validated for a small-scale system, there is no obvious reason it could

not be applied to a much larger kite with longer lines. The delay affecting the small-

scale system is considerable with respect to the dynamics of the kite (the dynamics of

a small kite are essentially faster, as it takes less time for the kite to travel a distance

equal to its tether length). The delay compensation solution proposed here should

be equally applicable to large kite systems, where, due to transmission times from

on-board sensors, delay is known to be an issue.

Even the approach of using line-angle measurements alone for control may be applica-

ble to larger systems. This depends on how straight the kite’s tether is, as only a straight

tether gives a good estimation of the kite’s position. While I suspect that this only applies

to lines shorter than about 500 m, Jehle and Schmehl (2014) claim that even for a 1 km

long tether, “during powered flight, the tether is an almost perfectly straight line”.

Several other experimentally validated kite controllers have recently been published.

Notwithstanding the technical issues unique to each particular system, it is fair to say

that the basic problem of autonomously flying figure-of-eights has essentially been

solved at this point. However, it is undoubtedly considerably more difficult to keep a

kite in the air for very long periods of time, during a wide variety of wind conditions,

without ever losing control due to a lull in the wind, or suffering a system failure due to

excess forces during a gust. A number of interesting issues remain to be tackled:

• Pitch control: kites typically have two degrees of freedom for control. Up until

now, development has focused on the ‘steering’ input, which is usually the differ-

ence between the lengths of the rear lines. However, the kite’s pitch angle relative

to the lines can also be adjusted, usually by changing the length of the front line

relative to that of the rear lines. This additional degree of freedom is already used

when manually controlling kites; it directly influences the kite’s angle of attack,

which has a profound effect upon the line tension, the kite’s speed, and the kite’s

turning behavior. The first step to exploiting this degree of freedom is to establish

experimentally-validated models describing the influence of the kite’s angle of

attack, which are currently not available.

116

6.2. Perspectives

• Robustness is no-doubt a key characteristic of a kite controller. A large kite

simply cannot be permitted to crash. Even small sports kites are banned on many

beaches in Europe due to the damage a crash can cause. Ideally a robust control

law should guarantee that, at all times, the kite can recover from any possible wind

variation. There are certain configurations in which the kite is more vulnerable

to such disturbances. For example, when flying at the edge of the wind window

(when the tether makes a large angle with the wind vector), a sudden drop in the

wind can result in the kite entering an unexpected dive. Alternatively, a high angle

of attack combined with a large steering deflection can cause the kite to stall. One

approach would be to follow the lead of aircraft designers and specify a ‘flight

envelope’, which defines an acceptable operating region inside which the kite

must operate.

• Pumping-cycle control: full pumping-cycle operation of a kite introduces further

control challenges: the kite is now coupled to a winch. The kite controller should

take the winch’s dynamics and operational limits into account. In addition to the

traction phase, a completely different control strategy is required for the reel-in

phase, launching and landing.

Real-Time Optimization

The RTO algorithm presented here could straight forwardly be applied to a kite operat-

ing on a fixed-length tether, pulling a boat. Applying RTO to a pumping-kite generator

would be considerably more difficult, as the line length is constantly changing. Sev-

eral improvements could be envisaged, which would enhance the RTO algorithm’s

performance for fixed line-length flight, and hopefully make it applicable for variable

line-length flight.

The theoretical analysis of the kite model revealed two optimization trade-offs which

must be considered when choosing the kite’s path: a) aggressive turning reduces the

tether tension, yet a path with too gentle a curvature involves the kite flying through

low-power regions of the wind window, b) flying higher takes advantage of the wind

shear (increase with altitude), yet flying lower allows the kite to fly at a more favorable

angle to the wind. An improved RTO scheme could be based upon experimentally

identifying the wind shear and the kite’s turning behavior during flight. For example,

the kite’s speed at different altitudes could, in theory, be used to estimate the difference

in wind speed between those altitudes.

Finally, a host of interesting optimization problems must be solved for a pumping-cycle

generator. What is the optimal path to ensure a maximally-steady power production?

117

Chapter 6. Conclusions and Perspectives

What is the ideal length of each pumping cycle? The optimal mode of operation may

change significantly when the winch efficiency, the conversion electronics, and the

demands of the electricity distribution grid are taken into account.

Small-scale autonomous kites

The field of kite power is currently completely focused on the commercialization of

large power-producing kites. To the best of my knowledge, the prototype described

in this thesis is the smallest, simplest autonomous kite system constructed to date.

It demonstrates that only a motor, two angular encoders, and a modest amount of

processing power, would be sufficient to control a small kite. The system described here

was a prototype, and no particular effort was made to save money or materials during

the design. If more attention was payed to the design, it would no-doubt be possible

to build a very compact 10 kg ground station, capable of autonomously flying kites

up to 10 m2, at a cost of several thousand euros. This size kite is cheap and extremely

wide-spread among the sport-kiting community. Given the very high ratio of traction

force to surface area compared to a traditional sail, and the fact that it does not require

a supporting mast, it is possible that some time in the future sailing yachts, or motor

boats, will carry a small autonomous kite for downwind sailing!

118

A CSTR Balance Equations

The 3-reaction simulated reality (plant) is governed by (Marchetti, 2009; Zhang and

Forbes, 2000):

0 = FA − (FA +FB)X A −W r1, (A.0.1)

0 = FB − (FA +FB)XB − MB

MA
W r1 −W r2, (A.0.2)

0 =−(FA +FB)XC + MC

MA
W r1 − MC

MB
W r2 −W r3, (A.0.3)

0 =−(FA +FB)XP + MP

MB
W r2 − MP

MC
W r3, (A.0.4)

0 =−(FA +FB)XG + MG

MC
W r3, (A.0.5)

XE = ME

MP
XP + ME

MG
XG , (A.0.6)

with

r1 = k1X A XB , (A.0.7)

r2 = k2XB XC , (A.0.8)

r3 = k3XC XP . (A.0.9)

119

Appendix A. CSTR Balance Equations

The model equations encompassing two reactions are:

0 = FA − (FA +FB)X A −W r1 −W r2, (A.0.10)

0 = FB − (FA +FB)XB − MB

MA
2W r1 − MB

MA
W r2, (A.0.11)

0 =−(FA +FB)XP + MP

MA
W r1 − MP

MA
W r2, (A.0.12)

0 =−(FA +FB)XE + ME

MA
W r1, (A.0.13)

XG = MG

ME
XE + MG

MP
XP , (A.0.14)

with

r1 = k1X A X 2
B , (A.0.15)

r2 = k2X A XB XP . (A.0.16)

By assuming MA = MB = MP , all the molecular weight ratios Xi are defined from the

stoichiometry of the reactions.

120

B Closed-loop Kite Model

The dynamic equations of the Erhard Model allow the evolution of the kite’s states, and

the path it follows, to be calculated based on the steering deflection, i.e. the steering

deflection is specified a priori. It is now shown how to calculate the kite’s states, and

the steering deflection, based on the path followed by the kite, i.e. the kite’s path is

specified a priori. Doing so involves the use of some approximations, however these

remain reasonable, and it cannot be said that they introduce inaccuracies as, in any

case, the Erhard Model is a simple approximate model in the first place.

The case considered here, which corresponds to the optimization decision variables

used in Chapters 4 and 5, is that N points on the kite’s path, {ϑ(l),ϕ(l)} for l ∈ [0,1] are

specified by the N pairs {ϑ j ,ϕ j }, where

ϑ j =ϑ
(

j

N

)
, j = 0,1, . . . , N −1. (B.0.1)

The average values of ϑ and ϕ between points j and j +1 are:

ϑ′
j =

ϑ j +ϑ j+1

2
, ϕ′

j =
ϕ j +ϕ j+1

2
. (B.0.2)

The velocity angle between points j and j +1 is given by:

γ′j = tan−1

(
(ϕ j+1 −ϕ j)sinϑ′

j

ϑ j+1 −ϑ j

)
, (B.0.3)

and the distance from each point to the next is:

d ′
j = r

√(
(ϕ j+1 −ϕ j)sinϑ′

j

)2 + (
ϑ j+1 −ϑ j

)2. (B.0.4)

121

Appendix B. Closed-loop Kite Model

The curvature of the path, κ j , i.e. the rate-of-change of γ, in rad·m−1 is given by:

κ j =
γ′j −γ′j−1

d ′
j+d ′

j−1

2

. (B.0.5)

Now, as γ̇' wapgsδ, and wap is approximately equal to the kite’s velocity during cross-

wind flight, κ' γ̇
wap

= gsδ. The steering deflection can thus be deduced from the path

curvature

δ j =
κ j

gs
. (B.0.6)

The resulting lift/drag ratio is

E j = E0 − cδ2
j , (B.0.7)

where E0 is the kite’s lift/drag ratio when δ= 0 (not the lift/drag ratio at the point j = 0!).

The kites’ altitude is

z j = r sinϑ j cosϕ j , (B.0.8)

which allows the wind speed at each point, w j , to be calculated using the wind-power

law being used. The apparent wind projected onto the plane orthogonal to the tether is

w ′
ap, j = w ′

j E ′
j cosϑ′

j , (B.0.9)

which, being approximately equal to the kite’s velocity during crosswind flight, allows

the time taken by the kite to travel from point j to point j +1 to be calculated:

t ′j =
d ′

j

w ′
ap, j

. (B.0.10)

The average line tension between points j and j +1 is approximately

T ′
j =

(
1

2
ρA

)(
w ′

j E ′
j cos2(ϑ′

j)
)2

(B.0.11)

Finally, the average line tension over the entire path is

T̄ =
∑ j=N−1

j=0 T ′
j t ′j∑ j=N−1

j=0 t ′j
(B.0.12)

Note, that in the above derivation, any values of 0 > j > N −1 should be replaced by

122

mod(j , N −1), which enforces periodicity of the path.

123

Bibliography

M. Agarwal. Feasibility of on-line reoptimization in batch processes. Chem. Eng.

Communications, 158(1):19–29, 1997.

U. Ahrens, M. Diehl, and R. Schmehl, editors. Airborne Wind Energy. Springer, Berlin,

2013.

V. Alstad and S. Skogestad. Null space method for selecting optimal measurement

combinations as controlled variables. Ind. Eng. Chem. Res., 46(3):846–853, 2007.

C. L. Archer. An introduction to meteorology for airborne wind energy. In Ahrens et al.

(2013), pages 81–94.

C. L. Archer and K. Caldeira. Global assessment of high-altitude wind power. Energies, 2

(2):307–319, 2009.

C. L. Archer and M. Z. Jacobson. Evaluation of global wind power. J. Geophysical

Research: Atmospheres, 110(D12), 2005.

I. Argatov and R. Silvennoinen. Energy conversion efficiency of the pumping kite wind

generator. Renewable Energy, 35(5):1052–1060, 2010.

J. Baayen and W. Ockels. Tracking control with adaption of kites. Control Theory App.,

IET, 6(2):182–191, 2012.

L. Bodizs, M. Titica, N. Faria, B. Srinivasan, D. Dochain, and D. Bonvin. Oxygen control

for an industrial pilot-scale fed-batch filamentous fungal fermentation. J. Process

Control, 17(7):595–606, 2007.

D. Bonvin, B. Srinivasan, and D. Ruppen. Dynamic optimization in the batch chemical

industry. In Proc. of the CPC-VI Conference: AIChE Symposium Series N. 326, pages

255–273, 2002.

A. Bosch, R. Schmehl, P. Tiso, and D. Rixen. Nonlinear aeroelasticity, flight dynamics and

control of a flexible membrane traction kite. In Ahrens et al. (2013), pages 307–323.

125

Bibliography

G. E. Box and N. R. Draper. Evolutionary Operation: A Statistical Method for Process

Improvement. Wiley, NY, 1969.

J. Breukels. An Engineering Methodology for Kite Design. PhD thesis, Delft Universtiy of

Technology, 2010.

J. Breukels, R. Schmehl, and W. Ockels. Aeroelastic simulation of flexible membrane

wings based on multibody system dynamics. In Ahrens et al. (2013), pages 287–305.

G. A. Bunin. On the equivalence between the modifier-adaptation and trust-region

frameworks. Comp. Chem. Eng., 71:154–157, 2014.

G. A. Bunin, Z. Wuillemin, G. François, A. Nakajo, L. Tsikonis, and D. Bonvin. Experimen-

tal real-time optimization of a solid oxide fuel cell stack via constraint adaptation.

Energy, 39(1):54–62, 2012.

G. A. Bunin, G. Francois, and D. Bonvin. From discrete measurements to bounded

gradient estimates: A look at some regularizing structures. Ind. Eng. Chem. Res., 52

(35):12500–12513, 2013.

M. Canale, L. Fagiano, and M. Milanese. High altitude wind energy generation using

controlled power kites. IEEE Tran. on Control Systems Tech., 18(2):279–293, 2010.

B. Chachuat, B. Srinivasan, and D. Bonvin. Adaptation strategies for real-time optimiza-

tion. Comp. Chem. Eng., 33(10):1557–1567, 2009.

C. Y. Chen and B. Joseph. On-line optimization using a two-phase approach: An appli-

cation study. Ind. Eng. Chem. Res., 26(9):1924–1930, 1987.

T. L. Clarke-Pringle and J. F. Mac Gregor. Optimization of molecular weight distribution

using batch-to-batch adjustments. Ind. Eng. Chem. Res., 37:3660–3669, 1998.

S. Costello, G. François, and D. Bonvin. Real-time optimization for kites. In Proc. of the

5th IFAC Workshop on Periodic Control Systems (PSYCO), pages 64–69, 2013.

S. Costello, G. François, D. Bonvin, and A. G. Marchetti. Modifier adaptation for con-

strained closed-loop systems. In Proc. IFAC World Congress, volume 19, pages 11080–

11086, 2014.

C. Cutler and R. Perry. Real time optimization with multivariable control is required to

maximize profits. Comp. Chem. Eng., 7(5):663–667, 1983. ISSN 0098-1354.

G. M. Dadd, D. A. Hudson, and R. A. Shenoi. Comparison of two kite force models with

experiment. J. of Aircraft, 47:212–224, 2010.

126

Bibliography

G. M. Dadd, D. A. Hudson, and R. A. Shenoi. Determination of kite forces using three-

dimensional flight trajectories for ship propulsion. Renewable Energy, 36(10):2667–

2678, 2011.

M. L. Darby, M. Nikolaou, J. Jones, and D. Nicholson. RTO: An overview and assessment

of current practice. J. Process Control, 21(6):874 –884, 2011.

V. de Oliveira, J. Jäschke, and S. Skogestad. Dynamic online optimization of a house

heating system in a fluctuating energy price scenario. In Proc. IFAC Symp. DYCOPS,

Mumbai, 2013.

S. Deshpande, D. Bonvin, and B. Chachuat. Directional input adaptation in parametric

optimal control problems. SIAM Journal on Control and Optimization, 50(4):1995–

2024, 2012.

M. Diehl. Real Time Optimization for Large Scale Nonlinear Processes. PhD thesis,

Ruprecht-Karls-Universität Heidelberg, 2001.

S. Dunker. Ram-airwing design considerations for airborne wind energy. In Ahrens et al.

(2013), pages 517–545.

M. Erhard and H. Strauch. Control of towing kites for seagoing vessels. IEEE Tran. on

Control Systems Tech., 21(5):1629–1640, 2013a.

M. Erhard and H. Strauch. Theory and experimental validation of a simple compre-

hensible model of tethered kite dynamics used for controller design. In Ahrens et al.

(2013), pages 141–165.

L. Fagiano and M. Milanese. Airborne wind energy: An overview. In Proc. American

Control Conference (ACC), pages 3132–3143, 2012.

L. Fagiano, A. Zgraggen, M. Morari, and M. Khammash. Automatic crosswind flight of

tethered wings for airborne wind energy: Modeling, control design, and experimental

results. IEEE Tran. on Control Systems Tech., 22(4):1433–1447, 2014.

T. Faulwasser and D. Bonvin. On the use of second-order modifiers for real-time opti-

mization. In Proc. IFAC World Congress, volume 19, 2014.

A. V. Fiacco. Introduction to Sensitivity and Stability Analysis in Nonlinear Programming.

Academic Press, NY, 1983.

C. Filippi-Bossy, J. Bordet, J. Villermaux, S. Marchal-brassely, and C. Georgakis. Batch

reactor optimization by use of tendency models. Comp. Chem. Eng., 13(1-2):35–47,

1989.

127

Bibliography

J. Forbes and T. Marlin. Design cost: A systematic approach to technology selection for

model-based real-time optimization systems. Comp. Chem. Eng., 20(6-7):717–734,

1996.

J. Forbes, T. Marlin, and J. MacGregor. Model adequacy requirements for optimizing

plant operations. Comp. Chem. Eng., 18(6):497–510, 1994.

G. François and D. Bonvin. Use of convex model approximations for real-time optimiza-

tion via modifier adaptation. Ind. Eng. Chem. Res., 52(33):11614–11625, 2013a.

G. François and D. Bonvin. Measurement-based real-time optimization of chemical

processes. In S. Pushpavanam, editor, Advances in Chemical Engineering, Identifica-

tion, Control and Optimisation of Proc. Sys. 43, pages 1–50. Academic Press, Waltham,

2013b.

G. François, B. Srinivasan, D. Bonvin, J. Hernandez Barajas, and D. Hunkeler. Run-to-

run adaptation of a semiadiabatic policy for the optimization of an industrial batch

polymerization process. Ind. Eng. Chem. Res., 43(23):7238–7242, 2004.

G. François, B. Srinivasan, and D. Bonvin. Use of measurements for enforcing the

necessary conditions of optimality in the presence of constraints and uncertainty. J.

Process Control, 15(6):701–712, Sept. 2005.

G. François, B. Srinivasan, and D. Bonvin. Comparison of six implicit real-time opti-

mization schemes. J. Européen des Systemes Automatisés, 46(2-3):291–305, 2012.

F. Fritz. Application of an automated kite system for ship propulsion and power genera-

tion. In Ahrens et al. (2013), pages 359–372.

W. Gao and S. Engell. Iterative set-point optimization of batch chromatography. Comp.

Chem. Eng., 29(6):1401–1409, 2005a.

W. Gao and S. Engell. Comparison of iterative set-point optimisation strategies under

structural plant-model mismatch. In Proc. IFAC World Congress, volume 16, pages

401–401, 2005b.

M. Ge, Q. Wang, M. Chiu, T. Lee, C. Hang, and K. Teo. An effective technique for batch

process optimization with application to crystallization. Chem. Eng. Res. and Des., 78

(1):99–106, Jan. 2000.

F. Gohl and R. H. Luchsinger. Simulation based wing design for kite power. In Ahrens

et al. (2013), pages 325–338.

S. Gros and M. Diehl. Modeling of airborne wind energy systems in natural coordinates.

In Ahrens et al. (2013), pages 181–203.

128

Bibliography

G. Horn, S. Gros, and M. Diehl. Numerical trajectory optimization for airborne wind

energy systems described by high fidelity aircraft models. In Ahrens et al. (2013),

pages 205–218.

B. Houska and M. Diehl. Optimal control of towing kites. In Proc. 45th IEEE Conference

on Decision and Control (CDC), pages 2693–2697, 2006.

B. Houska and M. Diehl. Optimal control for power generating kites. In Proc. 9th

European Control Conference, pages 3560–3567, 2007.

A. Ilzhöfer, B. Houska, and M. Diehl. Nonlinear MPC of kites under varying wind

conditions for a new class of large-scale wind power generators. Int. J. Robust and

Nonlinear Control, 17(17):1590–1599, 2007.

International Energy Agency. World Energy Outlook 2014. IEA Publications, Paris, 2014.

S. Jang, B. Joseph, and H. Mukai. On-line optimization of constrained multivariable

chemical processes. AIChE J., 33(1):26–35, 1987.

J. Jäschke, M. Fikar, and S. Skogestad. Self-optimizing invariants in dynamic optimiza-

tion. In Proc. 50th IEEE Conference on Decision and Control and European Control

Conference (CDC-ECC), pages 7753–7758, 2011.

C. Jehle and R. Schmehl. Applied tracking control for kite power systems. J. Guidance,

Control, and Dynamics, 37(4):1211–1222, 2014.

J. V. Kadam, W. Marquardt, B. Srinivasan, and D. Bonvin. Optimal grade transition in

industrial polymerization processes via NCO tracking. AIChE J., 53(3):627–639, 2007.

D. V. Lind. Analysis and flight test validation of high performance airborne wind turbines.

In Ahrens et al. (2013), pages 473–491.

M. L. Loyd. Crosswind kite power. J. Energy, 4(3):106–111, May 1980.

D. G. Luenberger and Y. Ye. Linear and Nonlinear Programming. Springer, 2008.

M. Mansour and J. E. Ellis. Comparison of methods for estimating real process deriva-

tives in on-line optimization. Applied Mathematical Modelling, 27(4):275–291, 2003.

A. Marchetti, B. Chachuat, and D. Bonvin. Batch process optimization via run-to-run

constraints adaptation. In Proc. of the European Control Conference, 2007.

A. Marchetti, B. Chachuat, and D. Bonvin. Modifier-adaptation methodology for real-

time optimization. Ind. Eng. Chem. Res., 48(13):6022–6033, 2009.

129

Bibliography

A. Marchetti, B. Chachuat, and D. Bonvin. A dual modifier-adaptation approach for

real-time optimization. J. Process Control, 20(9):1027–1037, 2010.

A. G. Marchetti. Modifier-Adaptation Methodology for Real-Time Optimization. PhD

thesis, # 4449, EPFL, Lausanne, 2009.

A. G. Marchetti. A new dual modifier-adaptation approach for iterative process opti-

mization with inaccurate models. Comp. Chem. Eng., 59:89–100, 2013.

T. E. Marlin and A. N. Hrymak. Real-time operations optimization of continuous pro-

cesses. In AIChE Symposium Series, volume 93, pages 156–164, 1997.

D. Navia, R. Martí, D. Sarabia, G. Gutirrez, and C. de Prada. Handling infeasibilities in

dual modifier-adaptation methodology for real-time optimization. In Proc. 8th IFAC

Symposium on Advanced Control of Chemical Processes, pages 537–542, 2012.

D. Navia, G. Gutiérrez, and C. de Prada. Nested modifier-adaptation for RTO in the otto

williams reactor. In Proc. IFAC Symp. DYCOPS, pages 123–128, 2013.

D. Navia, G. Gutierrez, and C. de Prada. Mixed modifier-adaptation for RTo in a contin-

uous bioreactor. In Proc. IFAC World Congress, volume 19, pages 7635–7640, 2014.

D. Nelson, D. Barber, T. McLain, and R. Beard. Vector field path following for miniature

air vehicles. IEEE Tran. on Robotics, 23(3):519–529, 2007.

X. Paulig, M. Bungart, and B. Specht. Conceptual design of textile kites considering

overall system performance. In Ahrens et al. (2013), pages 547–562.

J. Proakis and D. K. Manolakis. Digital Signal Processing. Prentice Hall, New Jersey, 4th

edition, 2006.

B. W. Roberts, D. H. Shepard, K. Caldeira, M. E. Cannon, D. G. Eccles, A. J. Grenier, and

J. F. Freidin. Harnessing high-altitude wind power. IEEE Tran. on Energy Conversion,

22(1):136–144, 2007.

P. D. Roberts. An algorithm for steady-state system optimization and parameter estima-

tion. Int. J. Systems Sci., 10(7):719–734, 1979.

P. D. Roberts. Coping with model-reality differences in industrial process optimisa-

tion. a review of integrated system optimisation and parameter estimation (ISOPE).

Computers in Industry, 26(3):281–290, 1995.

E. A. Rodger and B. Chachuat. Design methodology of modifier adaptation for on-line

optimization of uncertain processes. In Proc. IFAC World Congress, pages 4113–4118,

2011.

130

Bibliography

R. Ruiterkamp and S. Sieberling. Description and preliminary test results of a six degrees

of freedom rigid wing pumping system. In Ahrens et al. (2013), pages 443–458.

D. Ruppen, D. Bonvin, and D. Rippin. Implementation of adaptive optimal operation

for a semi-batch reaction system. Comp. Chem. Eng., 22(1–2):185–199, 1998.

F. J. Serralunga, M. C. Mussati, and P. A. Aguirre. Model adaptation for real-time opti-

mization in energy systems. Ind. Eng. Chem. Res., 52(47):16795–16810, 2013.

F. J. Serralunga, P. A. Aguirre, and M. C. Mussati. Including disjunctions in real-time

optimization. Ind. Eng. Chem. Res., 53(44):17200–17213, 2014.

S. Skogestad. Plantwide control: The search for the self-optimizing control structure. J.

Process Control, 10:487–507, 2000.

SKP. http://www.swisskitepower.ch.

Skysails GmBH. http://www.skysails.info.

B. Srinivasan and D. Bonvin. Real-time optimization of batch processes by tracking the

necessary conditions of optimality. Ind. Eng. Chem. Res., 46(2):492–504, 2007.

B. Srinivasan, D. Bonvin, E. Visser, and S. Palanki. Dynamic optimization of batch

processes II. role of measurements in handling uncertainty. Comp. Chem. Eng., 27(1):

27–44, 2003a.

B. Srinivasan, S. Palanki, and D. Bonvin. Dynamic optimization of batch processes: I.

characterization of the nominal solution. Comp. Chem. Eng., 27(1):1–26, 2003b.

P. Tatjewski. Iterative optimizing set-point control-the basic principle redesigned. In

Proc. IFAC World Congress, pages 992–992, 2002.

O. Ubrich, B. Srinivasan, P. Lerena, D. Bonvin, and F. Stoessel. Optimal feed profile for a

second order reaction in a semi-batch reactor under safety constraints: Experimental

study. J. of Loss Prevention in the Process Industries, 12(6):485–493, 1999.

G. P. Van den Berg. Wind gradient statistics up to 200 m altitude over flat ground. In

Proc. 1st International Meeting on Wind Turbine Noise, 2005.

R. van der Vlugt, J. Peschel, and R. Schmehl. Design and experimental characterization

of a pumping kite power system. In Ahrens et al. (2013), pages 403–425.

E. Visser, B. Srinivasan, S. Palanki, and D. Bonvin. A feedback-based implementation

scheme for batch process optimization. J. Process Control, 10(5):399–410, 2000.

131

http://www.swisskitepower.ch
http://www.skysails.info

Bibliography

C. Welz, B. Srinivasan, and D. Bonvin. Measurement-based optimization of batch

processes: Meeting terminal constraints on-line via trajectory following. J. Process

Control, 18(3-4):375–382, 2008.

P. Williams, B. Lansdorp, and W. Ockesl. Optimal crosswind towing and power generation

with tethered kites. J. Guidance, Control, and Dynamics, 31(1):81–93, 2008.

T. J. Williams and R. E. Otto. A generalized chemical processing model for the inves-

tigation of computer control. Trans. of the American Inst. of Elec. Engineers, Part I:

Communication and Electronics, 79(5):458–473, 1960.

Z. Xiong and J. Zhang. A batch-to-batch iterative optimal control strategy based on

recurrent neural network models. J. Process Control, 15(1):11–21, 2005.

E. Zafiriou and J. Zhu. Optimal control of semi-batch processes in the presence of

modeling error. In American Control Conference, pages 1644–1649, 1990.

A. Zgraggen, L. Fagiano, and M. Morari. Real-time optimization and adaptation of the

crosswind flight of tethered wings for airborne wind energy. 2013. arXiv:1310.0586.

A. U. Zgraggen, L. Fagiano, and M. Morari. Automatic retraction and full cycle operation

for a class of airborne wind energy generators. 2014. ArXiv:1409.6151.

Y. Zhang and J. Forbes. Extended design cost: A performance criterion for real-time

optimization systems. Comp. Chem. Eng., 24(8):1829–1841, 2000.

132

Curriculum Vitae

Sean Costello
Nationality: Irish
D.O.B: 11.04.1987
Address: Avenue de Marcelin 7, Morges
Tel: +41 774546 2444
Email: sean.c.costello@gmail.com

EDUCATION
2009 to date PHD in Optimization and Automation, Automatic Control

Lab, EPFL.

2005-2009: BEng(Hons) in Electronic and Electrical Engineering, at

University College Dublin. S3 gold medal for the highest
GPA of 2009 (4.16/4.20).

2007-2008: Erasmus exchange year at EPFL.

EXPERIENCE
2010-2012: Project Leader for the Optimization of an Incineration Plant,

Tridel, Lausanne (Academia/Industry partenership project).
- I lead a team of 4 students to propose measures to increase
Tridel's revenue from energy sales by 5%.

2010 to date: Leader of the Autonomous Kite Power interdisciplinary project,
EPFL.
- Supervising a team of 2-3 students and interns over 2 years, with
tasks ranging from mechanical design, automation, aerodynamic
modelling and experimental testing.

2009: 3-month Internship, Nonlinear Optics Group, EPFL.

LANGUAGES
English: Native language.
French: Fluent
Italian: Fluent.
German: Basic.

133

	Title page
	Acknowledgements
	Abstract (English/Français)
	List of figures
	List of tables
	Introduction
	Motivation
	Real-Time Optimization
	Kite Control

	State of the Art
	Real-Time Optimization
	Kite Control

	Contributions of the Thesis
	Main Contributions
	Secondary Contributions

	Organization of the Thesis

	Preliminaries
	Static Optimization
	Dynamic Optimization
	Modifier Adaptation
	Basic Modifier Adaptation
	Gradient Estimation
	Dual Control

	Kite Dynamics

	Generalized Modifier Adaptation
	Motivating Examples
	Incineration Plant
	Controlled Plant

	Generalized Modifier Adaptation
	Basic Generalized Modifier Adaptation (G-MA)
	Linearized Generalized Modifier Adaptation
	Filtering the Modifier Terms

	Simulated Example: Williams-Otto Reactor
	Conclusions

	Directional Modifier Adaptation
	Basic Idea
	Directional Derivatives
	Choosing the Privileged Directions

	Dual Directional Modifier Adaptation
	Gradient Estimation using Previous Measurements
	Dual Directional-MA Algorithm

	Simulated Case Study: Large-Scale Power Kite
	Plant Description
	Model of the Controlled Kite
	RTO Design Procedure
	RTO Results

	Conclusions

	Application to a Small-Scale Experimental Kite Prototype
	Experimental Setup: Small-Scale Kite Prototype
	Motivation
	Physical System
	Software
	Field Testing

	Modeling and State Reconstruction
	The Velocity Angle
	State Reconstruction
	Experimental Characterization of the Kite's Turning Behavior

	Path-Following Control
	Adaptive Prediction
	Velocity-Angle Control
	Guidance Strategy

	Real-Time Optimization
	RTO Algorithm
	RTO Results

	Conclusions

	Conclusions and Perspectives
	Conclusions
	Methodology
	Application

	Perspectives
	Methodology
	Application

	CSTR Balance Equations
	Closed-loop Kite Model
	Bibliography
	Curriculum Vitae

