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ABSTRACT 

Notch signaling pathway is an important developmental pathway and has been implicated in 

both mammary gland development and tumorigenesis. Several studies investigating Notch signaling in 

mouse mammary gland implied that Notch signaling is an important factor in the determination of the 

luminal cell type. Clinical studies on breast tumors as well as studies in transgenic mouse models 

overexpressing active Notch receptors suggested an oncogenic function of Notch in the mammary 

gland connecting it to the poor breast cancer prognosis. However the physiological role of Notch 

signaling and its downstream mechanisms remain unclear. 

Analysis of Transgenic-EGFP Notch reporter mouse mammary epithelium revealed that Notch 

signaling is active specifically in a subset of hormone receptor positive cells. More sensitive FACS 

analysis consistently shows EGFP expression in HR+ luminal cells and reveals a weaker signal in a 

subset of basal (CD24lo) cells. Additionally mRNA analysis revealed that Notch active luminal cells are 

expressing Wnt4 ligand. 

To unveil the role of the Notch signaling in the Wnt4 expressing HR+ cells, we conditionally 

deleted RBP-Jκ, Notch signaling mediator, in Wnt4 expressing subpopulation of hormone receptor 

positive cells via Wnt4Cre. Abrogation of RBP-Jκ resulted in loss of progesterone receptor expression 

in 90% of cells bearing the RBP-Jκ deletion while estrogen receptor expression remained intact, 

implicating RBP-Jκ in regulation of progesterone receptor expression.  

To test whether Notch signaling regulates PR expression in the entire HR+ population, we 

analyzed mammary epithelium in which RBP-Jκ has been conditionally deleted via MMTV-Cre in 

progenitor cells revealing the presence of a subpopulation of luminal hormone receptor positive cells 

that differentiate independently of Notch signaling. 

Time directed deletion of RBP-Jκ via intraductally injected Adeno-Cre virus into the adult 

mouse mammary ductal system through the nipple additionally confirmed that RBP-Jκ is required for 

progesterone receptor expression. 

Chromatin immunoprecipitation assay showed that RBP-Jκ binds two out of four putative RBP-

Jκ binding sites in the progesterone receptor promoter. Inhibition of Notch signaling in vivo via 

intraductal injection of γ-secretase inhibitor, DAPT, resulted in reduced progesterone receptor 

expression strongly suggesting that Notch-related RBP-Jκ signaling is responsible for PR expression. 

In this project we are proposing that there are two different populations of HR+ cells: one 

defined as Wnt4 expressing subpopulation of HR+ cells in which PR expression is dependent of Notch 

signaling, and another one defined as Wnt4 non expressing subpopulation of HR+ cells which is 

independent of Notch signaling. Since Notch signaling is able to replace ER signaling and activate ER 

target genes in the endocrine therapy resistant cell lines, Wnt4 expressing population of HR+ luminal 

cells might play a crucial role in the acquiring of the resistance. 

Keywords:  

Mammary gland, breast cancer, Notch signaling, RBP-Jκ, hormone receptor, progesterone 

receptor, estrogen receptor, cell fate, differentiation 
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RÉSUMÉ 

La voie de signalisation Notch est une voie développementale importante et a été impliquée à 
la fois dans le développement et la tumorigenèse de la glande mammaire. Plusieurs études portant sur 
la signalisation Notch dans la glande mammaire murine a laissé entendre que la signalisation Notch 
joue un rôle important dans la détermination du destin cellulaire luminal. Des études cliniques sur des 
tumeurs du sein ainsi que des études menées sur des modèles de souris transgéniques surexprimant 
des récepteurs Notch constitutivement actifs ont suggéré une fonction oncogénique de Notch dans la 
glande mammaire permettant de la relier avec un mauvais pronostic du cancer du sein. Toutefois, le 
rôle physiologique de la voie de signalisation Notch et ses mécanismes en aval restent inconnus. 

L’analyse des épithéliums mammaires des différentes souris transgéniques EGFP-Notch a 
révélé que la signalisation Notch est spécifiquement active dans un sous-ensemble de cellules 
exprimant les récepteurs hormonaux. Une analyse fine par cytométrie en flux a révélé l'expression de 
EGFP dans les cellules luminales HR + ainsi qu’un signal plus faible dans un sous-groupe de cellules 
basales (cellules CD24lo). En outre l'analyse de l’ARNm a révélé que les cellules luminales Notch 
actives expriment le ligand Wnt4. 

Pour dévoiler le rôle de la signalisation Notch dans les cellules HR+ exprimant Wnt4, nous 
avons supprimé conditionnellement RBP-Jκ, un médiateur de la signalisation Notch, dans les cellules 
HR+ exprimant Wnt4 via Wnt4Cre. L'abrogation de RBP-Jκ a entraîné la perte d'expression du 
récepteur de la progestérone dans 90% des cellules portant la deletion RBP-Jκ tandis que l'expression 
du récepteur des oestrogènes est restée intacte, impliquant RBP-Jκ dans la régulation de l'expression 
du récepteur de la progestérone. 

Pour tester si la signalisation Notch régule l'expression de PR dans l'ensemble de la population 
HR+, nous avons analysé l'épithélium mammaire où RBP-Jκ a été conditionnellement supprimé via 
MMTV-Cre dans les cellules progénitrices révélant la présence d'une sous-population de cellules 
luminales HR+ qui se différencient indépendamment de la signalisation Notch.      

La suppression à des temps déterminés de RBP-Jκ via l’injection intraductale d’un virus adéno-
Cre dans le système canalaire mammaire de souris adulte par le mamelon a confirmé que RBP-Jκ est 
nécessaire pour l'expression du récepteur de la progestérone. 

Les expériences d'immunoprécipitation de la chromatine a montré que RBP-Jk lie deux sites 
putatifs sur quatre de liaison de RBP-Jκ dans le promoteur du récepteur de la progestérone. 
L'inhibition de la signalisation Notch in vivo par injection intraductale d'un inhibiteur de la γ-secrétase, 
DAPT, a provoqué une baisse de l'expression du récepteur de la progestérone suggérant que la 
signalisation Notch-RBPJκ est responsable de l'expression de PR. 

Dans ce projet, nous proposons qu'il existe deux populations différentes de cellules HR+: une 
définie comme exprimant Wnt4 dans laquelle l'expression de PR est dépendante de la signalisation 
Notch, et une autre définie comme n’exprimant pas Wnt4 et qui est indépendant de la signalisation 
Notch. La signalisation Notch est en mesure de remplacer la signalisation ER et d’activer la 
transcription des gènes cibles de ER dans les lignées cellulaires résistantes à la thérapie 
endocrinienne, les cellules luminales HR+ exprimant Wnt4  pourraient ainsi jouer un rôle crucial dans 
l'acquisition de la résistance. 

Mots clés: 

glande mammaire, cancer du sein, voie de signalisation Notch, RBP-Jκ, récepteur aux 
hormones, récepteur à la progestérone, récepteur aux estrogènes, destinée cellulaire, différentiation. 
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BREAST CANCER 

BREAST CANCER: AN OVERVIEW 

Breast cancer is the leading form of cancer among women. It is estimated that 1 in 8 women 

will develop breast cancer in their lifetime in “Western countries”. Almost 30% of all cancers 

diagnosed in women are breast cancer. Although the number of diagnosed cases of cancers is on the 

rise, in part due to increased mammography screening, the breast cancer death rate has been 

decreasing since year 2000 onward. The improvement in death rate probably results from treatment 

advances, earlier detection through screening, and increased awareness. Although many factors arose 

recently, mainly from changes in the lifestyle, the most significant risk factors for breast cancer are still 

gender (being a woman) and age. Breast cancer is present in male population at the rate of 1 in 1000 

which is significantly less than in women. The fact that 95% of diagnosed breast cancers and 97% of 

breast cancer deaths is in women older than 40 postulates age as an important breast risk factor 

(www.breastcancer.org).  

Standard practice to manage early-stage breast cancer involves usually surgery followed by 

radiotherapy to destroy residual cancer cells in the breast. Radiotherapy reduces the 20-year local 

recurrence from 39% to 14% (Fisher et al., 2002). Additionally, based on the genetic nature of the 

disease and risk of relapse, adjuvant therapies are prescribed to reduce risk of cancer recurrence and 

to improve survival. These therapies include chemotherapy, hormone therapy (aromatase inhibitors, 

selective estrogen receptor modulators and estrogen receptor down regulators) and targeted 

therapies (Herceptin) (Jatoi and Miller, 2003). 

To identify the prognostic and predictive markers for early detection and the development of 

novel, more effective targeted treatments are two basic approaches in breast cancer field. These will 

hopefully lead to better cancer care and offer new, more effective and more targeted drugs. 

BREAST CANCER DEVELOPMENT AND STAGES 

The accumulation of epigenetic and genetic changes that will cause a cell to acquire 

characteristics defined as “hallmarks of cancer” (Hanahan and Weinberg, 2011) generates the 

malignant cells of breast cancer. These cells are able to preserve proliferative signaling, bypass growth 

suppressors, resist cell death and induce angiogenesis and metastasis. They can also reprogram 

energy metabolism and avoid immune response. The gain of these “hallmarks” is probably promoted 

by genomic instability and inflammation. 
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Figure 1. Breast tumorigenesis. Illustration of a milk duct with luminal (beige) and basal (green) layer 
surrounded by basal lamina (pink). The tumorigenic event happens in the cell called initiated cell developing ductal 
carcinoma in situ which can eventually rise into an invasive carcinoma with metastatic properties. Adapted from 
Brisken, 2014 

From a clinical point of view, the development of breast cancer is a long process that is held to 

progress through defined stages. The majority of lesions start in the terminal ductal lobular unit 

(TDLU), a structure comprised of lobules and ducts of mammary epithelium. It starts as an atypical 

ductal hyperplasia (ADH), which is a premalignant state characterized by anomalous cell layers within 

the lobules or ducts. ADH can then progress into the preinvasive stage called ductal carcinoma in situ 

(DCIS). DCIS can develop into invasive breast cancer (IBC), but not necessarily has to. The Danish 

pathologist Maja Nielsen performed a study on breast tissue of women in their 40s who had died of 

causes other than cancer and noticed that 30% of them had DCIS (Nielsen et al., 1987) as opposed to 

12% that developed a clinically relevant disease. In DCIS extensive genetic alterations similar to those 

in nearby invasive lesion were found by comparative hybridization and therefore it is considered to be 

a direct precursor of the invasive carcinoma (Buerger et al., 1999, reviewed in Brisken, 2013). 

Additionally, transcriptome analysis of both DCIS and associated invasive cancer showed that their 

molecular profiles are highly similar and that an aberrant expression of genes is present also in pre-

invasive stages (Ma et al., 2003).  

The risk of metastatic progression increases significantly when the cells become invasive, 

forming an invasive breast cancer. All three stages, ADH, DCIS, and IBC, are histologically different. 

Surprisingly, an analysis of their molecular profiles unveiled their strong resemblance at the 

transcriptome level, which suggests that genome aberrancies that carry invasive properties are 

present much before invasive stages (Ma et al., 2003). 

BREAST CANCER SUBTYPES 

Breast cancer is a heterogeneous disease. In clinics, the prognosis of a patient and therapy are 

determined by factors like tumor size, lymph node status, hormone receptor status, proliferation index 

and presence of epidermal growth factor receptor 2 (HER2) amplification/overexpression. This 

approach of classifying breast cancer is limited since there is a high degree of variability both in terms 
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of overall patient survival and response to therapy within the same histological subtype or within the 

same histological grade and stage (reviewed in Rakha EA 2010.) 

Recently, the molecular characterization of breast cancer by gene expression profiling 

established an improved classification of breast cancers, due to technical advances in methodology. 

Gene expression profiling led to identification of five breast cancer subtypes: luminal A, luminal B, 

HER2+, basal-like and normal breast-like (Perou et al., 2000; Sorlie et al., 2001). 

 

Figure 2 Molecular subtypes of breast cancer. Gene expression analysis based classification of breast cancer into 
five different subtypes. Adapted from Carey et al., 2006 

ER-positive cancers express ER and ER-responsive genes, and luminal epithelial cells markers 

(keratin 8/18). ER-positive subtypes are Luminal A (40% of breast cancers) and Luminal B (20% of 

breast cancers). Luminal A subtype has lower proliferative index but a higher expression of ER-related 

genes than luminal B (Sorlie et al., 2003). The best overall prognosis is associated with luminal tumors. 

However, Luminal B subtype does have a significantly worse clinical profile than Luminal A, as well as 

a higher grading and proportion of p53 mutations, and larger genomic instability (Calza et al., 2006). 

In luminal tumors, the mitogenic activity of estrogen can be neutralized by selective estrogen receptor 

modifiers (i.e. tamoxifen) or by inhibition of estrogen production (i.e. aromatase inhibitors). Such 

hormonal therapies significantly improve the outcome of both localized and advanced ERα positive 

breast cancer (reviewed in Pritchard 2005 and Tobias 2004) 

Other four subtypes are ER-negative cancers. HER2+ tumors overexpress genes located in the 

HER2 amplicon on 17q22.24, including HER2 and growth factor receptor bound protein 7 (GRB7) 

(Sorelie et al., 2001). They are aggressive cancers and usually elicit poor patient prognosis (Salmon et 

al., 1987 and Sorelie et al., 2001). However, the overexpression of HER2 makes them sensitive to HER2 
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inhibition by the humanized monoclonal antibody Trustuzumab which has been shown to significantly 

improve the clinical outcome of the patients with this type of breast cancer (Nahta et al., 2007) 

The basal-like breast cancers express high levels of genes associated with basal epithelial cells 

such as keratin 5/6 and 17, P-cadherin, laminin and fatty acid binding protein 7 (Perou et al., 2000, 

Sorelie et al., 2001, Livasy et al., 2006, Sotiriou et al., 2003, Moyano et al., 2006, Shien et al., 2005, Abd 

El-Rehim et al., 2004). This type of cancer is reported to have the worst clinical outcome. It is 

characterized by an aggressive phenotype with high histological grade, high mitotic count, invasive 

borders, the presence of central necrotic zones, and stromal lymphocytic response (Livasy et al., 2006, 

Dabbs et al., 2006, Shin et al., 2008, Jones et al ., 2004). The majority of basal-like breast cancers do not 

express hormone receptors nor HER2 receptor which classifies them as triple negative cancers that 

are especially hard to treat because they fail to respond to targeted therapies (hormonal therapy and 

Trustuzumab) leaving conventional chemotherapies as the only therapeutic option (Rouzier et al., 

2005). 

Normal-like breast tumors are not yet well characterized and their clinical and pathological 

significance is yet to be determined. This subtype is enriched in genes normally expressed in adipose 

cells and non-epithelial cells (Perou et al., 2000). 
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MAMMARY GLAND 

MAMMARY GLAND: AN OVERVIEW 

Mammary glands are specific anatomical structures in female mammals that are responsible 

for the production and secretion of milk which contains proteins and fat for the nourishment of the 

newborn offspring. The mammary gland is an epidermal appendage which evolved from an ancestral 

apocrine gland that was associated with the hair follicles (Oftedal et al., 2002). Mammary glands 

provide an effective strategy for fostering the young, increasing the success of breeding and allowing 

further development outside the egg or uterus, which some authors link to the evolution of a large-

sized human brain (Widelitz et al., 2007). The mammary gland comprises the epithelial ductal tree, 

randomly branched in order to increase milk producing area, and the surrounding stroma containing 

mostly adipocytes but also fibroblasts, endothelial and different immune cells. 

Mammary glands are bilateral glands, specialized to provide nourishment for the young 

progeny. They are dynamic organs which undergo dramatic changes during their development.  

Mammary gland epithelium is present in rudimentary form in both sexes until the age of puberty 

when, in response to ovarian steroid hormones, they start to grow rapidly.  

Additionally, mammary gland epithelium is the source of the most frequent cancer in the 

female population (Jemal et al., 2003) and therefore, extensive studies have been conducted in order 

to understand the effect of different signaling molecules involved in the mammary gland development 

and carcinogenesis.  

MAMMARY GLAND AS A MODEL ORGAN 

As the only organ to undergo most of its development postnatally, the mouse mammary gland 

is a particularly attractive experimental system for studying developmental processes. It is easily 

accessed as it is localized under the ventral skin. Mammary tissue is abundant as there are 5 pairs of 

mammary glands in mice, which allows the isolation of a large number of cells from a single animal. 

The transplantation of mammary tissue is a powerful mouse genetic tool to study differentiation 

processes, particularly cell fate determination in vivo. 
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Figure 3. The mammary gland as an experimental model. a) Scheme showing a female mouse with five pairs of 
mammary glands (depicted with thin lines) b) A carmine alum stained whole mount of a mouse mammary gland 
demonstrating epithelium (1) presented with dark pink emerged into light pink stroma (2) c) Scheme of a cross 
section of a human breast structure demonstrating chest wall (1), pectoralis muscles (2), lobules (3), nipple (4), 
areola (5), milk duct (6), fatty stroma (7) and skin (8). Illustration c) taken from www.wikipedia.org  

MAMMARY GLAND DEVELOPMENT 

Mammary gland development can be divided into 2 stages: embryonic development, which is 

hormone independent and postnatal development, which can be divided into three stages: 

prepubertal, which is hormone independent, and pubertal and adult development which are 

orchestrated by hormones. In adulthood the mammary gland can be in a non-pregnant, pregnant, 

lactating and involuting state both of which show characteristic physiology. 

EMBRYONIC DEVELOPMENT 

Mammary gland development begins at E10 with the formation of the mammary/milk lines. 

Milk lines arise from ectoderm and stretch between the anterior and posterior limb buds, on the 

ventral side of the embryo. At E11.5 the mammary lines resolve into mammary placodes – lens-shaped 

epidermal structures consisting of several layers of large columnar cells (Veltmaat et al., 2004). Five 

pairs of mammary placodes form at symmetrically positioned reproducible locations.  
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Figure 4. Embryonic mouse mammary gland development. a) Formation of milk lines and positioning of 
mammary placodes and buds. b) Development of mammary gland starting from a milk line over mammary placode, 
bud and sprout to the rudimentary ductal tree. Adapted from Robinson, 2007. 

They are not identically determined since different signals are required for the formation of 

each pair. The development of the individual pair is not simultaneous and occurs at distinct order: 

Firstly number 3 followed by number 4, the number 1 and 5 appear simultaneously and finally 

number 2 (Veltmaat et al., 2004, Balinsky et al., 1950, Veltmaat et al., 2003). In the next step of the 

development, placodes invaginate into the underlying mesenchyme to form bulb shaped buds 

(Sakakura et al., 1987). Finally at E16, buds elongate to form mammary sprouts with a lumen that 

forms an opening to the skin (Veltmaat et al., 2003, Foley et al., 2001). By E18,5 a rudimentary ductal 

system is constituted of one short primary duct and about 10-15 initial branches. At this stage further 

development is arrested until puberty (Watson and Khaled, 2008). 

The embryonic mammary gland development is coordinated by several signaling pathways 

and involves communication between the epidermis and mesenchyme.  Several regulators have been 

identified to orchestrate the early stage of mammary gland development. 

Canonical Wnt signaling is involved both in the specification of the mammary line and in 

mammary bud formation (Veltmaat et al., 2004). The experiments on FGF10 and FGFR2b mutants 

showed that fibroblast growth factor (FGF) signaling is also responsible for initiation of mammary 
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gland development, suggesting that FGF signaling functions in parallel with Wnt signaling in specifying 

the mammary line (Mailleux et al., 2002). FGF and Wnt signaling cooperate in placode formation by 

regulating the expression of T-box protein 3 (Tbx3) (Eblaghie et al., 2004). Tbx3 protein together with 

bone morphogenesis protein 4 (BMP4) can regulate the expression of lymphoid enhancer binding 

factor 1 (LEF1), a Wnt signaling mediator, in order to define dorso-ventral positioning of mammary 

placodes (Cho et al., 2006). Once the initial placode is formed, the mammary epithelium signals to the 

mesenchymal cells in its vicinity to transcribe several genes that are not expressed in the more distant 

dermal mesenchyme. The mesenchymal cells become arranged in concentric layers around the 

epithelial bud. They represent the primary mammary mesenchyme, specialized cells that carry out 

important functions in the further development of the bud: they maintain mammary epithelial cell 

identity, support ductal morphogenesis and growth, cause destruction of the epithelial bud in the 

presence of testosterone and participate in the formation of the nipple. The formation of primary 

mammary mesenchyme is regulated by a parathyroid hormone-like hormone (PTHLH) (Wyslomerski 

et al., 1998).  

PTHLH has dual role in the mammary bud formation. Together with BMP4 it directs ductal 

outgrowth and mediates nipple formation by inhibiting the formation of hair follicles (Hens et al., 

2007, Foley et al., 2001).  

Experiments on Rasgrf-/- and Igf1-/- embryos suggested that insulin-like growth factor 1 (IGF1) 

signaling through Ras protein-specific guanine nucleotide-releasing factor 1 (RASGRF1) is important 

for the formation of a normal sized mammary bud and the induction of mammary mesenchyme cell 

identity. 

POSTNATAL DEVELOPMENT 

During the first 3 weeks of life, the mammary gland displays isometric growth with the rest of 

the body (reviewed by Knight and Parker, 1982). Further development of the mammary gland is 

orchestrated by the steroid hormones, estrogens and progesterone, and the polypeptide hormone 

prolactin. A hormonally controlled mammary gland development can be further divided in three main 

stages: ductal elongation, which takes place during puberty, ductal side branching that occurs during 

adulthood, and alveologenesis starting with pregnancy. 

PUBERTY 

Ductal elongation starts with puberty. It is triggered by estrogens signaling through estrogen 

receptor α (Mallepel et al. 2006). Structures called terminal end buds (TEBs) are formed during this 

stage (Silberstein, 2001). TEBs are club-shaped structures comprising an outer layer of cap cells and 

multilayer inner core of cells called body cells which are both highly proliferative and give rise to the 
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subtending ducts. Proliferation within the TEBs results in ductal elongation and their splitting in 

dichotomous branching to generate a simple ductal tree which fills an entire fat pad of the gland. 

 

Figure 5. Postnatal development of the mouse mammary gland. The mouse mammary glands consist of a 
rudimentary ductal tree in the prepubertal stage (nipple position depicted by arrow) which grows extensively in a 
bifurcational manner during puberty. In adulthood and early pregnancy through the process of side branching the 
ductal system increases its complexity (side branches shown by arrows). During late pregnancy and post-partum the 
functional surface of the epithelium enlarges in the process of alveologenesis forming alveoli, which will produce 
milk. After weaning, the mammary gland involutes and undergoes the process of reorganization of epithelium to 
return to a pre-pregnant state. (LN, subiliacal lymph node) 

VIRGIN ADULTHOOD 

The ductal elongation is followed by ductal side-branching which takes place after puberty. 

This type of branching is triggered by cyclic changes in estrogens (E) and progesterone (P) secretion 

during adulthood and it increases the complexity of milk duct system. These morphogenetic and 

cellular responses are controlled by signaling cascades initiated by elevated serum levels during 

diestrus (Fata et al. 2001). The side branches that are formed during this process contribute to the 

complexity of the ductal tree and bud perpendicularly to the previously existing duct. Different 

molecules have been established as downstream mediators, such as Cyclin D1, Wnt4, receptor 

activator of nuclear factor kappa-B ligand (RANKL) and calcitonin (Brisken et al., 2000, Beleut et al., 

2010). Side-branching continues to be enhanced during early pregnancy. 

PREGNANCY 

Finally, during mid/late pregnancy, prolactin (PRL) triggers a process called alveologenesis 

during which round saccular structures called alveoli are formed all over the ducts (Brisken et al., 

2002, Brisken 2002, Brisken et al., 1999). Alveoli synthesize and secrete milk from late pregnancy 
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throughout lactation. In the alveoli myoepithelial cells are less continuous enabling luminal cells 

contact with basement membrane, which is a critical event for complete differentiation and milk 

secretion (Lee et al., 1985). The main regulators of the mammary developmental processes during 

gestation are P and PRL (Brisken et al. 1999). 

INVOLUTION 

After pups are removed from the mother, in response to milk stasis, the mammary gland enters 

the process of involution, a phase of extensive cell death and tissue remodeling. The expression of milk 

proteins decreases to basal levels and the expression of genes associated with apoptosis (serum gp70 

production 2 (SGP-2), the signal transducer and activator of transcription 3 (STAT3) mediated by 

leukemia inhibitory factor (LIF), oncostatin M (OSM)) regulation of proliferation and differentiation 

(e.g. tumor suppressor p53 (p53), myelocytomatosis oncogene (C-myc), transforming growth factor ß 

(TGF-ß)) increases (Strange et al., 1992, Kritikou et al., 2003, Tiffen et al., 2008). 

The involution of the secretory luminal cells starts few hours after weaning and 3 days after it 

becomes irreversible (Li et al., 1997). An early reversible phase does not involve apoptosis while the 

later irreversible phase exhibits hallmarks of classical apoptosis. A recent study showed that the 

physiological process of post-lactational regression of the mammary gland is accomplished through a 

non-classical, lysosomal-mediated pathway of cell death. During involution, lysosomes in the 

mammary epithelium undergo a widespread lysosomal membrane permeabilisation causing lysosome 

mediated programmed cell death regulated by STAT3 (Kreuzaler et al., 2011). 

By day 4 of involution, apoptotic cells are cleared and the rearrangement of epithelium, stroma 

and basement membrane occurs (Monks et al., 2008, Strange et al., 1992). Involution lasts 14-21 days, 

subsequently the mammary gland resembles an adult virgin gland again but it can contain occasional 

remaining alveoli (Richert et al., 2000). 

Therefore, the development of the mammary gland is a complex process where a number of 

signaling molecules are directly or indirectly involved in forming a large network, which drives 

differentiation and growth within mammary epithelium. 

MAMMARY EPITHELIUM STRUCTURE 

The mammary gland, as a complex secretory organ, comprises several different cell types: 

Epithelial cells that compose a ductal system of the gland; adipocytes, that form a fat pad in which the 

ductal tissue is embedded; stromal fibroblasts; endothelial cells, forming the vascular tissue; and an 

array of different immune cells. 
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Figure 6. A simplified scheme representing the cellular components of mammary epithelium 

Mammary epithelium is a simple bi-layered structure surrounded by basement membrane 

formed of an inner luminal layer considered to contain all the cells that are in direct contact with the 

lumen and an outer basal layer containing all the cells that are in close contact with the basement 

membrane. Luminal cells can be either hormone receptor positive or hormone receptor negative while 

basal cells are mostly myoepithelial. The mammary epithelium is embedded within the fatty stroma 

consisted of mainly adipocytes and keratinocytes (Watson and Khaled, 2008). 

LUMINAL CELLS 

The inner epithelial layer is called luminal layer and is composed of luminal epithelial cells. It 

comprises two populations of cells: hormone receptor positive, and hormone receptor negative cells 

that can produce milk during the lactation period. Furthermore, they are polarized cells that exhibit 

short, blunt microvilli on their apical surface and display well-developed cell-cell junctions (Mikaelian 

et al., 2006). During puberty, while TEBs are still present, the luminal layer of cells exhibits a higher 

apoptosis rate than the basal one which is consistent with an increased cell proliferation in this cell 
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layer (Humphreys et al., 1999, Humphreys et al., 1996) In an adult virgin mouse approximately 30% of 

luminal cells express hormone receptors (Shyamala et al., 1999; Zeps et al., 1998) which through 

binding to their cognate ligands, steroid hormones estrogens and progesterone, regulate proliferation 

of epithelial cells in both layers and also some in stroma (Brisken et al., 1998, Mallepell et al., 2006) 

BASAL CELLS 

Myoepithelial cells are spindle-shaped and cytologically characterized by desmosomes, 

hemidesmosomes, myofilaments, irregular nuclei with marked heterochromatin, peripheral 

cytoplasmic caveoli and ragged basal borders (Mikaelian et al., 2006). They form a basally arranged 

smooth muscle actin (SMA) expressing thin monolayer that possibly has a role in oxytocin-triggered 

milk ejection. Myoepithelial cells are surrounded by basal membrane which exposes them to the 

morphogenetic and differentiation signals from extracellular matrix and stroma. Therefore, basally 

located myoepithelial cells might transmit the signal from stroma to the luminal layer through 

desmosomes, adherens and gap-junctions (Teuiliere et al., 2005), playing an important role in 

mammary growth and differentiation (Faraldo et al., 2006).  

Luminal and myoepithelial cells can be discriminated as they express specific markers (Faraldo 

et al., 2005). In particular murine myoepithelial cells specifically express cytokeratins K5 and K14, 

SMA, p63 and P-cadherin, while luminal cells express K8 and K18. With the development of the 

fluorescence activated flow cytometry techniques it has become possible to sort luminal and 

myoepithelial cells based on the surface markers characteristic for each population. Luminal cells are 

characterized by a high expression of CD24 while low expression marks the myoepithelial layer of 

cells (Sleeman et al., 2006). Furthermore, they can be distinguished based on the differential 

expression of epithelilal cell adhesion molecule (EpCam) and CD49f where luminal cells are defined by 

a high expression of EpCam and low expression of CD49f and myoepithelial cells by low expression of 

EpCam and high expression of CD49f markers (Shehata et al., 2012). 

HORMONAL REGULATION 

Mammary morphogenesis is orchestrated by sex hormones estrogens, progesterone and 

prolactin which were defined as the main regulators of mammary gland development. Minimal 

hormonal requirements were established by hormone ablation and replacement studies in mice 

(Nandy et al., 1958) and rats (Lyons et al., 1958). The generation of mice lacking the genes for either 

ERα (Dupont et al., 2000), PR (Lydon et al., 1995) or prolactin receptor (Prlr) (Ormandy et al., 1997) 

enabled through tissue recombination experiment unveiled that ERα is required for mammary 

epithelial ductal elongation during puberty (Mallepell et al., 2006), whereas PR signaling is responsible 

for the process of side-branching (Brisken et al., 1998). Further to this, the processes of alveologenesis 

and lactogenic differentiation during late pregnancy were completely inhibited upon deletion of Prlr 

and therefore implicating prolactin as an important regulator of these events (Brisken et al. 1999.).  
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Steroid hormones estrogens and progesterone elicit their function through binding to 

respective intracellular receptors. This leads to dimerization of the receptor-hormone complex which 

finally binds DNA via estrogen responsive elements (ERE). EREs are short sequences of DNA, located 

in the promoter regions of the target genes which are recognized by the hormone-receptor complex. 

The binding of the complex to these sequences regulates the expression of target genes. Estrogen can 

also exert genomic actions in an ERE-independent manner, whether it is through the interaction with 

Fos and Jun at AP1 binding site, genes containing STAT5 binding sites, or the interaction with NF-κB 

where it inhibits the transcription of interleukin 6 (IL-6) (reviewed in Nilsson et al., 2001). 

Both in humans (Clarke et al., 2006, Clarke et al., 1997) and in mice (Seagroves et al., 2000) 

mammary tissue has shown that ER and PR are mostly expressed in the same mammary epithelial 

cells, which are rarely proliferating. However in human breast epithelium this is not entirely the case 

because it has been shown that PR and ER can segregate into different cell subpopulations. 

Furthermore, PR expression was detected also in the basal compartment in putative bipotent 

progenitor cells (Hilton et al., 2012); however, in vivo evidence for this was provided only from the 

experiments with FACS sorted cells. 

 

Figure 7. A simplified scheme of hormonal regulation of the post-natal development. Hormones are 
orchestrating the post-natal development of the mammary gland: Estrogens drive ductal elongation through the 
mediator amphiregulin. Progesterone regulates side branching through Cyclin D1, RANKL and Wnt4. Alveologenesis 
is driven by prolactin with IGF-2 as mediator. 

Several players of different signaling pathways were identified as hormone targets and shown 

to be important for the different steps of the mammary gland development. The epidermal growth 

factor receptor ligand, amphiregulin was shown to be a major paracrine mediator of ERα induced cell 

proliferation orchestrating ductal elongation process (Ciarloni et al., 2007). PR signaling was shown to 

cause two distinct waves of proliferation of mammary epithelial cells, where HR+ cells proliferate in 

the first one regulated by Cyclin D1, and HR- cells in the second one run by tumor necrosis factor 

superfamily member RANKL (Beleut et al., 2010). Additionally, Wnt4 has been shown as PR target that 

regulates directly and/or indirectly stem cells by activating the myoepithelial compartment (Brisken 

et al 2000, Rajaram et al., 2015). Prolactin signaling paracrine regulation of alveologenesis and 

lactogenic differentiation is mediated by IGF-2. (Brisken et al., 2002) 
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STEM CELLS AND EPITHELIAL CELL HIERARCHY 

The discovery that tissues in higher organisms are not only heterogeneous but composed of a 

cellular hierarchy has brought up numerous new insights into both how the organism functions as 

well as how diseases occur within them. Therefore, a concept of stem cells has provided new means to 

address many developmental questions. 

The mammary gland is a highly dynamic organ, undergoing constant remodeling after birth. Its 

complex development can be explained through the concept of the “adult stem cell”, explaining how 

different cell types emerge throughout all the developmental stages. This concept has been argued by a 

concept of stem cell plasticity insisting on the fact that bipotent cells are present only during 

embryonic development. Postnatally in physiological conditions only luminally and basally restricted 

progenitors are present which will give rise to luminal and basal cell types (Van Keymeulen et al. 

2011). 

The current model suggests that from mammary stem cells differentiation can undergo either 

myoepithelial or luminal path. The myoepithelial path to fully differentiated myoepithelial cell goes 

from the stem cell through the putative basally located stem cell and myoepithelial restricted 

progenitor, both of unknown phenotype, to the myoepithelial cell (CD29hiCD49fhiCD24loEpCAMlo/med). 

The luminal path is more complex containing more final products. From a putative stem cells 

differentiation process arises a putative common luminal progenitor of unknown phenotype that can 

give a ductal (CD49f+CD29loCD24+/hiEpCAMhiCD61+c-Kit+Sca-1+CD49b+CD14+) and alveolar progenitor 

(CD49f+CD29loCD24+/hiEpCAMhiCD61+c-Kit+Sca-1-CD49b+CD14+Aldh1+). The ductal progenitor will give 

rise to the fully differentiated luminal cell either ER+ or ER-. Alveolar progenitors can be characterized 

as c-Kithi early or c-Kitlo late and they will give rise to fully differentiated alveolar cells which are ER-. 

Although single cells assays are more often used, serial transplantation, considered to be a 

“golden standard” in mammary stem cell research (reviewed by Visvader and Stingl 2014), was 

published for the first time in 1968 (Daniel et al., 1968). However, the stem cell enriched population 

has not been successfully isolated until recently. Two publications showed that the expression of CD24 

(Heat stable antigen) and integrin α6 (CD49f) or β1 (CD29) can be used to enrich mammary stem cells. 

Furthermore, a single cell from stem cell enriched population defined as CD24loCD49fhi (Stingl et al., 

2006) or CD24loCD29hi (Shackleton et al., 2006) can regenerate the complete mammary ductal system 

in the cleared fat pad. 

The luminal compartment is thought to elicit higher complexity in terms of cellular hierarchy, 

where multiple distinct subsets have been identified at morphological and functional levels. Various 

cell surface markers have recently been used to discriminate luminal progenitors from differentiated 

luminal cells: CD61 (Asselin Labat et al., 2007), CD49b (Shehata et al., 2012), CD14 (Asselin Labat et al., 

2011, Shehata et al., 2012) and c-Kit (Asselin Labat et al., 2011, Regan et al., 2012). Some of these 
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markers, such as CD14 and CD49b, are expressed by all luminal progenitors while others (CD61 and c-

Kit) are expressed in more restrictive pattern. CD61 and c-Kit expression markers are mouse strain 

dependent and can be used for FVB/N strain of mice (Asselin Labat et al., 2011, Regan et al., 2012) but 

not for mice of C57Bl6/J origin (Shehata et al., 2012). Furthermore, CD61 marks a population of 

progenitors comprising a large subset of HR- and smaller subset of HR+ cells but only in non-pregnant 

mice since it is down-regulated during pregnancy (Asselin Labat et al., 2007). Hormone receptor 

positive luminal cells are successfully enriched with Sca1 marker and show a high expression of ER, K8 

and K18. Aldehyde dehydrogenase isoform 1 (Aldh1) has been reported to mark human stem cells in 

the human breast (Ginestier et al., 2007), but recently it has also been used in mouse cells (Shehata et 

al., 2012).  

 

Figure 8. Model of the mammary epithelial hierarchy. A multipotent mammary stem cell gives rise to basally 
and luminally restricted stem cell. The luminally restricted stem cell can give rise to a ductal lineage through a 
ductal progenitor, or alveolar lineage through alveolar progenitor. The basally restricted stem cell gives rise to 
myoepithelial cells through the myoepithelial progenitor. Characteristic markers used for isolation of epithelial cell 
subsets are summarized next to each cell type. Illustration based on Visvader and Stingl, 2014. 

Different combinations of these markers can reveal a subpopulation of cells with distinct 

characteristics. CD49b+CD14+Sca1-Aldh1+ has been shown to be enriched for undifferentiated colony-

forming cells suggesting their regenerative potential (Shehata et al., 2012). This population can be 

further divided based on the marker c-Kit where c-Kithi subset would correspond to more primitive 

alveolar progenitors. Progenitor cells mostly show HR- phenotype, however , a rare ER+ population of 



30 
  

progenitor cells was detected in adult mice expressing CD49b+c-Kit+Sca-1+ combination of surface 

markers (Regan et al., 2012, Shehata et al., 2012). On the other hand a non-clonogenic population that 

corresponds to mature luminal cells was defined by CD49b- c-Kit- Sca-1+ phenotype. 

Recent studies provided evidence for such a hierarchical model. However, precise genetic 

mechanisms that regulate stem/progenitor differentiation and lineage commitment during mammary 

gland development are incompletely understood. Yet, a number of factors have been implicated. 

DIFFERENTIATION OF MAMMARY EPITHELIAL CELLS 

GATA binding protein 3 (GATA-3) is a transcription factor that has been shown to promote 

differentiation of lineage-restricted progenitor cells. Loss of GATA-3 factor blocks luminal progenitor 

cell differentiation and leads to expansion of undifferentiated luminal cells (Kouros-Mehr et al., 2006, 

Asselin-Labat et al., 2007, Asselin-Labat., 2011).  

E74 like factor 5 (Elf-5) is a transcription factor and a component of the prolactin signaling 

pathway that has recently been proposed to play a key role in alveolar cell-fate specification (Oakes et 

al., 2008). Elf-5 is required to establish the secretory alveolar lineage during pregnancy (Zhou et al., 

2005). 

Recently, promyelocytic leukemia protein (PML) has emerged as a factor possibly involved in 

chromatin remodeling during lineage commitment in the mammary gland. Furthermore, its 

interaction with STATs and relative concentration of STAT/PML complexes has been proposed to 

drive cell-fate (Li et al., 2009).  

Notch signaling is also implicated in cell-fate determination and commitment. Its physiological 

role in the mammary gland is still controversial; literature suggests different functions of its activity.  

NOTCH SIGNALING 

DISCOVERY OF NOTCH SIGNALING AND ITS IMPLICATIONS IN DEVELOPMENT 

Notch was first discovered by Thomas Hunt Morgan and his colleagues in a strain of Drosophila 

melanogaster when they noticed notches at the margins of the wing blades (Morgan et al., 1917). They 

noticed that this Notch phenotype was inherited in a Mendelian fashion. However, the significance of 

the pathway in development was described later in the classical embryonic analysis of lethal 

homozygous loss-of-function mutations (Poulson et al., 1937). Poulson showed that loss of section 

within the X-chromosome resulted in abrogation of segregation of the early ectoderm into neural and 

epidermal cell lineages and the consequence of this was “neurogenic” phenotype where neural tissue 

was hypertrophic at the expense of epidermal structures. Notch locus was cloned in 1983 which has 

been a starting point of several genetic and molecular interaction studies which proved that mutated 
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Notch locus was, indeed, cause of the neurogenic phenotype. Several studies followed identifying the 

product of the Drosophila Notch gene as a single-pass type 1 transmembrane receptor (Wharton et al., 

1985, Kidd et al., 1986, Artavanis-Tsakonas et al., 1983). Further to this it was revealed that Notch 

signaling played an important part in various developmental processes in Drosophila melanogaster, 

such as bristle formation (Heitzler et al., 1991), maintenance of muscular founder cell (Bate et al., 

1993) and regulation of cell-fate decision of stem cells in the intestines (Ohlstein and Spradling, 2007). 

Since it has been discovered in Drosophila, Notch signaling has been shown to play an important role 

in a wide variety of cellular processes, such as cell proliferation, apoptosis, maintenance of stem cells, 

and specification of cell fates in all metazoan organisms.  

Further to this, Notch signaling was reported as an important factor in binary cell-fate 

decisions via lateral or inductive signaling which could explain the neurogenic phenotype, previously 

observed (Poulson et al., 1937). Here, Notch signaling operates in a population of equipotent cells with 

the capacity to differentiate into neural precursors or epidermal cells. In this population cells will 

express either Notch ligand or receptor, exclusively. Ligand expressing cells acquire a neuron 

progenitor fate and send inhibitory signals to the receptor expressing cells, directing them into 

different developmental pathways (reviewed in Bolos et al., 2007). In the neurogenic phenotype, 

ligand expressing neuron progenitor cells predominate as they lack functional Notch receptor.  

Developmental studies of the murine central nervous system (CNS) unveiled Notch’s signaling 

influence on the equilibrium between the progenitor cell pool and differentiated progeny (Lutolf et al., 

2002, Yang et al., 2004, Yoon et al., 2004, Yun et al., 2002, Hitoshi et al., 2002, Ohtsuka et al., 1999). 

These studies revealed that Notch signaling is an important player in the maintenance of the neural 

progenitor pool by abrogating premature neuron differentiation and by triggering proliferation and 

apoptosis among neural progenitor cells.  

Notch signaling has been implicated in regulation of several other developmental processes in 

mammals, including cardiovascular and mammary gland development. In cardiovascular development, 

Notch signaling is indispensable to establish arterial endothelial specification (Krebs et al., 2004, 

Duarte et al., 2004, Wang et al., 1998), mediate angiogenesis (Krebs et al., 2000), and regulate proper 

vascular remodeling (Timmerman et al., 2004, Lincoln et al., 2004). Communication between the 

endocardial and myocardial layers to from the valves and ventricles is mediated by Notch signaling 

(Grego Bessa et al., 2007, Jenni et al., 2001). 

In the mammary gland Notch has been implicated in mammary stem cells renewal (Dontu et 

al., 2003, Dontu et al., 2004) and contrarily, promotion of the expansion of the luminal progenitor 

populations (Bouras et al., 2008). This topic will be addressed in more details in further reading. 
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NOTCH RECEPTORS 

In mammals, the Notch receptor family consists of four homologs (Notch1-4) with a highly 

conserved structure, which display both redundant and unique functions. Extracellular domain 

(NECD) consists of 29-36 epidermal growth factor (EGF)-like repeats responsible for ligand binding 

(Uyttendaele et al., 1996), followed by 3 negative regulatory LIN repeats. LIN repeats contain 

Ca2+binding sites which are important for heterodimerization (Rand et al., 2000) and prevention of 

signaling in the absence of ligand. The hydrophobic C’ terminal region of NECS binds to the N’-terminal 

region of the transmembrane subunit (NTMS) which contains a pair of conserved cysteine residues 

which putatively assist in the formation of a non-covalent bond sensitive to reducing conditions 

responsible for heterodimerization of the receptor (Blaumueller et al., 1997). 

 

Figure 9. Mammalian Notch ligands and receptors. 5 Notch ligands (on the left) are known in mammals: Delta-
like1 (Dll1), Delta-like3 (Dll3), Delta-like4 (Dll4), Jagged1 (Jag1) and Jagged2 (Jag2). All the ligands have a DSL 
(Delta, Serrate, and Lag2) domain responsible for binding to receptors, followed by EGF repeats. There are 4 Notch 
receptors (on the right): Notch1 to Notch4. Extracellular domain has 3 negative regulatory LIN repeats and 
variable number of EGF repeats. Intracellular part comprises RAM domain, nuclear localization signal (NLS), 
ankyrin repeats (ANK) and PEST domain regulating protein stability. Adapted from Lobry et al., 2014.  

The cytoplasmic portion of the receptor (NICD) contains, sequentially, a RBP-Jκ-associated 

module (RAM) domain, seven tandem copies of CDC10/ankyrin repeats that are flanked by nuclear 

localization signals, and a C’-terminal proline-glutamine-serine-threonine (PEST) sequence involved in 

ubiquitination and receptor turnover and protein stability. Notch1 and Notch2 receptors have a 

transactivation domain just before PEST domain, however it is absent in the Notch3 and Notch4 

influencing promoter selectivity at least in vitro (Ong et al., 2006). Experimental evidence indicates 

that a high-affinity interaction between NICD and Recombination signali binding protein for 

immunoglobulin kappa J region (RBP-Jκ) occurs through the ankyrin repeats which are essential for 

the formation of the transcriptional activation complex (Zweifel et al., 2003).  

POSTTRANSLATIONAL MODIFICATION OF NOTCH RECEPTORS 

Notch receptors are synthesized as single precursor proteins in the endoplasmic reticulum. 

Notch receptors are cleaved by a furin-like convertase at the S1 site (Logeat et al., 1998) in the trans-
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Golgi network to give two subunits: the N’-terminal subunit contains most of NECD, and the C’-

terminal subunit comprises approximately 70 amino acids of NECD domain, NTMS and NICD. The two 

Notch subunits are then transported to the membrane where they associate through a Ca2+-

dependent, non-covalent bond   (Rand et al., 2000). 

Drosophila studies showed that in the Golgi apparatus, Notch receptors undergo various 

posttranslational modifications that play an important role in modulating receptor-ligand interactions. 

Extracellular EGF-like repeats are fucosylated by protein O-fucosyltransferase 1 (Pofut1 in mammals), 

followed by subsequent modifications by Fringe proteins (Panin et al., 1997).  

In mammals, the Fringe family comprises three N-acetylglucosaminyl transferases, lunatic 

fringe, radical fringe and manic fringe. They glycosylate Notch receptors in order to potentiate their 

activation by DSL ligands. Contrarily, they act antagonistically on Jagged ligands due to the specific 

pulling mechanism of activation explained in detail later (Yang et al., 2005). 

NOTCH LIGANDS 

There are five Notch ligands in mammals: Delta-like-1, -3 and -4 (Dll1, Dll3 and Dll4) and 

Jagged1 and Jagged2 (Jag1 and Jag2). Notch ligands are also membrane tethered proteins (Mumm and 

Kopan, 2000) with an extracellular region that comprises a DSL (Delta/Serrate/Lag-2) motif involved 

in receptor binding and an altering number of EGF-like repeats followed by a transmembrane region 

and a short intracellular cytoplasmic part (ICL). Proximally to the trans-membrane segment, Jagged 

ligands additionally have a cysteine-rich region which controls Notch receptor binding specificity, and 

a von Willebrand factor (vWF) motif involved in ligand oligomerization (Fleming et al., 1998).  

The intracellular regions of Jag1, Dll1, and Dll4, but not Jag2 and Dll3, are predicted to contain 

PDZ binding motifs that could independently couple the ligands to PDZ-containing, membrane-

associated molecules that might play a role in the cell-cell junctions organization (Pintar et al., 2007). 

The role of ICL domain of Notch ligands is poorly investigated. However, it is known that it is highly 

important for ligand-mediated Notch signaling. In fact, truncated ligands lacking the ICL part of ligand 

showed dominant-negative effects on Notch signaling (Sun and Artavanis-Tsakonas, 1996). 

BASIC MECHANISM OF NOTCH SIGNALING PATHWAYS 

Unlike most of the signaling pathways, Notch signaling does not have any enzymatic 

amplification steps and therefore Notch receptor by itself is directly involved in the transduction of the 

signal from membrane to the nucleus. 
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ACTIVATION OF NOTCH 

When ligand is not bound, Notch receptors are present at the cell surface as heterodimers 

(Blaumueller et al., 1997). A small motif between LIN repeats and transmembrane region is preventing 

receptors from spontaneous activation of the pathway (Kimble et al., 1998). 

Upon recognition on an adjacent cell and due to the pulling force caused by internalization of 

the bound ligand, the Notch receptor undergoes a conformational change that disrupts its 

heterodimeric structure and the exposure of the proteolytic cleavage site, S2. Cleavage at S2 is 

mediated by the metalloprotease ADAM10 (Brou et al., 2000) in human and Kuzbanian in Drosophila 

(Lieber et al., 2001). The released extracellular portion of the receptor is then trans-endocytosed by 

the ligand-expressing cell (Parks et al., 2000).  

ADAM17 has also been reported to cleave Notch to facilitate NICD release by γ-secretase. 

However, it has been shown that ADAM 17 is the main effector of the S2 cleavage site only if the Notch 

receptor is destabilized in a ligand independent fashion by mutation or addition of the reducing agent 

such as EDTA (Bozkulak and Weinmaster, 2009, van Tetering et al., 2009).    

 

Figure 10. Notch signaling activation. Interaction between ligand and receptor triggers 2 consecutive proteolytic 
cleavages resulting in release of receptors intracellular domain and its translocation to the nucleus where, together 
with coactivator MAML, it activates transcription of target genes through transcription factor RBP-Jκ. Activating 
complex is short-lived as the PEST domain gets phosphorylated, ubiquitinated and subsequently degraded by 
proteasome. Adapted from Lobry et al., 2014.  

In the receptor expressing cell, consequence of this cleavage is the cleavage within the 

transmembrane region, catalyzed by a complex of Presenilin-1/2, nicastrin, anterior pharynx-defective 
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1 (Aph1) and presenilin enhancer protein-2, PEN2 protein complex called γ-secretase, which releases 

NICD from the membrane and allowing it to translocate into the nucleus (Saxena et al., 2001). 

Monoubiquitination and clathrin-dependent endocytosis of Notch predispose for cleavage by γ-

secretase, probably because ubiquitination targets Notch to a compartment where it can be activated 

(Gupta-Rossi et al., 2004). At the same time, internalization of the ligand and trans-endocytosis of the 

NECD by the ligand-expressing cell are required for effective Notch activation (Itoh et al., 2003). Upon 

endocytosis a mechanical pulling force is created on the receptor, which can either cause a 

conformational change and expose the juxta membrane region of the receptor to S3 cleavage, or 

physically dissociate the Notch heterodimer therefore directly promoting activation (Nichols et al., 

2007). Hence, it is crucial to understand the mechanism of ligand-NECD endocytosis as a putative 

target to inhibit Notch signaling. In flies and vertebrates, Neuralized and Mindbomb, E3-ubiquitin 

ligases are key components which mediate ubiquitination of the Notch ligands (Song et al., 2006). 

RBP-JΚ -DEPENDENT TRANSCRIPTIONAL ACTIVITY 

The main feature of canonical Notch signaling is the transactivation of target genes through the 

conversion of RBP-Jκ (RBP-Jκ is a mouse homolog of CSL protein: CSL stands for CBF1 in mammals, 

Su(H) in Drosophila, and Lag-1 in C.Elegans) from a transcriptional repressor state to an activator 

state. RBP-Jκ is a constitutively expressed transcription factor that can recognize a consensus DNA 

sequence 5’-TGGGAA-3’ (Brou et al., 1994). When NICD is absent from the nucleus, RBP-Jκ binds to 

promoter of the target genes forming a repressive complex with co-repressors nuclear receptor co-

repressor (NCoR), SMART/HDAC1 associated repressor protein (SHARP) and Ski-interacting protein 

(SKIP), histone deacetylases by function (Oswald et al., 2002). Upon translocation to the nucleus, NICD 

competes with the co-repressors for RBP-Jκ, interaction firstly through RAM domain (Nam et al., 2006) 

and later associating with CDC10/ankyrin repeats. Further to association to ankyrin, NICD forms a 

ternary complex with Mastermind-like (MAML-1, -2, -3) that is directly in interaction with NICD (Wu 

and Griffin, 2004). MAML recruits acetyltransferases CREB-binding protein (CBP)/p300 (Oswald et al., 

2001; Wallberg et al., 2002) or p300/CBP associated factor (PCAF)/GCN5 (Kurooka and Honjo, 2000) 

responsible for altering the structure of chromatin making it susceptible for transcription. 

RBP-JΚ -INDEPENDENT SIGNALING  

All 4 Notch receptors exert their function through RBP-Jκ; however, a non-canonical signaling 

independent of RBP-Jκ has been reported in multiple contexts. Among examples there is interaction of 

NICD with NF-κB in B-cells (Shin et al., 2006), β-catenin (Hayward et al., 2005), and hypoxia-induced 

factor-1α (HIF-1α) (Zheng et al., 2008). It can also act through Deltex, a RING finger E3 ligase which is 

also canonical Notch target. It can, bound to NICD (Fuwa et al., 2006), mediate (Yamamoto et al., 2001) 

and inhibit (Izon et al., 2002) Notch signaling, depending on context.  
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Notch intracellular domain can also activate LEF1 transcription factor. However, LEF-1 is likely 

to be activated only in those cells where NICD levels are high (with transfection experiments or 

transduced cell lines in vitro). However, hi nuclear localization of NICD has been found in nuclei of 

various cell types, including cortical neurons and certain cancers, leaving a possibility that in these 

cells LEF1 is activated by non-canonical Notch signaling. 

TERMINATION OF NOTCH SIGNAL  

Several E3 ubiquitin ligases control Notch signaling by different negative regulatory 

mechanisms: F-box/WD repeat domain-comtaining protein 7 (Fbw7)/Sel10, promotes PEST-

dependent NICD degradation in the nucleus; E3 ubiquitin-protein ligase Itchy homolog (Itch), 

regulates PEST-independent degradation of cytoplasmic Notch proteins; and Deltex (Lai et al., 2002). 

MAML, a Notch coactivator, can trigger proteasome degradation by recruiting Cyclin dependent kinase 

8 (CDK8), which in turn is responsible for phosphorylation of activated nuclear Notch within the PEST 

domain that leads to recognition by Fbw7/Sel-10 and subsequent degradation (Fryer et al., 2004). 

Itch can also negatively regulate cytoplasmic Notch by promoting NICD ubiquitination and 

endocytosis in cooperation with cytoplasmic protein Numb (McGill et al., 2009; McGill and McGlade, 

2003). Numb, when overexpressed, antagonizes NICD activity by sorting of Notch1 through the late 

endosomes to lysosomes where it is degraded and its absence facilitates recycling of Notch1. 

Therefore it is suggested to be a regulator of Notch trafficking and degradation in a post-endocytic 

compartment (McGill et al., 2009). 

Deltex, a transcriptional target of Notch, is a RING-finger E3 ligase. It leads Notch to 

ubiquitination by forming a ternary complex with Notch and β-arrestin homolog Kurz (Mukherjee et 

al., 2005). Deltex has also been shown to mediate Notch signaling. However, it is still not known what 

determines which function it will perform.   

TARGET GENES 

HES AND HEY 

Hes and Hey genes are the primary targets of RBP-Jκ-dependent Notch signaling. Ubiquitously 

expressed, they are mammalian homologs of the hairy and enhancer-of-split (Hes) genes and hairy-

related transcription factors (Iso et al., 2003). Out of seven Hes genes, Notch directly induces Hes1, 

Hes5 and Hes7 (Bessho et al., 2001; Ohtsuka et al., 1999). Hes family members have distinct patterns 

of expression in mice; Hes1 and Hes2 are expressed in various embryonic and adult tissues; Hes3 is 

expressed solely by cerebellar Purkinje cells; Hes5 is characteristic for nervous system; Hes6 regulates 

development of limbs in embryos. 

Hey genes in mammals (Hey1, Hey2 and HeyL) are also direct targets of Notch signaling. They 

encode a subclass of hairy-related bHLH transcription factors (Maier and Gessler, 2000). They are 
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dynamically expressed throughout mouse development, specifically in processes as somitogenesis, 

neurogenesis, and cardiovascular development (Leimeister et al., 1999; Leimeister et al., 2000). Loss 

of Hey2 or Hey1/L combination is lethal causing a congenital disorder in the heart leading to cardiac 

failure shortly after birth (Fischer et al., 2007; Gessler et al., 2002). 

OTHER GENES 

Notch signaling is additionally inducing cell cycle regulatory genes (Myc, Cyclin D1 and p21) in 

a cell-type and context specific manner. 

Cyclin D1 has been shown to be a Notch1 and Notch3 target in a triple-negative tumor cell line 

(Cohen et al., 2010) and to mediate the development of Notch1-induced mammary tumors (Ling et al., 

2010).  

NOTCH IN HUMAN CANCERS 

Notch signaling has been implicated in several human cancers. Whether its ligands or 

receptors are deregulated it has shown an oncogenic role in numerous solid tumors: colorectal, renal, 

lung, pancreatic, endometrial cervical, mesothelioma, melanoma, prostate cancers, ovarian, 

osteosarcomas, gliomas and medulloblastomas (reviewed in Ranganathan et al., 2011). 

Contrarily, a tumor suppressor function of Notch has been observed in several studies, firstly 

in skin (Rangarajan et al., 2001) and later in head and neck squamous cancers (Agrawal et al., 2011; 

Stransky et al., 2011) and in a subset of leukemias (Klinakis et al., 2011).  

ONCOGENIC NOTCH SIGNALING 

Altered Notch1 expression has been shown to cause a development of T-cell acute 

lymphoblastic leukemia (T-ALL) in humans (Ellisen et al., 1991; Pear and Aster, 2004). 56% of all T-

ALL cases contained an activating Notch mutation. However less than 1% had the chromosomal 

translocation t(7:9)(q34;q34.3) which gives a constitutively active truncated form of the receptor 

thanks to which Notch 1 was discovered (Weng et al., 2004). 

TUMOR SUPPRESSIVE NOTCH SIGNALING 

NOTCH IN SKIN CANCER 

Although considered oncogene, Notch1 has a tumor suppressor role in the epidermis. It 

prevents cell proliferation and differentiation in primary mouse keratinocytes by inducing 

p21WAF1/Cip1 expression, and deregulating expression of several differentiation markers 

(Rangarajan et al., 2001). Importantly, mice with a skin-specific ablation of Notch1 developed 

hyperplasia and had corneal epithelial proliferation, and eventually developed spontaneous basal cell 

carcinoma-like tumors. Notch1 deficiency also facilitated chemical-induced carcinogenesis in these 
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mice (Nicolas et al., 2003). Activated Notch was also shown to be important for in vitro maturation of 

human epidermis (Nickoloff et al., 2002). 

Notch does behave differently in keratinocytes from other cell types, but it is unclear why. 

Possible explanation might lay in a dose-dependent action of Notch shown in the cervical cancer 

where moderate expression of activated Notch1 receptor caused transformation of cells and growth in 

soft agar, while high overexpression led the cells to growth arrest (Lathion et al., 2003). Applied to the 

skin, lower activation might be responsible for the transformation of keratinocytes together with other 

oncogenes, while higher levels would cause growth arrest by inducing a different transcriptional 

program involving p21 WAF1/Cip1. 

NOTCH IN HEAD AND NECK SQUAMOUS CELL CARCINOMAS (HNSCC) 

Head and neck squamous carcinoma is another example where Notch showed a tumor 

suppressive role.  Notch1 is the second most mutated gene after p53 in these tumors, frequently both 

alleles are inactivated (Agrawal et al., 2011). Other genes involved in the keratinocytes differentiation 

were also reported mutated, such as Notch2, Notch3, and p63 (Stransky et al., 2011). 

NOTCH IN CHRONIC MYELOMONOCYTIC LEUKEMIA (CMML) 

Recently, it has been shown that several genes involved in signaling were targets of somatic 

inactivating mutations in myeloid leukemia, including nicastrin, MAML1 and Notch2. This supported 

the observation that inactivation of Notch signaling in mouse hematopoietic stem cells indeed induces 

a CMML-like disease (Klinakis et al., 2011). 

NOTCH IN MAMMARY GLAND 

NOTCH IN MAMMARY GLAND DEVELOPMENT 

Role of Notch signaling in mammary gland has long been a subject of research since a Notch4 

receptor was identified as an insertion site 3 (int3) of the mouse mammary tumor virus causing the 

development of mammary adenocarcinomas. However, different possible roles emerged from studies 

depending on whether they were performed in human or mouse tissue, in vivo or in vitro. 

Notch activity in the mouse mammary gland was examined in two different Notch reporter 

mice (Yalcin Ozuysal et al., 2010, Lafkas et al., 2013); transgenic Notch reporter (TNR) mouse 

expressing EGFP downstream of SV40 promoter containing RBP-Jκ responsive element containing 4 

tandem copies of RBP-Jκ binding sites, generated by N. Gaiano (Mizutani et al., 2007) and Hes1 

reporter where EGFP gene was knocked-in downstream of endogenous Hes1 promoter (Fre et al., 

2011) 

From previous studies it is known that TNR mice show EGFP signal during puberty, the 

estrogen-driven part of a gland development. Signal was the highest in TEBs but also present in the 
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subtending duct. After puberty, GFP signal in mammary gland of the TNR mice was not detectable 

(Yalcin Ozuysal et al., 2010). 

Hes1-EGFP mouse model showed Notch activity in ≈52% of the luminal and ≈4% of the 

myoepithelial cells, but also a stronger signal than the TNR mouse model (Šale et al., 2012). Reason for 

this discrepancy can be looked for in the fact that TNR promoter is artificial and therefore can show 

lower activity than the HES1 promoter which is one of the most prominent Notch target genes. Also, a 

higher number of cells and stronger expression of GFP might cause higher residual signal since half-

life of GFP protein is ≈26 hours (Corish and Tyler-Smith, 1999). 

Extensive study of putative mammary stem cells led to the discovery of the a sub-population of 

mouse mammary epithelial cells defined by its ability to efflux the dye Hoechst 33342 and called the 

side population (Goodell et al., 1997, Welm et al., 2002). Study by Clarke and colleagues showed that 

side population cells are able to form branching epithelial structures in 3D culture and are 30-fold 

enriched for mammosphere formation in suspension culture which is predicted to be a measure of 

stem cell self-renewal activity (Dontu et al., 2003). They also showed that these cells are enriched in 

ER and express Notch positive regulator Musashi1 (Msi1), suggesting active Notch signaling in the 

putative stem cell population but also in ER+ background (Clarke et al., 2004). 

In human breast, Notch has been linked to self-renewal of human mammary stem cells (MaSCs) 

in the study by Dontu et al. where the link was assessed by mammosphere assay, an in vitro culture 

system that enriches for MaSCs based on their capability to proliferate in suspension as spherical 

cultures (Dontu et al., 2003). They showed that activated Notch signaling significantly enhances 

human mammosphere formation while abrogation of Notch via Notch4 antibody inhibits them. This 

suggested that activation of Notch via Notch4 receptor promotes MaSC self-renewal (Dontu et al., 

2003, Dontu et al., 2004). Also, it has been shown that mammospheres have increased expression of 

Notch3 and Notch4. In an independent study Notch3 was additionally implicated in self-renewal and 

hypoxia survival in mammospheres (Sansone et al., 2007).   

In the mouse mammary gland, early studies suggested that Notch suppresses ductal elongation 

and branching, as well as promotes development and differentiation of alveoli (Uyttendeale et al., 

1998, Soriano et al., 2000, Smith et al., 1995).   

Bouras et al. looked at the effect of Notch signaling MaSC in mouse (CD24loCD29hi (Shackleton 

et al., 2006)). In a short-term in vitro culture system, MaSC cells were genetically manipulated to 

overexpress activated NICD1 and engrafted into the mammary fat pad to observe repopulation 

potential. Results showed a formation of aberrant epithelial nodules that lack normal architecture and 

ability to differentiate into milk producing cells during pregnancy.  Therefore, they proposed that 

constitutive Notch signaling promotes commitment of MaSCs to the luminal lineage but maintains 

these cells in an undifferentiated state. Given that Notch1 expression appears to be restricted to the 
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luminal populations, it is possible that this receptor is the primary mediator of luminal cell 

commitment in vivo (Bouras et al., 2008).  

Transcriptome analysis of sorted populations from human mammary glands revealed 

differences in expression of particular Notch components, in particular cell types. Notch4 gene 

expression was highest in undifferentiated human clonogenic mammary progenitors and was then 

significantly down regulated when these cells became committed to the luminal lineage. Opposite 

pattern has been shown for Notch3 and to a lesser extent Notch1 and Notch2. Furthermore, blocking 

of Notch signaling in bipotent progenitors selectively prevented them from generating mature luminal 

progeny without affecting their ability to proliferate and generate mature myoepithelial cells, 

confirming that Notch activation can directly stimulate luminal cell fate specification (Raouf et al., 

2008). Interestingly, the mammary gland appeared grossly normal in Notch3 and Notch4 knockout 

mice, suggesting that Notch1 and Notch2, or multiple Notch genes function redundantly to control cell 

fate specification, proliferation, and differentiation in this tissue (Raafat et al., 2010). 

Targeted disruption of Notch expression or Notch signaling in the mouse mammary gland 

during pregnancy has also revealed that Notch signaling regulates alveolar cell maintenance (Buono et 

al., 2006, Raafat et al., 2009). As mentioned before, Elf-5 has been shown to play an important role in 

alveologenesis since. Elf-5 knockout mice exhibit complete failure of the alveologenesis (Zhou et al., 

2005, Oakes et al., 2008) and biochemical study suggested that loss of Elf-5 leads to hyperactivation of 

the Notch signaling pathway, explaining in part the underlying molecular mechanism for the altered 

cell lineage decisions in Elf-5-null mammary epithelial cells.  

NOTCH IN BREAST CANCER 

NOTCH IN MOUSE MAMMARY TUMOR MODELS 

Notch1 and Notch4 were originally identified through mouse mammary tumor virus insertion 

mutagenesis, as inserts that, constitutively active, cause development of mammary tumors. Further to 

this, several transgenic mouse models were generated to study the influence of Notch on the 

mammary gland tumorigenesis. 

MMTV/Notch4IC and WAP/Notch4IC Models 

Mouse transgenic model in which Notch4 was expressed via MMTV long termina repeats (LTR) 

or by the whey acidic protein (WAP) gene promoter was generated by Callahan and colleagues 

(Gallahan et al., 1996; Jhappan et al., 1992). MMTV/Notch4IC virgin mice showed hindered ductal 

growth while pregnant ones showed suppression of lobular development and lactation.  
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WAP/Notch4IC virgin mice developed normally, since WAP promoter is active only in 

secretory mammary epithelium (Burdon et al., 1991). Therefore, the lobular development and 

lactation in these mice was impaired.  

Both models developed mammary adenocarcinomas that were poorly differentiated with 

100% penetrance and lung metastasis in 100% of parous and ≈50% of virgin tumor bearing females 

(Gallahan et al., 1996). 

MMTV/hNotch1IC (human) Model 

Virgin mice bearing human NICD1 driven by MMTV LTR develop different mammary 

hyperplasia however DCIS was observed very rarely (Kiaris et al., 2004). Pregnant mice developed 

lactation dependent papillary tumors. These tumors were not invasive and also regressed with 

involution process, however tumors appeared in subsequent pregnancies were invasive and did not 

regress (Kiaris et al., 2004). To explain this, Efstratiadis suggested in his review the cause of regressing 

tumor might be accumulation of milk in the extralobular ducts obstructed by development of 

neoplasms (reviewed by Efstratiadis et al., 2007). 

MMTV/Notch1ICD and MMTV/Notch3ICD Models 

A mouse with Notch1ICD overexpressed by MMTV LTR (Hu et al., 2006) suffered from ductal 

hyperplasia and had impaired lobuloalveolar development as well as lactation impairment. 

Furthermore, mice developed invasive tumors at 7 to 10 months of age. 

In the same laboratory, a mouse overexpressing Notch3ICD by MMTV LTR was developed. I 

exhibited similar phenotype and developed tumor with 9 months latency (Hu et al., 2006) 

Tumor types in both mouse models were diverse and represented the full spectrum of 

differentiation from hyperplasia, in situ ductal carcinoma, glandular adenocarcinoma, to poorly 

differentiated adenocarcinoma. Their long latency and stochastic formation suggested that NICD1 and 

NICD3 overexpression is not sufficient to promote transformation and requires the action of other 

oncogenes or the inactivation of tumor suppressor genes. 

RBP-Jκ Knockout Model 

RBP-Jκ knock-out model was examined by different groups in different conditions. Buono et al. 

examined straight RBP-Jκ knock-out model concluding that there is no effect on the mammary gland 

during virginity, but in pregnancy, mammary epithelium thickens losing the luminal layer of cells and 

obtaining several layers of p63 positive basal cells (Buono et al. 2006). Analysis of the conditionally 

deleted RBP-Jκ via MMTV-Cre where deleted cells were followed by the expression of the EGFP 

reporter of Cre activity showed that during puberty and virgin adult stage epithelium overtly looks 

normal. However, its cellular composition is severely affected. Only myoepithelial cells with deletion 
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are able to stay in the epithelium, while luminal layer is repopulated with wild type cells (Yalcin 

Ozuysal et al., 2011) 

Rafaat et al crossed RBP-Jκ conditional knockout model with WAP/Int3 mouse. Their data 

suggests that deletion of RBP-Jκ has little or no effect to WAP/Int3 tumorigenesis since the only effect 

was a slightly longer latency. The longer latency of primary and secondary tumor development in the 

Wap-Int3/Rbpj knockout mice could be due to the fact that these glands fully develop and are more 

differentiated than the Wap-Int3/Rbpj control mammary glands. They have also shown that sh-RNA 

mediated knockdown of RBP-Jκ in Hc11-Int3 did not affect their growth in soft agar, confirming the 

previous in vivo results (Raafat et al., 2007). 

NOTCH IN BREAST CANCER CLINICAL STUDIES 

Generally, oncogenic activity of Notch in breast can be exerted either by overexpression of 

ligands and/or receptors, or by loss of negative regulator Numb while chromosomal aberrations 

involving Notch components in breast tumorigenesis have been rarely found. 

Chromosomal Aberrations 

Until recently, chromosomal translocations involving Notch were not identified in breast 

cancer except a single occurrence containing Notch2 locus. In a study involving 48 breast cancer 

samples Notch2 receptor was truncated due to the nonsense mutation in a PEST domain. Truncation 

was suggested to enhance Notch2 signaling (Lee et al., 2007). Robinson and colleagues reported a 

number of fusion gene transcripts caused by chromosomal rearrangements that they found in a panel 

of breast cancer cell lines and tumors. By transcriptome sequencing they identified 384 fusion proteins 

from 87 different cancers. Only 24 genes were found to be recurrent fusion partners and among them 

most often were members of the Notch family genes and microtubule associated serine-threonine 

kinase (MAST) family (Robinson et al., 2011). 

Aberrant expression of Notch ligands and/or receptors 

Overexpression of Notch receptors and/or ligands is the most often way in which Notch 

signaling is involved in the breast carcinogenesis. 

Reedijk et al. examined levels of RNA in 50 breast cancer samples and found that high 

expression of Jag1, Notch1 or Notch3 correlated with increased mortality at 10 years. Additionally, 

they examined 192 patient samples to see how 5-years survival is correlated with the expression of 

ligands and receptors showing that higher expression of Jag1, Notch1 and Notch3 correlated with 

lower survival (Reedijk et al., 2005). The same group performed a study on 887 breast cancers which 

were lymph node negative to show that Jag1 expression was associated with reduced disease-free 

survival and basal breast cancer markers (Reedijk et al., 2008). 
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A study by Parr et al showed that Notch 1 and Notch2, when overexpressed could have 

different effects, meaning that Notch1 overexpression was associated with less differentiated cancers 

with poor prognosis while Notch2 expression correlated with good outcome suggesting a tumor 

suppressive role (Parr et al., 2004). Further studies supported this showing that ectopically expressed 

Notch2 in breast cancer cells induced apoptosis and inhibited growth (O'Neill et al., 2007) while 

Notch1 shown to be activated in a cohort of 9 patients with basal breast cancer (Lee et al., 2008b). 

Moreover, Notch 1 mRNA expression segregated with the basal cancer patients in a hierarchical 

database clustering of microarray database, and patients expressing Notch1 had drastically lower 

overall survival. 

A connection between Notch and Ras was suggested in a study involving 7 DCIS samples 

analyzed by immunohistochemistry, where all 7 samples showed elevated Notch1 expression whereas 

adjacent ducts were reported negative. 4 samples additionally showed expression of Hras1. Further 

experiments showed that Notch1 expression up regulated by oncogenic Ras was necessary for 

transformation by Ras. Ras also showed to up regulate Notch ligand Dll1 and presenilin-1 (Weijzen et 

al., 2002). 

An oncogene Myc has been implicated in the development of many human cancers including 

breast cancer (Escot et al., 1986; Scorilas et al., 1999). C-myc has been shown to be an important 

player of tumorigenesis induction in the NICD1 overexpressing mice, and is also a direct 

transcriptional target of Notch (Kinaki et al., 2006). Notch has also been shown to be linked with Myc 

in human breast cancers. A study on 125 primary breast cancer samples showed that 93% of NICD1 

expressing carcinomas are also positive for Myc, suggesting cooperation in carcinogenesis 

(Efstratiadis et al., 2007). 

Numerous additional targets of Notch linked to mammary tumorigenesis have been described 

such as a Notch activator peptidyl-prolyl cis-trans isomerase NIMA interacting 1 (Pin1) (Rustighi et al., 

2009), and survivin (Lee et al., 2008a). 

Aberrant expression of Notch modulators 

Numb, an antagonist of Notch signaling has also been implicated in breast cancer (Guo et al., 

1996). It is expressed in normal breast parenchyma.  On the other hand, breast cancers had 

heterogeneous expression of this protein, and in almost 50% of the cases it was completely lost due to 

its polyubiquitinantion-mediated proteosomal degradation (Pece et al., 2004). Together with Notch1 

accumulation, Numb loss was confirmed in ductal and lobular carcinomas (Stylianou et al., 2006). 

However, loss of Numb should not be solely connected to Notch alterations since it has been 

shown that it inhibits degradation of p53 (Colaluca et al., 2008) and degrades zinc finger protein Gli1 

(Gli1), a Hedgehog transcriptional target (Di Marcotullio et al., 2006). 
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Nicastrin is a component of the γ-secretase complex, and it has been shown to be elevated in 

50% of breast cancers suggesting its role in the aberrant activation of Notch signaling in breast cancer 

(Filipovic et al., 2011). 

P63 

P63 is a homolog of the well-known tumor suppressor protein p53. Recently, it has become a 

subject of interest in the developmental biology and cancer biology field. Sequence and structural 

homology of p63 and p53 is remarkable, especially in the DNA binding domain which would suggest 

overlaps in target recognition specificity. For this reason p63 can bind to p53 response elements 

(p53REs) in vitro and in vivo (147). There are several p53 targets that are also regulated by p63 such 

as p21Waf2/Cip1, 14-3-3σ, MDM2, Bax, PERP, NOXA (reviewed in Westfall and Pietenpol, 2004). 

Furthermore, p63 can regulate transcription of genes p53 does not regulate. These genes are mostly 

involved in the DNA repair like Rad51, BRCA2, mre11 and Rad50 (Lin et al., 2009). P63 indeed targets a 

large number of genes identified by chromatin immunoprecipitation (ChIP) on chip analysis placing 

p63 in a key role of a broad transcription regulatory network involved in many biological processes 

(Pozzi et al., 2009). 

GENE STRUCTURE 

TP63 gene produces two groups of isoforms as a result of two promoters: the full length TAp63 

group that has full-length transactivation (TA) domains and the ΔNp63 group with truncated N-

terminal domains. Both groups comprise three different isoforms, named α, β and γ as a result of the 

alternative splicing at the C termini. Sterile alpha motif (SAM) domain, which is absent in p53, is 

present only in the α isoforms of p63 and it is responsible for protein-protein interactions in different 

processes such as transcriptional activation, focal adhesion and chromatin remodeling (reviewed in 

Westfall and Pietenpol, 2004). The TAp63 group, with TA domains homologous to the TA domain of 

p53, can activate multiple p53 target genes. ΔNp63, without the TA domain, was considered to 

function as a dominant negative molecule toward TAp63 (Yang et al., 1998). However, ΔNp63 isoforms 

contain a transactivation domain on their N-termini allowing them to transactivate p53 targets 

(Helton et al., 2006, Dohn et al., 2001). Therefore, these six isoforms create a complex transcriptional 

network of independent and/or overlapping target genes that are either activated or antagonized by 

the p63 activity.  
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Figure 11. p63 gene structure and transcripts. a) Scheme of the intron- exon structure, showing two 
transcription initiation sites (P1 and P2) and alternative splicing route. b) Structure of p63 gene: P1 and P2 
alternative promoters drive transcription of transactivating (TA) and N-terminally truncated (ΔN) isoforms. 
Variants α, β and γ arise from the alternative splicing at the 3’ end of the gene. Present domains are transactivation 
domain (TA), DNA-binding domain (DBD), oligomerization domain (OD), second transactivation domain (TA2), 
sterile α motif (SAM) and transinhibitory domain (TID). Adapted from Candi et al., (2008) 

P63 IN DEVELOPMENT 

First interest for p63 was raised for its indispensable role in epithelial development. Two 

knockout mice were produced by two independent groups; however, the different targeting construct 

caused different effects on p63 expression resulting in quite different phenotypes. Developmental 

aberrancies were identical in both cases but the interpretation of the function of p63 differed 

significantly.  

P63 deficient mice died one day after birth exerting severe effects in epithelial, craniofacial and 

limb development. Epithelial tissues affected severely were skin, prostate, mammary gland and 

urothelium (Mills et al., 1999, Yang et al., 1999). Mills et al concluded p63 is essential for lineage 

commitment and differentiation because their mouse had an unstratified single cell layer epithelium 

that covered the body surface, tongue, and oral cavity lacking differentiation markers (Mills et al., 

1999). On the other hand, a mouse produced by Yang et al had clumps of differentiated cells in the 

epidermis, suggesting that p63 has a crucial role in the maintenance of the stem/progenitor cells in the 

epithelium (Yang et al., 1999) 
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Later, transgenic mice expressing only ΔNp63α or TAp63α via K5 promoter were crossed into 

p63 deficient background to generate mice expressing ΔNp63α and/or TAp63α in the epidermis. p63-/-

; ΔNp63α mice developed an epidermal basal layer as a rescued phenotype, while the p63-/-; TAp63α’s 

mice were not able to revert deleterious effect of the p63 deficiency. Co-expression of ΔNp63α and 

TAp63α had a rescue effect on the tissue suggesting that ΔNp63α is indispensable for retaining the 

progenitor cell population in the basal layer whereas TAp63α acts synergistically or subsequently to 

control epithelial development. The same study showed that while ΔNp63α was responsible for 

regulation of expression of basal epidermal genes such as K14, TAp63α affected the expression of 

differentiation markers Ets1, keratin 1, transglutaminases, and involucrin (Candi et al., 2006).  

A study on ΔNp63-null mice further demonstrated the important role of ΔNp63 in epithelial 

development and differentiation (Romano et al., 2012). ΔNp63-null mice exhibited a developmental 

defective phenotype similar to the phenotype of p63-null mice, some keratinocytes managed to form a 

basal cell layer and patches of stratified epithelium prematurely expressing terminal differentiation 

markers. Therefore, ΔNp63 is indispensable in epithelial development, specifically in embryonic 

epidermis. Contrarily, TAp63 is not since TAp63-/- mice survived after birth and had median lifespans 

of 333 days. But they exhibited multiple signs of premature aging such as ulcerated wounds and 

blisters in the skin suggesting a role of TAp63 isoforms in regulation of proliferation of epidermal and 

dermal precursor cells after embryogenesis (Su et al., 2009) 

In normal tissue, it has been shown that p63 is highly expressed in the basal and suprabasal 

cells of stratified and glandular epithelia in foreskin, tonsil, breast, cervix, vaginal epithelium, 

esophagus, prostate, and urothelium. Expression of p63 decreases with differentiation, and disappears 

once the cells are terminally differentiated (Yang et al., 1998, Nylander et al., 2002, Reis-Filho et al., 

2002). 

P63 IN MAMMARY GLAND 

p63 knockout mice exhibited a phenotype of a complete absence of mammary gland in embryo 

(Yang et al., 1999, Mills et al., 1999). This point raised an interest for the p63 in the mammary gland 

field. In the mammary gland, the basal/myoepithelial cells express high levels of p63. Already in the 

embryonic stage p63 is strongly expressed in the outer layer of the mammary bud and less in the inner 

mass, while in the adulthood it is restricted only to basal layer of mammary epithelial bilayer. The 

function of basal/myoepithelial cells and their role in cancer and development are still not well 

understood. They mediate the interaction between luminal cells and the extracellular matrix, 

providing primarily structural support and contractility during lactation. In addition, they have been 

shown to contribute to the suppression of breast cancer cell growth, invasion and angiogenesis 

(Deugnier et al., 2002, Sternlicht et al., 1997);  
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Basal/myoepithelial cells are characterized by high levels of expression of integrins and 

extracellular matrix (ECM) proteins absent in the luminal cell population, further supporting a 

fundamental role for p63 in the biology of this cell type. 

Furthermore, p63 is selectively expressed in a subset of highly aggressive breast cancers 

(15%) that exhibit a basal phenotype and have a poor clinical outcome (Sorlie et al., 2003, Sorlie et al., 

2001, Perou et al., 2000). p63 expression can affect expression of many of the genes characteristics of 

this tumor type. These include cell adhesion proteins and ECM components such as laminin γ2 and α3 

chains, fibronectin and β4- and α6-integrin as well as EGFR (Nielsen et al., 2004). 

Yalcin Ozuysal study showed a clear link between loss of p63 and loss of basal phenotype in 

CD10+ sorted primary human mammary epithelial cells. Human basal cells in culture proliferate faster 

and tend to retract and scatter. Luminal cells, on the other hand form sheets with indistinct cell 

boundaries and are able to proliferate for significantly less passages. Depletion of ΔNp63 in basal cells 

resulted in lower density of growth of the cells, and decreased proliferation. Furthermore, basal 

markers (CK14 and ITGα6) decreased while luminal ones (CD24 and CK18) increased. Ectopic 

expression of ΔNp63 in luminal cells resulted in change of phenotype of cells in culture, resembling 

more to basal ones. Additionally, proliferation increased as well as CK14 and ITGα6 while luminal 

markers CD24 and CK18 decreased. Therefore, ΔNp63 has shown to be essential for the maintenance 

of the basal cell fate, and as discussed previously, it is negatively regulated by Notch signaling. 

Mammary gland reconstitution experiments in vivo showed that MMECs ectopically expressing ΔNp63 

were unable to participate in the luminal layer of the reconstituted mammary ductal system 

confirming incompatibility of the ΔNp63expression with luminal cell fate (Yalcin Ozuysal et al., 2010).  

P63 AND CELL ADHESION IN MAMMARY EPITHELIAL CELLS 

Beyond a critical function in the epidermis, p63 is essential for the development of other 

stratified epithelia, such as mammary gland epithelium. In order to find the endogenous functions and 

biological activities regulated by p63, the effects of loss or gain of p63 expression have been examined 

in a study from Caroll et al.2006. Down regulation of ∆Np63 isoforms in the MCF10A immortalized 

myoepithelial/basal-like epithelial cell line, or in mouse primary mammary epithelial cells, led to cell 

detachment and subsequent apoptosis, while reduction of the TAp63 had no or very little effect on the 

cells. Additionally, up regulated expression of both isoforms protected cells from death induced by 

detachment of cells from matrix, suggesting that ∆Np63 isoforms are key players for normal cell-

matrix adhesion and survival in epithelial cells in vitro (Carroll et al., 2006). 

Transcriptional profiling showed that many of the adhesion genes that were reduced when p63 

was down regulated using short hairpin RNAs (shRNAs) displayed reciprocal up regulation upon p63 

overexpression (Carroll et al., 2006). These included integrins α6 and β6, laminin α3, γ2, γ3, several 

collagens, fibronectin, two cadherins, the collagen receptor DDR1, MCAM and NCAM, plakoglobin and δ 
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catenin suggesting that cell adhesion is indeed regulated by ∆Np63. Furthermore, α3 integrin, a 

component of the laminin receptor, is a p63 target gene suggesting a novel crucial role for p63 as a 

critical regulator of epithelial cell adhesion (Kurata et al., 2004). 
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CHAPTER II: AIM OF THE THESIS AND RESULTS 
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AIM OF THE PROJECT 

Notch signaling via RBPjκ has been implicated as an important player in the development of 

the mammary gland, in particular in luminal cell fate determination, but also in breast carcinogenesis. 

Increased expression of Notch signaling components has been linked to poor prognosis and its 

aberrant activation has been connected to triple negative breast cancer, a subtype that presents the 

worst prognosis for patient survival because of its aggressiveness and lack of available targeted 

therapy. Recent work from our laboratory demonstrated the importance of Notch signaling during 

differentiation processes in the mammary gland (Yalcin Ozuysal et al., 2010). Specifically, the 

transgenic Notch reporter mouse model (RBPjκ-Cre reporter mouse) indicated that Notch signaling 

was only activated during pubertal development in the subpopulation of PR-expressing luminal cells, 

suggesting the importance of Notch signaling in the differentiation of HR positive cells. In addition, the 

expression of p63, factor important for the maintenance of the basal characteristics of the mammary 

epithelial cells, was antagonized by activation of Notch signaling. Since a recent report suggested that 

mammary stem cells also have basal cell properties (Prater et al., 2014), we hypothesized that p63 

expression might be important for the maintenance of stem cell properties in the basal compartment. 

The role of Notch signaling in the luminal cell fate determination in vivo still remains poorly 

understood. Therefore my thesis project aimed to elucidate the role of Notch signaling during 

mammary gland development. 

My project is constituted of two specific aims. 

Specific aim 1: To investigate the role of Notch signaling in the regulation of HR+ population of 

luminal mammary epithelial cells. 

To dissect the role of Notch signaling in HR+ luminal mammary epithelial cells, I will use the 

following models: 

1. The transgenic Notch reporter mouse (TNR) to determine the localization of Notch active cells 

within the epithelium and track its progeny during mammary gland development thanks to GFP 

expression. Using this model, I will check the preliminary results obtained by Ozden Yalcin Ozuysal 

during puberty and additionally include adult virgin and pregnant stages into the analysis. The Notch 

active population will be defined by immuno-fluorescent co-staining for GFP and both ER and PR as 

well as basal marker p63.  

2. RBP floxed WNT4Cre mTmG model (Han et al., 2002; Shan et al., 2010; Muzumdar et al., 2007) 

to analyse the effect of the conditional deletion of RBP, a Notch signaling mediator, in WNT4 

expressing subpopulation of HR positive cells in the mammary gland. Expression of WNT4Cre-

reporter gene with mTmG can be detected 3 days after birth when mTomato-expressing cells will be 

recombined to express GFP.  
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3. RBP floxed MMTVCre mTmG model (Han et al., 2002; Wagner et al., 2001; Muzumdar et al., 

2007) to delete RBP in the entire mammary gland epithelium soon after birth and analyse the effect of 

RBP deletion in the entire mammary gland. This model was used by Ozden Yalcin Ozuysal in her study 

on antagonistic role of Notch on p63 expression (Yalcin Ozuysal et al. 2010).  

4. RBP floxed AdenoCre mTmG mouse model to abrogate Notch signaling in the mammary 

epithelium at a specific time point. In this model, an adenovirus expressing Cre-recombinase 

(AdenoCre virus) is directly injected into the mammary gland lumen via cleaved nipple to induce 

recombination of floxed cells. 

5. T47D and MCF7 HR+ breast cancer cell lines to test the hypothesis that Notch signaling 

inhibition and activation can influence expression of hormone receptors as downstream targets. 

Specific aim 2: To interrogate the involvement of p63 in stem cell activity in mammary gland 

epithelium.  

To test p63 involvement in mammary stem cell activity, I would have perform serial 

transplantation of p63 heterozygous knock-out mammary epithelium. .I couldn’t use homozygous 

knock-out mice for p63 as these mice develop severe developmental defects such as lack of stratified 

skin, lack of epidermal appendages including mammary gland, severe craniofacial defects and they die 

immediately after birth (Yang et al., 1999, Mills et al., 1999). However, during the course of my studies, 

this hypothesis was addressed by the Kang laboratory (Chakrabarti et al., 2014) and therefore the 

project was discontinued after the experiments presented in the result section. 
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AIM1: ROLE OF NOTCH SIGNALING IN THE MOUSE MAMMARY GLAND 

ENDOGENOUS NOTCH ACTIVITY IN THE MOUSE MAMMARY GLAND (TRANSGENIC NOTCH 

REPORTER MOUSE MODEL) 

INTRODUCTION AND WORKING HYPOTHESIS 

Notch signaling via RBP-Jκ has been implicated in luminal cell fate determination in several 

studies described in the introduction (Bouras et al., 2008; Raouf et al., 2008; Yalcin Ozuysal et al., 

2010).  

To follow Notch activity in mouse mammary gland, I used the TNR mouse model that has an 

EGFP transgene downstream of a basal SV40 promoter containing four Rbp-Jκ responsive elements 

and. Therefore, EGFP expression faithfully reflects Rbp-Jκ activity as previously shown in the nervous 

system (Mizutani et al., 2007) and mammary gland (Yalcin Ozuysal et al., 2010). The expression of 

EGFP reporter of Notch activity in TNR mammary glands has been correlated with increased 

expression of the Notch targets Hes1, 5 and Hey 1 in these epithelial cells expressing EGFP reporter of 

Notch activity. In the study conducted by Ozden Yalcin Ozuysal, she showed that in pubertal mammary 

glands, EGFP is mostly expressed in the terminal end buds (TEBs), the highly proliferative enlarged 

ductal tips, as well as in the subtending ducts. In adult virgin glands and during puberty, not any EGFP 

signal was detected. Flow cytometry analysis of pubertal TNR mammary glands showed EGFP 

expression in luminal compartment of the mammary epithelium (Yalcin-Ozuysal et al., 2010). 

Coimmuno-staining of EGFP and PR on pubertal glands showed that EGFP is widely colocalizing with 

PR expression suggesting that EGFP expressing cells represent a subpopulation of PR expressing cells. 

Therefore we hypothesize that Notch signaling is activated in a subpopulation of luminal 

hormone receptor positive cells. 

Using this mouse model, I firstly confirmed the results of Ozden Yalcin Ozuysal and then I 

expanded the analysis on both adult virgin and pregnant stages of mammary gland development using 

a novel tissue clarification technique for wholemount analysis and more accurate combination of 

surface markers for flow cytometry analysis (CD24 and CD49f). Furthermore, Ozden Yalcin Ozuysal 

distinguished 4 different subpopulations of mammary epithelial cells by FACS (using the CD24 cell 

surface marker) separated by type (luminal and basal) and Notch activity (Notch+ and Notch-). We 

analyzed and validated by RT-qPCR the microarray analysis data from the global gene expression 

performed on these 4 cell groups. 



54 
  

RESULTS 

Notch signaling activity in the mammary epithelium of TNR mice. 

Ozden Yalcin Ozuysal showed that Notch signaling activity, reported by expression of EGFP in 

TNR mice, is present during puberty while during adult virgin stage, she couldn’t register any signal 

(Yalcin-Ozuysal et al., 2010).  

The impossibility to detect a possible low signal in adult and pregnant gland could be due to 

the auto-fluorescence of the fatty stroma shown in the green channel (488 nm). For this reason, I used 

a new tissue clarification technique: TNR mouse mammary glands from 3 pubertal (6 weeks of age), 3 

adult virgin (13 weeks of age) and 3 pregnant (P8.5) mice were firstly clarified in 50% glycerol 

(Landua et al., 2009) and then reanalyzed by fluorescent stereomicroscope. As previously shown, in 

the pubertal mammary epithelium, a strong EGFP signal was localized in the TEBs and a weaker one in 

the subtending ducts (Figure 12.a, b). However now, in adult virgin (Figure 12.c, d) and pregnant 

mammary glands (Figure 12.e, f), I was able to detect a weak signal throughout the whole ductal 

system.  

By epifluorescence, the intensity of EGFP signal in TEBs of pubertal mammary glands was 

stronger than in mature ducts of pubertal, adult virgin and pregnant mammary glands. Unlike 

bilayered mature ducts, TEBs are multilayered structures; hence the stronger EGFP intensity might be 

due to a higher number of EGFP positive cells per area or stronger EGFP expression per cell. To 

distinguish between the two possibilities, we performed FACS analysis of pubertal (Figure 13.d,e,f), 

adult virgin (Figure 13.g,h,i) and pregnant (Figure 13.j,k,l) mammary epithelium. Luminal and basal 

mammary epithelial cells have been distinguished by flow cytometry according to the expression of 

the cell surface markers CD24 and CD49f (Stingl et al., 2006) in which I analyzed the expression of 

EGFP. The presence of EGFP positive population was detected in both in luminal and basal 

compartment of mammary epithelium in all examined stages of mammary development. The number 

of Notch active cells was constant in the basal compartment throughout the stages of development 

(Figure 13.m). In the luminal compartment, as expected, the highest number of EGFP positive cells was 

present during pubertal development (11,2%±2,7) while during adulthood (1,6%±0,2%) and 

pregnancy (2,5%±0,2%), the levels were significantly lower (Figure 13.m). 
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Figure 12. Notch activity in mammary gland. Fluorescence whole mount analysis of the mammary glands from 
Transgenic Notch Reporter mice in a) and b) pubertal 6-weeks-old mouse; c) and d) adult virgin 13-weeks-old 
mouse; e) and f) P8.5 day pregnant mouse. Scale bars: In a), c) and e) scale bar represents 2,5mm and in b), d) and f) 
500 μm. 
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Figure 13. EGFP levels in the basal and luminal epithelial cells. FACS analysis of the mammary epithelium from 
TNR mice. a, b, c) EGFP negative mammary epithelium; d, e, f) pubertal TNR mammary epithelium (N=3); g, h, i) 
adult virgin mammary epithelium (N=3); j, k, l) pregnant (P8,5) mammary epithelium. Panels a, d, g and j represent 
dot plots showing signal from the CD24 marker on the x-axis and signal from the CD49f marker on the y-axis. 
Luminal cells are gated, marked in green and plotted for EGFP signal in panels b, e, h and l. Basal cells are gated, 
marked in blue and plotted for EGFP in panels c, f, I and l. m) Bar graph showing percentage of Notch active cells 
within luminal and basal population in pubertal (N=3), adult virgin (N=3) and pregnant (N=3) TNR females.  

In order to confirm the hypothesis that Notch signaling is active in the portion of HR positive 

cells, Immunofluorescent co-staining with anti-EGFP, anti-ER and anti-PR antibodies of paraffin 

sections from pubertal (Figure 14), adult virgin (Figure 15) and pregnant mammary glands (Figure 

16) was performed on. The quantification was done according to the following parameters: one gland 

from 3 age-matched mice per developmental stage group was used; mice from the same 

developmental stage were from different litters; 2 sections from each gland were entirely scanned; 

and all the ducts present on a section were taken into account.  

Quantification of the sections from pubertal mammary glands showed that the portion of HR+ 

cells in the entire epithelium, was comparable with 33,5%±3,3% of the cells positive  for ER and  

35,4%±1,1% of the cells positive for PR (Figure 14.m). 93,7%±3,8% of the Notch active (EGFP 

positive) cells expressed the ER and 96,4%±1,8% the PR (Figure 14.n). 21,7%±7,4% of the  ER+ cells  

and 30,6%±7,4% of the  PR+ cells were detected GFP+ (Figure 14.o) 

The portion of HR+ cells in the epithelium of pubertal mammary glands, defined by ER or PR 

stainings, was comparable (33,5%±3,3 for ER; 35,4%±1,1 for PR). The vast majority of Notch active 

(EGFP positive) cells was expressing both ER (93,7%±3,8) and PR (96,4%±1,8) and roughly one 

quarter of all HR positive cells were Notch active (21,7%±7,4 by ER; 30,6%±7,4 by PR) (Figure 14. 

m,n,o). 

To determine if Notch activity was restrained to the luminal compartment, immunofluorescent 

co-staining with EGFP and p63 (a basal marker) antibodies was performed on pubertal mammary 

gland sections. None of the p63 positive glands showed EGFP expression (Figure 14.i-l).   
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Figure 14. Colocalization of ER/PR/p63 and EGFP reporter of Notch activity in 6-weeks-old mouse 
mammary gland: a) – d) Co-staining for EGFP and ER protein; e) – h) Co-staining for EGFP and PR protein; i) - j) 
Co-staining for EGFP and p63 protein; a) –l) scale bar represents 50μm; m) Bar graph showing portion of HR 
positive cells in mammary epithelial cells (N=3); j) Bar graph showing portion of Notch active (EGFP positive) 
expressing ER or PR (N=3); k) Bar graph showing portion of HR positive cells that are Notch active (EGFP 
positive)(N=3). Scale bars in a-l) represent 50 μm 

Immunostaining of adult virgin (Figure 15) and pregnant glands (Figure 16) did not show any 

Notch active cells in these glands. 
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Figure 15. Colocalization of ER/PR and EGFP reporter of Notch activity in 13-weeks-old mouse mammary 
gland: a) – d) Co-staining for EGFP and ER protein (N=3); e) – h) Co-staining for EGFP and PR protein (N=3); Scale 
bar represents 50μm. 
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Figure 16. Colocalization of ER/PR and EGFP reporter of Notch activity in mouse mammary gland from 8,5 
day of pregnancy: a) – d) Co-staining for EGFP and ER protein (N=3); e) – h) Co-staining for EGFP and PR protein; 
Scale bars in a-h) represent 50 μm 
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Gene expression profiles of the 4 epithelial subpopulations: luminal Notch active, luminal 

Notch inactive, basal Notch active and basal Notch inactive. 

To further characterize which genes are differentially expressed in Notch active cells, a global 

gene expression was recorded in pubertal Notch active mammary epithelial cells. Technical part of this 

experiment was performed by Ozden Yalcin Ozuysal. For the global gene expression microarray Ozden 

prepared 3 groups of 18 TNR mice. 4 glands per mouse were collected and single epithelial cells were 

prepared. Epithelial cells were sorted by type (based on the expression of the CD24 marker) and by 

Notch activity (based on EGFP expression). From 4 populations of sorted cells (luminal Notch-, luminal 

Notch+, basal Notch-, basal Notch+) RNA was extracted, reversely transcribed to cDNA and used for the 

global gene expression microarray by Affymetrix GeneChip technology.  

Microarray data were analyzed by hierarchical clustering using all differentially expressed 

genes (P<0,05). Luminal Notch active (EGFP+) population from two samples clustered with luminal 

Notch inactive (EGFP-) population from the same two samples. Basal Notch active (EGFP+) population 

from two samples clustered with basal Notch inactive (EGFP-) population from the same, suggesting 

that one of the samples was not sorted properly (Figure 17).   

  

 

RNA from valid two samples used for microarray completed with the third new sample sorted 

under the same conditions were used for quantitative PCR to test for the expression only of genes 

characteristic for different cell types in the mammary epithelium, Notch target gene HEY1 and EGFP, 

Notch activity reporter. 

Figure 17. Analysis of the microarray gene 
expression data by hierarchical clustering. 
Dendogram obtained by hierarchical clustering analysis 
of the 4 populations of mammary epithelial cells (luminal 
(CD24hi) Notch active, luminal Notch inactive, basal 
(CD24lo) Notch active and basal Notch inactive) sorted 
from 3 independent groups of mice, taking only the all 
the  significant genes according to the adjusted p-value, 
among all annotated genes. This aims to illustrated 
samples that are close by Ward’s minimum variance 
method.   
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To validate the purity of the sorted populations (luminal vs. basal), we first tested the 

expression of basal markers (Smooth muscle actin (SMA), p63 and keratin 14) in all 4 populations. The 

analysis confirmed that SMA (Figure 18.a) and keratin 14 (Figure 18.c) are significantly enriched in 

both basal Notch active (SMA:159,3±50,2; K14: 7,86±1,85) and basal Notch inactive populations 

(SMA:275,6±107,7; K14: 6,5±1,13). The transcription factor p63 (Figure 18.b) was significantly 

enriched in the basal Notch inactive (p63: 336,5±188,6) population but not in the basal Notch active 

one (p63:55,3±36,5). This result is in line with previous results published by Yalcin Ozuysal et al that 

showed that Notch signaling is antagonizing the expression of p63 and reducing basal cell 

characteristics. In line with this is also the observation that the amount of smooth muscle actin is 

significantly reduced in basal Notch active population when compared to basal Notch inactive 

population. 

To check that the EGFP expression really reflect the activation of the Notch signaling pathway, 

we analyzed the expression of EGFP and of the Notch target gene HEY1 in all 4 populations. EGFP 

(Figure 18.d) and HEY1 (Figure 18.e) were both significantly enriched in Notch active populations 

when compared to Notch inactive populations. Comparison between basal Notch active and luminal 

Notch active population showed that both EGFP and HEY1 were significantly more expressed in the 

luminal Notch active population (Luminal Notch active - EGFP:115,8±49,0; HEY1:7,08±1.164) (Basal 

Notch active - EGFP:33,5±18,9; HEY1:2,87±0,49). This observation is in line with our FACS analysis of 

the pubertal TNR mice that showed presence of higher intensity EGFP signal indicating higher Notch 

activity in the luminal Notch active population.  

Since data from immunofluorescent staining showed that more than 90% of luminal Notch 

active population expresses hormone receptors (Figure 14), we tested the expression of ER, PR and 

FoxA1, an important mediator of ER endocrine response (Hurtado et al., 2011), in all 4 populations. As 

expected, ER (Figure 18.f) and PR (Figure 18.g) were significantly enriched in both luminal Notch 

active (ER:12,8±3,7; PR:10,0±2,8) and luminal Notch inactive population (ER:4,1±1,1; PR:3,9±0,5)  

when compared to basal populations. We also observed that the expression of ER and PR in luminal 

Notch active population is roughly 3 fold higher than in luminal Notch inactive population probably 

because luminal Notch active population contains mostly HR positive cells, while luminal Notch 

inactive populations contains both HR+ and HR- cells. Additionally, the expression of FoxA1 was also 

restricted to HR+ cells and more specifically enriched in the luminal Notch active population (Figure 

18.h) (FoxA1: 10,6±1,9)  confirming that luminal Notch active population of mammary epithelial cells 

is predominantly HR+. 

Casein α and Elf 5 are proteins expressed in milk secreting cells which are HR-. Therefore we 

tested their expression in all 4 populations (Figure 18.i,j) to find that they are strongly enriched in the 

luminal Notch inactive population (Cas α:20,5±8,3; Elf5:7,0±1,5) which is predominantly HR. 
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Recent work from Devi Rajaram (Rajaram et al., 2015) showed that a subpopulation of HR+ 

cells expresses Wnt4 downstream of PR. In the microarray results, Wnt4 also appeared slightly 

enriched in the luminal Notch active population. Therefore, we tested expression of Wnt4 in all 4 

populations by quantitative PCR and observed a 7-fold enrichment in luminal Notch active population 

when compared to the basal populations, and a 4-fold enrichment when compared to luminal Notch 

inactive population (Figure 18.k). 

Recent work from Dr. Renuga Devi Rajaram (Rajaram et al., 2015) showed that a 

subpopulation of HR+ cells expresses Wnt4 downstream of PR. Therefore, we tested expression of 

Wnt4 in all 4 populations by quantitative PCR and observed 7-fold enrichment in luminal Notch active 

population when compared to the basal populations, and 4-fold enrichment when compared to 

luminal Notch inactive population. 
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Figure 18. Validation of the expression levels of the proteins of interest selected from microarray analysis in 
the 4 sorted populations from mammary epithelium. Real-time PCR analysis of mRNA levels of Smooth muscle 
actin (a), p63 (b), keratin 14 (c), EGFP (d), Hey1 (e), er (f), PR (g), FoxA1 (h), Casein α (i), Elf 5 (j) and Wnt4 (k) in 4 
populations of mammary epithelial cells sorted by type (luminal and basal) and by Notch activity (Notch+ and 
Notch-). p values between the different populations are presented in the tables bellow the graphs and standard 
deviations are calculated from 3 different samples per population originating from 3 independent groups of mice.  
Statistical significance was calculated by paired Student’s T-test. 

CONCLUSION 

Experiments from TNR mouse model showed that Notch signaling activity, reported by the 

expression of EGFP reporter gene, shows strongest activity during puberty where Notch signaling as 

detected by FACS through the TNR reporter is active in ≈11% of luminal and ≈3% of basal cells.  

Furthermore we confirmed that luminal Notch active population predominantly expresses HR. 

Also, Notch active luminal population expresses higher levels of Wnt4 ligand which led us to 

hypothesize that this population is a subpopulation of Wnt4 expressing HR+ population of mammary 

epithelial cells. 
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CONDITIONAL DELETION OF RBP-JΚ GENE IN THE WNT4 EXPRESSING SUBPOPULATION OF 

HR+ CELLS (RBPFLOXED WNT4-CRE MTMG MOUSE MODEL). 

INTRODUCTION AND WORKING HYPOTHESIS 

Recent study from Lucio Miele’s group proposed that Notch signaling can replace ER signaling 

pathway when this latter is not present to activate the transcription of ER target genes in HR+ breast 

cancer cell lines (Rizzo et al., 2008). This observation, together with our data from TNR mouse model 

showing that Notch active luminal cells are expressing HR as well as Wnt4 ligand, led us to 

hypothesize that Notch signaling plays a role in the hormone signaling pathway in the mammary 

epithelium.  

To test this hypothesis, and taking into account that Notch active luminal cells express Wnt4 

ligand, we used a conditional deletion mouse model in which Notch signaling is abrogated by deletion 

of RBP-Jκ (a general Notch mediator) via Cre recombinase expressed under Wnt4 promoter. 

Therefore, we crossed the RBPfloxed mouse (Buono et al., 2006) with the Wnt4-Cre mouse (Shan et al., 

2009) to obtain RBPfl/fl Wnt4-Cre. Wnt4-Cre activity was previously characterized in the study by Dr. 

Renuga Devi Rajaram on which I collaborated (Rajaram et al., 2015). We showed by 

immunofluorescence that Cre recombinase under the expression of the Wnt4 promoter is active in a 

subpopulation of HR+ luminal mammary epithelial cells within 3 days after birth. 

To analyse Cre expression and to follow Cre targeted cells and their progeny, we crossed 

RBPfl/fl Wnt4-Cre mice with mice carrying mTmG reporter gene (Muzumdar et al., 2007). mTmG mice 

are transgenic mice in which a Cre-reporter gene contains both membrane targeted dTomato and 

membrane targeted EGFP gene driven by ubiquitously active Rosa26 promoter. dTomato gene is 

flanked by loxP sites and upon Cre activity, it will be deleted by recombination which will bring EGFP 

gene in frame. Therefore, cells in which Cre recombinase was active will constitutively express EGFP 

and cells without Cre activity will continue to constitutively express dTomato. 

RESULTS 

Analysis of Wnt4-Cre expression during mammary development 

To characterize the expression of the Wnt4-Cre promoter in frame with the study of Renuga 

Devi Rajaram, I performed immunofluorescent co-staining for EGFP, p63, and PR on the mammary 

tissue sections from 5 days, 15 days, 4 weeks and 8 weeks old RBPwt/wt Wnt4-Cre mTmG mice 

(Rajaram et al., 2015). We observed low Wnt4 activation at day 5 after birth before onset of PR 

expression (Figure 19.a-e). At 15 days of age, as well as 4 weeks and 8 weeks we noticed, as expected, 

strong colocalization of EGFP with PR, but never with p63 (Figure 19.f-t). Therefore, we confirmed that 

Wnt4-Cre is expressed in subpopulation of HR+ luminal cells. 
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Figure 19. Colocalization of ER/PR, p63 and EGFP reporter in the RBPwt/wt Wnt4-Cre mTmG and RBP fl/fl 

Wnt4-Cre mTmG mammary epithelium. a)-e) Co-staining of EGFP with PR and p63 in 5 day old RBPwt/wt Wnt4-
Cre mTmG mammary epithelium (N=3); f)-j) Co-staining of EGFP with PR and p63 in 15 day old RBPwt/wt Wnt4-Cre 
mTmG mammary epithelium (N=3); k)-o) Co-staining of EGFP with PR and p63 in 4-weeks-old RBPwt/wt Wnt4-Cre 
mTmG mammary epithelium (N=3); p)-t) Co-staining of EGFP with PR and p63 in 8-weeks-old RBPwt/wt Wnt4-Cre 
mTmG mammary epithelium (N=3). Scale bars in a-t) represent 50μm 
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Role of Notch signaling in the Wnt4 expressing epithelial cells during adulthood  

To address the question of the role of Notch signaling in hormone signaling pathway in the 

mouse mammary epithelium, we analyzed adult epithelium from RBPfl/fl Wnt4-Cre mTmG and RBPwt/wt 

Wnt4-Cre mTmG mice by immunofluorescent co-staining for EGFP with ER, PR, p63, Ki67 and cleaved 

Caspase 3. However, to analyze RBPfl/fl Wnt4-Cre mTmG epithelium during adulthood, we had to 

perform tissue transplantation approach where mammary epithelial fragments from mutant and 

control glands are transplanted into contralateral mammary gland fat pads previously cleared of its 

endogenous epithelium. This way, we will have RBPfl/fl Wnt4-Cre mTmG and RBPwt/wt Wnt4-Cre mTmG 

epithelium growing in the same recipient mouse. To avoid possible rejection of the tissue, we used 

immunocompromised RAG1-/- mice (Mombaerts et al., 1992) as recipients. We had to use this method 

because Wnt4 gene is expressed in various organs such as kidneys (Itaranta et al., 2006), muscles 

(Strochlic et al., 2012) and ovaries (Mandel et al., 2008) where RBP-Jκ plays important role. For this 

reason, RBP-Jκ deletion using Wnt4-Cre promoter is lethal around 2 weeks after birth. 

As tissue donors, we used 3 groups of mice containing one RBPfl/fl Wnt4-Cre mTmG and one 

RBPwt/wt Wnt4-Cre mTmG mice. Mice within the group were littermates, while each group of mice was 

taken from an independent litter. Mammary tissue from RBPfl/fl Wnt4-Cre mTmG and RBPwt/wt Wnt4-

Cre mTmG from the same group was transplanted into 5 recipient mice and analyzed 2 months after 

the transplantation procedure. 

Two months after surgery, the outgrowths were examined by fluorescent stereomicroscopy. 

Out of 15 grafts, 14 RBPfl/fl Wnt4-Cre mTmG and 14 RBPwt/wt Wnt4-Cre mTmG showed outgrowth. The 

size of the outgrowths on both sides was comparable (Figure 20.a,b,d) and the amount of branching 

points did not show any significant difference (Figure 20.c). However, the amount of green 

fluorescence was much higher in the RBPwt/wt Wnt4-Cre mTmG grafts than in the RBPfl/fl Wnt4-Cre 

mTmG, indicating that there are more recombined cells in the RBPwt/wt Wnt4-Cre mTmG epithelium. 

This result suggests that Cre targeted cells in RBPfl/fl Wnt4-Cre mTmG mice survive and/or proliferate 

less after Cre recombination.  
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Figure 20.Transplantation of RBPwt/wt Wnt4-Cre mTmG and RBP fl/fl Wnt4-Cre mTmG mammary epithelium. 
a-c) Wholemount analysis of the outgrowths of RBPwt/wt Wnt4-Cre mTmG (N=14). d-f) Wholemount analysis of the 
outgrowths of RBPfl/fl Wnt4-Cre mTmG epithelium (N=14). Scale bars in a-f represent 2,5 mm  g) Bar plot showing 
branching points (N=14). h)  Mammary gland reconstitution with RBPwt/wt Wnt4-Cre mTmG and RBP fl/fl Wnt4-Cre 
mTmG epithelium (N=14). Each circle represents one mammary gland; the blackened region represents the area 
filled with outgrowth. Statistical significance of the analysis was calculated by paired Students’ T-test 
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To confirm that Cre recombination deleted RBPjk gene in RBPfl/fl Wnt4-Cre mTmG epithelium, 

we co-stained sections for EGFP and RBP-Jκ we sectioned and stained couples of gland from 2 

recipient mice per donor, having in total 6 samples per genotype for each type of staining. On each 

section more than 2000 cells were counted. 

Stainings revealed that while in RBPwt/wt Wnt4-Cre mTmG tissue EGFP positive cells readily 

expressed RBP, in RBPfl/fl Wnt4-Cre mTmG tissue EGFP and RBP are not colocalized in the same cells 

(Figure 21). Therefore, Cre recombinase expression driven by Wnt4 reporter is successfully deleting 

the RBP-Jκ and RBP deficient mammary epithelial cells are selected against. 

 

Figure 21: Colocalization of RBP-Jκ and EGFP expressing cells in the RBPfloxedWnt4-Cre mTmG transplanted 
glands. Immunofluorescent co-staining of EGFP with RBP-Jκ in RBPwt/wt Wnt4-Cre mTmG and RBPfl/fl Wnt4-Cre 
mTmG transplanted mammary epithelium: a) - d) Co-staining of EGFP with RBP-Jκ in RBPwt/wt Wnt4-Cre mTmG 
mammary epithelium (N=3); e)-h) Co-staining of EGFP with RBP-Jκ in RBPwt/wt Wnt4-Cre mTmG mammary 
epithelium (N=3). Scale bars represent 50 µm 
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Figure 22. Colocalization of ER/PR and EGFP reporter in the RBPfloxedWnt4-Cre mTmG transplanted glands. 
Immunofluorescent co-staining (a-p) of EGFP with ER and PR in RBPwt/wt Wnt4-Cre mTmG and RBP fl/fl Wnt4-Cre 
mTmG transplanted mammary epithelium: a) – d) Co-staining of EGFP with ER in RBPwt/wt Wnt4-Cre mTmG 
mammary epithelium (N=6); e)-h) Co-staining of EGFP with PR in RBPwt/wt Wnt4-Cre mTmG mammary epithelium 
(N=6); i) - l) Co-staining of EGFP with ER in RBPfl/fl Wnt4-Cre mTmG mammary epithelium (N=6); m) - p) Co-
staining of EGFP with PR in RBPfl/fl Wnt4-Cre mTmG mammary epithelium (N=6). Scale bars represent 50 μm. 

To analyze the expression of hormone receptors in the Notch abrogated cells, sections from 

RBPfl/fl Wnt4-Cre mTmG and RBPwt/wt Wnt4-Cre mTmG transplants were co-stained for EGFP and ER 

or PR (Figure 22). Quantification of 6 sections per genotype showed that in the RBPwt/wt Wnt4-Cre 
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mTmG epithelium, there were 2-fold more recombined cells identified by EGFP expression in compare 

to RBPfl/fl Wnt4-Cre mTmG (Figure 25.a). However, there was no significant difference in the number 

of HR+ cells in the whole epithelium. In both RBPwt/wt Wnt4-Cre mTmG and RBPfl/fl Wnt4-Cre mTmG 

epithelium, there was roughly one third of cells expressing hormone receptors ER and PR (Figure 

25b,c) Within the recombined population, there was no significant difference in the number of EGFP 

cells expressing ER among the genotypes (Figure 25.d), but the difference in the amount of cells co-

expressing EGFP and PR was important.  The amount of EGFP and PR colocalization in the RBPwt/wt 

Wnt4-Cre mTmG epithelium was, as expected, 91,8%±6,3%, but in the RBPfl/fl Wnt4-Cre mTmG only 

15,3%±11,3% of EGFP positive cells co-expressed PR, implicating RBP-Jκ into PR expression regulation 

(Figure 25.e). 

To determine if there is less recombined cells expressing EGFP in the RBPfl/fl Wnt4-Cre mTmG 

epithelium because of differences in cell proliferation or apoptosis, histological sections of both 

phenotypes were co-stained for EGFP and Ki67 as a proliferation marker (Scholzen et al., 2000) 

(Figure 23.a-d, i-l) and cleaved Caspase 3 as an apoptosis marker (Nicholson et al., 1995) (Figure 23.e-

h, m-o). RBPfl/fl Wnt4-Cre mTmG epithelium did not show altered proliferative activity neither in total 

cell population nor in recombined population (Figure 25.f,g). Cleaved caspase 3 staining showed very 

few positive cells both in RBPfl/fl Wnt4-Cre mTmG and RBPwt/wt Wnt4-Cre mTmG indicating that there 

is no difference in apoptotic activity in both epithelia.  
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Figure 23: Colocalization of EGFP with KI67 and cleaved Caspase 3 in the RBPfloxedWnt4-Cre mTmG 
transplanted glands. a) - d) Co-staining of EGFP and KI67 in RBPwt/wt Wnt4-Cre mTmG mammary epithelium 
(N=6); e)-h) Co-staining of EGFP and cleaved Caspase 3 in RBPwt/wt Wnt4-Cre mTmG mammary epithelium (N=6); i) 
- l) Co-staining of EGFP and KI67 in RBPfl/fl Wnt4-Cre mTmG mammary epithelium (N=6); o) - r) Co-staining of EGFP 
and cleaved Caspase 3 in RBPfl/fl Wnt4-Cre mTmG mammary epithelium (N=6). Scale bars represent 50 μm. 
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As previously shown, ER and PR proteins in RBPwt/wt mouse mammary tissue are expressed in 

the same population of luminal epithelial cells (Seagroves et al., 2000). We did not detect any 

difference in the overall number of HR+ cells however upon Notch abrogation via RBP-Jκ deletion, PR 

expression is lost. Therefore, we performed immunostaining with ER and PR antibodies to detect cells 

expressing only ER and not PR (Figure 24). Quantification of total HR+ cells confirmed presence of 

small portion of ER+ only cells (11,9%±2,0) in RBPfl/fl Wnt4-Cre mTmG tissue while in the wild type 

this portion was very small (1,2%±0,4) (Figure 25.h).  

 

Figure 24. Colocalization of ER and PR in RBPfl/flWnt4-Cre mTmG transplanted glands. a) - d) Co-staining of 
ER and PR in RBPwt/wt Wnt4-Cre mTmG mammary epithelium (N=6). e) - h) Co-staining of ER and PR in RBPfl/fl 
Wnt4-Cre mTmG mammary epithelium (N=6). Scale bars represent 50 μm. 
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Figure 25: Quantification of colocalization of ER/PR and EGFP reporter in the RBPfloxedWnt4-Cre mTmG 
transplanted glands. a) Portion of EGFP positive cells in mammary epithelium (N=6); b) Portion of ER positive 
cells in the mammary epithelium (N=6); c) Portion of PR positive cells in the mammary epithelium (N=6); d) Portion 
of ER positive cells in the luminal EGFP positive population of MMECs (N=6); e) Portion of PR positive cells in the 
luminal EGFP positive population of MMECs (N=6); f) Portion of Ki67 positive cells in the mammary epithelium 
(N=6); g) Portion of Ki67 positive cells in the luminal EGFP positive population of MMECs (N=6); h) Portion of ER 
positive luminal MMECs that are co-expressing PR (N=6). Statistical significance of all comparisons was calculated 
by paired student’s T-test. 
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CONCLUSION 

Experiments performed with the RBPfl/fl Wnt4-Cre mTmG mouse model showed that 

abrogation of Notch signaling via deletion of RBP-Jκ in Wnt4 expressing HR+ luminal epithelial cells 

results in strong loss of PR expression. This observation suggests that Notch signaling is implicated in 

the regulation of PR expression.  

  



80 
  

CONDITIONAL DELETION OF RBP-JΚ GENE IN THE WHOLE MAMMARY EPITHELIUM 

(RBPFLOXED MMTV-CRE MTMG MOUSE MODEL). 

INTRODUCTION AND WORKING HYPOTHESIS 

Experiments performed with RBPfl/fl Wnt4-Cre mTmG mice led us to hypothesize that Notch 

signaling is involved in the regulation of PR expression in HR+ mammary epithelial cells. However, the 

Cre recombinase is expressed and deletes floxed RBP-Jκ only in HR+ cells that are expressing Wnt4 

ligand.  

To test whether RBP-Jκ regulates PR expression in the entire HR+ population, we recurred to 

the use of MMTV- Cre a promoter that will affect floxed RBP-Jκ in the entire population of HR+ 

epithelial cells. 

RBP-Jκ conditional deletion via MMTV-Cre had previously been done by Ozden Yalcin Ozuysal. 

She presented evidences that in the RBPfl/fl MMTV-Cre mouse, Notch deleted cells, traced by presence 

of a Cre-reporter Z/EG in which , when recombined via Cre recombinase, EGFP is expressed under 

chicken β actin promoter (Novak et al., 2000), are present only in the basal layer while luminal layer is 

repopulated with wild-type cells (Yalcin Ozuysal et al.,2010). In agreement with this result, previous 

studies showed that Notch signaling is implicated in mammary gland development, specifically in the 

determination of luminal cell-fate, however the molecular and cellular mechanisms underlying this 

process remained unknown.  

Z/EG reporter expressed under chicken β actin promoter (Novak et al., 2000) in the wild type 

control mouse did not mark the entire mammary epithelium. We decided to cross RBPfloxed MMTV-Cre 

mouse with mTmG reporter that showed overall expression in the mouse mammary epithelial cells. 

Therefore, to test the hypothesis that Notch signaling regulates PR expression in the entire 

population of HR+ mouse mammary epithelial cells, we analyzed RBPfl/fl MMTV-Cre mTmG mouse 

mammary epithelium. 

RESULTS 

Analysis of MMTV-Cre deletion of RBPjk gene 

To verify if MMTV-Cre is active in the entire mouse epithelium and if it correctly and 

completely deletes RBP-Jκ floxed gene, we analyzed mammary epithelium from 4, 8, 14 and 21-day old 

RBPwt/wt MMTV-Cre mTmG by immunofluorescent co-staining for EGFP and PR or p63. EGFP and p63 

immunofluorescent co-staining confirmed that MMTV-Cre is expressed in the entire mammary 

epithelium including luminal and basal cells (Figure 26). EGFP and PR immunofluorescent co-staining 

showed that MMTV-Cre is active in all the PR+ cells (Figure 27). 
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Figure 26. Localization of P63 and EGFP reporter in the MMTV-Cre mTmG mice. Immunofluorescent co-
staining (a-p) of EGFP and PR in MMTV-Cre mTmG mammary epithelium: a) – d) 4-day old (N=2); e)-h) 8-day old 
(N=2); i) - l) 14-day old (N=2); m) - p) 21-day old (N=2). Scale bars represent 50 μm. 
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Figure 27. Colocalization of PR and EGFP reporter in the MMTV-Cre mTmG mice. Immunofluorescent co-
staining (a-p) of EGFP and PR in MMTV-Cre mTmG mammary epithelium: a) – d) 4-day old (N=2); e)-h) 8-day old 
(N=2); i) - l) 14-day old (N=2); m) - p) 21-day old (N=2). Scale bars represent 50 μm. 
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Analysis of RBP-Jκfl/fl MMTV-Cre mammary gland phenotype during adulthood 

MMTV promoter is also expressed in the skin. Notch signaling is an important player in skin 

differentiation (Williams et al., 2011). RBPfl/flMMTV-Cre mTmG mice showed a severe phenotype in the 

skin (hair loss, skin inflammation and cachexia especially by the end of puberty at 8 weeks). To 

circumvent the confounding effects of the systemic sequela of the MMTV-driven RBP abrogation, we 

again recurred to transplantation for the analysis of the mammary epithelial phenotype. 

As tissue donors, we used 3 groups of 8-weeks-old mice containing one RBPfl/fl MMTV-Cre 

mTmG and one RBPwt/wt MMTV-Cre mTmG mice. Mice within the group were littermates, while each 

group of mice was taken from an independent litter. Mammary tissue from RBPfl/fl MMTV-Cre mTmG 

and RBPwt/wt MMTV-Cre mTmG from the same group were transplanted into 5 recipient mice and 

analyzed 2 months after the transplantation procedure. 

Two months after transplantation outgrowths of the engrafted epithelia was examined. Out of 

14 out of 15 RBPfl/fl MMTV-Cre mTmG grafts and 14 out of 15 RBPwt/wt MMTV-Cre mTmG grafts 

reconstituted mammary ductal tree (Figure 28). In agreement with the results obtained by Ozden 

Yalcin Ozuysal (Yalcin Ozuysal et al., 2010), we couldn’t observe any significant difference in the extent 

of fat pad filling or number of branching points (Figure 28.g,h). However, we saw a difference in the 

color of the epithelium. RBPwt/wt MMTV-Cre mTmG tissue was completely green suggesting that all the 

cells in the gland were expressing EGFP reporter of Cre activity (Figure 28.a-c). RBPfl/fl MMTV-Cre 

mTmG were showing signal both in green and red channel (Figure 28.d-f) suggesting that mammary 

epithelium in these glands is mosaic and comprises both cells expressing EGFP reporter of Cre activity 

and dTomato marking cells where Cre was not active. 
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Figure 28. Transplantation of RBPwt/wt MMTV-Cre mTmG and RBPfl/fl MMTV-Cre mTmG epithelium. 
Representative wholemounts of transplanted RBPwt/wt MMTV-Cre mTmG (a-c) and RBPfl/fl MMTV-Cre mTmG (d-f) 
Scale bars represent 2,5 mm; g) Quantification of branching points in RBPwt/wt MMTV-Cre mTmG and RBPfl/fl MMTV-
Cre mTmG (N=14) Statistical significance was calculated using paired Student’s T-test; h) Quantification of the 
fatpad filling in RBPwt/wt MMTV-Cre mTmG and RBPfl/fl MMTV-Cre mTmG transplanted glands. Each circle 
represents one transplanted mammary gland. The blackened region represents the area filled with outgrowth. 
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To investigate the expression of both ER and PR in the conditionally knocked out epithelium, 

we performed immunofluorescent co-staining for EGFP and ER or PR in both RBPwt/wt MMTV-Cre 

mTmG and RBPfl/fl MMTV-Cre mTmG epithelium. For the quantification of immunofluorescent analysis, 

we analyzed couples of gland from 2 recipient mice per donor, having in total 6 samples per genotype 

for each type of staining. More than 2000 cells were counted on each section. 

Firstly, we looked at the expression of EGFP in the whole epithelium. As expected, in the 

RBPwt/wt MMTV-Cre mTmG almost all the cells in both compartments (97,0%±2,0) expressed EGFP 

confirming that Cre was active in the entire epithelium (Figure 29.a-h) (Figure 30.a). In the RBPfl/fl 

MMTV-Cre mTmG, we noticed that there are significantly less EGFP expressing cells (37,0%±8,3) 

(Figure 29.i-p) (Figure 30.a). Previous analysis of RBPfl/fl MMTV-Cre mTmG mammary epithelium 

showed that cells expressing Cre reporter were present only in the basal compartment and luminal 

layer was repopulated with EGFP negative cells where Cre was never active and didn’t delete RBP-Jκ 

gene (Yalcin Ozuysal et al., 2010). In our analysis, all the cells in the basal compartment were 

expressing EGFP, but also there was a significant number of EGFP+ cells in the luminal compartment 

(figure X). Immunofluorescent co-staining for EGFP with ER or with PR revealed that the vast majority 

of luminal EGFP positive cells (90,9%±3,8 for ER and 86,9 %±3,8 for PR) in RBPfl/fl MMTV-Cre mTmG 

mouse tissue are both ER and PR positive (Figure 30.c). Analysis of the number of HR+ cells in total 

epithelium showed that there are no differences in the number of HR+ cells (analyzed both by ER and 

PR expression) in RBPwt/wt MMTV-Cre mTmG (31,4%±1,9 for ER and 32,4%±3,6 for PR) and RBPfl/fl 

MMTV-Cre mTmG (30,1%±6,8 for ER and 33,1%±3,3 for PR) (Figure 30.b). Thus, even in absence of 

Notch signaling, the proportion of HR+ cells is maintained in the tissue. 
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Figure 29. Colocalization of ER/PR and EGFP reporter in the RBPfloxedMMTV-Cre mTmG transplanted glands. 
Immunofluorescent co-staining (a-p) of EGFP with ER and PR in RBPwt/wt MMTV-Cre mTmG and RBP fl/fl MMTV-Cre 
mTmG transplanted mammary epithelium: a) – d) Co-staining of EGFP with ER in RBPwt/wt MMTV-Cre mTmG 
mammary epithelium (N=6); e)-h) Co-staining of EGFP with PR in RBPwt/wt MMTV-Cre mTmG mammary epithelium 
(N=6); i) - l) Co-staining of EGFP with ER in RBPfl/fl MMTV-Cre mTmG mammary epithelium (N=6); m) - p) Co-
staining of EGFP with PR in RBPfl/fl MMTV-Cre mTmG mammary epithelium (N=6). Scale bars represent 50 μm. 
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Figure 30: Quantification of colocalization of ER/PR and EGFP reporter in the RBPfloxed MMTV-Cre mTmG 
transplanted glands. a) Portion of EGFP positive cells in mammary epithelium (N=6); b) Portion of ER and PR 
positive cells in the mammary epithelium (N=6); c) Portion of ER  and PR positive cells in the luminal EGFP positive 
population of MMECs (N=6). Statistical significance of all comparisons was calculated by paired student’s T-test. 

To confirm that in the EGFP positive population of the RBPfl/fl MMTV-Cre mTmG epithelium 

deletion of RBP-Jκ was fully functional, we performed immunofluorescent co-staining of tissue from 

both RBPwt/wt MMTV-Cre mTmG and RBPfl/fl MMTV-Cre mTmG transplants with EGFP and RBP-Jκ 

antibodies. Staining confirmed that in the RBPfl/fl MMTV-Cre mTmG tissue cells expressing EGFP Cre 

reporter were not expressing RBP-Jκ (Figure 31). 
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Figure 31. Colocalization of RBP-Jκ and EGFP reporter in the RBPfloxedMMTV-Cre mTmG transplanted 
glands. Immunofluorescent co-staining (a-p) of EGFP and RBP-Jκ in RBPwt/wt MMTV-Cre mTmG and RBP fl/fl 
MMTV-Cre mTmG transplanted mammary epithelium: a) – d) Co-staining of EGFP and RBP-Jκ in RBPwt/wt MMTV-
Cre mTmG mammary epithelium (N=6); e)-h) Co-staining of EGFP and RBP-Jκ in RBPfl/fl MMTV-Cre mTmG 
mammary epithelium (N=6). Scale bars represent 50 μm 

CONCLUSION 

From the experiments with RBPfloxed MMTV-Cre mTmG mouse model we concluded that there 

is a particular population of HR+ cells that can differentiate independently of Notch signaling. 

Therefore we are proposing the presence of 2 different populations of HR+ cells in the mouse 

mammary epithelium: 1) a population that do not rely on Notch signaling and that is detected in 

RBPfl/fl MMTV-Cre mTmG mouse model. In these cells ER and PR are expressed independently of Notch 

activation; 2) a population of HR+ cells that is expressing Wnt4 ligand and that is detected by RBPfl/fl 
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Wnt4-Cre mTmG mouse model. In these cells, PR expression is loss upon abrogation of Notch signaling 

via deletion of RBP-Jκ. 
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TIME DIRECTED CONDITIONAL DELETION OF RBP-JΚ IN THE MAMMARY EPITHELIUM 

(INTRADUCTAL INJECTION OF ADENO-CRE VIRUS INTO RBP-JΚFLOXED MTMG MOUSE MODEL) 

INTRODUCTION AND WORKING HYPOTHESIS 

The results from RBP-Jκ Wnt4-Cre mTmG mouse model led us to propose that in the Wnt4 

expressing HR+ cells the expression of PR might be regulated by Notch signaling via RBP-Jκ.  

RBPfloxed MMTV-Cre mTmG mouse model showed that HR+ cells and PR expression can be 

established without Notch signaling, therefore we hypothesized that Notch signaling might be 

important for maintenance of the PR expression in the HR+ luminal cells. 

Wnt4 starts to be expressed in the mammary epithelium around day 3 after birth. Therefore, in 

the RBP-Jκfloxed Wnt4-Cre mTmG mouse model RBP-Jκ is recombined very early in development. Cre 

activity reporter, mTmG is recombined and expressed EGFP in order to mark the cells in which Cre-

recombinase was active but we cannot know the time window of its activity. Hence, the time frame of 

these events remains undetermined.  

Therefore, to test the immediate effect of the Notch abrogation via RBP-Jκ deletion in 

mammary gland epithelium, we established the protocol of time-directed conditional deletion of 

floxed RBP-Jκ gene via intraductally injected Adeno-Cre virus which expresses Cre recombinase under 

the CMV promoter (Russel et al., 2003). The Cre activity is reported by the expression of EGFP from 

mTmG Cre reporter gene. 

The amount of virus injected in each mammary gland was 1*107 PFU in 5 μL of 1% PBS with 

0,1% of Trypan blue dye, as reported before (Russel et al., 2003). To validate the model we injected 

Adeno-CMV-virus into glands of 2 groups of 3 mice per genotype (RBPwt/wt mTmG and RBPfl/fl mTmG). 

The 2 inguinal glands were injected in each mouse. 

Glands from 6 mice per genotype were examined for the expression of EGFP reporter with 

fluorescent stereomicroscope 7 days after the injection. We were able to see that EGFP from mTmG 

reporter gene was expressed throughout the whole gland.  

Glands from one group of mice were used for flow cytometry showing that both luminal and 

basal epithelial cells are infected. In addition, comparable amount of cells in both epithelial layers is 

infected both in RBPwt/wt mTmG and RBPfl/fl mTmG mice (Figure 32).  
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Figure 32. Wholemount and FAC analysis of the glands from the RBPfloxed Adeno-CMV-Cre mTmG mouse 
model. a-c) Wholemount micrographs of RBPwt/wt Adeno-CMV-Cre mTmG mammary epithelium; d-f) Wholemount 
micrographs of RBPfl/fl Adeno-CMV-Cre mTmG mammary epithelium; g) Fluorescence activated cell analysis of EGFP 
expression in basal and luminal mammary epithelial cells in RBPwt/wt Adeno-CMV-Cre mTmG and RBPfl/fl Adeno-
CMV-Cre mTmG mice (N=3). Scale bars represent 1 mm 

Glands from the other group of mice were used for the immunofluorescent staining. Analysis of 

the sections from RBPwt/wt mTmG and RBPfl/fl mTmG mice confirmed data from FAC analysis that both 

layers of mammary epithelial cells can get infected by Adeno-CMV-Cre virus (Figure 33).  
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Figure 33. Colocalization of PR/p63 and EGFP reporter in the RBPfloxed Adeno-CMV-Cre mTmG transplanted 
glands. Immunofluorescent co-staining (a-p) of EGFP with ER and PR in RBPwt/wt Adeno-CMV-Cre mTmG and RBP 
fl/fl Adeno-CMV-Cre mTmG mammary epithelium: a) – d) Co-staining of EGFP with PR in RBPwt/wt Adeno-CMV-Cre 
mTmG mammary epithelium (N=3); e) – h) Co-staining of EGFP with p63 in RBPwt/wt Adeno-CMV-Cre mTmG 
mammary epithelium (N=3); i) – l) Co-staining of EGFP with PR in RBPfl/fl Adeno-CMV-Cre mTmG mammary 
epithelium (N=3); m) – p) Co-staining of EGFP with p63 in RBPfl/fl Adeno-CMV-Cre mTmG mammary epithelium 
(N=3). Scale bars represent 50 μm 

Additionally we co-stained both RBPwt/wt mTmG and RBPfl/fl mTmG infected by Adeno-CMV-

virus to show that RBP-Jκ gene is deleted and that RBP- jκ protein is absent from the cells expressing 

EGFP reporter of Cre activity. Co-staining confirmed that RBP-Jκ does not colocalize in the same cells 

with the EGFP reporter of Cre activity validating that Adeno-CMV-Cre is efficiently deleting RBP-Jκ 

gene in the RBPfl/fl mTmG mammary epithelium (Figure 34). 
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Figure 34. Colocalization of RBP-Jκ and EGFP reporter in the RBPfloxedAdeno-CMV-Cre mTmG transplanted 
glands. Immunofluorescent co-staining (a-p) of EGFP and RBP-Jκ in RBPwt/wt Adeno-CMV-Cre mTmG and RBP fl/fl 
Adeno-CMV -Cre mTmG transplanted mammary epithelium: a) – d) Co-staining of EGFP and RBP-Jκ in RBPwt/wt 
Adeno-CMV-Cre mTmG mammary epithelium (N=6); e)-h) Co-staining of EGFP and RBP-Jκ in RBPfl/fl Adeno-CMV-Cre 
mTmG mammary epithelium (N=6). Scale bars represent 25 μm 

Following the validation of the model, we tested the hypothesis that Notch signaling via RBP-Jκ 

is responsible for the maintenance of the PR expression in HR+ mammary epithelial cells. 

RESULTS 

We injected Adeno-CMV-virus intraductally into 3 groups of 3 mice per genotype (RBPwt/wt 

mTmG and RBPfl/fl mTmG). The 2 inguinal glands were injected in each mouse. Each group of mice was 

examined at different time point to monitor overtime the effect of Notch abrogation via RBP-Jκ 

deletion at 7, 14 and 21 days. 
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Figure 35. Wholemount analysis of the glands from the RBPfloxed Adeno-CMV-Cre mTmG mouse model. a-c) 
Wholemount micrographs of RBPwt/wt Adeno-CMV-Cre mTmG and d-f) RBPfl/fl Adeno-CMV-Cre mTmG mammary 
epithelia 7 days after injection of the virus (N=3); g-i) Wholemount micrographs of RBPwt/wt Adeno-CMV-Cre mTmG 
and j-l) RBPfl/fl Adeno-CMV-Cre mTmG mammary epithelia 14 days after injection of the virus (N=3); m-o) 
Wholemount micrographs of RBPwt/wt Adeno-CMV-Cre mTmG and p-r) RBPfl/fl Adeno-CMV-Cre mTmG mammary 
epithelia 21 days after injection of the virus (N=3); Scale bars represent 2,5 mm 

Wholemount analysis by fluorescent stereomicroscope of the Adeno-CMV-Cre virus infected 

glands indicated the loss of EGFP post injection overtime (Figure 35). To confirm that less green 

fluorescence is present due to the lower amount of recombined cells expressing EGFP Cre reporter we 

quantified the number of green cells in the sections of glands infected by Adeno-CMV-Cre virus from 

both genotypes by immunofluorescent staining (Figure 36). For the quantification we used sections 

from 3 mice per genotype and time point. From each mouse an entire section of the gland was scanned 

and each cross-section of the mammary duct was included for quantification. On average 5000 cells 

were counted per section of the mammary gland.  
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Figure 36. Colocalization of ER, PR and p63 with EGFP reporter in the RBPfloxed Adeno-CMV-Cre mTmG 
glands. Immunofluorescent co-staining (a-p) of EGFP with ER, PR and p63 in RBPwt/wt Adeno-CMV-Cre mTmG and 
RBP fl/fl Adeno-CMV-Cre mTmG transplanted mammary epithelium: a) – e) Co-staining of EGFP with ER and p63 in 
RBPwt/wt Adeno-CMV-Cre mTmG mammary epithelium (N=3); f - j) Co-staining of EGFP with PR in RBPwt/wt Adeno-
CMV-Cre mTmG mammary epithelium (N=3); k - o) Co-staining of EGFP with ER in RBPfl/fl Adeno-CMV-Cre mTmG 
mammary epithelium (N=3); m) - p) Co-staining of EGFP with PR in RBPfl/fl Adeno-CMV-Cre mTmG mammary 
epithelium (N=3). Scale bars represent 25 μm. 
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Quantification of cell types in the infected epithelium showed that there is no significant 

difference in the amount of basal or luminal cells in the total RBPwt/wt Adeno-CMV-Cre mTmG and 

RBPfl/fl Adeno-CMV-Cre mTmG epithelia (Figure 37.a,b). Also the ratio of the luminal versus basal cell 

type was not differing from expected values from an intact epithelium (twice the amount of luminal 

cells) (37.a,b). Quantification of the portion of ER+ and PR+ cells in the total epithelium showed that 

there was no significant difference in the number of HR+ cells defined by either ER or PR between 

RBPwt/wt Adeno-CMV-Cre mTmG and RBPfl/fl Adeno-CMV-Cre mTmG within the time-point and the 

amount of HR+ cells was not differing from standard values expected in the intact epithelium. 

Therefore we concluded that the infection does not interfere with the regular proportions of cell types 

within the mammary epithelium (Figure 37.c,d). 

Quantification of the number of cells in the infected glands showed that within the same time-

point group there was no difference in the amount of EGFP Cre reporter expressing cells between 

RBPwt/wt Adeno-CMV-Cre mTmG and RBPfl/fl Adeno-CMV-Cre mTmG epithelia. However, when different 

time-points were compared we observed a significant loss of EGFP expressing cells with time in both 

genotypes (7 days - fl:19,4±2,1; wt:21,9±1,8; and 14 days - fl:12,9±1,0; wt:12,7±1,4; 21 days - 

fl:4,6±0,5; wt:5,8±0,5) (Figure 37.e). 

The classical infection pathway of the Adenovirus involves the lysis of a cell by a virus to 

produce new particles (Reviewed in Leopold and Crystal, 2007). Since we observed a dramatic 

decrease in the amount of infected cells in both RBPwt/wt Adeno-CMV-Cre mTmG and RBPfl/fl Adeno-

CMV-Cre mTmG mammary gland epithelia, we concluded that Adeno-CMV virus had a significant 

cytotoxic effect 14 and 21 day after the infection.  

Quantification of the basal and luminal cells within the EGFP Cre reporter expressing 

population showed that there was no significant differences in the proportions of infected basal cells 

per genotype/time-point and infected luminal cells per genotype/time-point (Figure 37.f,g). 

Quantification of the number of ER+ cells showed no significant change between RBPwt/wt 

Adeno-CMV-Cre mTmG and RBPfl/fl Adeno-CMV-Cre mTmG total epithelium overtime (Figure37.h). 

Contrarily, the amount of PR positive cells was significantly lower in the EGFP expressing population 

of the RBPfl/fl Adeno-CMV-Cre mTmG epithelium (30,8%±5,4%) compared to RBPwt/wt Adeno-CMV-Cre 

mTmG (18,7%±4,7%) after 7 days (Figure 37.i). Difference disappeared after 14 and 21 days (Figure 

37.i). This observation was even more striking when we compared the portion of PR expressing cells 

in only luminal EGFP expressing populations of RBPwt/wt Adeno-CMV-Cre mTmG and RBPfl/fl Adeno-

CMV-Cre mTmG at the different time points: 7 days (38,3%±3,9% for RBPwt/wt and 20,5%±5,9% for 

RBPfl/fl) and 14 days (57,6%±10,7% for RBPwt/wt and 44,4%±7,9% for RBPfl/fl) after injection. The 

difference was once more lost at 21 day after injection (Figure 37.k). 
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Figure 37. Quantification of colocalization of ER, PR and p63 with EGFP reporter in the RBPfloxed Adeno-CMV-
Cre mTmG transplanted glands. a) Portion of basal cells defined by the expression of p63 in the total mammary 
epithelium (N=3 per genotype); b) Portion of luminal cells defined by position within the duct and by lack of p63 
expression in the mammary epithelium (N=3 per genotype); c) Portion of ER positive cells in the total mammary 
epithelium (N=3 per genotype); d) Portion of PR positive cells in the the total mammary epithelium (N=3 per 
genotype); e) Portion of EGFP positive cells in the the total mammary epithelium (N=3 per genotype). P values 
represent comparisons between RBPwt/wt Adeno-CMV-Cre mTmG and RBPfl/fl Adeno-CMV-Cre mTmG epithelium 
within the same time point. P* values represent comparisons between RBPwt/wt Adeno-CMV-Cre mTmG epithelium 
between different time points connected with the line. P** values represent comparisons between RBP fl/fl Adeno-
CMV-Cre mTmG epithelium between different time points connected with the line ; f) Portion of basal cells in the 
total EGFP population of mammary epithelium (N=3 per genotype); g) Portion of luminal cells in in the total EGFP 
population of mammary epithelium (N=3 per genotype); h) Portion of ER positive luminal cells in in the total EGFP 
population of mammary epithelium (N=3 per genotype); i) Portion of PR positive luminal cells in in the total EGFP 
population of mammary epithelium (N=3 per genotype); j) Portion of ER positive luminal cells in in the EGFP+ 
luminal population of mammary epithelium (N=3 per genotype); k) Portion of PR positive luminal cells in in the 
EGFP+ luminal population of mammary epithelium (N=3 per genotype). Statistical significance of all comparisons 
was calculated by unpaired student’s T-test. 

CONCLUSION 

Time directed abrogation of Notch signaling by conditional deletion of floxed RBP-Jκ gene via 

Adeno-CMV-Cre infection resulted in a significant loss of the PR+ cells shortly after infection (7 days). 

At the same time point loss of HR+ cells in the entire epithelium or alteration of the ratio luminal/basal 

cells were not observed. These results are in line with our hypothesis that Notch signaling is 

responsible for the activation of PR expression in order to maintain the levels of PR in the HR+ 

mammary epithelial cells. 

Adeno-CMV-Cre infection showed strong cytotoxicity in the longer time points (14 days and 21 

days) showing 2-fold loss of infected cells after 14 days and 4 fold loss after 21 days. Therefore it is not 
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possible to distinguish whether the changes in the amount of PR positive cells in infected population at 

later time points (14 days and 21 days) were caused by the abrogation of Notch signaling or by 

cytotoxicity of the Adeno-CMV-Cre virus. Hence, we can draw conclusions only from the time point of 7 

days.  

INHIBITION OF CANONICAL NOTCH SIGNALING IN THE ENDOGENOUS MAMMARY EPITHELIUM 

VIA INTRADUCTAL INJECTION OF Γ-SECRETASE INHIBITOR DAPT 

INTRODUCTION AND WORKING HYPOTHESIS 

Canonical Notch signaling activates target genes through activation of RBP-Jκ regulated by 

Notch receptor intracellular domain. However, RBP-Jκ has been shown to control the expression of 

target genes without activation by Notch receptor (reviewed in Sanalkumar et al., 2010). To activate 

Notch target genes, Notch receptor intracellular domain is cleaved by the γ-secretase complex, 

released from the membrane and translocated to the nucleus where it can bind to RBP-Jκ protein 

(Saxena et al., 2001). This interaction will activate the recruitment of the activation complex on the 

RBP-Jκ protein and activate the expression of the targeted genes. N-[N-(3,5-Difluorophenacetyl)-L-

alanyl]-S-phenylglycine t-butyl ester (DAPT) is a compound that abrogates γ-secretase cleavage of 

Notch receptor to efficiently inhibit canonical Notch signaling in vivo (Micchelli et al., 2003). 

Experiments from 4 different mouse models presented so far showed that the Notch active 

population is expressing HRs. In addition, abrogation of Notch signaling via RBP-Jκ deletion in this 

population induces the loss of PR expression. Therefore we hypothesized that Notch signaling is 

responsible for the regulation of PR expression. 

To test whether canonical Notch is responsible for this regulation we injected DAPT 

intraductally into the 8-weeks-old wild type female mice and analyzed the PR expression by qPCR and 

immunofluorescent co-staining for ER and PR of the DAPT- and DMSO-treated glands. 

RESULTS 

To test whether canonical Notch signaling is responsible for PR expression regulation in the 

Wnt4 expressing population of HR+ mammary epithelial cells we inhibited γ-secretase complex in the 

mammary epithelium via intraductal injection of DAPT.  

For this experiment DAPT dissolved in DMSO and DMSO alone as vehicle were injected 

contralaterally through the teats in the pair of inguinal glands of 3 mice.  Forty eight hours after the 

injection, glands were isolated and RNA was extracted. Gene expressions of ER and PR were measured 

by qPCR. As a positive control we used known Notch target Hey1 and for the normalization of the 

values we used house-keeping gene 36B4. 
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Quantitative PCR showed that upon Notch inhibition via DAPT treatment the expression of the 

control gene Hey1 was significantly reduced by 62,1%±5,2% indicating that the drug successfully 

interfered with Notch signaling (Figure 38.a). Expression of ER was not significantly affected by this 

treatment unlike the expression of PR which was reduced by 41,2%±11,2% (Figure 38.b,c). 

 

Figure 38. Effects of inhibition of canonical Notch signaling by DAPT in vivo. Quantitative PCR analysis of 
mRNA levels in the mouse mammary gland treated with only vehicle (DMSO) and γ-secretase inhibitor DAPT  
(30μM) injected intraductally to the contralateral glands (N=3). 36B4 was used as a house-keeping gene for 
normalization. Statistical significance was calculated using paired Student’s T-test 

Additionally we stained sections from 3 DAPT treated and 3 DMSO control contralateral 

mammary glands from 3 different mice to analyze colocalization of ER and PR in the mammary 

epithelium (Figure 39.a-h). There were minor differences in the number of ER and PR expressing cells 

in total epithelium when sections from DMSO injected and DAPT injected glands were compared. 

When we analyzed cells that are expressing both ER and PR we noticed that in the control glands 

98,9%±2,6% of ER expressing cells were also expressing PR. However, in the DAPT injected glands, the 

amount of ER+ cells expressing PR was significantly smaller (85,9%±3,9%) confirming that upon 

abrogation of Notch signaling via inhibition of γ-secretase complex only a subpopulation of ER 

expressing cells lost PR expression (Figure 39.i).  

CONCLUSION 

Abrogation of Notch signaling by inhibition of γ-secretase via intraductal injection of DAPT 

results in the loss of PR expression analyzed by quantitative PCR. This result confirms our hypothesis 

that canonical Notch signaling is responsible for the loss of PR expression in the HR+ mammary 

epithelial cells. 

Quantification of the immunofluorescent staining for ER and PR showed that ≈14% of the ER+ 

cells loses the expression of PR. 
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Figure 39: Colocalization and quantification of co-localization of ER and PR in wild type glands inected with 
wehicle and DAPT contralaterally. a) - d) Co-staining of ER and PR in in the wild type mammary glands injected 
with wehicle (DMSO) (N=3) e) - h) Co-staining of ER and PR in wild type mammary glands injected with DAPT in 
DMSO (N=3) White arrows point cells expressing only PR. Scale bars represent 50 μm; i) Portion of ER+ cells co 
expressing PR in the DMSO treated vs. DAPT treated mammary gland (N=3); j) Portion of ER+ cells in total 
epithelium of DMSO treated vs. DAPT treated mammary gland (N=3); k) Portion of ER+ cells in total epithelium of 
DMSO treated vs. DAPT treated mammary gland (N=3). Statistical significance was calculated using paired 
Student’s T-test. 
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BIOINFORMATICAL ANALYSIS OF THE MOUSE PROGESTERONE RECEPTOR PROMOTER 

INTRODUCTION AND WORKING HYPOTHESIS 

Loss of PR expression upon Notch signaling abrogation via deletion of RBP-Jκ in the Wnt4 

expressing HR+ cells led to hypothesize that Notch signaling is regulating the expression of PR gene in 

these cells. To test whether RBP-Jκ may bind directly to PR promoter, we performed bioinformatical 

analysis of both mouse and human PR promoter to identify RBP-Jκ binding motifs. Additionally, we 

performed multiple alignment of PR promoter region from different species to investigate the 

conservation of RBP-Jκ binding sites. 

RESULTS 

To analyze PR promoter in order to find RBP-Jκ motifs, we performed an analysis of the PR 

promoter sequence by short motifs search tool “Dreg” in the EMBOSS software 

(www.emboss.bioinformatics.nl).  The tool “Dreg” identified 4 putative RBP-Jκ binding sites in the PR 

promoter region (1st at -2636 to -2631, 2nd at -2077 to 2072, 3rd at -1711 to 1706 and 4th at -1495 to -

1490) (Figure 40).  
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Figure 40. Sequence of the mouse PR promoter. ATG starting codon is shown in green. Estrogen responsive 
element is shown in red. RBP-Jκ putative binding sites are marked in yellow. 

Analysis of the human promoter revealed two putative RBP-Jκ motifs (1st at -1890 to 1885 and 

2nd at -543 to -537) (Figure 41) 

Additional analysis of both mouse and human PR promoters was performed using a tool Pro-

Coffee which aligns homologous promoter regions (Erb et al., 2011). In the alignment we additionally 

included PR promoters of chimpanzee, pig, cat and rat, and checked if putative RBP-Jκ binding sites in 

the mouse and human PR promoter regions are conserved. 

Analysis showed that estrogen binding site is highly conserved showing identity in all the 

species except pig. In pig only the last nucleotide of the motif was different (Fgure 42.a). 
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Figure 41. Sequence of the human PR promoter. ATG starting codon is shown in green. Estrogen responsive 
element is shown in red. RBP-Jκ putative binding sites are marked in yellow. 

Analysis showed that binding sites 3 and 4 are positioned in highly conserved area (Figure 

42.d,e), binding site 1 in conserved area (Figure 42.b) and binding site 2 in averagely conserved area 

(Figure 42.c). Although mouse RBP-Jκ binding sites 1, 3 and 4 were in the conserved areas of the 

promoter, they did not show identity with the human promoter, therefore we cannot consider that 

RBP-Jκ can bind at the exactly same position. RBP-Jκ binding site 3 showed identity with the rat 

promoter suggesting that it might be conserved in rodents. 
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Figure 42. Multiple alignment of the ER responsive element, and RBP-Jκ binding sites in the PR promoter 
region of human, mouse, chimpanzee, pig, cat and rat. a) Multiple alignment of the ER responsive element in the 
PR promoter region; b) Multiple alignment of the 1st RBP-Jκ binding site in the PR promoter region of the mouse; c) 
Multiple alignment of the 2nd RBP-Jκ binding site in the PR promoter region of the mouse; d) Multiple alignment of 
the 3rd RBP-Jκ binding site in the PR promoter region of the mouse; e) Multiple alignment of the 4th RBP-Jκ binding 
site in the PR promoter region of the mouse; f) Multiple alignment of the 1st RBP-Jκ binding site in the PR promoter 
region of the human; g) Multiple alignment of the 2nd RBP-Jκ binding site in the PR promoter region of the human. 
Multiple alignment of the PR promoter regions was performed with Pro-Coffee software. 

In the same set of data from the multiple alignment analysis we were able to observe that 

human RBP-Jκ binding sites are positioned in the highly conserved area but did not show identity with 

the mouse PR promoter region. However, RBP-Jκ binding site 1 was conserved in the chimpanzee 

suggesting that it might be conserved in primates (Figure 42.f,g). 

CONCLUSION 

Bioinformatical analysis of the PR promoter region in mouse and human showed that there are 

4 putative RBP-Jκ binding sites in the mouse PR promoter and 2 putative RBP-Jκ binding sites in the 

human PR promoter. None of the binding sites showed identity between mouse and human.  
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CHROMATIN IMMUNOPRECIPITATION ASSAY OF PR PROMOTER WITH RBP 

INTRODUCTION AND WORKING HYPOTHESIS 

Bioinformatical analysis revealed 4 putative RBP-Jκ binding sites in the mouse PR promoter 

region suggesting that Notch signaling via RBP-Jκ could regulate the expression of the PR via direct 

binding to the PR promoter. 

Therefore to test the hypothesis that RBP-Jκ binds to the PR promoter we performed 

chromatin immunoprecipitation (ChIP) assay with RBP-Jκ antibody to confirm the interaction. 

RESULTS. 

We isolated 6 glands per mouse from three groups of three 6-weeks-old mice forming three 

samples of 18 glands each. Epithelial organoids were isolated from three samples and ChIP was 

performed using RBP-Jκ antibody.  

We examined the binding of RBP-Jκ to all 4 putative binding sites in the promoter region. As a 

positive control we analyzed binding of RBP-Jκ to the regulatory region of the Notch target gene Hey1 

(Maier and Gesler, 2000). As a negative control we used several conditions: 1. IgG instead of antibody 

for immunoprecipitation; 2. Primers for sequence within the PR gene which does not contain RBP-Jκ 

binding motif for PCR analysis of the immunoprecipitated DNA; 3. Water instead of 

immunoprecipitated DNA for each couple of primers in the PCR analysis.  

Qualitative analysis of ChIP by PCR confirmed that RBP-Jκ can bind to site 1 and 3 as well as to 

RBP responsive element of the Hey1 promoter. Importantly, there was no binding to an unrelated 

internal sequence or to binding sites 2 and 4 (Figure 43.a).  

Quantitative analysis of ChIP to the binding sites 1 and 3 as well as to RBP-Jκ responsive 

element in Hey1 promoter by real-time PCR showed that in 2 out of 3 samples RBP-Jκ significantly 

binds to all tested sequences. Binding of the RBP-Jκ protein to Hey1 promoter was stronger than 

binding to RBP-Jκ responsive elements from the PR promoter; ≈5-fold stronger than binding site 1 and 

≈35-fold stronger than binding site 3 (Figure 43.b-d). 

CONCLUSION. 

Chromatin immunoprecipitation assay showed that RBP-Jκ binds to its responsive elements 

present in the PR promoter, in particular binding site 1 and 3. Binding of RBP-Jκ to sites 1 and 3 is 

weaker than the binding to the promoter of the Notch target gene Hey1. 
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Figure 43. Chromatin immunoprecipitation with RBP-Jκ antibody. Rbp-Jκ binds to sites 1 and 3 and has no 
affinity to sites 2 and 4. a) Qualitative analysis of the Chromatin immunoprecipitation assay: First lane is showing 
input DNA used to perform immunoprecipitation. Second lane is showing immunoprecipitation RBP-Jκ antibody. 
Third lane is showing immunoprecipitation using IgG as a negative control. Fourth lane is showing negative control 
using water for the PCR reaction (N=3); b) Quantitative analysis of the chromatin immunoprecipitation with RBP-Jκ 
antibody to RBP-Jκ responsive element in the Hey1 promoter (N=3); c) Quantitative analysis of the chromatin 
immunoprecipitation with RBP-Jκ antibody to RBP-Jκ binding site 1 in the PR promoter (N=3); d) Quantitative 
analysis of the chromatin immunoprecipitation with RBP-Jκ antibody to RBP-Jκ binding site 1 in the PR promoter 
(N=3). 
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ABROGATION OF NOTCH SIGNALING IN HR+ BREAST CANCER CELL LINES 

INTRODUCTION AND WORKING HYPOTHESIS 

Two thirds of all breast cancers express ER and are treated with anti-estrogens, but resistance 

to the therapy often occurs (reviewed in Pritchard 2005 and Tobias 2004). Observations on the HR+ 

breast cancer cell lines suggested a mechanism of resistance via Notch signaling. In the absence of 

estrogens, Notch signaling can become activated and directly stimulate ER-dependent transcription, 

overriding the inhibitory effects of anti-estrogens (Rizzo et al., 2008) 

Data from mouse models in this project strongly support the hypothesis that Notch signaling is 

included in the regulation of the expression of PR, an ER target gene. Although RBP-Jκ responsive 

elements from mouse PR promoter are not showing identity to the human PR promoter, mouse and 

human PR promoter are showing strong conservation. In addition, the human promoter contains 2 

RBP-Jκ responsive elements that could be implicated in the regulation of PR expression.  

Therefore, we propose that Notch signaling via RBP-Jκ activation can regulate PR expression in 

the human breast cancer cell lines. 

To test that Notch signaling can regulate PR expression in human breast cancers we inhibited 

Notch signaling in HR+ human breast cancer cell lines MCF7 and T47D with DAPT, γ-secretase 

inhibitor (Michelli et al., 2003) and by expression of dominant negative form of Notch coactivator 

Mastermind (Maillard et al., 2003). Additionally, we overexpressed activated NICD1 in HR negative 

MCF-10a cell line to induce PR expression by activation of Notch signaling. 

RESULTS 

To test the hypothesis that Notch signaling can regulate PR expression via RBP-Jκ activation we 

abrogated Notch signaling via γ-secretase inhibition by DAPT in HR+ cell lines MCF7 and T47D. In 3 

independent experiments we treated both MCF7 and T47D cell lines with 10, 20 and 30 µM DAPT 

dissolved in DMSO (Figure 44). Control cells were treated with the same amount of empty DMSO. 

Inhibition was performed during 48 hours.  

Analysis of the protein levels by Western blotting showed that there was no significant effect 

on the amount of ER and PR proteins in cells where Notch was inhibited by DAPT (Figure 44). To show 

that DAPT indeed inhibited Notch signaling we performed Western blot analysis to test the amount of 

cleaved Notch 1 receptor using Notch1 antibody that detects only cleaved N-terminal intracellular 

form. Analysis showed concentration-dependent reduction of cleaved Notch1 intracellular domain. As 

reported in the data sheet of the antibody, 10 µM DAPT had very little effect on the cleavage of the 

Notch1 receptor by γ-secretase in MCF7 and stronger effect in T47D cell line. 20 µM and 30 µM DAPT 

showed much stronger effect (Figure 44). 
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Figure 44. Effect of Notch signaling inhibition by DAPT on the protein expression of HR in MCF7 and T47D 
cell lines. Western Blot analysis of protein levels in MCF7 and T47D cell lines upon Notch inhibition by DAPT (γ-
secretase inhibitor): a) Western blot analysis of ER, PRa and Prb with tubulin as a loading control  and cleaved 
Notch1 protein with actin as a loading control in MCF7 cell line; b) – d) Quantification of ER, PRa and PRb protein 
levels in MCF7 cell line normalized to tubulin (N=3); e) Western blot analysis of ER, PRa and PRb with tubulin as a 
loading control and cleaved Notch1 protein with actin as a loading control in T47D cell line; f) – h) Quantification of 
ER, PRa and PRb protein levels in T47D cell line normalized to tubulin (N=3). 

Additionally, we analyzed levels of mRNA of ER, PR and Notch target gene Hey1 in the T47D 

cell line treated with 10, 20 and 30 µM DAPT by quantitative PCR using 36B4 as housekeeping gene. 

Analysis showed that DAPT inhibited expression of Hey1 confirming the inhibition of Notch signaling 
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in the cell line. Contrarily, expression of both ER and PR was not affected by γ-secretase inhibition 

(Figure 45.a-c).  

Mastermind is an important Notch coactivator responsible for the formation of activating 

complex on the RBP-Jκ upon activation by NICD (Wu et al., 2000). To abrogate Notch signaling via the 

inhibition of the formation of activating complex on RBP-Jκ, we overexpressed dominant negative 

Mastermind (DNNM) form in T47D cells via retrovirus vector. As a control we used T47D cells infected 

with empty retroviral vector. Both DNNM expressing and control vector expressed GFP as a reporter 

of the expression.  Expression of genes of interest was analyzed 48 hours after the infection.  

Data from 3 independent experiments showed that expression of dominant negative 

Mastermind did not have any effect on the levels of mRNA of Hey1 and ER. Surprisingly, PR levels were 

significantly increased by ≈1,5 fold (Figure 45.d). GFP reporter of the vector expression showed 

similar levels of expression in both DNNM expressing and control T47D cells confirming the validity of 

the experiment. 

According to our working hypothesis, Notch signaling via RBP-Jκ regulates PR expression. In 

parallel with Notch inhibition experiments we performed experiment where we activated Notch 

signaling by expression of activated NICD via retroviral infection in HR- cell line MCF10a and analyzed 

the expression of ER, PR and Notch target gene Hey1.  

To test whether activation of Notch signaling can induce expression of PR in HR- MCF10a cell 

line, in 3 independent experiments we infected MCF10a cell line with retroviruses expressing 

activated NICD1, and with empty control viruses. Since MCF10a cells do not express hormone 

receptors, we also analyzed the expressions of ER, PR and Hey1 in MCF7 cell line as positive control to 

validate the experiment. 

Data from 3 independent experiments confirmed activation of Notch signaling via expression 

of activated NICD1 in MCF10a cells by increase of expression of Notch target gene Hey1. Although 

notch signaling was clearly activated, neither ER nor PR expression was affected (Figure 45.e). 
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Figure 45. Effect of Notch signaling inhibition on the transcription of HR in T47D cell line and Notch 
signaling activation in MCF10a cell line: Quantitative PCR analysis of mRNA levels of Hey1, ER and PR in T47D 
and MCF10a cell lines upon Notch abrogation or Notch activation: a-c) Analysis of mRNA levels of Hey1, ER and PR 
in T47D cell line upon abrogation of Notch signaling via γ-secretase inhibition by DAPT (N=3); d) Analysis of mRNA 
levels of GFP reporter, Hey1, ER and PR in T47D cell line upon abrogation of Notch signaling via expression of 
dominant negative Mastermind (N=3); e) Analysis of mRNA levels of Hey1, ER and PR in MCF10a cell line upon 
activation of Notch signaling via expression of activated NICD by retroviral expression. MCF7 cell line used as a 
positive control for ER and PR expression (N=3). Statistical significance was calculated using unpaired Students’ T-
test. 

CONCLUSION. 

Experiments on HR+ human breast cancer showed that abrogation of Notch signaling via γ-

secretase inhibition does not have any effect on the expression of both ER and PR. Abrogation of Notch 

signaling via expression of DNNM showed unexpected increase of PR expression while Notch target 

gene Hey1 expression did not change. 

Activation of Notch signaling in MCF10a cell line did not induce expression of PR, hence Notch 

signaling alone cannot activate the expression of PR. 
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AIM 2: ROLE OF P63 IN MOUSE MAMMARY STEM CELLS 

INTRODUCTION AND WORKING HYPOTHESIS 

The function of p63 protein has been implicated in plethora of processes from regulating stem 

cell activity, differentiation, growth and survival to cell adhesion (Carroll et al., 2006) and metastasis 

(Su et al. 2013). However, the functional role of p63 in regulating MASCs remains unclear. 

Notch signaling down-modulates p63 expression in primary human breast epithelial cells and 

in the mouse mammary epithelium in vivo (Yalcin Ozuysal et al., 2010). Down-regulation of p63 in 

basal cells resulted in loss of basal markers and up regulation of luminal markers in vitro and in vivo. 

Therefore loss of p63 via Notch signaling activation promotes differentiation in mouse mammary basal 

cells.   

Therefore, we hypothesized that p63 expression in the basal cells contributes to the 

maintenance of the stem cell potential. 

P63 knock-out mouse has severe developmental defects including lack of stratified skin which 

causes its death immediately after birth. Furthermore, mice had severe craniofacial defects and were 

missing skin appendages including mammary gland (Yang et al., 1999, Mills et al., 1999). Therefore, it 

was not adequate as a mouse model for mammary gland research. 

P63 floxed mouse model has been developed (Mills et al., 2002). However, deletion of floxed 

gene in the entire epithelium via MMTV-Cre was not possible since MMTV promoter is active in skin 

already around birth and therefore affects epidermal development of the mutant mice.  

Therefore, to test this hypothesis we used p63 heterozygous knock-out mouse model (p63+/-) 

and monitored the ability of p63+/- mammary epithelium to repeatedly repopulate mammary fat-pad 

in the assay of serial transplantation of mammary epithelium.   

ROLE OF P63 IN THE ENDOGENOUS MOUSE MAMMARY EPITHELIUM (HETEROZYGOUS P63 

KNOCK OUT MOUSE MODEL) 

We generated p63+/- expressing EGFP driven by actin promoter by crossing (Okabe et al., 

1997).  

Firstly, we analyzed endogenous epithelium to detect any growth defects. Six, eight and 

fourteen week old mice, both wild type and p63+/- were sacrificed; glands were extracted and 

examined under the fluorescent stereomicroscope. In 6-weeks-old WT mice the extent of the 

epithelium growth was larger than in p63+/- littermates (Figure 46.a-b). While in the 8-weeks-old WT 

glands epithelium was almost fully grown and completely filling the fat pad (Figure 46.c-d), in the 

heterozygous knock out glands, after 8 weeks, epithelium filled only half of the fat pad and reached the 
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level of the subiliacal lymph node. On the contrary, in the 14-weeks-old glands, there was no difference 

in the extent of fat pad filling (Figure 46.e-f). Thus, the epithelium of the p63+/- is developing with a 

delay in compare to the one in WT mice, but it catches up by 14th week of life (Figure 46). 

 

Figure 46: Whole mount of the mammary glands from p63+/+ and p63 +/-: a) and b) 6-weeks-old glands 
(pubertal); c) and d) 8-weeks-old glands; e) and f) 14-weeks-old glands; scale bars represent 2,5 mm; g) 
Quantification of fatpad filling by epithelium in 6-weeks-old, 8-weeks-old and 14-weeks-old mammary gland (N=3). 
Statistical significance of the analysis was calculated by unpaired Students’ T-test. 

SERIAL TRANSPLANTATION OF P63+/- MAMMARY EPITHELIUM 

To assess the role of p63 signaling in mammary stem cell function, in a preserved tissue 

context and microenvironment, pieces of intact mammary epithelium from three different p63+/- and 

wild-type (WT) donors were serially engrafted into contralateral mammary fat pads of 8 

immunocompromised RAG1-/- mice (Mombaerts et al., 1992) surgically divested of their endogenous 

epithelium per couple of donors and per generation.  

Mammary epithelium was expressing EGFP which allowed engrafting comparable amounts of 

mammary epithelium in all the recipient fat pads. 10 weeks after the engraftment recipient mice were 

sacrificed, glands extracted and examined under the fluorescent stereomicroscope. Epithelium 

fragments from contralateral fat pads from 3 different recipients per donor were taken and 
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retransplanted. Only glands in which we were able to detect outgrowth or piece of transplanted 

epithelium on both sides were taken into account for the statistical analysis (Figure 47). 

 

Figure 47. Serial transplantation of p63+/+ and p63+/- epithelium into the fat pad of the 
immunocompromised Rag-/- recipient mice: a)and b) 1st generation (N=22); c) and d) 2nd generation (N=22); e) 
and f) 3rd generation (N=14); g) and h) 4th generation (N=10); i) and j) statistical analysis of the fat pad filling of 
p63+/+, and p63+/- serially transplanted epithelium; k) statistical analysis of the amount of branching points of p63+/+, 

and p63+/- serially transplanted epithelium. Statistical significance of the analysis was calculated by paired 
Students’ T-test. 

In the 1st generation p63+/- epithelium did not show any differences in growth or number of 

branching points in compare to p63+/+ epithelium. In the 2nd generation the difference in fat pad filling 

was significant and in 3rd generation striking: p63+/- epithelium filled less fat pad and had less 

branching points than p63+/+ epithelium. The 4th generation showed no difference in the fat pad filling. 

However there was significantly less branching points in the p63+/- and the engraftment was less 

successful (Figure 47). 
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CONCLUSION 

Analysis of endogenous p63+/+ and p63+/- epithelium showed a weak but significant defect of 

growth in the mutant epithelium which is overcome with time. These results implicated p63 in the 

regulation of MASC activity. 

The reduction of branching points in p63+/- epithelium in the 2nd, 3rd and 4th generations 

additionally confirmed MASC defect. 
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CHAPTER III: DISCUSSION AND FUTURE PERSPECTIVES 
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Notch signaling is an important player in the development of mammary gland. Conditional 

knockout of RBP-Jκ in the mammary epithelium via MMTV-Cre revealed that during pregnancy luminal 

layer is lost leaving multilayered basal cells (Buono et al., 2006). Subsequent reports showed 

involvement of Notch signaling in the luminal cell fate specification of the putative progenitor cells in 

the mouse mammary gland by blocking Notch in the progenitor and stem cells (Raouf et al., 2008; 

Bouras et al., 2008). 

Study from our lab showed that abrogation of Notch signaling via conditional deletion of RBP-

Jκ by MMTV-Cre in mammary epithelium leads to loss of recombined luminal cells and their 

substitution by wild type luminal cells (Yalcin Ozuysal et al., 2010). Hence, Notch signaling has been 

implicated in the mammary gland development, specifically in the determination of luminal cell-fate, 

however mechanism remained unveiled. 

NOTCH SIGNALING IS ACTIVE IN A SUBPOPULATION OF HR+ CELLS IN THE 

PUBERTAL MICE 

Preliminary experiments (Yalcin Ozuysal, unpublished data) suggested that Notch activity 

presented by expression of EGFP in the TNR mouse is colocalizing with PR.  

Detailed analysis of the TNR mouse model performed within this project, showed that in the 

pubertal mouse 11,2%±2,7% of the luminal cells are expressing EGFP as a result of Notch activity. By 

immunofluorescence we confirmed that these cells are HR+ in very high percentage and they present 

one quarter of all HR+ cells.  

In the basal compartment we detected lower number of Notch active cells (3,5%±0,4%).  

However, by immunofluorescence we did not detect any EGFP positive cells in the basal compartment 

of the pubertal mammary epithelium. Comparison of EGFP intensity in Notch active luminal and basal 

population by FACS showed presence of 100-fold lower EGFP intensity in the basal Notch active cells. 

This result suggests that the level of EGFP in the basal cells was too low to be detected by 

immunofluorescence.  

To furthermore characterize luminal Notch+ population an additional FACS sorting experiment 

could be done. Shehata et al suggested that there is a subpopulation of HR+ cells that is expressing 

surface marker CD49b. These cells are defined as EpCamhiCD49floSca1+CD49b+ and are characterized 

as ER+ progenitor cells that are rather insensitive to loss of estrogen and progesterone when 

compared with the other mammary cell populations. This population might be responsible for the 

development of the endocrine therapy resistance in the breast cancer. It has been reported that Notch 

signaling can activate ER target genes during anti-estrogen therapy (Rizzo et al., 2008), it is possible 

that EpCamhiCD49floSca1+CD49b+ population is Notch active.  
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To analyze this, an experiment should be performed where single cells from TNR mice 

mammary glands would be analyzed by FACS to see if EpCamhiCD49floSca1+CD49b+ cells express EGFP 

reporter gene. During her study Shehata used C57Bl6 and FVB mice. The progenitor marker proved to 

be tricky so far in a sense that not all strains express these markers on exactly the same cells. Visvader 

and Stingle reported in their review (Visvader and Stingl, 2014) that CD61, marker of mammary 

progenitor cells, works only in FVB mice. CD49b has been reported so far only in C57BL6 and FVB 

mice. Balb-C mice, background in which TNR mice were developed, did not show any sign of 

expression of CD49b and therefore we were not able to define if luminal Notch active cells are the 

same HR+ progenitor cells as from the Shehata paper. 

Analysis of the microarray data performed by Ozden Yalcin Ozuysal showed that luminal cell 

populations, whether Notch active or inactive are clustering together as well as basal populations. 

However in one of the samples sorted populations were not clustering together with same population 

from other 2 samples. This problem appeared probably because this particular sample was not sorted 

properly. Reason for this might be usage of only CD24 gene to sort the cells. CD24 expression can show 

3 populations of cells (hi-luminal, lo-basal and neg-non epithelial). However, sorting of cells with CD24 

in combination with CD49f marker, proposed by Stingl, clearly shows that luminal and basal 

populations are overlapping if we look only at CD24 expression.  

 

  

 

 

Additional problem might be long half-life of GFP (26 hours). Because of this, low levels of 

EGFP might represent residual EGFP signal remained in the cells after Notch activity which might also 

be the reason of the unexpected clustering of the cell populations. To annul this possibility, gates for 

the sorting EGFP positive and negative cells should be placed more conservatively, with bigger gap 

between the two populations. 

Because of invalid sorting of one out of three samples we were not able to perform further 

analysis of the microarray data where we would look for differential expression of functionally 

Figure 48. Sorting of mammary epithelial cells 
based on CD24 and CD49f markers: black gates 
represent luminal and basal population of mammary 
epithelial cells. Red rectangle is highlighting basal and 
luminal cells that are overlapping if only CD24 marker is 
used. 
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selected genes such as regulators of transcription with a role in cell differentiation. To do this, a new 

experiment should be performed where cells would be sorted by expression of both CD24 and CD49f 

markers to separate basal and luminal cells, and by expression of EGFP with more strict gating to 

increase the purity of the populations.  

Therefore, to validate lower number of genes associated to different cell types in the mammary 

epithelium, we set up additional FACS sorting experiment, again using only CD24 marker (to be able to 

combine it with 2 valid samples), but setting up much more conservative gates between luminal 

(CD24hi) and basal (CD24lo) population to avoid sorting of the cells of the different population that are 

overlapping in CD24 expression. 

Quantitative PCR analysis of genes associated to different cell types of mammary epithelium as 

well as Notch target gene HEY1 and GFP, the reporter gene, in 4 populations sorted by type (luminal 

and basal) and Notch activity (Notch+ and Notch-) confirmed that Notch active luminal population was 

indeed HR+ population since it expressed both ER and PR, and FoxA1, an ER mediator.  

It is important to have in mind the composition of each population when interpreting the 

results of the quantitative PCR. Luminal Notch active population represents one quarter of all HR+ 

cells or roughly 10% of the entire luminal population. Notch inactive luminal population consists of all 

HR- cells and Notch inactive part of HR+ cells, meaning that in this population we should be able to 

detect some expression of hormone receptor. Notch inactive basal population contains ≈97% of all 

basal cells. Notch active basal cells represent only 3,5%±0,4% of basal cells that are expressing EGFP 

reporter. 

Therefore, the expression of HRs as well as FoxA1 in the luminal Notch active population is 

higher than in the luminal Notch inactive one, because luminal Notch active population is pure 

population of HR+ cells and Luminal Notch inactive is mostly HR-. 

EGFP as a Notch reporter gene and Hey1 as a Notch target gene are expressed in a higher 

fashion in the luminal Notch active population than in basal Notch active population. These results are 

consistent with the FACS data saying that EGFP intensity that should be proportional to Notch activity 

is ≈100–fold lower in the basal Notch active population. 

P63 is highest in the basal Notch inactive population. Basal Notch active population shows 

lower levels of p63 probably because it has been shown that Notch is antagonizing p63 expression in 

mammary epithelial cells and driving them toward luminal cell fate. Hence, lower expression of SMA in 

the basal Notch active cells. 

Casein α and Elf-5, associated with HR- cells, were strongly enriched in the luminal Notch 

inactive population mostly comprised of HR- cells. 
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Finally, Wnt4 showed higher expression in the luminal populations and among them in Notch 

active one comprised of HR+ cells. This result was encouraging since it suggests that Notch active 

MMECs are Wnt4 positive cells. 

Wnt4 is a known PR target gene and a paracrine mediator of PR signaling. However, lineage 

tracing experiments in Wnt4-Cre mouse presented in Devi Rajaram (Rajaram et al., 2015) work 

showed that not all PR+ cells are expressing Wnt4. What triggers this expression is still not known. 

The fact that Notch active luminal cells are expressing Wnt4 gave us possibility to specifically abrogate 

Notch signaling by deleting RBP-Jκ in the subpopulation of HR+ cells, and this subpopulation should 

include Notch active luminal cells. 

TWO SUBPOPULATIONS OF HR+CELL BASED ON NOTCH ACTIVITY. 

Experiments on RBPfloxed Wnt4-Cre mTmG mice showed that upon abrogation of Notch 

signaling by deleting RBP-Jκ in the Wnt4 expressing cells, expression of PR is lost. MMTV-Cre deletion 

of the RBP-Jκ which abrogates Notch in the entire epithelium revealed another subpopulation of HR+ 

cells where PR expression remains intact.  

Taken together, these two mouse models give strong base for our working model that suggests 

presence of the 2 different populations of HR+ cells: 

1. Notch dependent population of luminal HR+ cells. This population would be the 

population that expresses Wnt4 and that upon abrogation of Notch via Wnt4-Cre loses the expression 

of PR. 

2. Notch independent population of luminal HR+ cells. This population would be the 

population that upon Notch abrogation in the entire epithelium via MMTV-Cre can differentiate to HR+ 

cells from a progenitor, and can survive in the luminal compartment during the development. 

These two populations could be sorted easily from the Wnt4-Cre mTmG mouse.  Markers 

CD24, CD49f and Sca1 can mark for HR+ cells (CD24hi CD49flo Sca1+). In this population from mTmG 

mouse we would have cells expressing dTomato and EGFP. dTomato+ cells would be the cells where 

Wnt4 was not expressed. These cells would represent Notch independent HR+ cell population.  Cells 

expressing EGFP would be the cells in which Wnt4 is expressed and therefore, Cre was active. They 

would represent Notch dependent population of HR+ cells. To analyze the difference between these 

two populations of cells, global gene expression analysis or RNAseq could be done to find genes of 

interest that are differentially expressed in each of the populations.  

Presence of any luminal cells expressing EGFP in RBPfl/fl MMTV-Cre mTmG model was 

surprising since it opposes already published data. In the study of Yalcin Ozuysal, RBPfl/fl MMTV-Cre 

mouse epithelium was analyzed in the presence of the Cre reporter gene Z/EG which upon Cre 

activation expresses EGFP under chicken actin promoter (Yalcin-Ozuysal). This mouse did not have 
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any EGFP expressing cells in the luminal compartment suggesting that differentiation towards luminal 

cell fate following Notch abrogation is impossible. The only difference between hers and our mouse 

model is the reporter gene. Closer look into the Yalcin Ozuysal’s study (Yalcin-Ozuysal et al., 2010, 

figure 7.g-l) revealed that Z/EG Cre reporter in wild type control mouse did not mark majority of the 

luminal cells while in mTmG mouse Cre reporter is expressed in all epithelial cells. Therefore, we 

believe the in RBPfloxed MMTV-Cre Z/EG mouse Notch independent population of HR+ luminal cells did 

not express Z/EG Cre reporter. 

TIME DIRECTED NOTCH ABROGATION LEADS TO LOSS OF PR EXPRESSION 

Time directed deletion of RBP-Jκ via intraductal Adeno-Cre virus caused loss of PR expression 

by 2-fold in the luminal EGFP expressing population after 7 days suggesting that Notch signaling is 

responsible for the expression of PR in the adult glands, at least in the subpopulation of HR+ cells. This 

subpopulation probably overlaps with Wnt4 expressing HR+ cells which are dependent of Notch 

signaling. However, after 14 and 21 day this difference was not present anymore.  

Problem of working with viruses from the family of Adenovirdae is the fact that these viruses 

have lytic cycle in order to replicate. The lytic cycle results in the destruction of the infected cell and its 

membrane. Therefore, adenovirus infection shows high cytotoxicity. Analysis of the total number of 

infected cells in mammary epithelium of both RBPfl/fl and RBPwt/wt mice showed that 14 days after 

infection with Adeno-virus 2-fold less infected cells were present in compare to 7 day time point. After 

21 days more than 4-fold of infected cells disappeared suggesting that Adeno-Cre virus is extremely 

cytotoxic.  

Therefore we cannot distinguish if the loss of difference in the 14 day and 21 day time point is 

a result of extreme cytotoxicity and severe lysis of the host cells or it is in fact phenotype of the RBP-Jκ 

deletion via intraductal injection of Adeno-Cre virus.  

RBP-JΚ BINDS TO PR PROMOTER. 

The results from Adeno-Cre mouse model suggested that Notch signaling regulates expression 

of PR. However, PR has already been established as a direct target gene of ER signaling (Nardulli et al., 

1988). Although PR expression has been shown to be controlled by 17β-estradiol PR promoter does 

not contain ERE palindromic sequence (Kastner et al., 1990). A study on breast cancer cell lines 

confirmed existence of ERE half-site whose estrogen responsiveness needs to be mediated by cis 

element. In human PR promoter two adjacent Sp1 sites are present (Petz et al., 2000) and have been 

shown to regulate PR in humans. In mouse PR promoter only one Sp1 site is present and its function 

hasn’t been examined.  

Surprisingly, we found 4 RBP-Jκ binding sites in the promoter region of PR and tested the 

binding of RBP-Jκ to all of them. Chromatin immunoprecipitation showed that RBP-Jκ can bind 2 of 
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these binding sites, site No.1 (-2631 bp) and No.3 (-1706 bp). These results confirmed the possibility 

that these two RBP-Jκ responsive elements might be necessary cis element that co-regulates or maybe 

even regulates PR expression together with ERE half site. In line with this hypothesis goes the study by 

Rizzo et al., which showed that in the HR+ breast cancer cell lines, upon anti-estrogen treatment Notch 

signaling can directly stimulate ER target genes (Rizzo et al., 2008). On the other hand, quantitative 

analysis of ChIP indicates that binding of the RBP-Jκ to mouse PR promoter is much weaker than 

binding to the regular Notch targets such as Hey1 promoter used as a positive control, leaving the 

possibility that it might be irrelevant for the PR expression. 

ChIP, however, only shows binding of RBP-Jκ and not activation of the transcription by it. To 

show that PR transcription is, indeed, activated by RBP-Jκ, additional experiments are required where 

activation of Notch signaling via RBP-Jκ together with Estrogen stimulation would show transcription 

activation of a reporter gene cloned downstream of PR promoter together with mutated RBP-Jκ sites 

as negative controls and binding of the ER as a positive control. 

Additionally, since RBP-Jκ acts as a repressor of expression outside of the Notch signaling 

context, it would be necessary to do a ChIP assay on a sorted population of HR+ luminal (CD24hi 

CD49loSca1+) and HR- luminal cells (CD24hi CD49loSca1-) to show that the binding is specific for the 

HR+ population. 

Multiple alignment of the PR promoters from different species showed that RBP-Jκ binding 

sites are positioned in the highly conserved area of the promoter. The sites did not show identity with 

the same positions on the human promoter which reduces the significance of these sites in the human 

promoter. However, we identified 2 binding sites in the human promoter also residing in the highly 

conserved area. Since it has already been shown that in the endocrine therapy resistant cell lines 

Notch signaling can substitute ER to activate transcription of ER target genes (Rizzo et al., 2008) it is 

possible that RBP-Jκ indeed binds these two sites.  

LOSS OF PR EXPRESSION VIA RBP-JΚ DELETION IS AN EFFECT OF CANONICAL 

NOTCH SIGNALING ABROGATION 

RBP-Jκ is a transcription factor that, mediates canonical Notch signaling. Non-canonical RBP-Jκ 

activation independent of NICD has also been reported in neuroblastoma cells (Stockhausen et al., 

2005) and specification of GABAergic neurons specification (Hori et al., 2008). To confirm that loss of 

PR in RBP-Jκ abrogated cells is caused by Notch dependent RBP-Jκ activation we performed inhibition 

of Notch signaling in vivo by injecting intraductally γ-secretase inhibitor DAPT. Results showed that 

upon inhibition of γ-secretase, necessary for Notch receptor activation, PR expression is, indeed, 

reduced together with the Notch target gene Hey1. Consistently with in vivo results ER expression did 

not change significantly.   
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Immunofluorescence showed that there is 85,6%±3,9% of ER cells that are co-expressing PR in 

the glands injected with DAPT confirming the hypothesis that ER+ only cells probably lost the PR due 

to the inhibition of the canonical Notch signaling. 

NOTCH SIGNALING AS THERAPEUTIC TARGET 

Several studies on the clinical samples connected elevated Notch with the triple negative 

breast cancer, currently therapeutically the most challenging subtype (Lee et al., 2008; Reedijk et al., 

2005; Reedijk et al., 2008). A study in cell lines revealed possibility that inhibition of ER by 

therapeutics activates Notch signaling that can activate ERα targets (Rizzo et al., 2008) which can be 

interpreted as a mechanism of acquiring resistance to HR+ breast cancer therapies. Hao et al have also 

demonstrated that Notch activation of the transcription of ERα target genes goes via a nuclear IKKα-

dependent pathway (Hao et al., 2010). Therefore, Notch has emerged as a therapeutic target for the 

ERα negative breast cancer patient and in combination with anti-estrogen treatment for the ERα 

positive breast cancer patients. Thus, understanding of the mechanism of Notch action in the 

mammary gland is indispensable.  

Several studies have been conducted on HR+ cell lines which acquired the resistance to the 

endocrine therapy by tamoxifen (Haughian et al., 2012, Lombardo et al.,).  Haughian et al observed that 

when HR+ cell line T47D grows in vivo as a mammary xenograft without estrogen supplementation, 

specific luminobasal cell population, which is characterized by expression of CK5 and lack of hormone 

receptors, expands.  Previously, this luminobasal population has been described as a minor ER- PR- 

CK5+ population that has the capacity to generate the majority of ER+ PR+ CK18+ CK5- cells and when 

HR+ breast cancers are treated with endocrine therapies that target ER, this population would escape 

such treatments and survive to repopulate the tumor (Horowitz et al., 2008). Expansion of this 

population has been attributed to Notch signaling since T47D cell line grown in vivo without estrogen 

supplementation did not have an expansion of the luminobasal population if at the same time Notch 

was inhibited. 

Furthermore, pharmacological inhibition of Notch activation with gamma-secretase inhibitors 

(GSIs) in combination with tamoxifen has synergistic effects in ER+ breast cancer in vivo models 

(Rizzo et al., 2008, Hao et al., 2010) 

These data implicated Notch signaling in ER target genes activation in breast cancer cell-lines 

which acquired resistance to endocrine therapy. Our data showed that upon abrogation of Notch 

signaling via RBP-Jκ deletion and -secretase inhibition a subpopulation of HR positive epithelial cells 

is losing PR. Since PR is an ER target gene, we suggest an in vivo mechanism through which Notch 

might co-regulate ERα dependent PR expression in adult mammary gland through RBP binding sites in 

the PR promoter acting as cis regulatory elements possibly through interaction of the RBP-Jκ with ER 

directly on the promoter.  
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This mechanism is not in line with the hypothesis that Notch suppression maintains HR 

responsiveness which might be due to the fact that studies were performed on the endocrine therapy 

resistant HR+ breast cancer cell lines while we studied normal mouse mammary epithelium. For this 

reason we tried to inhibit Notch signaling in endocrine therapy sensitive HR+ cell lines MCF7 and 

T47D to reduce PR expression and activate Notch signaling in the normal breast like cell line MCF10a 

to gain PR expression.  

NOTCH SIGNALING IN THE HR+ BREAST CANCER CELL LINES 

In vivo results are suggesting that Notch signaling is regulating PR expression in the HR+ cells. 

To investigate if the same effect Notch has in the HR+ breast cancer, we tried to inhibit Notch signaling 

in the HR+ breast cancer cell lines MCF-7 and T47D by -secretase inhibitor DAPT and by introduction 

of dominant negative form of Notch modulator Mastermind (MAML1). Although Notch inhibition was 

confirmed by loss of activated NICD1, DAPT treatment did not reduce PR on the protein level.  

Quantitative RNA analysis showed that upon DAPT treatment, also PR transcription remained 

intact. Inhibition of Notch signaling by dominant negative form of MAML1 did not affect transcription 

of HEY1 or ER. However, PR expression was now significantly increased.  

MCF10a is a cell line that represents normal population of basal human breast epithelial cells 

characterized by expression of p63. In this cell line we tried to induce expression of PR by expression 

of activated NICD1. As presented, Notch signaling was activated (increase of transcription of the HEY1 

target gene), but PR expression was not affected. These results showed that PR expression cannot be 

activated solely by activation of Notch signaling but probably acts only as a co-activator together with 

ER. 

P63 IN MOUSE MAMMARY STEM CELLS 

p63 is expressed in the basal compartment of mammary epithelium. Notch activation in the 

primary basal cells in culture has an antagonistic effect on the p63 expression leading cells to change 

phenotype from basal to luminal (Yalcin Ozuysal et al., 2010).  

Further to these results we hypothesized that, if down regulation of p63 leads cells to 

differentiation, then p63 should be responsible for the stem cell maintenance in the basal 

compartment of mouse mammary gland. 

Hypothesis was tested on a p63+/- mouse because: a) complete knockout mouse is not viable b) 

p63 floxed mouse is available, however, available Cre constructs that are expressed in the basal 

compartment in the mammary gland are expressed also in the skin which would not develop normally 

without p63. Possibility of embryonic mammary bud transplantation was also excluded because 

mammary buds are not developed in homozygous mutants (Yang et al., 1999; Mills et al. 1999). 
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Therefore, we examined endogenous epithelium of the heterozygous p63 mutant and we performed 

serial transplantation of heterozygous epithelium in immunocompromised recipient mice.  

Endogenous p63+/- mammary epithelium showed significant delay in development of the mammary 

gland; however the epithelium managed to fill the entire mammary fat pad. 

Serial transplantation assay additionally showed that growth of the p63+/- epithelium, in 

compare to the p63+/+ epithelium transplanted contralaterally, is significantly affected already in 

second and even more strikingly in the third generation, suggesting that p63 has a role in the mouse 

mammary stem cell self-renewal and/or maintenance.  

Recent in vivo study by Chakrabarti showed that overexpression of ΔNp63 isoform in MaSCs 

promotes MaSC activity while genetic ablation of even one allele reduces MaSC function in vivo. Also 

they demonstrated that ΔNp63 isoform regulates these phenotypes through Wnt signaling, probably 

by controlling the expression of frizzled receptor FZD7. Therefore, they suggested the ΔNp63-FZD7-

Wnt axis as a driving force in MaSC maintenance. Analysis of the clinical samples of the triple negative 

cancer showed strong correlation between triple negative tumors and FZD7 (Chakrabarti et al., 2014) 

suggesting that MASC may be the cell of origin in a subset of TN tumors that are dependent on ΔNp63-

FZD7-Wnt axis. Since this study confirmed our hypothesis that p63 promotes stem cells activity and 

set up a valid mechanism how p63 is regulating stem cells, we decided to discontinue this part of the 

project. 

CONCLUSION 

Several study showed that Notch signaling can elicit a cancer resistance to anti estrogen 

therapy by activating ER target genes (Rizzo et al., 2008, Hao et al., 2010). Our data suggest a 

mechanism by which Notch signaling via RBP-Jκ can act as a co-activator of PR expression together 

with ER. This is another confirmation that Notch inhibitors might play a crucial role in fighting cancer 

as a novel drug that can be used in combination with anti-estrogen drugs. In fact, clinical studies with 

this combination are already ongoing. 
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MATERIALS AND METHODS 
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MICE 

The GFP transgenic mice, mTmG transgenic mice, Wnt4-EGFP-Cre transgenic mice, MMTV-Cre 

transgenic mice, transgenic Notch reporter mice, as well as mice with RBP floxed alleles and p63 

floxed alleles were described elsewhere (Okabe et al., 1997; Muzumdar et al., 2007; Shan et al., 2010; 

Wagner et al., 2001; Duncan et al., 2005; Han et al., 2002; Mills et al., 2002). The mice were maintained 

and handled according to the Swiss guidelines for animal safety. 

MAMMARY GLAND WHOLE MOUNT 

Mammary glands were isolated and spread onto a glass slide. GFP and dTomato images were 

acquired on Leica MZ16F stereoscope with Leica DC300F camera. The glands were fixed in a 1:2 

mixture of glacial acetic acid /100% ethanol, hydrated, stained overnight in 0.2% carmine (Sigma), 

dehydrated in graded solutions of ethanol, and cleared in 1:2 benzyl alcohol/benzyl benzoate (Sigma). 

Whole mount images were captured with Pixelink PL-A622 camera on a Leica MZFLIII stereoscope. 

PREPARATION OF SINGLE EPITHELIAL CELLS FROM MOUSE MAMMARY GLAND 

Preparation of single mammary epithelial cells is described in details in the manuscript for the 

book chapter “Analysis of mammary gland phenotypes by transplantation of the genetically marked 

mammary epithelium/epithelial cells” presented in Appendix B 

FLOW CYTOMETRY AND CELL SORTING 

After removal of lymph nodes, the mammary glands were isolated from 6, 12-weeks-old and 

p8,5 TNR mice and chopped manually with surgical blades. Single MMECs were prepared as described 

previously (Sleeman et al., 2006). Briefly, dead cells were excluded by DAPI staining (1:10000; 

Invitrogen A1310). Non-epithelial cells were excluded by using a cocktail of biotin labeled anti-CD31 

(1:500) (eBioscience, 13-0319-82), anti-CD140a (1:500) eBioscience, 13-1401-82), anti TER119 

(1:500)(eBioscience, 13-5921-82) and anti-CD45 (1:1000)( eBioscience, 13-0451-82) and APC 

conjugated streptavidin (0,2 µg/mL) (eBioscience, 17-4317-82), PE anti-mouse CD24 (0.5μg/ml; BD 

Pharmingen, 553262) was used to separate luminal and myoepithelial populations. BD FACSAria (I) 

Cell Sorting System (BD Biosciences) was used for sorting. 

IMMUNOSTAINING OF MAMMARY GLANDS 

For histological examination freshly isolated glands were fixed with 4% paraformaldehyde 

overnight at 4˚C. Sections were cut at 4μm. The following antibodies were used: anti ER (DAKO, 

M7047, 1D5 clone), anti-PR (1:800) (Neomarkers, RM-9102, SP2clone), anti p63 (1:100) (Neomarkers, 

MS1081, 4A4 clone), mouse anti GFP (1:200) (Santa Cruz, SC-9996), rabbit anti GFP (Invitrogen, A-

11122), goat anti GFP (1:400)(AbCam, AB6673), anti Ki67 (1:100) (AbCam, AB16667), anti Caspase 3 

(Cell Signaling, 9664S), anti RBP-Jκ (1:25) (Cell Signaling, 5313) and applied overnight at 4°C after 
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antigen retrieval in citrate buffer. Mouse-on-Mouse immunodetection Kit (Vector Laboratories) was 

used to block unspecific staining of mouse antibodies. Additional blocking was performed for ER 

staining with CAS-block reagent (Invitrogen, 008120). Pictures were acquired with Zeiss Axioplan 2-

imaging fluorescence microscope with Axiocam MRm camera. 

MICROARRAY ANALYSIS 

RNA was isolated from 4 populations of cells sorted from 3 different groups of 6-weeks-old 

mice. Each group contained 18 animals. Affymetrix GeneChip technology was used to perform 

microarray.  

Hierarchical analysis of the 4 populations was performed by Ward’s minimum variance 

method. (https://stat.ethz.ch/R-manual/R-patched/library/stats/html/hclust.html) 

CELL LINES AND NOTCH SIGNALING INHIBITION BY Γ-SECRETASE INHIBITOR 

DAPT 

MCF-7 and T47D cell lines were obtained from the American Type Culture Collection. MCF-7 

and T47D cells were maintained in DMEM supplemented with 10% FCS (or 10% charcoal-dextran 

stripped serum) and 1% penicillin/streptomycin/glutamine.   

To inhibit Notch signaling cells were treated with 10 µM, 20 µM and 30 µM DAPT (Adipogen, 

CR1-0016) and with vehicle as a control for 48 hours. 

VIRAL CONSTRUCTS AND VIRUS PRODUCTION 

MSCV-dominant negative Mastermind retrovirus was kindly provided by Gian-Paolo Dotto. 

Virus was produced in 293T cells plated on 10cm dish at 30-35% confluency. 2μg of viral 

vector and 2μg of amphotrophic packaging vector for retroviruses were transfected by using 3μl of 

Fugene (Roche) per μg of DNA. Following change of medium after 24 hours, virus was collected at 48 

and 72 hours. Titration was done on 293T or primary mouse mammary epithelial cells by using 

different dilutions of virus and comparing the GFP expression under fluorescent microscope. 

WESTERN BLOT 

Cell lines were lysed in RIPA buffer (10 mM Tris-Cl (pH 8.0), 1 mM EDTA, 0.5 mM EGTA, 1% 

Triton X-100, 0.1% sodium deoxycholate, 0.1% SDS, 140 mM NaCl). Before use protease (Protease 

inhibitor cocktail tablets (Roche, Ref. No. 11873580001), 1mM Phenylmethylsulfonyl fluoride (PMSF), 

10 μg/mL Aprotinin) and phosphatase inhibitors (1mM Sodium orthovanadate) were added.  

Total cell lysate (40 µg per sample) was separated by SDS/PAGE on 12% polyacrilamide gel 

(80 V for stacking gel and 120 V for resolving gel) in 1x running buffer (25 mM Tris, 192 mM glycine, 
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0.1% SDS, pH 8.3) and transferred to nitrocellulose membrane (200 mA, 60 min) in 1x transfer buffer 

(25 mM Tris, 192 mM glycine, pH8.3), supplemented with 20% (v/v) methanol.   

Immunoblotting of the membrane was performed with the following antibodies: anti PR 

(1:500) (Neomarkers, RM9102), anti ER (1:1000) (Santa Cruz, sc-543), anti-tubulin (1:10000) (Sigma, 

T6557), anti cleaved Notch1 (1:500) (Rockland immunochemicals Inc. 100-401-407) and anti-actin 

(1:10000) (Thermo Scientific, RB-9010). Antibodies were diluted in TBS buffer (50 mM Tris-Cl, 150 

mM NaCl, pH 7.6) with 5% Bovine serum albumin and 0,1% Sodium azide and membranes were 

incubated on 4˚C o/n. 

After overnight incubation, membranes were washed three times in TBS containing 0.05% 

Triton X-100 for 10 min each, the membrane was incubated with secondary antibody (anti-mouse-

IgG), for 1 hour at RT. Secondary antibody was prepared in filtered TBS with 5% milk powder and 

0.05% Tween. After incubation, membrane was subsequently washed three times as before. Proteins 

levels were finally revealed using enhanced chemiluminescent reagents according to the 

manufacturer’s instructions. If needed, membranes were afterwards striped in 0.2 NaOH solution for 5 

minutes and reblotted. 

RNA AND CDNA PREPARATION AND QRT-PCR 

Total RNA from breast cancer cell lines was extracted using RNeasy extraction kit (Qiagen). 

Whole glands (lymph nodes removed) were used for total RNA extraction. The glands were 

homogenized in Trizol® (Invitrogen), the aqueous phase containing the RNA extracted with 

chloroform and processed according to the RNeasy® extraction kit (Qiagen). 

 RNA yield was measured at the spectrophotometer and 1μg of RNA from both cell lines and 

whole glands was reverse transcribed using MMLV reverse transcriptase (Invitrogen) and random 

hexamers (Roche), for 1h at 37ºC. 

The resulting cDNAs were used for semiquantitative and quantitative PCR analysis using 

specific primers for the genes of interest. 

SYBR Green PCR Core Reagent System (Qiagen) was used to perform semi-quantitative real 

time RT-PCRs (QRT.PCR) with Mastercycler realplex2 (Eppendorf). The primers used for human and 

mouse samples are listed in the Table 1 and Table 2, respectively. 

  



140 
  

Table 1: Primers used for human breast cancer cell lines MCF7 and T47D 

Gene Forward primer Reverse primer 

GFP GCACGACTTCTTCAAGTCCGCCATGCC GCGGATCTTGAAGTTCACCTTGATGCC 

ER GCCATCAGGTGGATCAAAGT GGAGATCTTCGACATGCTGC 

PR GTCAGTGGGCAGATCCTGTA CGTAGCCCTTCCAAAGGAAT 

Hey1 GGGAGGGGAACTATATTGAATTTT ATTTGTGAATTTGAGATCCGTGT 

36B4 CTTCCCACTTGCTGAAAAGG CGACTCCTCCGACTCTTCCT 

 

Table 2: Primers used for total mouse mammary gland  

Gene Forward primer Reverse primer 

SMA 

p63 

K14 

GFP 

Hey1  

ACGGGGTATTTGAGAGCGTA 

CCTTATGAGCCACCACAGGT 

GCCAACACTGAACTGGAGGT 

GCACGACTTCTTCAAGTCCGCCATGCC 

TGCACCAAAAGGAAAACACA 

GCTGTGAAGTCAGTGTCGATTT 

GCTGTCTTCATCTGCCTTCC 

CAAACTTGGTCCGGAAGTCA 

GCGGATCTTGAAGTTCACCTTGATGCC 

TGGTGCCTGTGAAACACAAC 

ER ACATGCCTATTGCTGGGTGT AGCAAAATTAGCTGCCCTGA 

PR 

FoxA1 

WNT4 

Casein α 

ELF5 

AAAGAGATGTCATGCCCAGT 

TTGTCAATTTAACCATCACTTAAAGC 

AGGAGTGCCAATACCAGTACC 

CTTCAGAAGGTGAATCTCATGGG 

GAGCATCAGACAGCCTGTGA 

CAATGGAAAAGCATTGCCTAA 

TTCCTCTTTGCCTTCTCAATG 

TGTGAGAAGGCTACGCCATA 

CAGATTAGCAAGACTGGCAAGG 

GCTGCCTCAATGAACTCCTC 

36B4 GTGTGTCTGCAGATCGGGTA CAGATGGATCAGCCAGGAAG 

 

All the expression levels were normalized to 36B4 housekeeping gene in human and mouse. All 

statistical analysis was performed by two-tailed, paired Student’s T-test. 

TRANSPLANTATION OF MAMMARY EPITHELIUM 

Transplantation of mammary gland is described in details in the manuscript for the book 

chapter “Analysis of mammary gland phenotypes by transplantation of the genetically marked 

mammary epithelium/epithelial cells” presented in Appendix B 

QUANTIFICATION OF BRANCHING POINTS AND FAT PAD FILLING 

Quantification of branching points was performed on images of mammary glands. For each 

gland, side-branches were counted in the complete area as of mammary gland. Branching points were 

statistically presented as a ratio of number of branching points in the transplanted mutant gland and 

number of branching points of contralaterally transplanted wild type gland. 
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Fat pad filling was quantified in the ImageJ software (Schneider et al., 2012) as a ratio of area 

covered with ducts and area of the entire fat pad. 

Statistical analysis was performed by two-tailed, paired Student’s T-test. 

ADENO-CRE INTRADUCTAL INJECTION 

RBP-Jκwt/wt mTmG and RBP-Jκfl/fl mTmG mice were anesthetized and prepared for the surgery 

as described in Appendix B. 

Adeno-Cre virus was purchased from Vectorbiolabs (1045-HT). 107 PFU of the virus was 

mixed in 0,1% Trypan blue in PBS and injected into the main duct of the mouse mammary gland 

through cleaved nipple.  

7 days after surgery mice were sacrificed and mammary glands extracted and analyzed. 

BIOINFORMATICAL ANALYSIS 

PR promoter regions were extracted from GeneBank database  

Mouse: accession number NC_000075.6, from 8897707 to 8900479 nucleotide 

Human: accession number NC_000011.10, from 2746 to 5746 nucleotide 

Chimpanzee: accession number NC_006478.3, from 98978395 to 98975395 nucleotide 

Pig: accession number NC_010451.3, from 36137511 to 36140511 nucleotide 

Cat: accession number NC_018732.1, from 35295922 to 35298922 nucleotide 

Rat: accession number NC_005107.4, from 7125658 to 7128658 nucleotide 

Mouse and human promoter region sequence was analyzed by EMBOSS software 

(www.emboss.bioinfromatics.nl) using a short motifs search tool “dreg” to look for RBP-Jκ binding 

motifs. 

Analysis of the conservation of the PR promoter region from different species was analyzed 

using Pro-Coffee tool for multiple alignment specifically designed to analyze homologous promoter 

regions (Erb et al., 2011). 

CHROMATIN IMMUNOPRECIPITATION ASSAY 

60 mg of mammary epithelium organoids was fixed with 1% formaldehyde, neutralized by the 

addition of 125 mM glycine. Cells were washed twice in ice-cold phosphate-buffered saline and 

homogenized in sodium dodecyl sulfate lysis buffer (1% sodium dodecyl sulfate, 10 mM EDTA, 50 mM 

Tris-HCl [pH 8.0]) containing protease inhibitors. Cross-linked DNA was sonicated to an average size 
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of 150-300 base pairs. The insoluble material was removed by centrifugation, and preclearing of the 

soluble chromatin was performed with a 50% slurry of protein G-Sepharose-salmon sperm DNA.  

Samples were incubated overnight at 4°C with 5 μg of antibody against RBP-Jκ (Cell signaling, 5313) 

and control (IgG) (Southern Biotechnology) separately. Immune complexes were collected with 

protein G-Sepharose and eluted. In parallel with the eluted immunoprecipitated samples, input 

templates were purified. Incubation at 65°C for 6 h was used to revert cross-linking. DNA was 

extracted from the samples using Phenol-chloroform extraction and ethanol precipitation. Extracted 

DNA was tested for binding sequences using primers from the Table 3. As a positive control primers 

for the RBP-Jκ binding site in the HES1 promoter were used and as a negative control primers for a 

fragment inside PR gene were used. 

Table 3: Primers used for total mouse mammary gland  

Binding site Forward primer Reverse primer 

Binding site #1 TCAGGAGTATCGAGGTCATG TGGTTGTTAACTAATGCCCAG 

Binding site #2 TGCTCCTATAGGAGACTACC AGGGAGAAGAGAATTCAAGGA 

Binding site #3 GAATAACTGCAGGCTTCAGC ACACCGTCATAAGCTGTCCA 

Binding site #4 CTCCACAGTGTTCTCATGAC CATGAGGTTCTCTTCAGTCC 

Hey1 TGC CAA TCT GCG CAG CGA G GAG GTG CGT GCA CAC TGA T 

PR AAAGAGATGTCATGCCCAGT CAATGGAAAAGCATTGCCTAA 
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Introduction 

The mouse mammary gland is a very attractive experimental system. Most of its development 

occurs after birth making it easy to study. As mammary glands are skin appendages that can be 

found on the back of the skin, they are readily accessible by surgery. The glands are paired organs 

and contra lateral glands can to the best of our current knowledge be directly compared.  

The mammary gland’s major components are a mammary fat pad and an epithelial structure that 

invades it. During embryonic development, a mammary bud forms from a placode in hte ventral 

skin around E12.5 that grows into a a small ductal system into the underlying specialized fatty 

stroma by E18,5. During the first 3 weeks of life (prepubertal stage), the rudimentary ductal system 

grows isometrically with the rest of the body. During puberty, between 3 and 8 weeks of age, the 

ductal system expands and invades the fat pad, driven by ovarian estrogens. With the onset of 

adulthood at around 8 weeks of age, regular cycles of ovarian estrogens and progesterone 

secretions, i.e. oestrous cycles, are established. Now, the ductal epithelial tree becomes more 

complex through a process called side branching driven by progesterone (1). When pregnancy 

occurs, progesterone levels increase further and the oestrous cycles are suppressed. Side branching 

is enhanced until the last third of pregnancy when under the influence of prolactin, extensive 

aleveologenesis occurs; little saccular outpouchings sprout from the ducts, which will produce milk. 

DeOme first showed that it is possible to surgically remove the endogenous ductal tree from 

prepubertal females leaving behind approximately half the tissue as “cleared” fat pad, in which an 

epithelium fragment from another mouse can be engrafted (2), it will grow out to form a new ductal 

tree that behaves like the endogenous epithelium without establishing a link to the nipple. Even 

dissociated mammary epithelial cells, injected into the “cleared” fat pad were able to do so (3). 

Initially, the approach was used to characterize the properties of hyperplastic and malignant lesions 

in different mouse strains. (4-8), Subsequent reports showed the engraftment efficiency and the 

growth potential of normal mammary tissue and established that mammary epithelium can serially 

engraft (9-13).  
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With the advent of targeted gene deletion in the mouse germ line the transplantation of mammary 

epithelium was used to reveal mammary phenotypes secondary to systemic effects of the genetic 

change and to show discern epithelial intrinsic phenotypes (14-16). Additionally, the transplantation 

approach can be used to rescue epithelium from mouse mutants that are lethal by engrafting 

embryonic mammary buds into wild type mice as early as e 12.5 (17, 18). More recently, 

engraftment of single cells in limiting dilutions (19) or of a specific single cells population obtained 

by fluorescence-activated cell sorting (20, 21) became a standard tool in mammary stem cell 

research.  

A potential problem of the fat pad clearing approach is that endogenous epithelium may not be 

completely removed and compete with the graft. When the engrafted gland is analyzed prior to 

pregnancy and or up to mid pregnancy the implanted graft can readily be distinguished form 

endogenous epithelium because of its radial versus the uni directional growth pattern of the 

endogenous ductal system (Fig. 1). However, the ductal growths pattern can be impossible to 

discern when the fat pad is filled with mammary epithelium during late pregnancy. To 

unequivocally distinguish engrafted from endogenous epithelium the use of a marker is advisable. 

Initially, we recurred to using donor mice systemically expressing LacZ (22) which required a 5-

bromo-4-chloro-3-indolyl-β-D-galactopyranoside (X-gal) staining followed by carmine alum 

counterstaining and whole mounting of the glands (14). Nowadays, the availability of mice 

expressing different fluorescent proteins (23, 24) in the mammary gland has made the 

discrimination of epithelial from adipose tissue by fluorescent stereomicroscopy more convenient 

and applicable to live tissue (14, 15). The genetic markers are also useful for normalizing gene 

expression to the transplant outgrowth when contralateral glands are processed for Western blotting 

or quantitative RT-PCR experiments.  

In this chapter, we will describe the preparation of the graft material, whether it is a piece of 

epithelium or a suspension of single cells, the preparation of the recipient animals, the engraftment 

into the cleared fat pad, and the analysis of the epithelial outgrowth. 
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As engrafting material we use either pieces of epithelium excised directly from the mammary gland 

of the donor mouse or suspensions of single cells. To obtain single cells from the mammary gland 

epithelium, we use a shortened and slightly modified version of the protocol from Matthew J. 

Smalley (25) where mammary glands are minced and treated with collagenase A and trypsin, 

washed with red blood cell lysis buffer and at the end shortly digested with trypsin and Dnase-1. 

For injection of single cells, we are using Matrigel as a medium for the engraftment. This was 

shown to increase the success rate possibly by preventing cell dispersal from the injection site (26).   

To obtain as much material as possible for the preparation of the suspension of single cells we 

isolate 4 out of 5 pairs of mammary glands in the mouse (Fig. 2). Cervical pair of mammary glands 

is usually not collected because of its position where it is hardly both accessible and distinguishable 

from the salivary gland. 

Materials: 

Media and Buffers: 

1. Phosphate-buffered saline (PBS): 1.0% w/v sodium chloride, 0.025% w/v potassium 

chloride, 0.025% w/v disodium hydrogen orthophosphate and 0.1437% w/v potassium dihydrogen 

orthophosphate (prepared in the laboratory, filtered and autoclaved) 

2. PBS/10% FCS medium: Phosphate-buffered saline plus 10% v/v heat-inactivated filtered 

fetal calf serum (FCS) (Invitrogen). 

3. Leibowitz L15 medium with L-glutamine (L15) with no additives (Invitrogen, Paisley, UK). 

4. Trypsin solution 1: 15 mg/mL trypsin from bovine pancreas (Sigma) is in serum-free L15. 

Stored at –20◦C in 1 mL aliquots (see Note 1). 

5. Collagenase A solution: 100 mg/mL Collagenase A (Roche) in PBS. Stored at –20◦C in 1,2 

mL aliquots (see Note 2). 

6. Digestion solution: 1,2 mL of Collagenase A solution, 1mL of Trypsin solution 1, 37,8 mL 

of L15 medium with L-glutamine. 

7. Trypsin solution 2: 0.25% trypsin, 0.02% EDTA in Hank’s balanced salt solution (Sigma) 
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8. DNAse-1 solution (5 μg/mL): 5 μg/mL bovine pancreatic DNase I (Roche) in serum-free 

L15. Store at –20◦C in 5-mL aliquots. 

9. Matrigel solution: Falcon matrigel basement membrane matrix (BD Biosciences) is mixed 

with sterile PBS in the 1:8 ratio. 

Preparation of donor tissue: 

1. For tissue collection: Neoprene cork dissection board wrapped in aluminium foil and 

autoclaved, 70% ethanol in spray bottle to disinfect the animals, dissection tools (dissection needles 

for fixing the donor (dead) animal to the board, round-nosed scissors and two pairs of forceps), 100 

mL beaker containing 70% ethanol for instruments sterilization and 15-mL Falcon tube containing 

sterile PBS for the tissue collection (kept on ice). 

2. For preparation of tissue fragments: 2 sterile 10 cm Petri dishes containing 10 mL sterile 

PBS (see Note 3), two pairs of forceps, round-nosed scissors, angled scissors (Vanna Scissors, 

angled-on-flat blades, 0.1-mm tip; World Precision Instruments), 5/45 jewelers' forceps (Agar 

scientific), clips for stitching, paper tissues and fluorescent dissection stereo-microscope (Leica). 

3. For preparation of single cells: small beaker containing 70% ethanol for sterilizing tools, 50-

mL Falcon tube containing sterile PBS for collection of mammary glands, scale to weigh the 

isolated tissue, 40 mL of digestion solution per batch of glands, red blood cell lysis buffer (Sigma), 

2 mL per batch of glands of trypsin solution 2 and 5 mL per batch of glands of Dnase 1 solution, 

40-μM cell strainers (BD Biosciences), Matrigel solution and two #22 scalpels. 

For surgery: 

Anaesthesia is performed according to the guidance of the Federal Veterinary Office of 

Switzerland. To minimize side-effects, it is advised to use isoflurane anaesthesia (5% of isoflurane 

in the atmosphere for the induction period until the mouse becomes ataxic, and 2% of isoflurane 

during the maintenance period with oxygen supply at rate of 5L/min during induction and 1L/min 

during maintenance period) with addition of analgesics chosen in accord with local veterinary 

guidance (buprenorphine at rate of 0,1 mg per kg of mouse) (see Note 4). 
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Heating pad to warm up animals during the surgery procedure, double-sided tape, Betadine 

standardized solution (Provet) for the sterilization of the surgery spot (see Note 5), two pairs of 

forceps, round-nosed scissors, angled spring scissors (Vanna Scissors, angled-on-flat blades, 0.1-

mm tip; World Precision Instruments), 5/45 jewelers' forceps (Agar scientific), battery operated 

cauterizer (Gemini cautery products), 100 μL Hamilton's syringe, clips for stitching, clip removing 

forceps (Austos), cotton pads, sterile physiological solution and analgesic (Buprenorphine) for 

postoperative treatment (chosen according to Federal Veterinary Office of Switzerland) (see Note 

6). 

Preparation for subsequent analysis: 

Fluorescent stereomicroscope (Leica M205 FA), Camera, dissection tools, histological glass slides, 

plastic clips, glass beaker (size depending on the number of samples) with 4% w/v 

paraformaldehyde in PBS, glass beaker with 70% ethanol, container with liquid nitrogen. 

Methods 

Dissection of the donor mice 

1. Mice are sacrificed in the CO2 chamber, fixed on their back with pins to the dissection board 

and the ventral side is thoroughly sprayed with 70% ethanol to disinfect the skin. A ventral incision 

is carefully made with round nosed scissors pulling up the skin with forceps to avoid puncturing the 

muscle wall and the incision is extended to the top of the rib cage. Two further incisions are made 

to generate a Y-shaped opening extending down the lower limbs and up the upper limbs (Fig. 3). 

The skin is carefully pulled back from the body wall with forceps to expose the abdominal and the 

thoracic mammary glands, which stay attached to the skin. Thoracic glands are carefully detached 

from the skin by scissors and forceps. The connection between  the abdominal and the inguinal 

gland is carefully cut with scissors (Fig. 3). A small incision is made above the subiliacal lymph 

node; the node is isolated and removed using forceps. Fourth mammary gland is carefully removed 

by forceps and scissors and placed into the falcon tube with sterile PBS. 
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Preparation of the engraftment material 

Pieces of the tissues 

1. Mammary gland from the donor mice expressing fluorescent protein is placed into the 10 cm 

plastic dish filled with sterile PBS and observed under the dissection fluorescence stereo-

microscope. Pieces of approximately 1mm
3
 in size are cut with jewelers' forceps and angled 

scissors, placed in another petri dish containing PBS, which is kept on ice until the surgery. 

Single cells 

1. Batch of collected mammary glands is transferred into the tissue culture hood and placed on 

the previously autoclaved dissection board using forceps. Excess PBS is aspirated by lifting the 

board. Mammary glands are finely chopped with #22 scalpels until they become fine semi liquid 

slurry (see Note 7).  

2. Tissue slurry is weighed and transferred into the 50 mL Falcon tubes, 2 g per tube.  

3. 40 mL of digestion mix and placed on the rotator at 37°C for two hours (see Note 8 and 9). 

4. After incubation, check that solution is homogeneous and fragments are smaller than 1-2mm 

in size. Falcon tube is placed in the centrifuge and spun at 1300 rpm for 5 minutes. The pellet will 

be enriched for epithelial fragments. Supernatant containing digestion medium and layer of fat is 

transferred to a new falcon tube and spun down again at same speed and time (see Note 10). 

Supernatant from the second falcon tube is removed by aspiration. The pellet from the first falcon 

tube is resuspended in 10 mL and from the second falcon tube in 5 mL of PBS/10% FCS, they are 

pooled in a 15 mL falcon tube and spun down again followed by aspiration of supernatant. 

5. Pellet is resuspended in 5 mL of red blood cell lysis buffer and incubated for 5 min at room 

temperature. Suspension is again spun down at 1300 rpm for 5 min and supernatant is aspirated. 

6. Pellet is washed with 5 mL of PBS/10% FCS and spun down. Supernatant is aspirated. 

7. Pellet is resuspended in 2 mL of trypsin solution 2 and incubated for 2 min at 37°C. 

Following incubation 5 mL of Dnase 1 solution are added and suspension is incubated for another 5 

min at 37°C. 
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8. To inactivate trypsin, 8 mL of PBS/10% FCS are added. Suspension is filtered through a 40-

μM cell strainer, spun down and resuspended into minimal amount of PBS/10% FCS. Cells are 

counted. 

9. Just before the engraftment, 50 000 cells are transferred into Eppendorf tube. They are spun 

down in the table top centrifuge at 10 000 rpm for 1 min at room temperature, resuspended in 10 μL 

matrigel solution and kept on ice.  

Transplantation 

Regarding the choice of host for the transplantation a few points need to be considered. First choice, 

whenever possible, is an isogenic recipient. In case of doubt, isogenicity can be checked by skin 

grafts between randomly selected mice (27). When a mutation of interest is in a mixed genetic 

background of two distinct strains, frequently 129SV/C57Bl6J F-1 hybrids generated by parents of 

either background are suitable hosts (28, 29). Not only will the F1 daughter accept any mixture of 

alleles from the two strains but in addition the experiment benefits from the hybrid vigor that results 

from crossing two inbred strains and makes the F1 generation particularly healthy. However, not all 

the strains show histocompatibility with either the F-1 hybrids or the hosts from the same strains, 

requiring extensive backcrossing. In particular, with the advent of conditional deletions many 

mouse strains now contain elements of more than two genetic backgrounds. These complexities 

require the use of immune compromised mice. 

A widely used model for transplantation experiments were nude mice in which foxn1 gene is 

disrupted. As a result the mice are athymic and lack thymus-derived T-cells important in allograft 

rejection (30). However, nude females have abnormally low levels of circulating estrogens which 

may influence the growth of transplanted mammary epithelium (31, 32).  

Better recipients are mice lacking recombination activating genes 1 or 2 (Rag1
-/-

 ) (33) or (Rag2
-/-

)  

(34).  The two genes are required for recognizing and cleaving signal specific sequences for somatic 

rearrangement of B and T cells receptors.  As a result Rag1
-/-

 and Rag2
-/-

 mice have neither B nor T 

cells. Transplantation to these mice gives very good, reproducible results. However, with the recent 
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discoveries on the important role of immune cells in development and carcinogenesis of the 

mammary gland (35) show that results from this system need to be carefully interpreted. 

Transplantation procedure 

1. Mice are anesthetized in the incubation chamber with 5% isoflurane in the atmosphere and 

5L/min of oxygen supply and then transferred on the heating pad (see Note 11) at 37˚C with mask 

on the nose supplying 2% of isoflurane and 1L/min of oxygen. Buprenorphine at rate of 0,1 mg per 

kg bodyweight is administered subcutaneously for analgesia. 

2. Mice are fixed on the heating pad with double-sided tape. The inguinal area is disinfected 

with Betadine standardized solution. 

3. A ventral incision is made carefully with rounded nosed scissors and other two incisions 

perpendicularly to the ventral one on each side of the mouse finishing half way between nipple #4 

and #5 trying not to puncture peritoneum (see Note 12). Skin is carefully peeled off the peritoneum 

with forceps and abdominal gland is exposed (Fig.4).  

4. To stop bleeding, the cauterizer is applied to blood vessel near junction by lymph node (Fig. 

5.a) and blood vessel on the fat pad connection between 4th and 5th gland (Fig. 5.b) (see Note 13). 

5. Using angle spring scissors a cut is made at the peritoneal side of the subiliacal lymph node 

(Fig. 5.c) and the nipple side half of the gland containing rudimental ductal tree is excised leaving a 

cleared fat pad behind. The same procedure is applied to the contralateral side. 

6. a) For the tissue fragment: Using only one side of the 5/45 jewelers' forceps a small pocket 

is made in the middle of the cleared fat pad (see Note 14). Tissue piece is placed on the top of the 

pocket and gently pushed inside using one side of the 5/45 jewelers' forceps.  

6. b) For the single cell injections: 50 000 cells in 10 μL of the matrigel solution are taken up 

with 100 μL Hamilton syringe. Suspension is carefully injected in the middle of the cleared fat pad 

(Fig. 6)  

7. Mice are left on the heating pad while incisions are closed with metal clips (approx. 5 mm 

between each clip) (see Note 15). 500 μL of physiological saline is injected into the mouse 
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intraperitoneally (see Note 16) and tape, for fixing the mouse during surgery, is removed. 

Buprenorphine (0,1 mg per kg) is administered subcutaneously every 8 to 12 hours for 3 subsequent 

days.  

8. Metal clips are removed with clip removing forceps 10 days after the surgery. 

Phenotypic characterization 

The timing of analysis of the transplanted glands is a parameter that has to be determined in light of 

the working hypothesis. As early as 3 days after surgery, limited growth can be observed in 

transplanted glands. As a rule of thumb, up to 21 days after surgery the terminal end buds can be 

seen and after 28-35 days the pubertal development in the recipient is over so the mammary gland 

should reach its adult stage (29). There is some variation depending on donor and host genetic 

backgrounds. To observe side-branching, mice should be examined at least 10 weeks after surgery. 

A phenotype related to alveologenesis can be observed between 14.5 and 18.5 days of pregnancy; 

lactation is best examined immediately after birth. As the milk cannot get out of the engrafted 

epithelium because there is no connection to the nipple, involution will start within a day after birth 

giving. 

Mice are sacrificed in the CO2 chamber, fixed on their back to the dissection board with four pins 

through their paws and the ventral side is sprayed with 70% ethanol to disinfect the skin. Y-shaped 

incision is made and mammary gland is isolated from the mouse as described above.  

For analysis of fluorescent epithelial grafts: 

1. Mammary gland is placed between the two glass slides and slides are held together with two 

plastic clips (see Note 17). 

2. Mammary gland between the two slides is observed under the fluorescent microscope and 

photographed for the analysis (see Note 18).  

3. For subsequent histological analysis mammary glands are placed into the plastic cassettes 

and placed into the PFA solution and left o/n at 4°C. Next day they are washed in PBS and 
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transferred to a beaker containing 70% ethanol. After this, the histological procedures can be 

performed at any time. 

Whole mounting: 

4. For the whole mount analysis the dissected mammary gland is spread on the glass slide and 

left to dry for several hours before fixation. 

5. For any analysis requiring protein, RNA or DNA extraction mammary glands are placed 

into the Eppendorf tubes, flash-frozen in the liquid nitrogen and stored at -80°C (see Note 19). 

Notes 

1. To avoid weighing of the trypsin, which is a very light charged powder that easily sticks to 

metal surface, the best way to prepare the solution is to add 16,7 mL of L15 medium directly into 

the original packaging and to vortex immediately. Trypsin dissolves easily and is instantly ready to 

use or to aliquot. 

2. Collagenase A does not readily dissolve in PBS. Hence, it is recommended to prepare 

aliquots in advance. Briefly, add 25 mL of PBS directly to original packaging and mix it on the 

horizontal orbital shaker for several hours at 4°C until dissolved. 

3. Usually, in the transplantation experiment mammary epithelium from a genetically modified 

mouse and control wild type mice are engrafted. The experimental, genetically modified is 

engrafted on one side, and the wild type placed contra laterally. In these cases, it is recommended to 

use 2 cm tissue culture dishes or 6-well plates to prepare the epithelial fragments for transplantation. 

4. We use Isoflurane gas anaesthesia because it is well tolerated, we observe few side-effects 

and recovery time is short facilitating post-operative care. Alternatively, injectable anaesthesia 

(Xylazine 10 – 15 mg/kg bodyweight + Ketamine 80 – 100 mg/kg bodyweight) can be used, 

however, recovery time is much longer. We have noticed that RAG 1
-/-

 mice are particularly 

sensitive to the injectable anaesthesia. Therefore, for any strain the dose has to be adjusted. 

Injectable anaesthesia does not require additional analgesia during the surgery. 
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5. In accord to Federal Veterinary Office of Switzerland guidance we use Betadine 

standardized solution to disinfect the mouse skin. 70% ethanol is to be avoided because evaporation 

of ethanol may lead to cooling down of the mouse and may increase mortality. Cotton is soaked 

with Betadine solution and rubbed into the mouse skin against the direction of the hair growth to 

optimize skin sterilization. 

6. Buprenorphine at dose of 0,1 mg per kg body weight is used during surgery and for 

postoperative analgesia and the same dose is given daily for three days after surgery. Alternatively, 

paracetamol can be provided in the drinking water at 1mg/mL 

7. To mince the mammary gland tissue, two #22 scalpels are taped together side by side. If 

different experimental groups of mice are used for the same experiment it is advisable to mince the 

glands in the most similar way possible, meaning for the same amount of time. Usually around 3 

minutes are adequate for up to 2 mice (4 glands per mouse), count an extra 30 seconds for each 

additional mouse (maximum 5 mice per batch). While cutting/mincing the tissue bring it together 

with scalpels to the center of the board from time to time. 

8. 20 mL of the digestion mix is optimal for 1 g of tissue. 

9. It is advisable to gently shake the falcon tubes with the digestion mix every 15 minutes 

during collagenase A/trypsin digestion to ensure homogeneous digestion. 

10. Shake the transferred supernatant vigorously to release the leftover organoids from the fat on 

the top. 

11. If the heating pad does not have a precise electronic regulator, place a thermometer on it in 

order to have constant insight in the temperature. Slightest increase can cause dehydration of mouse 

and can lead to death. 

12. In case the peritoneum is punctured, it is possible to stitch it with absorbable suture, placing 

a stitch every 1mm. 

13. Cauterization has to be very gentle and careful, otherwise fat pad can get damaged and 

necrosis can prevent the graft taking. 
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14. It is extremely important that the pocket is well-centered in the middle of the fat pad and that 

the fragment is not placed underneath it. Outside the fat pad the graft will not grow. 

15. When stitching the two perpendicular incisions, it is important to remove the tape fixing 

lower limbs of the mouse so that the stitches are made in a physiological position to avoid 

interfering with the mobility of the animal after surgery. 

16. Sterile physiological solution is injected to accelerate recovery because surgery leads to 

dehydratation. 

17. Mammary gland should be as dry as possible to avoid that it slips between the slides. Extra 

liquid can give rise to a false border that may cause problems with subsequent analyses, such as 

determining the extent of fat pad filling, as the size of fat pad may be overestimated.. 

18. EGFP transgenic mice (23) proposed in this chapter have a high intensity fluorescence 

signal in the epithelium and a very low one in the stroma. This renders it difficult to appreciate the 

fat pad borders and epithelium concomitantly in the GFP channel. In the DsRed channel, stroma has 

higher autofluorescence making it convenient to take the picture of the fat pad in red and epithelium 

in green. 

19. To preserve RNA quality, mammary glands have to be isolated from live anesthetized mice. 

Figure legends 

Figures: 

Figure 1. Difference in growth pattern between engrafted and endogenous mammary epithelium 

Scheme of radial epithelial growth pattern in transplanted mammary gland (a.) and uni-directional 

growth pattern in the endogenous mammary gland (b.)  

Figure 2. Anatomic location of mouse mammary glands:  

Scheme showing a female mouse on its back. The position of the mammary glands are depicted 

with the thin lines, nipples are represented by black dots. a) cervical, b) first thoracic, c) second 

thoracic, d) abdominal, e) inguinal. 

Figure 3. Surgical field for dissection of the donor mouse:  
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Scheme of a female mouse on its back.  The incision lines are shown by dashed lines, order of 

incisions follows the numbering. 

Figure 4. Surgical field for skin incision in the recipient mouse:  

Scheme of a female mouse on its back showing the incisions positions with dashed lines. Numbers 

indicate order of incisions. 

Figure 5. Surgical field for fat pad clearing in the recipient mouse:  

Scheme of inguinal area with abdominal and inguinal gland (mammary gland is depicted with thin 

line and blood vessels with dotted line): a) arrow indicates where the blood vessels near the junction 

by the lymph node have to be cauterized. b) dotted line shows a connection between abdominal and 

inguinal gland that has to be cauterized. c) dashed line shows the position of the incision required to 

clear the fat pad. 

Figure 6. Cell injection into cleared fat pad of the recipient mouse: 

a) Scheme of inguinal area with fat pad after clearing being injected with cell 

suspension. 

b) Schematic cross-section of inguinal fat pad; dashed line represents part of needle 

inside the fat pad. 
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Figure 2. 
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Figure 3. 
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Figure 4. 
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Figure 5. 
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Abstract

Ovarian hormones increase breast cancer risk by poorly under-
stood mechanisms. We assess the role of progesterone on global
stem cell function by serially transplanting mouse mammary
epithelia. Progesterone receptor (PR) deletion severely reduces the
regeneration capacity of the mammary epithelium. The PR target,
receptor activator of Nf-jB ligand (RANKL), is not required for this
function, and the deletion of Wnt4 reduces the mammary regener-
ation capacity even more than PR ablation. A fluorescent reporter
reveals so far undetected perinatal Wnt4 expression that is inde-
pendent of hormone signaling. Pubertal and adult Wnt4 expression
is specific to PR+ luminal cells and requires intact PR signaling.
Conditional deletion of Wnt4 reveals that this early, previously
unappreciated, Wnt4 expression is functionally important. We
provide genetic evidence that canonical Wnt signaling in the
myoepithelium required PR and Wnt4, whereas the canonical Wnt
signaling activities observed in the embryonic mammary bud and
in the stroma around terminal end buds are independent of Wnt4.
Thus, progesterone and Wnt4 control stem cell function through a
luminal–myoepithelial crosstalk with Wnt4 acting independent of
PR perinatally.
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Introduction

The two key ovarian hormones, 17-b-estradiol (E2) and progester-

one, regulate postnatal mammary gland development but also

promote carcinogenesis in this organ. They act via nuclear recep-

tors, the estrogen receptor a (ER) and the progesterone receptor

(PR), respectively, which are expressed in between 30 and 50% of

the mammary epithelial cells in the inner, luminal layer (Clarke

et al, 1997). It was proposed that they impinge on ER-/PR-negative

mammary stem cells by paracrine mechanisms (Tanos & Brisken,

2008). Experimental evidence for this model was provided with

fluorescence-activated cell sorting (FACS)-based approaches

(Asselin-Labat et al, 2010; Joshi et al, 2010). The single-cell-based

methods have been used to characterize mammary epithelial cell

populations and to establish a cellular hierarchy within the

mammary epithelium. Among dissociated CD24+ mouse mammary

epithelial cells, the cell populations with high surface expression of

integrin b1 (CD29hi) or integrin a6 (CD49fhi) were enriched for cells

with the ability to establish new milk ducts in mammary fat pads

surgically cleared of their endogenous epithelium and were hence

considered bipotent mammary stem cells able to give rise to both

luminal and basal/myoepithelial cell lineage (Shackleton et al,

2006; Stingl et al, 2006). These cells express basal/myoepithelial

markers such as cytokeratin 5 and 14, smooth muscle actin, and

laminin (Shackleton et al, 2006; Stingl et al, 2006) and their

numbers increase during pregnancy and after stimulation with E2

and progesterone (Asselin-Labat et al, 2010; Joshi et al, 2010) and

decrease upon ovariectomy or anti-estrogen treatment (Asselin-

Labat et al, 2010).

However, the physiological relevance of the dramatic expansion

of these bipotent stem cells in response to hormones (Asselin-Labat

et al, 2010; Joshi et al, 2010) is questioned by lineage-tracing exper-

iments showing that postnatal mammary gland development is

largely driven by luminal and basal/myoepithelial lineage-restricted

stem cells (Taddei et al, 2008; Zeng & Nusse, 2010; Van Keymeulen

et al, 2011; Rios et al, 2014). The lineage-restricted stem cells are

not amenable to study by the single stem cell assays where the

normal stem cell niche and its microenvironment are disrupted.

Recurrent peaks in serum progesterone levels are linked to

menstrual cycles which are an important risk factor for breast carci-

nogenesis (Brisken, 2013). Moreover, most cell proliferation occurs

in the luminal compartment and breast cancers arise from luminal

and/or luminal progenitor cells (Molyneux et al, 2010). This begs

the question how important progesterone is to mammary stem cell
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function in the intact tissue context and through which signaling

pathways it impinges on different types of mammary stem cells, that

is, bipotential, luminal restricted, and basal restricted.

Mammary epithelium was shown to serially engraft cleared

mammary fat pads for up to seven cycles (Daniel, 1973). This assay,

which is based on the engraftment of an intact piece of mammary

epithelium, preserves the epithelial architecture with its associated

extracellular matrix, fibroblasts, and immune cells. It is currently

the only way to assay comprehensively the mammary regeneration

potential reflective of multiple types of stem and progenitor cells.

We combine this assay with different genetic mutant strain to define

the relative contributions of progesterone signaling and its down-

stream mediators RANKL and Wnt4 to the regenerative potential of

the mammary epithelium.

Results

PR signaling for mammary epithelial self-renewal

To assess the role of PR signaling in mammary stem cell control, we

serially engrafted pieces of intact mammary epithelium from the

PR�/� and wild-type (WT) littermates into contralateral mammary

fat pads surgically cleared of their endogenous epithelium (Fig 1A).

This approach rather than injection of limiting dilutions of dissoci-

ated cell populations was chosen so that the physiological interac-

tions between the stem/progenitor cells and their microenvironment

in the mammary epithelium niche would be preserved and the func-

tion of all types of stem cells, the bipotential, the luminal-restricted,

and the basal-restricted stem cells, could be evaluated. To unequivo-

cally distinguish the engrafted cells from the endogenous epithelium

that may inadvertently be left after surgery, we used donors that

ubiquitously express the enhanced green fluorescent protein (EGFP)

(Okabe et al, 1997). To ensure that comparable amounts of mutant

(MT) and WT donor tissue with comparable amounts of epithelium

were engrafted, we dissected pinhead-sized fragments from the

inguinal glands near the lymph node on the side proximal to the

teat. Eight to 12 weeks after grafting, recipients were sacrificed and

the extent of outgrowth in the engrafted mammary glands was

determined. Pieces of mammary tissue resulting from the contralat-

eral PR�/� and WT grafts were dissected and retransplanted

(Fig 1A). The WT epithelium completely reconstituted most of the

fat pads over 4 serial transplant cycles, as expected, but the PR�/�

epithelium ceased to reconstitute the mammary gland by the 3rd

cycle (Fig 1B, C, and H).

Paracrine mediators of PR signaling in mammary
epithelial self-renewal

The TNF-a family member, RANKL, was previously implicated in

the paracrine control of mammary stem cells by hormones on

the basis of use of dissociated individual stem cell assays

(Asselin-Labat et al, 2010). To determine the functional impor-

tance of RANKL in epithelial self-renewal, we serially engrafted

intact mammary epithelium derived from the RANKL�/� and the

RANKL+/+ mice into cleared contralateral mammary fat pads. WT

epithelium fully reconstituted fat pads in most hosts over 4 serial

transplants and grew as expected (Fig 1D and E). Unexpectedly,

RANKL�/� epithelia had the same regeneration capacity (Fig 1D

and E). The only significant difference was that the MT grafts

generated fewer side branches (Fig 1D and insets), consistent

with the reported proproliferative activity of RANKL and its role

in side branching (Beleut et al, 2010).

We tested the role of Wnt4 since evidence has accumulated

that Wnt signaling is important for mammary stem cell function

(Cai et al, 2014; Kessenbrock et al, 2013; Liu et al, 2004; van

Amerongen et al, 2012; Wang et al, 2014; Zeng & Nusse, 2010)

and Wnt4 is a key paracrine mediator of progesterone action

(Brisken et al, 2000). As Wnt4�/� mice die at birth (Vainio et al,

1999), intact mammary epithelial buds from E12.5/E13.5 embryos

were used for the initial engraftment. It has been reported that

embryonic epithelia have more stem cells than postnatal epithelia

(Spike et al, 2012). Notwithstanding, we noticed that epithelial

tissue isolated from the Wnt4+/+ and the Wnt4+/� embryos recon-

stituted completely the mammary gland to the same extent as the

WT epithelia from postnatal mammary glands through three

transplantation cycles (Fig 1C, E, and G). However, the Wnt4�/�

epithelium only established 50% of the fat pad in the first cycle

and was reduced to 10% by the third cycle (Fig 1F and G). The

much more significant impairment of reconstitution capacity of

the Wnt4�/� versus the PR�/� grafts compared to their respective

contralateral controls (Fig 1H) points to a key role for Wnt4 in

the maintenance of the mammary stem cell function and indicates

that PR is not exclusively controlling Wnt4 expression. RANKL

▸Figure 1. PR, RANKL, and Wnt4 and their role in the regenerative capacity of the mammary gland.

A Experimental scheme. Mammary tissue fragments dissected from wild-type (WT) or mutant (MT) donor mice were engrafted to contralateral mammary fat pads of
RAG1�/� recipient mice surgically divested of the endogenous epithelium. Between 8 and 12 weeks later, the engrafted glands were assessed by fluorescent
stereomicroscopy and new fragments were dissected for serial engraftment.

B, C Serial transplantations of PR+/+ and PR�/� mammary epithelia. (B) Fluorescence stereo micrographs of third-generation mammary outgrowths derived from
8-week-old PR+/+; EGFP and PR�/�; EGFP donor mice. (C) Table summarizing 3 independent serial transplant experiments with PR+/+; EGFP and PR�/�; EGFP. Each
engrafted gland is represented by a micrograph; black sectors represent area of fat pad filled by engrafted epithelium. Scale bar: 200 lm.

D, E Serial transplantation of RANKL+/+ and RANKL�/� mammary epithelia. (D) Fluorescence stereo micrographs of third-generation mammary outgrowths derived from
5-week-old RANKL+/+; EGFP and RANKL�/�; EGFP donor mice. Insets: higher magnification showing side branches present in the WT control (arrowheads) absent
from RANKL�/�; EGFP epithelium. (E) Table summarizing three independent serial transplant experiments with RANKL+/+; EGFP and RANKL�/�; EGFP donor mice.
Scale bar: 200 lm.

F, G Serial transplantation of Wnt4+/+ and Wnt4�/� mammary epithelia. (F) Fluorescence stereo micrographs of third-generation mammary outgrowths derived from
mammary buds of E12.5 and E13.5 Wnt4+/+; EGFP and Wnt4�/�; EGFP embryos. Scale bar: 200 lm. (G) Table summarizing three independent serial transplant
experiments with Wnt4+/+; EGFP donor mice. Scale bar: 200 lm.

H Box plot showing the difference between percentage of reconstitution between WT and MT contralateral grafts in each transplant generation. P values were
determined by Mann–Whitney U-test.
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does not appear to be essential in the control of the mammary

stem cells under physiological conditions.

Control of Wnt4 expression

Previous studies suggested that Wnt4 is expressed only concomitant

with high progesterone secretion in the adult and pregnant mammary

gland (Gavin & McMahon, 1992; Weber-Hall et al, 1994). The finding

that deletion of Wnt4 affected mammary regeneration potential more

severely than abrogation of PR signaling suggested that Wnt4 may

have PR-independent functions in stem cell stimulation. To detect

Wnt4 expression at low levels, we crossed mice which express Cre

from the Wnt4 locus (Wnt4::Cre) (Shan et al, 2009) to the mT/mG

dual Cre reporter strain in which ubiquitous tomato expression is

replaced by membrane EGFP upon Cre activation (Muzumdar et al,

2007). We failed to detect expression in embryos (E12.5 and E18.5)

and were unable to detect EGFP in the mammary glands of newborn

or 3-day-old double transgenic mice (Wnt4::GFP). EGFP expression

was detected on postnatal day 5 by fluorescence stereomicroscopy

(Fig 2A) prior to the onset of ovarian function. Immunofluorescence

of histological sections revealed EGFP expression in scattered

mammary epithelial cells on day 5 (Fig 2B) and day 10 (Fig 2C). PR

expression was not detected at these stages (Fig 2B and C). Consis-

tent with Wnt4 being a PR target, the double immunofluorescence for

histological sections from postnatal double transgenic mice (Wnt4::

EGFP) suggested that EGFP expression is restricted to PR+ luminal

cells in the glands of pubertal mice (Fig 2D), adult (Fig 2E and inset),

and pregnant females (Fig 2F and inset). To assess whether myoepi-

thelial cells may express EGFP, we performed triple immunofluores-

cence for EGFP, PR, and the myoepithelial marker p63. In mammary

epithelia from 5-day-old Wnt4::EGFP females (n = 7), rare double

positive cells were detected, and in most sections, cells expressed

either p63 or EGFP (Fig 2G). In 4- (Fig 2H) and 8-week-old (Fig 2I)

females, p63 and EGFP staining labeled distinct cells. Thus, Wnt4 is

expressed almost exclusively in luminal cells. The Wnt4 expressing

cells appear to be terminally differentiated as no clonal clusters of

EGFP+ cells are observed.

To assess whether trace amounts of estrogens and progesterone

of maternal origin could account for this perinatal Wnt4 expression,

we analyzed d15 mammary glands from the Wnt4::EGFP mice on

WT, ERa�/�, and PR�/� genetic backgrounds by epifluorescence

stereomicroscopy. At this stage, ductal outgrowth was comparable

by red fluorescence (Fig 2J–L). Neither ERa nor PR deletion altered

Wnt4::EGFP expression (Fig 2M–O) indicating that perinatal Wnt4

expression is largely independent of ERa and PR signaling.

To determine the respective roles of the two major ovarian

hormones in control of Wnt4 expression, we pooled epithelial-

enriched organoids freshly isolated from mammary glands of puber-

tal and adult females (n = 3) and stimulated them for 6 h ex vivo

(Fig 2P) (Ayyanan et al, 2011). Progesterone induced Wnt4 mRNA

expression in pubertal and adult organoids to 8.7- and 4.5-fold,

respectively, whereas E2 elicited a 1.6-fold induction of Wnt4 mRNA

in the pubertal organoids only (Fig 2Q). To assess the physiological

importance of PR signaling for pubertal Wnt4 expression, we grafted

Wnt4::GFP epithelium derived from donors either PR�/� or PRWT to

contralateral cleared fat pads of 3-week-old hosts. The engrafted

glands were analyzed 3 weeks later when the recipients were puber-

tal. Epifluorescence stereomicroscopy for dTomato revealing unre-

combined cells confirmed the presence of ductal outgrowth of

PRWT and PR�/� grafts (Fig 2R and S). EGFP expression was readily

detected in the PRWT graft (Fig 2T) but completely absent from

some of the PR�/� grafts (Fig 2U). Double epifluorescence stereo-

microscopy on a PRWT control graft reveals that EGFP is strongly

enriched in the TEBs (Fig 2V and X), and in the contralateral PR�/�

grafts, some EGFP expression is observed at the origin of the

outgrowth (Fig 2W). These findings are consistent with perinatal

ER-/PR-independent Wnt4 expression and indicate that pubertal

Wnt4 induction is mediated by PR signaling.

Consequences of Wnt4 ablation on cell proliferation

The observation that Wnt4 deletion impaired the regenerative

capacity of the mammary epithelium more severely than PR deletion

did, pointed to a role of Wnt4 before puberty. The fat pad grafting

approach used to determine Wnt4 function (Brisken et al, 2000)

assesses gene function from puberty onward because the donor

epithelium is placed into a 3-week-old host. To determine the role of

Wnt4 perinatally and at the onset of puberty, we conditionally

▸Figure 2. Control of Wnt4 expression.

A Epifluorescence stereo micrograph of inguinal mammary gland from a 5-day-old Wnt4::Cre; mT/mG female (n = 7). Scale bars: 0.5 mm and 0.1 mm (inset).
B, C Histological sections of mammary glands from a 5-day-old (B; n = 7) and a 10-day-old (C; n = 5) Wnt4::Cre; mT/mG female stained by double immunofluorescence

for EGFP (green) and PR (magenta, not detected), counterstained with DAPI (blue). Scale bar: 50 mm.
D–F EGFP (green) and PR (magenta) co-immunofluorescence counterstained with DAPI (blue) on histological sections from mT/mG; Wnt4::Cre mammary glands at

different developmental stages. (D) TEB of a 4-week-old female (n = 4); scale bar: 30 lm. (E) Ducts of an 8-week-old female (n = 3); scale bar: 100 lm; inset, scale
bar: 20 lm. (F) Duct of a female at day 10.5 of pregnancy (n = 3); scale bar: 150 lm; inset, scale bar: 30 lm.

G–I EGFP (green), PR (magenta), and p63 (white) triple co-immunofluorescence counterstained with DAPI (blue) on histological sections from mT/mG; Wnt4::Cre
mammary glands at different developmental stages. (G) Ducts of 5-day-old female (n = 3). (H) TEB of a 4-week-old female (n = 3). (I) Duct of an 8-week-old female
(n = 3). Scale bars: 30 lm.

J–O Epifluorescence stereo micrographs of mammary glands harvested from 15-day-old Wnt4::GFP females either WT (n = 18) (J, M), ERa�/� (n = 4) (K, N), or PR�/�

(n = 3) (L, O). dTomato expression (J–L); EGFP expression (M–O) is not abrogated in ERa�/� nor PR�/� epithelia. Arrowheads mark the main duct originating from
the nipple. Scale bar: 50 lm.

P Scheme of ex vivo hormone stimulation of mammary organoids.
Q Bar plots showing relative PR and Wnt4 mRNA expression normalized to CK18 mRNA in mammary organoids from 5 pubertal (6 weeks old) and 3 adult (11 weeks

old) mice exposed for 6 h to vehicle (C), 17b-estradiol (20 nmol) (E2), or R5020 (20 nmol) (P). Bars represent the mean � SD of 3 independent experiments.
R–X Epifluorescence stereo micrographs of contralateral mammary glands that were engrafted with Wnt4::GFP epithelium from 8-week-old females, either PRWT (R, T,

V, X) or PR�/� (S, U, W). dTomato expression (R, S); EGFP expression (T, U) double epifluorescence (V, W, X) on contralateral engrafted glands 3 weeks after surgery
when recipients were 6 weeks old. Representative result from three independent experiments. Arrowheads point to TEBs (V, X) or to origin of growth (W). Scale bar
(R–W): 5 mm, (X): 1 mm.
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deleted Wnt4 in the mammary epithelium by crossing mice with

two conditional Wnt4 alleles (Wnt4fl/fl) (Shan et al, 2010) to mice

that express Cre in the mammary epithelium under the control of

the MMTV-LTR (A-strain) (Wagner et al, 2001). To identify cells

in which Cre-mediated recombination had occurred, the mice

were crossed to the mT/mG dual Cre reporter strain (Muzumdar

et al, 2007). Analysis of MMTV::Cre; mT/mG double transgenic

females revealed widespread EGFP expression at postnatal day 10

both by stereo microscopy and (Fig 3A–E) immunofluorescence

for EGFP (Fig 3F). In the Wnt4 depleted (MT) mammary glands,

a 10% decrease in the number of branching points was observed

compared to control littermates around day 10 (Fig 3G and H). In

pubertal MT glands, the number of terminal end buds (TEBs) had

decreased to 54% of the controls (Fig 3I and J). Similarly, the area of

fat pad filled by ducts was 60% of that measured in littermates

(Fig 3I and K). Cell proliferation, as assessed by BrdU incorporation,

was reduced to 65% of that in the WT counterparts in TEBs of Wnt4

mutants (Fig 3M). The proliferative index of about 6% in the

subtending ducts was not affected in the Wnt4-deficient glands

(Fig 3L). Thus, Wnt4 is required for perinatal and pubertal ductal

expansion.

Activation of myoepithelial cells through canonical Wnt signaling

Wnt4 can activate its signaling, both canonical and non-canonical

Wnt signaling (Lyons et al, 2004; Heinonen et al, 2011). Canonical

Wnt signaling activity can be assessed in vivo using the Axin2::LacZ

reporter mouse strain (Leung et al, 2002; Lustig et al, 2002) and

was reported in a subset of CD29fhi or CD49hi breast stem cells

Figure 3. Conditional deletion of Wnt4 in the mammary epithelium and
its consequences.

A–D Representative epifluorescence stereo micrographs of inguinal mammary
glands from a 10-day-old mT/mG (A, C) and MMTV::Cre; mT/mG (B, D)
female (n = 7). Scale bar: 1 mm.

E Higher magnification of inguinal mammary gland from a 10-day-old
MMTV::Cre; mT/mG female. Scale bar: 0.2 mm.

F Immunofluorescence for EGFP (green) on a mammary gland section
from a 10-day-old MMTV::Cre; mT/mG female counterstained with DAPI
(blue) (n = 7). Scale bar: 30 lm.

G Epifluorescence stereo micrographs of mammary glands from 10-day-
old littermates either MMTV::Cre; mT/mG Wnt4fl/+ or MMTV::Cre; mT/mG;
Wnt4fl/fl. Scale bar: 1 mm. Arrowhead marks the main duct originating
from the nipple.

H Bar plot showing ratio of branching points in prepubertal Cre+;Wnt4fl/fl

(n = 12) relative to Cre+;Wnt4fl/+ littermates (n = 10). Two-tailed, paired
Student’s t-test was used to calculate statistical significance.

I Fluorescence stereo micrographs of mammary glands from 35-day-old
littermates eitherMMTV::Cre; mT/m; Wnt4fl/+ or MMTV::Cre; mT/m;Wnt4fl/fl.
Note ductal elongation is delayed in Wnt4-deficient mammary
epithelium compared to Wnt4fl/+ control. LN: lymph node. Scale bar:
4 mm.

J, K Bar plots showing number of terminal end buds (TEBs) (J) and area of
mammary fat pad filled by the ductal system (K). Ctrl (Wnt4fl/wt or
Wnt4fl/fl; Cre�): n = 6, fl/+; Cre+: n = 4, and fl/fl; Cre+: n = 7). Data are
presented as the mean � SD. Two-tailed Student’s t-test was used to
calculate statistical significance.

L, M Bar plots showing BrdU incorporation index in inguinal mammary
glands of 4-week-old Wnt4fl/+; Cre+ (n = 3) or Wnt4fl/fl; Cre+ (n = 4) in
the ducts (L) and in the TEBs (M). Data are presented as the mean � SD.
Two-tailed Student’s t-test was used to calculate statistical significance.
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Figure 4. Canonical Wnt signaling activity during mammary gland development.

A Whole-mount micrograph of X-gal-stained Axin2+/lacZ in E12.5 embryo showing b-galactosidase expression in the mammary buds (arrows) (n = 8). Scale bar:
1 mm. Arrowheads mark mammary buds.

B–F Whole-mount micrographs of X-gal (blue)- and carmine alum (red)-stained mammary glands harvested from Axin2+/lacZ mice at distinct developmental stages.
(B) At postnatal day 1, b-galactosidase activity detected in the nipple area (n = 6). Scale bar: 1 mm. (C, D) In 5-week-old mammary glands, reporter activity was
detected around the ducts (small arrows) and in the neck region of the terminal end buds (TEBs) (large arrows) (C) (n = 8). Scale bars: 400 lm (C) and 100 lm (D).
(E) At 8.5 day of pregnancy, reporter expression was detected in the ducts. Higher magnification (inset) suggests myoepithelial expression (n = 10). Scale bar:
1 mm. (F) Whole-mount at day 14.5 of pregnancy: reporter activity is limited to ducts (n = 5). Scale bar: 200 lm.

G Histological section of Axin2::LacZ mammary gland at day 8.5 of pregnancy counterstained with nuclear red; luminal epithelial cells show no detectable
b-galactosidase activity but myoepithelial cells do. Scale bar: 200 lm.

H b-galactosidase activity (blue) colocalizes with the myoepithelial marker p63 (green) detected by immunofluorescence. Arrows point to myoepithelial cells. L,
lumen. Scale bar: 100 lm.

I Representative whole-mount stereo micrographs of X-gal (blue)- and carmine alum (magenta)-stained mammary gland biopsies taken from 14-week-old
Axin2::LacZ females collected at diestrus and estrus, respectively (n = 3). Scale bar: 200 lm.

J Relative Wnt4 and Axin2 mRNA expression in mammary glands from three mice in estrus versus diestrus assessed by semiquantitative qRT–PCR normalized to
18S rRNA. Two-tailed, paired Student’s t-test was used to calculate statistical significance.

K Stereo micrographs of X-gal- and carmine alum-stained mammary glands from ovariectomized Axin2::LacZ females treated for 72 h with vehicle (n = 4) (left),
17-b-estradiol (E2) (n = 6) (center), 17-b-estradiol and progesterone (E2 and P) (n = 8) (right). Scale bar: 200 lm.

L, M Stereo micrographs of contralateral glands whole-mounted and X-gal stained after engraftment with mammary buds from Axin2::LacZ transgenic and Wnt4+/+ or
Wnt4�/� female E12.5 and E13.5 embryos (L) or Axin2::LacZ transgenic and either PR+/� or PR�/� 8-week-old females (M), at day 8.5 of pregnancy. b-galactosidase
expression reflecting Axin2 transcription is readily detected in PR+/� as well as Wnt4+/+ mammary epithelia but not in the PR�/� (n = 6) and Wnt4�/� counterparts
(n = 6). Blue: X-gal staining; magenta: carmine alum counterstain. Scale bars: 200 lm.
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(Zeng & Nusse, 2010; van Amerongen et al, 2012). We detected

reporter activity in the mammary buds of E12.5/13.5 embryos

(Fig 4A) consistent with previous reports based on an artificial Wnt

signaling reporter (Chu et al, 2004). Perinatal b-galactosidase activ-

ity was confined to the nipple area (Fig 4B). Importantly, during

puberty, LacZ expression was detected in the stroma surrounding

the TEB necks (Fig 4C and D). In adulthood, b-galactosidase activity

was readily detected in the ducts where it peaked on day 8.5 of preg-

nancy (Fig 4E). At day 14.5 of pregnancy, b-galactosidase activity

was still detected in the ducts but not in the newly formed alveoli

(Fig 4F). Histological sectioning suggested that X-gal staining

mapped to the myoepithelial layer (Fig 4G); immunostaining with

the myoepithelial marker p63 (Fig 4H) confirmed that LacZ is

exclusively expressed in myoepithelial cells. Thus, canonical Wnt

signaling in the postnatal mammary epithelium is confined to

myoepithelial cells.

The peak in myoepithelial b-galactosidase activity during mid-

pregnancy suggested that serum progesterone levels and hence

Wnt4 expression may control canonical Wnt signaling activation.

Indeed, when mammary glands in individual mice were analyzed,

during progesterone-low estrous, they had lower b-galactosidase
activity (Fig 4I) and lower Wnt4 and Axin2 mRNA levels than the

glands analyzed during progesterone-high diestrous (Fig 4J); the

fold differences varied between different animals (Fig 4I and J). To

assess whether PR signaling induces canonical Wnt signaling, ovari-

ectomized Axin2::LacZ females were treated with E2, to restore PR

expression, and progesterone. Axin2 transcription reflected by

b-galactosidase activity was induced by this combination but not by

solvent or E2 alone (Fig 4K). Thus, progesterone stimulation results

in increased transcription of Axin2, in the context of ER-dependent

PR induction.

Multiple Wnts, some of which are secreted by mammary stro-

mal cells, have been implicated in canonical Wnt signaling activa-

tion (Kessenbrock et al, 2013). To assess whether canonical Wnt

signaling requires Wnt4 expression, we generated Axin2::LacZ

transgenic mice in a Wnt4�/� background. In females engrafted

with mammary buds from Axin2::LacZ+ female embryos, b-galac-
tosidase activity was readily detected in Wnt4+/+ grafts at preg-

nancy day 8.5 but abrogated in the contralateral Wnt4�/�

epithelia (Fig 4L). Similarly, it was decreased in PR+/� and abro-

gated in PR�/� epithelia (Fig 4M), indicating that both PR and

Wnt4 are required for canonical Wnt signaling activation in the

myoepithelium.

Our finding that Wnt4 expression is detected only from postnatal

day 5 onward suggested that other family members, possibly

Wnt10b, might be responsible for canonical Wnt signaling activa-

tion in the embryonic mammary bud. In line with this scenario,

b-galactosidase activity was readily detected in the embryonic

mammary buds of Wnt4�/�::axin2::LacZ female E14.5 embryos

(Fig 5A). To test whether the stromal Axin2 expression around TEB

necks depends on epithelial Wnt4 expression, we generated

MMTV::Cre; axin2::LacZ females either Wnt4fl/fl or Wnt4fl/wt. Analy-

sis of their mammary glands during puberty (6 weeks) showed that

b-galactosidase activity was comparable between the two genotypes

(Fig 5B). Thus, canonical Wnt signaling activation in the mammary

bud and stroma is Wnt4 independent, whereas specifically in the

myoepithelium, canonical Wnt signaling activation requires epithe-

lial Wnt4 expression.

Discussion

Our data point to Wnt4 as a pivotal control factor of stem cell

function for postnatal mammary gland development. We have

uncovered a novel role for Wnt4 in perinatal development and

puberty with progesterone as its major endocrine control factor.

Progesterone, colloquially named ‘pregnancy hormone,’ appears

as a primordial systemic factor in the postnatal mammary gland.

It is the major proliferative stimulus to the adult mammary

epithelium (Beleut et al, 2010) and controls the regenerative

potential of the mammary gland by activating stem/progenitor

cells throughout hormone-dependent development. Surprisingly,

while hormone stimulation experiments had shown that estrogens

induce Wnt4 expression (Brisken et al, 2000; Cai et al, 2014), we

find that genetic deletion of PR signaling completely abrogated

Wnt4 expression during puberty. Yet, the two ovarian hormones

remain intertwined in Wnt4 control with ERa signaling acting

indirectly as an upstream regulator of PR expression (Haslam &

Shyamala, 1979) (Fig 6A).

We had previously analyzed Wnt4 function in the mammary

gland by grafting Wnt4�/� embryonic buds to cleared fat pads of

pubertal mice and therefore failed to discern the prepubertal func-

tion of Wnt4 uncovered through the use of the conditional Wnt4

A

B

Figure 5. Wnt4-independent canonical Wnt signaling during mammary
gland development.

A X-gal-stained whole-mounts of Axin2::LacZ embryos at E14.5 either Wnt4+/+

or Wnt4�/� (n = 5 or 4, respectively). Arrows mark mammary buds. Scale
bar: 5 mm.

B Whole-mount analysis of X-gal- and carmine alum-stained mammary
glands harvested from 6-week-old littermates either Wnt4fl/wt;MMTV::Cre+;
Axin2+/lacZ (n = 5) or Wnt4fl/fl MMTV::Cre+;Axin2+/lacZ (n = 4). Left insets:
higher magnification; right insets: histological section of the same gland.
Note expression of reporter detected around the neck of TEBs in Wnt4-
deficient and littermate control is comparable. LN, lymph node. Scale bars:
1 mm, and inset scale bar: 100 lm.

The EMBO Journal ª 2015 The Authors

The EMBO Journal Progesterone/Wnt4 control of mammary stem cells Renuga Devi Rajaram et al

8

Published online: January 20, 2015 



allele in the present work. The ability of Wnt4�/� epithelium to

form alveoli, which was preserved in previous transplants (Brisken

et al, 2000), was also observed upon serial transplantation when

mice were impregnated in this study.

Our finding that RANKL is not important for stem cell potential

is in apparent contradiction with previous results based on assays

with dissociated cells (Asselin-Labat et al, 2010). Compared to the

widely used single-cell-based assays in which a defined number of

cells are injected, grafting of intact epithelial fragments does not

allow one to determine the number or fraction of cells endowed

with regenerative potential. The approach does not disentangle the

role of different types of stem and progenitor cells and their rela-

tive contributions to the outgrowth cannot be defined. Yet, the

method is robust and multiple repeats of the experiment combined

with several rounds of transplantation give a semiquantitative

appreciation of an intact regeneration potential in a physiological

tissue context that is missed by the use of dissociated cells. In

fact, to our knowledge, this is currently the only stem cell assay

in which at least part of the microenvironment remains intact that

is so important to stem cell function. When single cells are

injected into a cleared fat pad, they need to survive and to adhere

to the stroma, an environment they are not exposed to physiologi-

cally. Both of these biological activities require integrin signaling

and control each other through direct cadherin-mediated cell–cell

contacts. In the widely used FACS-based stem cell assays,

mammary stem cells are selected for high expression of integrin

b1 or a6 (Shackleton et al, 2006; Stingl et al, 2006). It is conceiv-

able that the selected cells are not intrinsically better ‘stem cells’

A

B C

Figure 6. Models of hormonal stem cell control and Wnt4 action during mammary gland development.

A Control of mammary stem cell activity by Wnt4 during development. Schematic representation of mammary gland development (bottom) and control of mammary
stem/progenitor cells by hormones (top). Model showing Wnt4 expression during mammary gland development. Wnt4 is important for stem cell activation
throughout postnatal mammary gland development. Perinatal Wnt4 expression is independent of ER and PR, yet unknown factors control it. PR signaling is required
for Wnt4 expression in puberty and adulthood. PR expression is induced by ER signaling.

B Model of Wnt4 action in the mammary epithelium. Progesterone stimulation results in Wnt4 induction in the PR+ luminal cells (LC), the ‘sensor cells.’ The secreted
Wnt4 acts on adjacent basal/myoepithelial cells (MC). In the myoepithelial cells, Wnt4 activates canonical Wnt signaling which induces changes in gene expression.
This results in the secretion of factors and changes in the ECM (light blue arrows) that in turn impinge on stem cells (SC), luminal-restricted stem cells (L-RSC), and
basal-restricted stem cells (B-RSC). Wnt4 may also act directly on stem cells that are found within the basal layer.

C Model for the tumorigenic effects of progesterone and Wnt4 in the mammary epithelium. Repeated activation of this intercellular signaling cascade downstream
of PR signaling may promote tumorigenesis by expanding luminal progenitor cells with oncogenic mutations and by expanding the stem/progenitor cell
compartment.

Data information: In (B, C), black: basal lamina, F: fibroblast, LC: luminal cell.
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but that they have a strong advantage in adhering and surviving

in the cleared fat pad, which is a conditio sine qua non for giving

rise to de novo ducts. Alternatively, RANKL may be specifically

required for the bipotential stem cells that are revealed under the

challenging conditions of the single cell grafts. In the serial trans-

plant approach, which is based on intact pieces of mammary

tissue, the luminal- and the basal-restricted stem cells likely

account for most of the cellular proliferation during development

and a role of RANKL for the bipotent progenitors may not be

discerned.

Our finding that Wnt4 secreted by PR+ luminal cells activates

canonical Wnt signaling exclusively in the neighboring basal/p63+

cells, points to a scenario, in which the myoepithelial/basal cells are

a central component of the microenvironment or ‘niche’ that

controls different types of stem cells (Fig 6B). The myoepithelial/

basal cells are ultimately under control of progesterone and Wnt4;

hence, stem cell activity controlled through the microenvironment/

niche is linked to reproductive needs. Whether the rare bipotent

mammary stem cells that are found in the basal layer (Wang et al,

2014) are directly and/or indirectly activated by Wnt4 is not

addressed by our experiments but will be an exciting line of future

work.

The finding that the myoepithelial/basal cells are the prime

target of Wnt4 bears on a long-standing conundrum. Wnt1 was

long identified as an oncogene in the mouse mammary gland,

and Wnt signaling is key for the development of the mammary

gland. Yet, mutations in intracellular Wnt signaling components

have not been found in breast carcinomas, which are of luminal

origin. It is conceivable that Wnt signaling activation in the

myoepithelial cells indirectly promotes tumorigenesis by inducing

gene expression changes that result in the secretion of stimula-

tory signals and/or modulation of the extracellular matrix that

result in the activation of luminal progenitor cells. Luminal

progenitors with acquired oncogenic mutations could be

expanded in response to Wnt4 stimulation of the myoepithelium

(Fig 6C). In parallel, Wnt4, through its direct and/or indirect

action on bipotent mammary stem cells, increases the number of

stem cells. This in turn may result in an increased pool of lumi-

nal progenitors, which are more prone to oncogenic insults than

more differentiated luminal cells.

These findings have clinical implications. The activation of the

progesterone/Wnt4 pathway, which also operates in the human

breast (Tanos et al, 2013; Pardo et al, 2014), may underlie the

tumor promoting effects of recurrent menstrual cycles, oral contra-

ception, and combined hormone replacement therapy with proges-

tins. Selective progesterone receptor modulators and Wnt inhibitors,

alone or together with RANKL inhibitors, may therefore be effective

in breast cancer management, in particular, as preventive strategy

in high-risk premenopausal women.

Materials and Methods

Animals

Axin2::LacZ (Lustig et al, 2002), C57BL/6-Tg(Act-EGFP) (Okabe

et al, 1997), ERa�/� (Dupont et al, 2000), MMTV::Cre (line A)

(Wagner et al, 1997), mT/mG (Muzumdar et al, 2007), PR�/� (Lydon

et al, 1995), RAG1�/� (Mombaerts et al, 1992), RANKL�/� (Wong

et al, 1999), Wnt4�/� (Stark et al, 1994), Wnt4Cre (Shan et al, 2010),

and Wnt4fl/fl mice (Shan et al, 2009) were kept on mixed genetic

background 129SV/C57Bl6. All mice were maintained and handled

according to the Swiss guidelines for animal safety. The ethic veteri-

nary committee of canton of Vaud, Switzerland, approved all the

animal experiments (Permit ID 1641.2 and 1641.3). To stage the

estrus cycle, the vagina was flushed with 10 ll of PBS and vaginal

secretions were collected, spread onto glass slides, and analyzed for

different cell types (Caligioni, 2009). Mammary bud and mammary

epithelial transplantations from 8-week-old donors were performed

as described (Brisken et al, 2000). For serial transplantations,

EGFP+ mammary duct outgrowth was visualized by stereo epi-

fluorescensce. Tissue fragments were prepared and retransplanted

starting from at least three independent donors. Hormone treat-

ments and BrdU injections were performed as described in Beleut

et al (2010).

Mammary whole-mounts and image analysis

Mammary gland whole-mounting and (5-bromo-4-chloro-3-indolyl-

beta-D-galacto-pyranoside) X-gal staining were performed as

described (Brisken et al, 1998). Images were acquired either using

a LEICA MZ FLIII stereomicroscope with PixeLINK (PL-A662)

camera or LEICA M205FA/MZ16F fluorescent stereomicroscope

with Leica DFC 340FX or Leica DC300F camera. Area of the fat

pad filled by the mammary ducts was quantified by drawing a

contour around the mammary ductal tips using Axiovision Rel

4.7 software. TEBs and branching points were quantified on

images of whole-mounted mammary glands and on fluorescence

stereo micrographs.

Immunostaining

Mammary glands were fixed in 4% paraformaldyde for 2 h at

room temperature and embedded in paraffin. Five-micrometer

sections were used for nuclear red and for immunohistochemical

or immunofluorescence staining. Anti-p63 Molecular Probes 4A4

(1:100), anti-BrdU Oxford biotechnology, OBT0030, 1:300), anti-PR

Thermo Fisher Scientific Pierce-MA1-411 (1:500), anti-GFP Molecu-

lar Probes A11122 (1:800). Images were acquired on LEICA DM

2000 microscope with a PixeLINK (PL-A662) camera or on Zeiss

Axioplan 2-imaging fluorescence microscope with Axiocam MRm

camera.

RNA extraction and semiquantitative RT–PCR

Mammary glands were homogenized in TRIzol (Invitrogen). Total

RNA was isolated from fragments using RNeasy (Qiagen). cDNA

was synthesized using random p(dN)6 primers (Roche Diagnostics)

and MMLV reverse transcriptase (Invitrogen). Semiquantitative real-

time PCR analysis in triplicates was performed with SYBR Green

PCR Core Reagents system (Qiagen)/PerfeCTa SYBR Green Super-

Mix for iQTM (Quanta) on Realplex2 (Eppendorf) or 7900HT Fast

Real-Time PCR System (Applied Biosystems) qRT–PCR detection

systems. All reactions were performed in triplicate. The following

primers sequences were used: Wnt4, AGG AGT GCC AAT ACC AGT

TCC, TGT GAG AAG GCT ACG CCA TA; Axin-2, GGC AGT GAT

GGA GGA AAA TG, TGG GTG AGA GTT TGC ACT TG; CK18
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(Schroeder & Lee, 1998); 18S rRNA, GCA ATT ATT CCC CAT GAA

CG, GGC CTC ACT AAA CCA TCC AA.

Statistics

Two-tailed, paired Student’s t-test was used to calculate statistical

significance; data are shown as means � SD. Statistical analyses

were carried out using Microsoft Excel. For serial transplantation,

the extent of fat pad filling in percentage at each generation was

compared by Wilcoxon signed rank test between contralateral

outgrowths. The statistical software R was used for analysis. The

statistical test used and P-values are indicated in each figure legend.

P < 0.05 was considered to indicate statistical significance.

*P < 0.05, **P < 0.01, ***P < 0.001.

Supplementary information for this article is available online:

http://emboj.embopress.org
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