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In classical models of object recognition, first, basic features (e.g., edges and lines) are
analyzed by independent filters that mimic the receptive field profiles of V1 neurons. In a
feedforward fashion, the outputs of these filters are fed to filters at the next processing
stage, pooling information across several filters from the previous level, and so forth at
subsequent processing stages. Low-level processing determines high-level processing.
Information lost on lower stages is irretrievably lost. Models of this type have proven to
be very successful in many fields of vision, but have failed to explain object recognition
in general. Here, we present experiments that, first, show that, similar to demonstrations
from the Gestaltists, figural aspects determine low-level processing (as much as the other
way around). Second, performance on a single element depends on all the other elements
in the visual scene. Small changes in the overall configuration can lead to large changes
in performance. Third, grouping of elements is key. Only if we know how elements group
across the entire visual field, can we determine performance on individual elements, i.e.,
challenging the classical stereotypical filtering approach, which is at the very heart of most
vision models.
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Object recognition traditionally proceeds from the analysis of
simple to complex features. The Gestaltists proposed a number
of basic rules, such as spatial proximity and good continuation,
that underlie the grouping of elements into objects. Whereas the
Gestalt rules work well for very basic stimuli, they grossly fail for
slightly more complex stimuli. For this reason, research on Gestalt
principles almost disappeared after the 1930’s. After world war
II, the discovery of the receptive field advanced vision science by
revealing fundamental principles of retinal and cortical process-
ing, which has led to a core scenario that is often, explicitly or
implicitly, behind most models in visual neuroscience and the
psychology of perception, and provides the basis for most models
in computer vision.

The model is characterized by its hierarchical and feedforward
organization (Figure 1). Neurons in lower visual areas, with small
receptive fields, are sensitive to basic visual features. For example,
neurons in V1 respond predominantly to edges and lines. These
neurons project to neurons at the next stage of the hierarchy,
which code for more complex features. By V4, the neurons are
selective for basic shapes, and by IT they respond in a viewpoint-
invariant manner to full objects. Decisions making happens in the
frontal cortex. This basic scenario has a well-defined set of char-
acteristics. Processing is hierarchical, feedforward, and local on
each level, i.e., only neighboring neurons, coding for neighboring
parts in the visual field, project to a common higher-level neuron
(Figure 1). In addition, processing at one stage is fully determined
by processing at the previous stage. Information lost at previ-
ous stages is irretrievably lost. Processing follows an atomistic,
Lego® building block type of encoding. For example, a hypo-
thetical “square neuron” is created by feedforward projections
from “lower” neurons coding for vertical and horizontal lines

(Figure 1; Riesenhuber and Poggio, 1999; Hung et al., 2005; Serre
et al., 2005, 2007a,b). Finally, there is an isomorphism between
objects of the outer world (e.g., a blue line), basic neural circuitry
(analyzing the blue line), and the corresponding percept (“blue
line”). And this is exactly the beauty of these models: naturaliz-
ing the subjectivity of perception by identifying the basic neural
circuits of perception.

Evidence for fast, hierarchical feedforward processing comes
from experiments showing that humans can detect animals in
a scene in less than 150 ms. Calculations based on neural con-
duction velocity show that there are only one or two spikes per
cortical area before a decision is made, arguing strongly against
feedback processing (Thorpe et al., 2001).

Computer vision models often follow closely the philosophy of
neurobiological feedforward hierarchies. In these, as in neurobi-
ological models, first, basic features are extracted, for example,
through V1-style Gabor filtering or Haar wavelets. Often, the
downstream hierarchical stages (V2, V4) are collapsed into one
processing stage, where a classifier is trained to detect special-
ized objects such as faces or cars. Similar to IT neurons, these
detectors are often scale- and viewpoint-invariant (Biederman,
1987; Ullman et al., 2002; Fink and Perona, 2003; Torralba,
2003; Schneiderman and Kanade, 2004; Viola and Jones, 2004;
Felzenszwalb and Huttenlocher, 2005; Fei-Fei et al., 2006; Amit
and Trouvé, 2007; Fergus et al., 2007; Heisele et al., 2007; Hoiem
et al., 2008; Wu et al., 2010).

Here, we will present experiments from crowding research
that challenge classical feedforward hierarchy models. In crowd-
ing, target discriminability strongly deteriorates when neigh-
boring elements are presented (Figure 2). Crowding is often
seen as a breakdown of object recognition and most models
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FIGURE 1 | Left: A typical hierarchical, feedforward model, where
information processing starts at the retina, proceeds to the LGN, then to V1,
V2, V4, and IT. Decisions about stimuli are made in the frontal cortex. Center:

Lower visual areas have smaller receptive fields, while neurons in higher
areas have gradually increasing receptive field sizes, integrating information

over larger and larger regions of the visual field. Right: Lower visual areas,
such as V1, code for basic features such as edges and lines. Higher-level
neurons pool information over multiple low-level neurons with smaller
receptive fields and code for more complex features. There is thus a
hierarchy of features. Figure adapted from Manassi et al. (2013).

FIGURE 2 | Vernier offset discrimination as a function of stimulus

configuration. (A). The reference stimulus is the un-flanked vernier shown
in a. Enclosing the vernier in a square deteriorates performance. Adding
additional squares leads to increasingly better performance. (B). We
replicated the results with the squares (b,c). In addition, rotating the
flanking squares to form diamonds (d) undoes the effect of grouping and
reinstates the crowding effect. From Manassi et al. (2013).

of crowding are very much in the spirit of object recognition
models. In pooling models, information from lower-level neu-
rons is pooled by higher-level neurons, to see wholes at the
cost of more poorly perceiving the parts. Indeed, observers can

clearly detect a crowded target, it is only its features and spa-
tial relationships that are jumbled with flanker features (e.g.,
Pelli et al., 2004). Target-feature perception is lost because tar-
get and distracter features are pooled. A prediction made by
pooling models is that, because spatial integration is local at
each stage, only nearby elements deteriorate target discrim-
inability (Bouma’s law). In addition, if more flankers are added
within Bouma’s window, performance should deteriorate (or at
least not improve) because the signal-to-noise ratio decreases. A
third prediction is that adding more flankers should deteriorate
performance.

In previous experiments, we presented a vernier stimulus,
which consists of two vertical lines, offset slightly to the left
or right (Manassi et al., 2012, 2013). Observers indicated the
offset direction. Verniers were presented in the periphery, 9
degrees (of visual angle) to the right of fixation. Performance
strongly deteriorated when the vernier was surrounded by
a square (Figures 2Aa, b). This is a classic crowding effect
and is well-explained by traditional crowding models. Next,
Manassi et al. (2012, 2013) presented 2 × 3 neighboring squares
(Figure 2Ae). According to pooling models, and most object
recognition models, more flankers should deteriorate perfor-
mance. However, the opposite was the case. Crowding almost dis-
appeared. Interestingly, this uncrowding effect increased with the
number of squares that were presented (Figure 2A). Importantly,
the fixation dot was only 0.5 degrees apart from the left-most
square, i.e., the stimulus configuration extended over large parts
of the right visual field. Hence, vernier offset discrimination is
influenced by elements far outside the integration region pre-
dicted by Bouma’s law. Second, and more importantly, vernier
offset discrimination is influenced by the overall stimulus config-
uration. This becomes evident when turning the flanking squares
by 90◦ creating diamonds, resulting in the return of the crowding
effect (Figure 2B). Hence, figural aspects determine basic feature
processing (Wolford and Chambers, 1983; Livne and Sagi, 2007;
Malania et al., 2007; Sayim et al., 2010).
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Our results clearly show that simple pooling models can-
not explain crowding and the same seems to be true for most
basic models of object recognition. Figural processing determines
low-level processing as much as low-level processing determines
figural processing. It seems that first the squares are computed
from their constituting lines. Next square representations interact
with each other and the outputs of this processing determine the
vernier offset discriminability. This is reminiscent of the famous
quote by Wertheimer that “the whole determines the appear-
ance of the parts” (Wertheimer, 1938). In our example, the whole
determines even low-level processing. It also agrees with more
modern sentiments suggesting that feedback is crucial for normal
vision at all levels of the processing hierarchy (Krüger et al., 2013).
We propose that it is only when we know how elements group
together that we will be able to accurately predict performance on
even the simplest tasks, i.e., without understand grouping across
the entire visual field, it is impossible to understand human object
recognition.

Note here, that we are not claiming that the visual system is
not hierarchical. Nor are we claiming that there is no feedforward
sweep through the cortex. We are arguing against models that are
both feedforward and contain a strict feature hierarchy. For exam-
ple, classic models posit that low-level features (such as verniers)
are encoded at an early cortical level and that shapes (such as
squares) are encoded at a later cortical level. Square-square inter-
actions are crucial, as we have shown. However, since there are
no feedback connections, the classic models cannot explain how
square-square interactions change low-level processing of the
vernier. One solution is to give up feedforward processing and
have recurrent interactions between lower and higher levels of
processing.

Evidence for recurrent processing comes from timing exper-
iments on the dynamics of grouping in crowding (Manassi and
Herzog, 2013; Manassi, 2014). A vernier target was flanked by
either two vertical lines, or by two vertical lines that formed
the edges of two cuboids. In both cases, the vertical lines were
identical and only the surrounding context differed—the lines
grouped with the vernier, but when they were part of the
cuboids, the lines segmented from the vernier. Vernier offset
discrimination thresholds were measured as a function of stim-
ulus presentation time for seven fixed durations ranging from
20 ms to 640 ms. Under brief presentation times (≤120 ms) per-
formance in the two stimulus conditions did not significantly
differ. Beyond 160 ms, however, performance with the cuboids
was significantly better than with the lines. These results indi-
cate that perceptual grouping evolves with time, even for such
basic stimuli as verniers. Current models of vernier offset dis-
crimination show that this task can be achieved in a feedforward
way by reading out the responses of orientation-tuned V1 neu-
rons (Wilson, 1986)—a process that takes on the order of 50 ms
(Cottaris and De Valois, 1998; Gershon et al., 1998). Sending
spikes to additional synapses requires at least 10 ms per spike.
Thus, the long time required for vernier discrimination in the
cuboid flanker condition to be differentiated from line flanker
condition (≥160 ms, i.e., more than double the arrival time of
the stimulus at V1) indicates significant additional cortical pro-
cessing for perceptual grouping. Since 160 ms −50 ms = 110 ms,

at least 11 additional synaptic connections could be activated.
Recent electrophysiological evidence suggests that the additional
time can be accounted for by feedback connections from the
lateral occipital cortex to earlier cortical areas, the result of
which is the promotion of perceptual grouping (Shpaner et al.,
2013).

Our results are not restricted to crowding but occur in many
other visual paradigms including overlay masking (Saarela and
Herzog, 2008, 2009), backward masking (Herzog, 2007; Hermens
and Herzog, 2007; Dombrowe et al., 2009), letter recognition
(Saarela et al., 2010), in haptics (Overvliet and Sayim, 2013), and
in audition (Oberfeld et al., 2012).

Why does the processing of an element’s basic features depend
on remote elements? Vision is ill-posed. For example, the light
(luminance) that arrives at the retina is a product of the light
shining on an object (illuminance) and the material properties
of the object (reflectance). Hence, on the photoreceptor level,
it is impossible to determine whether or not a banana is yel-
low and ready to eat. The brain tries to solve this problem by
discounting the illuminance, taking contextual information into
account. This becomes obvious in the case of computing mate-
rial properties. Glossy objects, for example, reflect bright spots
(specularities) in regions of high curvature. Removal or addi-
tion of an object’s specularities completely changes the object’s
perceived material, in spite of the fact that the rest of the
object remains the same. To compute the material properties,
integrating information across the visual field is crucial: where
is the illuminance coming from? What is the shape of the
object?

Key then, is that without knowing the whole one cannot know
the parts. To the best of our knowledge, very few models adopt
this approach of including recurrent processing and effectively
integrating information over large parts of the visual field. Not
surprisingly, these models are highly effective at modeling human
data, not only from crowding, but also from many other areas
of cognitive science, hinting at their general ability to explain
cortical processing. For example, they effectively explain data per-
taining to attention (Tsotsos, 1995; Tsotsos et al., 1995; Cutzu
and Tsotsos, 2003; Bruce and Tsotsos, 2005, 2009; Rodriguez-
Sanchez et al., 2007), and visual object learning (Bengio et al.,
2013; Goodfellow et al., 2013; Salakhutdinov et al., 2013). They
also do well at scene-segmentation, where successful models typi-
cally use a global approach, such as coarse-to-fine image pyramids
(Estrada and Elder, 2006) or normalized cuts over extended
graphs (Malik et al., 1999, 2001; Shi and Malik, 2000; Ren and
Malik, 2002; Martin et al., 2004), which are leveraged to pro-
duce human-like scene segmentations. Here, again, computations
are not purely local and feedforward, but rather global and iter-
ative. Grossberg has also produced similar models in terms of
their ability to do grouping that extends over a scene (Grossberg
and Mignolla, 1985; Dresp and Grossberg, 1997), as has Francis
(Francis et al., 1994; Francis and Grossberg, 1995). Future work
will show whether these models can explain our particular crowd-
ing results.

In summary, there is a wealth of evidence suggesting that
cortical processing is not purely hierarchical and feed-forward.
In order to know how the visual system processes fine-grained
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information at a particular location it is necessary to integrate
information about the surrounding context over the entire visual
field. Grouping and segmentation are crucial to understanding
vision, and must be understood on a global scale.
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