
Abstract— Wearable devices performing advanced bio-signal 
analysis algorithms are aimed to foster a revolution in healthcare 
provision of chronic cardiac diseases. In this context, energy 
efficiency is of paramount importance, as long-term monitoring 
must be ensured while relying on a tiny power source. Operating 
at a scaled supply voltage, just above the threshold voltage, 
effectively helps in saving substantial energy, but it makes 
circuits, and especially memories, more prone to errors, 
threatening the correct execution of algorithms. The use of error 
detection and correction codes may help to protect the entire 
memory content, however it incurs in large area and energy 
overheads which may not be compatible with the tight energy 
budgets of wearable systems.  

To cope with this challenge, in this paper we propose to limit 
the overhead of traditional schemes by selectively detecting and 
correcting errors only in data highly impacting the end-to-end 
quality of service of ultra-low power wearable electrocardiogram 
(ECG) devices. This partition adopts the protection of either 
significant words or significant bits of each data element, 
according to the application characteristics (statistical properties 
of the data in the application buffers), and its impact in 
determining the output. 

The proposed heterogeneous error protection scheme in real 
ECG signals allows substantial energy savings (11% in wearable 
devices) compared to state-of-the-art approaches, like ECC, in 
which the whole memory is protected against errors. At the same 
time, it also results in negligible output quality degradation in the 
evaluated power spectrum analysis application of ECG signals. 
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I. INTRODUCTION AND MOTIVATION 
       The emergence of wearable devices for long-term 
acquisition of cardiac signals (electrocardiogram or ECG) 
promises a paradigm shift in the monitoring of chronic heart-
related conditions. Functionalities of state-of-the-art wearable 
cardiac sensors are not limited to sensing and (wirelessly) 
transmitting the acquired data, but they also provide advanced 
Digital Signal Processing (DSP) capabilities to analyze bio-
signals on-node and extract clinically-relevant features [1, 2, 
3]. Diverse applications have been proposed, ranging from the 
automated detection of epileptic seizures [12] to the predictive 
risk assessment of atrial fibrillations [13]. 
       In this context, power spectral analysis (PSA) of the heart 
rate variability (HRV) is among the most widely employed 

strategies, as it allows the monitoring of various health 
conditions associated with the heart as well as other organs [4, 
5], providing valuable frequency-domain medical indicators. 
The implementation of PSA on ultra-low power embedded 
devices requires a carefully tailored digital architecture. 

A key element in these devices are the memory 
components, where a significant amount of energy is 
consumed [1]. To maximize the energy efficiency, an effective 
approach is to scale down the supply voltage (Vdd). 
Aggressive supply voltage scaling, leads to quadratic energy 
savings, but makes circuits (and especially SRAM cells) prone 
to errors compounding the reliability issues present in 
nanometer technologies. Larger memory bit-cells [15] and 
error detection and correction errors (ECC) [17] can help in 
dealing with errors induced by a scaled Vdd. However, such 
mechanisms impose large energy and area overheads.  
 

 
 

Figure 1: Block Scheme of the PSA Application. 

Ensuring the correctness of run-time execution in digital 
systems is a major challenge, due to the increase in variability 
derived from technology scaling and near-threshold voltage 
supplies. A striking alternative, often referred to as 
approximate computing, is to take advantage of the resilience 
nature and statistical properties of bio-signal DSP applications 
such as filtering, features extraction etc. As an energy-saving 
strategy, the approximate computing paradigm relaxes 
reliability constraints when errors have a negligible impact 
from an application perspective. Algorithms in the embedded 
health monitoring domain operate on noisy acquisitions, while 
often presenting statistical or qualitative outputs [18]. In such 
scenarios, in this paper we extend the observations from our 
previous work [18], and advocate for not needing to provide 
100% exactness in all cases, which is also extremely 
expensive from an energy efficiency viewpoint. 
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III. UNRELIABLE MEMORIES AND PROPOSED APPROACH 
       As discussed in Section I, aggressive voltage scaling can 
induce a non-zero probability of erroneous reads and writes to 
the memory subsystem. In [7], a bit-flip probability of 0.22% 
and 0.07% are reported for 6-transistors SRAMs supplied at 
0.6V and 0.65V respectively, implemented on a 40nm 
technology. More resilient memory topologies (such as 8-
transistors and SCMEMs) do allow reliable operations at these 
voltage levels, however they do incur high area and energy 
overhead [7]. Alternatively, error detection and correction 
techniques can be employed to recover from bit-flip events, 
but they also present non-negligible added complexity, from 
an area as well as energy perspective.  

Our proposed method minimizes such overhead by 
judiciously employing detection and correction of errors 
depending on the criticality of the stored data, providing high 
correctness guarantees only to its most critical part, as dictated 
by the application characteristics.  

Figures 2 and 3 show the typical data distribution across 
the two buffers used in the PSA application. Figure 3 
highlights how the elements of the DWT_buffer are mostly 
centered on zero, and therefore are sparse, while elements of 
Extr_buffer (c.f.: Figure 2) have a non-sparse 
distribution.  
      Different data distribution patterns require different 
protection approaches.Intuitively, the most suited protection 
scheme for the non-sparse Extr_buffer is to protect the 
Most Significant Bits (MSBs) of every word with an ECC 
code, as they will have a larger influence on the output. 
Conversely, a small, but non-zero, probability of a bit-flip in 
the Least Significant Bits (LSBs) can be allowed (Figure 4). 

 

 
 

              
 

Figure 4: A Memory Word in the Extr_buffer 

 In the case of DWT_buffer, we discriminate between 
significant and non-significant words, instead of significant 
bits. In fact, as most of the elements of this buffer are close to 
zero, it is possible to replace them with their expected value 
(zero) if an error occurs, which can be detected by employing 
a simple parity check. For the rest (which, in the PSA 
application, reside in the low-frequency range) a more 
expensive error correction capability must be provided; in our 
case, ECC (Figure 5). 

Such partition between significant and non-significant 
words can be performed statically, i.e. independently from the 
particular window of inputs being processed. It is in fact 
derived from the inherent properties of the DWT transform, 
and the resulting separation of the processed data into high 
and low frequencies. 

 

 
 

 
 

Figure 5: Block Diagram of the DWT_buffer 

It must be noted that a difference exists between the 
strategies adopted for non-significant bits in non-sparse 
buffers (e.g.: LSBs in Extr_buffer) and non-significant 
words in sparse buffers (e.g.: near-zero values in 
DWT_buffer). In the first case, errors will be completely 
undetected while, in the second, a parity check will detect the 
error and invalidate the corresponding word, but no correction 
will be required. In both cases, the aim is to have a negligible 
deviation in the end results of the application, while greatly 
diminishing the protection overhead. In the case of significant 
bits and words, each bit-flip is detected and corrected, because 
it highly affects the quality of the output.   

IV. EXPERIMENTAL SETUP AND RESULTS 
To evaluate the proposed heterogeneous protection 

scheme, we developed a high-level fault simulation 
environment, executing the entire target application. In this 
way, we evaluated the impact of errors in the intermediate 
buffers on the quality of the PSA output, which was 
compared, under different protection schemes, to a fault-free 
execution. Single bit-flip errors in the buffers are considered 
with probabilities of 0.07% and 0.22%, corresponding to the 
behavior of a 6-transistor SRAM at 0.65V and 0.6V, 
respectively [6].  

Input ECG data was retrieved from the PAF prediction 
challenge database, available on the Physionet portal [8]. The 
database includes 100 recordings, of 30 minutes each. We 
have considered input data windows of 2, 4 and 6 minutes, 
with an overlap of 1, 3 and 5 minutes, respectively. Results 
from each recording and each window size are averaged in the 
presented results. 
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To obtain fair results, we employed error masks, forcing 
bit-flips in random locations of the buffers if they reference to 
un-protected regions. Different error masks are employed for 
each processed input window and for each buffer, but the 
same set is used across all protection configurations. For all 
buffers, data is represented with 32 bits words. For the 
Extr_buffer, we explored a protection of the 8, 16, or 32 
(all) most significant bits, while for DWT_buffer, we 
assumed a protection of the 5%, 10% or 15% of the most 
significant memory words.  
       In the following sections, we explored the output 
degradation induced by bit-flips in the buffers (IV-A), the 
energy overhead of different protection schemes (IV-B) and 
the trade-off between energy efficiency and quality of service 
(IV-C).  

A. Error Analysis 
Figures 6 and 7 compare the percentage error in the 

computation of the LFHF ratio at supply voltages of 0.65V 
(bit-flip probability = 0.07%) and 0.6V (bit-flip probability = 
0.22%), respectively. 

Results highlight that the selective protection of significant 
words in sparse buffers can guarantee high-quality results with 
little overhead. In fact, in the case of a voltage supply of 
0.65V (Figure 6), less than 1% error in the LFHF ratio can be 
achieved by protecting only the most significant 15% of the 
significant words in the DWT_buffer, when the non-sparse 
Extr_buffer is error free. As expected, by reducing the 
ratio between significant and non-significant words in 
DWT_buffer, the PSA error increases. Nevertheless, it still 
remains rather low (3%) even when only the 5% most 
significant words are protected.  

 
 

Figure 6: Percentage of Error in the Calculation of the LFP/HFP 
Ratio under Different Protection Schemes at 0.65V Supply 

Conversely, the protection of the non-sparse 
Extr_buffer presents more challenges; even when 
protection against bit-flips is provided for the 16 MSBs of 
each word (which corresponds to protecting half of the buffer 
content), still a noticeable decrease in quality of service can be 
noted (square-dotted orange Line in Figure 6).  

 

 

Figure 7: Percentage Error in the Calculation of the LFP/HFP 
Ratio under Different Protection Schemes at 0.60V Supply 

The same trends can be noticed in Figure 7 for a lower 
voltage supply of 0.6V, and corresponding higher bit-flip 
probability. Interestingly, even in this case the deviation in the 
LFHF ratio, with respect to a fault-free execution, can be 
bounded to 5% by allowing errors in the 16 LSBs of 
Extr_buffer and only checking (but not correcting) errors 
in 90% of DWT_buffer. 

B. Energy Analysis 
We comparatively evaluated the energy overhead induced 

by the memory protection configurations by modeling 
different schemes using CACTI [11] in the McPAT 
framework [17]. The Extr_buffer requires two buffers, 
each of 8K Bytes, while the DWT_buffer is composed of 
four buffers of the same size. The operating temperature was 
assumed to be 300K. The technology node employed in the 
simulation of the memories was 40nm. All wirings were 
considered to be global, and the interconnect projection was 
taken as conservative. The memories have a single port used 
for both reading and writing. Also, for our purpose, we 
assumed that each of the memories consists of a single bank 
connected using a bus.  

Relevant metrics, output of the CACTI model, consist of 
the dynamic read and write energies per access and the 
leakage power of the target memory configurations. To derive 
the corresponding dynamic energy, we retrieved the number of 
accesses to the different buffers from the high-level model of 
the application. In addition, the leakage energy was estimated 
by considering the execution time of an optimized version of 
PSA running on an ARM Cortex M4 processor running at 
180MHz. 

Additional storage is required to support data protection. In 
the case of Extr_buffer (protection of most significant 
bits), considering one error detection and correction per 
memory word, 6 extra ECC bits are required for each word 
when all 32 data bits are protected. Fewer ECC bits are used 
when only the most significant part of each word is protected: 
5 and 4 bits in the case of 16- and 8- MSB protection, 
respectively. A maximum of one error occurring in a memory 
word has been assumed and the number of ECC bits are 
chosen accordingly as described before.  
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the smallest error is achieved by protecting 10% of the 
significant data and 8 MSBs in the two buffers. 

 

V. CONCLUSION 
In this paper, we have explored the energy benefits that 

can be obtained by applying hybrid data protection schemes to 
embedded memories for ultra-low power wearable monitoring 
systems. Working within a well-known, specific application 
domain allows designers to implement algorithms that exploit 
significance-based computing to effectively reduce the energy 
consumption, while keeping the output error under a certain 
threshold and providing outputs of high enough quality. Our 
experiments show that by adopting different correctness 
guaranties in words and bits of varying significance from a 
digital signal processing viewpoint, the proposed approach can 
effectively reduce the energy overhead implicit in data 
protection, while minimally impacting the end-to-end quality 
of service of the target Power Spectral Analysis application. 

The illustrated methodology is applicable in many real-
world applications in the embedded health monitoring domain 
beyond PSA, because they share the same characteristics of 
processing noisy inputs, providing statistical or qualitative 
outputs and adopting a sparse representation in intermediate 
buffers. 

Experimental evidence highlights that heterogeneous 
protection reduces approximately by 11% the energy budget 
of the data memory used to store the buffers in real-life 
wearable ECG analysis systems. Moreover, this new proposed 
approach tolerates high error rates, potentially allowing more 
aggressive voltage/frequency scaling at system level. Hence, 
this observation opens promising venues to be explored in the 
development of ultra-low power multi-modal wearable 
embedded systems.  
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