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HIGHLIGHTS

* Open-Top Chambers were used to raise air temperature by up to 1 °C in a peatland.
* Interaction between peat temperature and moisture content was investigated.

* Impact on peat decomposition was assessed by combining various microbial proxies.
* The effect of air warming occurred when comparing distinct moisture sites.

* We describe a change in microbial structure and enzymatic activities.
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abiotic conditions are favorable to decomposition. Here, we investigated the effect of experimental air warming
by open-top chambers (OTCs) on water-extractable organic matter (WEOM), microbial biomasses and enzymat-
ic activities in two contrasted moisture sites named Bog and Fen sites, the latter considered as the wetter ones.
While no or few changes in peat temperature and water content appeared under the overall effect of OTCs, we
observed that air warming smoothed water content differences and led to a decrease in mean peat temperature

Editor: Mark Hanson

Keywords: at the warmed Bog sites. This thermal discrepancy between the two sites led to contrasting changes in microbial
Carbon structure and activities: a rise in hydrolytic activity at the warmed Bog sites and a relative enhancement of bac-
Climate change terial biomass at the warmed Fen sites. These features were not associated with any change in WEOM properties
Enzymes namely carbon and sugar contents and aromaticity, suggesting that air warming did not trigger any shift in OM
m:;‘:t’gizl biomass decomposition. Using various tools, we show that the use of single indicators of OM decomposition can lead to

fallacious conclusions.

Lastly, these patterns may change seasonally as a consequence of complex interactions between groundwater

level and air warming, suggesting the need to improve our knowledge using a high time-resolution approach.
© 2015 Elsevier B.V. All rights reserved.
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the terrestrial carbon (C) cycle to climate warming (Davidson and
Janssens, 2006; Friedlingstein et al., 2006). Understanding the fate of
the C stored in peatlands is crucial since these ecosystems contain
about one-third of the world's soil organic C as peat (Gorham, 1991),
the equivalent of about 60% of atmospheric C.

The C sink function of peatlands is mainly the result of persistent an-
oxic conditions, low temperature and water acidity that reduce microbi-
al decomposition and promote the accumulation of organic matter
(OM) as peat. As a result, peat organic C is expected to be particularly
sensitive to climate warming because of the higher intrinsic tempera-
ture sensitivity of this type of organic soil (Davidson and Janssens,
2006).Thus, a 1 °Cincrease in air temperature has been estimated to en-
hance C fluxes from heterotrophic respiration in northern peatlands by
about 38-100 Mt of C per year (Dorrepaal et al., 2009). Other studies
indicated that climate change can further diminish C sequestration by
promoting the growth of vascular plants which, in turn, depress the
productivity of peat mosses (Breeuwer et al., 2009; Bragazza et al.,
2013). In contrast to these studies, Loisel and Yu (2013) and Charman
et al. (2013) indicated that the C accumulation rate of many northern
peatlands could increase in response to a warmer climate in the future,
as long as moisture is not a limiting factor. These examples illustrate the
ongoing debate on the fate of C in peatlands in response to climate
change. Several studies demonstrated the complex interaction between
peat moisture and air temperature in regulating peat decomposition
(Delarue et al., 2011a; Jassey et al., 2011; Bokhorst et al., 2013) but
few experimental studies have specifically addressed this topic, not-
withstanding the close relationship between moisture, temperature
and C cycling for peat decomposition (McNeil and Waddington, 2003).
It was demonstrated that an increased water evaporation in peat soils
and a drying out of the surface layer can decrease the soil's thermal con-
ductivity which, in turn, can prevent heat from propagating deeper into
the soil and can therefore keep them colder (Dabros and Fyles, 2010).
Other authors also reported that evaporation was associated with a
cooling of the upper moss layers, inducing a condensation of vapour
(Carleton and Dunham, 2003).

The peculiar environmental conditions in peatlands favour the es-
tablishment of Sphagnum mosses, which are known to produce recalci-
trant litters enriched in polyphenolic compounds (van Breemen, 1995;
Abbott et al., 2013; Swain and Abbott, 2013). Although polyphenols in-
hibit extracellular enzymatic activity (Freeman et al., 2001, 2004), the
enzymes belonging to the phenoloxidase (PO) group have the ability
to degrade recalcitrant polyphenols accumulating in peatlands
(McLatchey and Reddy, 1998; Freeman et al., 2001). In a perspective
of climate change, PO activity is expected to increase as a consequence
of more frequent drought events and associated oxygenation of peat
soils (Fenner and Freeman, 2011). Due to a decrease in soluble phenols
with increasing activity of PO, hydrolytic enzymes such as leucine
amino-peptidase (LAP), p-glucosidase (BG) and acidic phosphatase
(AP) are no longer inhibited so that the breakdown of OM can start.
Such a pattern is known as the enzymatic latch theory (Freeman et al.,
2001). Following such cascading effects, various studies suggested that
peat OM decomposition will be enhanced by climate warming
(Dorrepaal et al,, 2009; Fenner and Freeman, 2011; Jassey et al., 2013).
However, the studies were mainly conducted during the summer
months, when environmental constraints, i.e. water level drawdown
and air temperature, were less limiting for microbial metabolism.
Therefore, two major questions remain to be clarified: (1) how air tem-
perature and water level interact to affect both soil temperature and
moisture under conditions of water saturated peat and (2) how this in-
teraction can affect the soil C cycle.

In this study we investigate the interactive effects of air warming
which was experimentally induced by Open-Top Chambers (OTCs),
and water level by comparing two habitats characterized by contrasted
soil moisture conditions. The study was performed in early summer
when both soil water level and air temperature had not yet reached
their annual minimum and maximum values respectively. Specifically,

we explored peat moisture changes as a function of soil water level,
and air and peat temperatures. The impact of air warming and peat
moisture on the soil C cycle was assessed using phospholipid fatty
acids as an index of microbial biomass, various enzymatic activities (leu-
cine aminopeptidase, [3-glucosidase, acidic phosphatase and phenol ox-
idase) as indexes of microorganism activities and the corresponding
chemical quality of water-extractable OM (WEOM).

2. Material and methods
2.1. Study site, experimental design and sampling

The study site is an undisturbed ombrotrophic Sphagnum-
dominated peatland situated in the Jura Mountains (Le Forbonnet,
France; 46°49’35”N, 6°10’20"E), at an altitude of ca. 840 m a.s.l.
The annual mean temperature at the site is ca. 6.5 °C, and the annual
precipitation is about 1200 mm (Delarue et al., 2011b). Cold winters
(mean monthly temperature ca. 1.4 °C) and mild summers (ca. 14.6 °C)
characterize the climate.

Peat samples were collected in late June 2011 across a vegetation
gradient corresponding to a narrow transitional minerotrophic to
ombrotrophic area. The transition from the minerotrophic to the
ombrotrophic area was characterized by a shift from an area of relative-
ly flat and homogeneous surface dominated by Sphagnum fallax with a
low abundance of vascular plants (i.e. Eriophorum vaginatum, Vaccinium
oxycoccus and Andromeda polifolia) to a surface with a patterned veg-
etation of hummocks, where Sphagnum magellanicum, V. oxycoccus,
E. vaginatum and Calluna vulgaris developed, and hollows mainly occu-
pied by S. fallax, Carex rostrata and A. polifolia. The main change between
the minerotrophic and the ombrotrophic areas was the occurrence of
S. magellanicum in the latter, entailing a change in the microtopography
(considered as a site effect). For simplicity's sake, we will call the
minerotrophic and ombrotrophic areas, respectively, Fen and Bog sites
hereafter.

The experimental design was described in detail in previous work
(Delarue et al., 2011a; Jassey et al., 2011). Briefly, OTCs are passive
warming chambers designed following the International Tundra Exper-
iment (ITEX) to obtain quasi-natural transmittance of visible wave-
lengths and to minimize the transmittance of re-radiated infrared
wavelengths (Marion et al., 1997; Aronson and McNulty, 2009). The
hexagonal chambers are made of transparent polycarbonate and are
50 cm high, 1.7 m wide at the top and 2.4 m wide at the base. They
were raised 10 cm above the soil surface to allow air to circulate. Six
plots were equipped with OTCs in May 2008, and 6 other plots were
used as controls (CTLs). For this study, the plots were named as follows:
Bog-OTC and Bog-CTL for plots in the Bog site with and without OTCs re-
spectively, and Fen-OTC and Fen-CTL for plots in the Fen site with and
without OTCs respectively.

Temperature of the peat (7 cm deep) and air (10 cm above Sphagnum
capitulum) was automatically measured every 30 min using thermocou-
ple probes in each plot and a data logger (CR-1000 Campbell). Monthly
mean, minimum and maximum temperatures, for both peat and air,
were then calculated for the period from January 2011 to June 2011.
The ground water level was automatically measured in one randomly se-
lected plot at both Bog and Fen sites (mid-May 2011 to late June 2011).
Lastly, peat moisture and temperature were measured at ca. 5 cm depth
by Decagon® sensors only during the growing season (from early May
2011 to October 2011) in two randomly selected plots at both the Bog
and Fen sites. Twelve peat cores 30 cm long were sampled in June 2011,
after 3 years of experimental warming. The peat cores were cut into five
slices (0 to 5,5 to 10, 10 to 15, 15 to 20 and 20-25 cm interval depth)
and frozen. Within two weeks after sampling, each slice was subdivided
into two parts. For each part, water was gently extracted following the
procedure described by Delarue et al. (2011a) modified by the use of a
PTEE filter (0.45 um pore size). After WEOM extraction, peat samples
were dried at 105 °C for 24 h in order to obtain the peat dry mass. The
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water content was calculated by considering the peat dry mass and the
peat wet mass measured before WEOM extraction.

2.2. Structure of microbial communities — PLFAs

Phospholipid-fatty acids (PLFAs) were extracted on freeze-dried
peat samples using the method of Bligh and Dyer (1959), modified for
peat (Andersen et al., 2010). Peat samples (250 mg) were shaken for
2 h in a phosphate-buffer (0.1 M; pH 7):CHCl3:MeOH (0.9:1:2 v/v/v)
solution and the supernatant was then transferred to a phosphate
buffer/chloroform solution. After separation of the organic phase
overnight, the CHCI5-lipid phase was split into neutral, glyco- and
phospholipids in a silicic acid column by eluting chloroform, acetone
and methanol respectively. Phospholipids were then transesterified
into fatty acid methyl esters (FAMEs) after incubation at 40 °C in a
methanolic KOH (1 M):toluene (1:1 v/v) solution. The solution
was neutralized with acetic acid (1 M) and FAMEs were extracted
by adding a hexane:CHCl3 (4:1) solution. The hexane fraction was
then passed through an MgSO, column before evaporation to dry-
ness under an N, flux.

FAMEs were analysed by means of GC-MS and quantified using a GC
apparatus (Trace GC, Thermo Finnigan) equipped with a Supelco Equity
5-fused silica column (30 m length, 0.25 mm internal diameter, 0.25 pm
film thickness) coupled to a mass spectrometer (Quadrupole DSQ II, Ther-
mo Finnigan). Helium was employed as the carrier gas at a constant flow
rate. Methyl nonadecanoate (C;90,Me) was used as internal standard.
Strict location of double bonds was realized by derivatization of FAMEs
into picolinyl esters on representative samples (Wretens;jo et al., 1990).

We used the PLFAs i15:0, a15:0, i16:0, i17:0 and a17:0 as markers of
G+ bacteria (Frostegard and Baath, 1996); 16:1®w7c and cy17:0 as
markers of G — bacteria (Wilkinson, 1988; Zelles, 1999); 18:206,9 as
marker of Fungi (Bardgett et al., 1996; Frostegard and Badth, 1996;
Zelles, 1999); 10Me16:0 and 10Me18:0 as markers of actinobacteria
and sulfate-reducing bacteria (Kroppenstedt, 1985) and 20:406,9,12,15
as markers of Protozoa (Ringelberg et al., 1997). Other PLFAs detected
in the samples were not specific to one particular functional group so
were not used in the comparisons. PLFA concentrations are expressed as
ug C-g~ ! of dry peat.

2.3. Water-extractable organic matter analyses

WEOM analyses were performed on the first part of each peat slice.
The WEOM was divided into three aliquots for analyses of organic C
(WEQC), total sugars and SUVA,gq, an index of the aromaticity of
WEOM (Kalbitz et al., 2003). To calculate the WEOQC, the dissolved or-
ganic carbon (DOC in mg 1~ !) was first determined after acidification
with H3PO4 (pH = 4) and N, purging. DOC was then measured with a
Shimadzu SSM-5000A total carbon analyser. Finally, the mass of dis-
solved C was calculated and divided by the initial sample dry mass
to obtain the WEOC expressed in mg-g~ ' of dry peat. Total sugars
were determined on the second aliquot following the phenol-sulfu-
ric acid method with glucose as standard to allow the calculation of
sugar content (Dubois et al., 1956). Total sugar contents were
expressed in mg of carbon g~ ! of dry peat, since we assumed that
the weight ratio of C in sugars was that of glucose (2.5). For
SUVA;s0, the third aliquot was adjusted to a pH ranging from 6 to
7 following the recommendation of Weishaar et al. (2003). UV ab-
sorbance was then measured at 280 nm using a UV spectrophotom-
eter. Finally, SUVA,go was calculated as absorbance divided by
WEOC concentration (Hansson et al., 2010) and is expressed as g
of dry peat permg C~'cm~ 1.

2.4. Extracellular enzymatic assays

Enzymatic activities were measured on the second subsample
of each slice. The activity of extracellular phenol oxidase was

Table 1

Results of a Repeated Measures ANOVA's to test the singular and overall interaction effects
of time (n = 6), site (n = 6) and experimental warming (n = 6) on air and peat temper-
atures. Mean, minimum and maximum monthly temperatures from January 2011 to June
2011 were used as repeated measures. Significant differences are in bold and indicated by
a p-value below 0.05.

Mean Minimum Maximum

Effect df F p F p F p

Air temperatures

Site 1 244 0.6 11.65 <0.05 5.77 <0.05
Treatment 1 4294 <0.05 15.71 <0.05 16.02 <0.05
Time 5 2563989 <0.05 4220.60 <0.05 3492.06 <0.05
Site x Treat. 1 036 0.56 1.78 022 023  0.64
Site x Time 5 423 <0.05 2.74 <0.05 5.09 <0.05
Treat. x Time 5 21.16 <0.05 126 030 1520 <0.05
Site x Treat. x Time 5 029 092 038 0.6 019 097
Peat temperatures

Site 1 281 013 0.01 093 1.77 022
Treatment 1 0.01 091 6.69 <0.05 2.01 019
Time 5 1389.12 <0.05 969.23 <0.05 391.76 <0.05
Site x Treat. 1 328 0.11 6.90 <0.05 0.01 092
Site x Time 5 137 0.26 1.01 042 114 035
Treat. x Time 5 1.03 041 6.08 <0.05 2.01 0.10
Site x Treat. x Time 5 032 0.90 3.63 <0.05 028 092

determined spectrophotometrically by using 10 mM L-dopa
(dihydroxyphenylalanine) solution as substrate (Pind et al., 1994).
The activity of phenol oxidase (PO) was expressed in umol of 2,3-
dihydroindole-5,6-quinone-2-carboxylate (dicq) min~' g~ 'of dry
peat.

The activity of extracellular hydrolytic enzymes was measured by
adding 4-methylumbelliferyl-R-p-glucoside for 8-glucosidase (BG), L-
leucine-7-amido-4-methycoumarinhydrochloride for leucine amino-
peptidase (LAP) and 4-MUF-phosphate for the activity of acidic phos-
phatase (AP) to about 1 g of fresh soil. After incubation (1 h for BG,
and LAP, and 45 min for AP), the fluorescence of the supernatant after
centrifugation was measured on a microplate reader (BioTek Synergy
MX) at 450-nm emission and 330-nm excitation wavelength. To quan-
tify product release and account for quenching effects, a set of standards
was prepared using methylumbelliferone (MUF) and 7-amino-4-
methylcoumarin (MCU) mixed with peat extract (Freeman et al.,
1995; Saiya-Cork et al.,, 2002). Hydrolytic enzyme activity was
expressed as umol of substrate (MUF) converted per minute and per
gramme of dry peat.

2.5. Statistics

To study the impact of air warming upon water content, PLFAs,
WEOM features and extracellular enzymatic activities resulting from
each depth, slices were pooled in order to obtain an overall response
for the 25 cm peat column in each plot. All statistical analyses were per-
formed using XLSTAT software (Addinsoft®). Data were tested for nor-
mality using the Kolmogorov-Smirnov test and for homogeneity of
variance using the Levene test. Data were log10-transformed when
non-normality and/or no homogeneity of the variance were found. Var-
iations in air and peat temperatures were examined through Repeated
Measures ANalysis Of VAriance (MANOVA) in order to test the singular
impact and interactions of sites, air warming and time (i.e., months
for air and peat temperatures). Following significant MANOVA tests
(p-value <0.05), significant differences were determined with Fisher's
LSD tests. Variations in water content, PLFAs, WEOM features and extra-
cellular enzymatic activities were analysed using ANOVA (i) to test the
overall impact of air warming on these variables, (ii) to test the impact
of air warming within the Bog and Fen sites and (iii) to investigate the
impact of air warming on the initial differences distinguishing the Bog
and Fen sites.
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Air and peat temperatures (°C) according to sites (n = 6), warming treatment (n = 6) and their interactions (n = 3). Mean, minimum and maximum temperatures were calculated ac-
cording to monthly temperatures from January 2011 to June 2011. Significant differences were determined with the Fisher's LSD test and are indicated in bold and by a p-value below 0.05.

Air temperatures

Peat temperatures

Mean temperature Min. temperature

Max. temperature

Mean temperature Min. temperature Max. temperature

Site (n =6)
Bog 6.2 —4.2 19.3
Fen 6.0 —38 17.9
p-Value 0.16 <0.05 <0.05
Treatment (n = 6)
Control 5.7 —4.2 174
Warmed 6.5 —38 19.7
p-Value <0.05 <0.05 <0.05
Site x Treatment (n = 3)
Bog-CTL 5.7 —45 183
Bog-OTC 6.6 -39 203
Fen-Control 5.6 —4.0 16.6
Fen-OTC 6.3 —-37 19.2
p-Value
Bog-CTL vs. Bog-OTC <0.05 <0.05 <0.05
Fen-CTL vs. Fen-OTC <0.05 <0.05 <0.05
Bog-CTL vs. Fen-CTL 0.52 <0.05 0.08
Bog-OTC vs. Fen-OTC 0.16 0.18 0.21

5.1 42 6.2
55 4.1 7.2
0.13 0.93 0.22
53 4.6 6.1
53 3.7 7.2
0.91 <0.05 0.19
53 5.0 5.7
49 33 6.7
53 4.1 6.6
5.7 4.2 7.8
0.27 <0.05 0.38
0.21 0.98 0.31
0.93 0.09 0.41
<0.05 0.11 0.34

3. Results
3.1. Air and peat temperatures

Continuous measurements of air temperature during the period
from January to June 2011 in both control and OTC plots indicated sig-
nificant effects related to the site type, warming treatment and time
(Table 1). Minimum air temperature was significantly higher at the
Fen site (—3.8 °C) than at the Bog site (—4.2 °C; Table 2). Conversely,
maximum air temperature was significantly higher at the Bog site
(19.3 °C) than at the Fen site (17.9 °C). The single effect of air warming
treatment also led to a rise in mean (+ 0.8 °C), minimum (+ 0.4 °C) and
maximum (4 2.3 °C) air temperatures (Table 2). More specifically, the
experimental air warming treatment increased the mean (+0.9 °C),
minimum (+ 0.6 °C) and maximum (+ 2 °C) air temperatures at the
Bog site (Table 2). At the Fen site, OTCs were also associated with a
rise in mean (4 0.7 °C), minimum (+ 0.3 °C) and maximum (+2.6 °C)
air temperatures (Table 2).

Few specific effects of site or of the experimental warming were re-
corded on peat temperatures at 7 cm depth (Table 1). With OTC treat-
ment, the minimum peat temperature decreased by 0.9 °C (Table 2).
Two significant differences were also observed due to the interaction
between site and air warming: the minimum peat temperature
was lower at the Bog-OTC (3.3 °C) than at the Bog-CTL plot (5.0 °C)

OBog-CTL
Bog-OTC
BFen-CTL
8 Fen-OTC

Temperature (°C)

Maximum

Minimum

Fig. 1. Effect of experimental warming on mean, minimum and maximum peat tempera-
tures at both Bog and Fen sites during the week before sampling. Each value corresponds
to the weekly mean temperature, and to the minimum and maximum peat daily temper-
atures. Error bars are indicative of standard error between replicates (n = 3). Significant
differences were tested using one-way ANOVA and are indicated by different letters.

(Table 2), and the mean peat temperature was higher at the Fen-OTC
(5.7 °C) than at the Bog-OTC plot (4.9 °C). A week before the sampling,
the pattern was similar (Fig. 1), with no significant effect of experimen-
tal warming on peat temperature at the Fen site but a significant
decrease in minimum peat temperature at the Bog site (from 11.1 to
10.4 °C). Additionally, experimental warming also induced a decrease
of mean peat temperature in the Bog-OTC site (11.3 °C) as compared
to the Fen-OTC (12.9 °C) site.

3.2. Ground water level and peat moisture changes

From mid-May to late June 2011, the ground water level was sys-
tematically higher at the Fen site than at the Bog site (+ 3 c¢m; Fig. 2)
and it was strongly correlated with peat moisture from early May
2011 to late June 2011 (Fig. 3A). During this period, no significant rela-
tionship was found between peat moisture and air and peat tempera-
tures (Fig. 3B and C). Instead, there was a positive correlation between
air and peat temperatures (p < 0.05) at both the Bog and Fen sites
(Fig. 3D).

No overall effect of warming treatment was observed on peat mois-
ture (Table 3). More specifically, no significant changes were recorded
at the Fen site, but water content was significantly higher in the Bog-
OTC (94.5%) site than in the corresponding control plots (93.3%;
Table 3). Peat moisture in the control plots at the Bog and Fen sites
were not significantly different (p = 0.07), but this trend disappeared
under the effect of air warming.

- mid-May June late June
E 0.00 : T
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é ¢ Fen
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Fig. 2. Ground water level (below the Sphagnum capitulum) measured at both Bog and Fen
sites from mid-May to late June.
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Fig. 3. Relationships between ground water level and peat moisture (A), peat moisture and air mean temperature (B), peat moisture and peat mean temperature (C), air and peat mean
temperatures (D) at the Bog and Fen sites. Measurements were performed from mid-May 2011 to October 2011. Correlations were based on the Pearson's test. Each value corresponds to

the daily mean (n = 146). Significant correlation is indicated by an asterisk (p < 0.05).

3.3. Water-extractable organic matter features and phospholipid fatty acids

No impact of air warming treatment was recorded on WEOC, sugar
content and SUVA,go (Table 3). With respect to PLFAs, significant
changes occurred only when comparing the effect of air warming treat-
ment in Bog and Fen sites (Table 3), while no significant differences
were observed between their control sites. In warmed plots, PLFAs
from G-positive and G-negative bacteria became significantly higher
at the Fen site compared to the Bog site (respectively 47.3 and
18.8 pg C-g~ ! of dry peat in the Fen site and 12.3 and 4.2 pg C-g~ ! of
dry peat in the Bog site — Table 3). The Fen control plots also had higher
Protozoan contents as compared to the Bog control plots, but this differ-
ence did not persist under warming treatment.

3.4. Enzymatic activities

There was no overall effect of warming treatment on enzymatic
activity (Table 3). Nevertheless, at the Bog site, warming treatment sig-
nificantly enhanced AP activity. In warmed plots, the activity of LAP and
AP was significantly higher at the Bog site as compared to the Fen site
(respectively. 5.4 and 1.4 umol MUF min~' g™ ! at the Bog-site and 4.7
and 1.0 umol MUF min~! g~ ! at the Fen site).

4. Discussion

4.1. Experimental air warming enhances the discrepancy of peat
temperatures between Bog and Fen sites

From January to June 2011, the OTCs enhanced mean air tempera-
ture up to 0.9 °C and 0.7 °C in the Bog and the Fen sites, respectively.
Such a temperature rise is in accordance with other in situ warming ex-
periments with OTCs (Sullivan et al., 2008; Dorrepaal et al., 2009;
Weedon et al., 2012). The increase in air temperature was associated
with a decrease in minimum peat temperature under the impact of
warming, only at the Bog site (Tables 1 and 2). At the Bog site, the in-
crease in air temperature was also associated with an increase in peat
water content (Table 3). This result is surprising since most studies on

experimental warming reported a decrease or no effect on peat mois-
ture (Hollister et al., 2006; Dorrepaal et al., 2009; Bokhorst et al.,
2011; Delarue et al., 2011a; Jassey et al., 2013). The question is therefore
whether this effect was due to an experimental artefact or whether it re-
sults from a thermodynamic constraint. It was demonstrated that OTCs
can stop wind blowing, thus reducing evaporation (de Boeck et al.,
2012). As no relationship was found between wind speed and peat
moisture (at 5 cm depth) in the control plots (data not shown), we as-
sume that no significant reduction of evaporation by OTCs occurred at
5 cm depth. However, we cannot rule out the effect of wind at the sur-
face of the Sphagnum carpet. In both sites, peat moisture was mainly
controlled by ground water level rather than by air temperature
(Fig. 3A, B and C). Therefore, such a rise in peat moisture at the Bog
site may result from an interaction between air temperature and ground
water level owing to capillary strength. Water capillary flow is the main
mass flux within peat (Price et al., 2009) so if the capillary flow is not
strong enough to compensate for the evaporation rate, mosses start to
dry out. Conversely, if the capillary flow compensates for the evapora-
tion rate (Yazaki et al,, 2006), then the vapour diffusion through evapo-
ration can cool the upper peat layer (Carleton and Dunham, 2003). In
addition, this can lead to the condensation of vapour in the upper peat
layer, which causes a slight increase in peat moisture (Price et al.,
2009). This mechanism can partially explain the observed increase
in peat moisture and the decrease in minimum peat temperature
at the Bog site. At the Fen site, no temperature changes were record-
ed. Due to the different effects of experimental warming in the two
sites, it can be concluded that there is a thermal discrepancy, as in-
dicated by the lower peat temperature at the Bog-OTC as compared
to the Fen-OTC site (Table 2). Such a discrepancy was also measured
the week before sampling (Fig. 1) and was associated with the dis-
appearance of the peat moisture discrepancy between the warmed
Bog and Fen sites (Table 3).

Overall, this discrepancy suggests that a slightly higher ground
water level (about 3 cm; Fig. 2) may prevent any effect of experimental
warming on both peat temperature and moisture, suggesting that a
potential thermodynamic threshold occurs as a function of groundwa-
ter level.
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Table 3

Effect of warming treatment on PLFAs (G + bacteria, G — bacteria, Fungi, Actinobacteria
and Protozoan in pg C g~ ! of dry peat), water content, WEOM characteristics (water
extractable organic carbon in mg-g~! of dry peat, sugar content in mg-g~ ! of dry peat
and SUVA,g in g of dry peat per mg C~! cm™') and extracellular enzymatic activities
(phenoloxidase—PO in pmol of dicq min~" g~ of dry peat, B-glucosidase—BG, leucine
aminopeptidase—LA and acidic phosphatase—AP in pmol of substrate). The impact of
warming was tested with Bog-CTL vs. Bog-OTC (n = 3), Fen-CTL vs. Fen-OTC (n = 3),
Bog-CTL vs. Fen CTL, Bog-OTC vs. Fen-OTC (n = 3) and CTL vs. OTC (n = 6). Significant
differences were tested using one-way ANOVA and are indicated by bold characters.

PLFAs G+ G— Fungi Actinobacteria Protozoan
bacteria  bacteria
Average value
CTL 19.5 73 2.7 6.7 5.7
OTC 29.8 115 6.1 9.5 5.9
Bog-CTL 14.1 5.7 14 39 23
Bog-OTC 123 4.2 6.0 7.2 43
Fen-CTL 25.0 8.8 4.1 9.5 9.0
Fen-OTC 473 18.8 6.1 11.7 7.5
p-Value
CTL vs. OTC 0.38 0.37 0.28 0.41 0.91
Bog-CTL vs. Bog-OTC 0.89 0.74 0.43 0.48 0.49
Fen-CTL vs. Fen-OTC 0.14 0.14 0.59 0.65 0.18
Bog-CTL vs. Fen CTL 0.38 0.51 0.11 0.23 0.04
Bog-OTC vs. Fen-OTC ~ 0.05 0.05 0.99 0.40 0.15
Water content and WEOM Water WEOC Sugar SUVAs0
features content content
Average value
CTL 93.8 2.9 1.2 0.066
OTC 94.2 2.7 1.1 0.068
Bog-CTL 93.3 29 1.2 0.073
Bog-OTC 94.5 2.8 1.1 0.073
Fen-CTL 94.3 2.9 1.1 0.059
Fen-OTC 93.9 2.6 1.2 0.062
p-Value
CTL vs. OTC 0.27 038 0.81 0.84
Bog-CTL vs. Bog-OTC 0.04 0.89 044 0.98
Fen-CTL vs. Fen-OTC 0.40 032 092 0.62
Bog-CTL vs. Fen CTL 0.07 084 077 0.23
Bog-OTC vs. Fen-OTC 0.21 055 077 0.09
Extracellular enzymatic PO BG LAP AP
activities
Average value
CTL 0.0041 0.7 52 13
OTC 0.0034 0.7 5.0 1.2
Bog-CTL 0.0042 0.7 4.8 13
Bog-OTC 0.0044 0.8 54 14
Fen-CTL 0.0040 0.8 5.6 13
Fen-OTC 0.0024 0.6 4.7 1.0
p-Value
CTL vs. OTC 0.45 084 0.72 0.60
Bog-CTL vs. Bog-OTC 0.91 033 032 0.03
Fen-CTL vs. Fen-OTC 0.13 0.14  0.10 0.13
Bog-CTL vs. Fen CTL 0.75 034 029 0.84
Bog-OTC vs. Fen-OTC 0.26 0.08 0.03 0.01

4.2. Air warming can simultaneously lead to an increase in bacterial
community in the fen and microbial activity in the bog

At the Bog site, air warming treatment led to higher AP enzymatic
activity. This enzyme is produced by both soil microorganisms and
plants and is involved in the mineralization of phosphate from phos-
pholipids (Turner et al., 2002; Toor et al., 2003). AP changes underpin
a higher breakdown of organically bound phosphate at the Bog site in
the course of air warming. Particular attention must be paid to the im-
pact of roots which are considered as key controlling factors of AP activ-
ity (Robroek et al., 2013). Indeed, air warming favoured vascular plant
abundance rather than Sphagnum mosses (Jassey et al., 2013). Roots
are lacking in Sphagnum species, and therefore it can be expected that

the root activity increase of vascular plants triggers AP activity. Jassey
et al. (2013) also indicated that such a shift of vascular plants was asso-
ciated with a decrease of Sphagnum-polyphenols, a strong microbial
breakdown inhibitor, stimulating, in turn, bacterial and microbial enzy-
matic activities (Fenner and Freeman, 2011). Here, the lack of changes
upon POA, BG and LAP provides no evidence for such a phenomenon.

Air warming also increased discrepancies between the Bog and the
Fen sites when comparing first the control plots and then, the warmed
plots of both sites. Thus, the increase in enzymatic activities at the
warmed Bog site could be linked to higher temperature fluctuations in
both the air and the soil, which may have triggered their kinetics
(Davidson and Janssens, 2006). Additionally, PLFAs indicated that bacte-
rial biomass increased in the warmed Fen site (Table 3), suggesting that
air warming can alter the microbial structure and enzyme hydrolytic ac-
tivities in opposite directions at the scale of the Bog and the Fen sites.
Thus, air warming might induce the emergence of differential peat C dy-
namics in Bog and Fen sites. Following the soil C cycle scheme of
Schimel and Weintraub (2003), one could hypothesize that C uptake
by microbial cell biomass was favoured at the warmed Fen site, whereas
it was hydrolytic enzyme production that was favoured at the warmed
Bog site. However, it was also demonstrated in a snow removal experi-
ment that differential timing of peat defrosting or snow melting can in-
duce delays in the microbial community response (Robroek et al.,
2013). Thus, the predominance of fungi upon bacterial biomass was
used as an indicator of the winter state of the microbial community
(Robroek et al., 2013). At the warmed Fen site, the relative shift of mi-
crobial structure to bacterial biomass could indicate that the microbial
community was in a more advanced seasonal stage than at the Bog
site. Moreover, an increase in enzymatic activities can also take place
as a physiological adjustment to survive cold temperature (Beales,
2004). In any case, this advocates a more careful observation of the
early spring period after snow melting.

Peat moisture was defined as the main controlling factor differenti-
ating OM decomposition in the Bog and Fen sites (Delarue et al.,
2011b). A change in moisture condition should therefore induce a
change in peat C cycle. Here, we saw that water content did not differ
in warmed plots nor in the control Bog and Fen plots. Such a change
was strengthened by PLFAs from protozoa and indeed, it is known
that testate amoebae are positively correlated to peat moisture and
water-table depths (Woodland et al., 1998). The peat C cycle can
be roughly divided into 4 components: soil organic C; dissolved organic
C (WEOC in this study), microbial cell biomass and exoenzymes
(Schimel and Weintraub, 2003). WEOC is an intermediate product be-
tween solid and gas phases in the course of decomposition (Schimel
and Weintraub, 2003) and is considered as an indicator of the portion
of dissolved OM which is the most active and mobile fraction within
the OM (Akagi and Zsolnay, 2008; Zaccone et al., 2009). No signifi-
cant change between control and warmed plots or between warmed
Bog and Fen sites was recorded (Table 3). Moreover, WEOC mainly
depended on sugar content which is known to be ubiquitous, occur-
ring within both peat and microorganisms (results not shown).
WEOC and sugar content were not discriminating enough to draw
any conclusions about OM decomposition under the impact of
OTCs in Bog and Fen sites. Additionally, since no change occurred
upon SUVA,go, which should reflect the decomposition of recalci-
trant aromatic moieties, our results suggest that air warming im-
pacted neither recalcitrant nor labile OM pools in this study.

5. Conclusion

We have highlighted the limitation of the use of single environmen-
tal factors to assess the degree of OM decomposition. Instead, the use of
multiple chemical, biological and microclimatic factors can provide
more reliable information. For example, the single use of enzymatic
activities would suggest that air warming indirectly favoured peat de-
composition at the Bog sites, whereas our multidisciplinary approach
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emphasises a change in microbial structure and activities as a con-
sequence of complex interactions between groundwater level and air
warming.

In addition, we have demonstrated that the enzymatic latch theory
does not apply to cases where the water content does not decrease
and consequently, where the oxygen level does not increase. This im-
plies that a better definition of the environmental framework governing
the enzymatic latch theory is needed, especially under future climatic
conditions. Future investigations should aim at characterizing the
seasonal pattern of these interactions, taking also into consideration
soil microtopography, since this will greatly affect the impact of global
warming on peat decomposition.
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