\mathcal{K} set of all locations \mathcal{L} set of all pixels \mathcal{Z} set of all possible depth values X_k binary occupancy variable for a location k Z_i observed depth value variable at pixel i z^{∞} special value for when no depth is observed M_{ki} segmentation mask at pixel i for location k \mathcal{S}_k object silhouette for k-th location $|\mathcal{S}_k|$ number of pixels in the k-th silhouette $\langle \cdot \rangle_p$ expectation wrt a distribution p $\sigma(x)$ sigmoid function $(1 + e^{-x})^{-1}$ ρ_k approximate posterior $Q(X_k = 1)$ π^{∞} probability of observing z^{∞} π° probability of observing an outlier $\Delta_{l,i}$ $\log \theta_{l,i}(z), l \in \mathcal{K} \cup \{bg\}$ τ_{ki} $\prod_{l < k, i \in M_l} (1 - \rho_l)$

Table 1: Notations

We know that X_k is a Bernoulli variable $(Q(X_k = 1) + Q(X_k = 0) = 1)$, and keeping in mind Eq. 7 from the paper:

$$Q(X_k = 1) = \frac{\exp(\langle \log P(\boldsymbol{Z}, \boldsymbol{X}, \boldsymbol{M}) | X_k = 1 \rangle)}{\tilde{Z}_{X_K}}$$
$$Q(X_k = 0) = \frac{\exp(\langle \log P(\boldsymbol{Z}, \boldsymbol{X}, \boldsymbol{H}) | X_k = 0 \rangle)}{\tilde{Z}_{X_K}}$$

which allows us to find the normalizing factor \tilde{Z}_{X_K} and get the following update on $\rho_k = Q(X_k = 1)$ (Eq. 8 in the paper):

$$\rho_k = \sigma(\langle \log P(\boldsymbol{Z}, \boldsymbol{X}, \boldsymbol{M} | X_k = 0) \rangle_{Q(\boldsymbol{X}/X_k)} - \langle \log P(\boldsymbol{Z}, \boldsymbol{X}, \boldsymbol{M} | X_k = 1) \rangle_{Q(\boldsymbol{X}/X_k)})$$

Let's take a closer look at the conditional expectation of the joint $\langle \log P(\boldsymbol{Z}, \boldsymbol{X}, \boldsymbol{M} | X_k = \xi) \rangle_{Q(\boldsymbol{X}/X_k)}, \xi \in \{0, 1\}$ (omitting \boldsymbol{M} for clarity):

$$\langle \log P(\boldsymbol{Z}, \boldsymbol{X} | X_k = \xi) \rangle_{Q(\boldsymbol{X}/X_k)} =$$

$$\langle \log P(\boldsymbol{Z} | \boldsymbol{X}) P(\boldsymbol{X}) | X_k = \xi \rangle_{Q(\boldsymbol{X}/X_k)} =$$

$$\sum_{i \in S_l} \langle \log P(Z_i | \boldsymbol{X}) | X_k = \xi \rangle + \sum_{l \in \mathcal{K}} \langle \log P(X_l) | X_k = \xi \rangle$$

where we used an assumption of conditional independence between pixels, and also assumption of independence of occupancies a-priori.

We now need to evaluate the expectation of the observation likelihood $\log P(Z_i|\mathbf{X})$ conditioned on $X_k = \xi$ for $\xi \in \{0,1\}$. Under our generative model, each pixel is either generated by one of the silhouettes, or by the background. If it was generated by some silhouette S_l , then, first, all the silhouettes that are closer to the camera should be absent (which happens with probability $\tau_{l-1,i}$), and, second, the silhouette itself should be present (which happens independently with probability ρ_l). Otherwise, all the silhouettes are absent (probability $\tau_{|\mathcal{K}|,i}$), and pixel was generated by the background. Now, let's write down the expected log-likelihood for observing some value z at pixel $i \in \mathcal{L}$ (omitting segmentation masks for clarity):

$$\langle \log P(Z_i = z | \boldsymbol{X}) \rangle_{Q(\boldsymbol{X})} = \sum_{l \in \mathcal{K}} \tau_{l-1,i} \rho_l \log \theta_{li}(z) + \tau_{|\mathcal{K}|,i} \log \theta_{bg,i}(z)$$

When conditioned on $X_k = 1$ the expectation will be:

$$\sum_{l < k} \tau_{l-1,i} \rho_l \log \theta_{li}(z) + \tau_{k-1,i} \log \theta_{ki}(z)$$

And conditioned when on $X_k = 0$:

$$\sum_{l \le k} \tau_{l-1,i} \rho_l \log \theta_{li}(z) + \frac{\sum_{l > k} \tau_{l-1,i} \rho_l \log \theta_{li}(z) + \tau_{|\mathcal{K}|,i} \log \theta_{bg,i}(z)}{(1 - \rho_k)}$$

Now, one can evaluate $\langle \log P(\mathbf{Z}, \mathbf{X} | X_k = \xi) \rangle_{Q(\mathbf{X}/X_k)}$ (expectations for the priors is trivial, see e.g. Fleuret'09). If one substitutes these into Eq. 8, one will get Eq. 10:

$$\rho_k = \sigma(\log \frac{1-\epsilon}{\epsilon} - \sum_{i \in M_k} \tau_{k-1,i} \log \theta_{k,i} - \sum_{i \in M_k} \frac{1}{1-\rho_k} (\sum_{l > k, i \in M_l} \tau_{l-1,i} \rho_l \log \theta_{l,i} + \tau_{|\mathcal{K}|,i} \log \theta_{bg,i}))$$