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Abstract

For more than a century, it has been recognized that our genetic inheritance and our environment interact to shape
who we are and how we act (“nature vs. nurture”). The study of genetics has allowed us to explain why traits can vary
dramatically between individuals (i.e. trait variance), and yet often be strongly shared within families (i.e. trait heritabil-
ity). Scientists, statisticians, and physicians can calculate heritability and can observe how both genes and environment
influence health, but relatively few interventions or treatments have stemmed from this expanded knowledge. In large
part this is because testing biomedical hypotheses is difficult, because we are all so different, and because environmen-
tal factors are so hard to control.

In 2001 the first (nearly) complete DNA sequence of the human genome was generated after years of technical de-
velopment and brute force effort. This accomplishment has ushered in a new field of personalized medicine, as preven-
tion and treatment can both be tailored based on genome and environment. Unfortunately, the science of genomic
sequencing has greatly outpaced our ability to actually understand the genetic code, and it remains difficult to make
accurate predictions of an individual's characteristics and susceptibilities except in a few clear-cut cases such as eye
color or risk of Huntington's disease. There are several reasons for this disconnect: (1) many traits and diseases are
driven by complex interactions among environmental causes and genetic risks, (2) there are many aspects of genetics
which we do not fully understand and that cannot be easily observed (e.g. non-coding RNAs, epigenetic modifications,
and complex metagenomic cohorts that we all carry), and (3) gene products (such as mRNA and protein) change dra-
matically over time and across cell types in complex and even unpredictable ways.

Today, myriad developments promise to improve our capacity to predict resistance and susceptibility to diseases
based on our individual genome. This technical capability has also provided new avenues for developing therapeutic
agents and/or lifestyle changes. However, no matter our developments in scientific understanding, personalized medi-
cine will never allow perfect prediction—environmental influences and personal choices will always affect our health,
and medical treatments will still require information gained from standard medical checkups. Rather than perfect pre-
diction, personalized medicine will instead provide more accurate predictions about health than those previously possi-
ble. Thus, people at high risk for (e.g.) diabetes will know better to watch their diet, while those at low risk should
remember that biology is never completely predictable.

In this thesis, | have analyzed 45 strains of mice from a genetic reference population called the BXD with the goal of
identifying major gene regulators of metabolic phenotypes, such as exercise capacity and glucose response. Each mem-
ber of this BXD family, which contains approximately 150 distinct but related lines (or “strains”), has a unique genetic
makeup that has been fixed by inbreeding. Each family member is thus available as an unlimited supply of “identical
twins” which may be studied over years and among laboratories. With this population, it is possible to both (1) test
what would occur to a single individual in different environmental conditions and (2) analyze how much environmental
influences vary across genetically diverse individuals. In my study, which examines 10 individuals from each of 45
strains, it would be as if two parents had 450 children, split into 45 pairs of identical ten-tuplets. Each individual (in this
case) thus has nine genetically identical twins, and 440 other siblings who share on average half the genome.

My thesis seeks to address two main questions: (1) how do genetics, sex, and environment interact to shape our
metabolome? And (2) how can large systems-scale datasets be applied to other research projects outside my own
direct interests? For the first question, in the first study (chapter 2) | examined the metabolic differences between
males and females who share the same genome (excepting X and Y chromosomes), and | evaluated how traits vary
between identical male/female twins and how traits compare between related male/female siblings. In the second
study on this question (chapter 4), | examined the differences between a population of male BXD strains fed a healthy
chow diet (CD, 6% calories from fat, 74% from carbohydrates, and 20% from protein), and their identical quintuplet
populations fed a high fat diet (HFD, 60% calories from fat, 20% from carbohydrates, and 20% from protein). This study
likewise highlighted dramatic differences due to diet and genotype. For example, most strains gained 25% body mass
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when fed the HFD, but two strains remained completely lean regardless of diet! In the second, much more massive
study, | obtained detailed molecular data on the same individuals, including their gene expression and metabolite levels
in many different tissues. With this “systems” data, not only have | been able to determine to what extent traits are
sensitive to changes in environment (between diets) and differences in genetics (between strains), but | have also been
able to identify how and why many of these differences occur, most importantly including a new diabetes-related gene,
Dhtkd1 driving changes in the metabolite 2-aminoadipate.

For the second case (chapter 3), | used the data acquired in chapters 2 and 4, but applied these data to extant hy-
potheses generated by other scientists. Here, the fundamental aim is to make as broad use as possible of the data
generated. The population dataset is too large and diverse for any one researcher to completely exhaust its utility; thus
| shared my findings with other scientists to see if their hypotheses could be confirmed and expanded using the BXD
data. In this case, there is no single fundamental question, but instead many independent questions can be investigated
using the same data to answer questions about sex, genotype, diet, and metabolism.

Through both studies, | identified differences among the lines in nearly every trait measured: both the overt “clini-
cal” traits, such as body weight, and molecular traits, such as gene expression. In these cases, we could attribute this
variation to differences in (1) genetics, (2) sex, and/or (3) diet. Genetic variance influences nearly all traits, while the sex
of the animal affected about half of the traits, and diet affected only about a third. While attributing sex and diet to the
causal phenotypic effect is simple enough, identifying the precise underlying genetic differences behind trait variance is
a greater challenge. To this end, we were able to identify causal genetic regions which influence heart rate, the capacity
to exercise, response to glucose, standard ambulatory movement, and many metabolic parameters. However, other
parameters such as body weight were influenced by too many disparate genetic variants for us to isolate any singular
effect. For some of these genetic regions, such as glucose response and movement activity, we were able to identify
precisely which gene variant was causing the phenotypic variant.

In chapter 2, | helped to define two genes causal of major phenotypic effects and their related sex-linked and die-
tary differences. For the first study (section 2.1), | established that both mutations and sex-linked effects on the gene
alkaline phosphatase (Alpl) result in changes in bone density and size. In the second study (section 2.2), | established
that mutations in the gene aryl hydrocarbon receptor (Ahr), sex, and diet all influence spontaneous movement activity.
In chapter 3, we had previously identified NCoR1 and Fra-1 as genes which influence muscle strength and liver metabo-
lism, respectively. Using the BXD data, we were able to discern how these two genes can influence their associated
phenotypes. In chapter 4, we examined the molecular characteristics of the liver in the BXD population in great detail,
and we determined that genetic changes in the gene Dhtkd1 influence development of the disease 2-aminoadipic acid-
uria, which in turn affects glucose homeostasis and diabetes. Furthermore, we were able to apply our links between
Alpl, Ahr, and Dhtkd1 to human population studies, and we are confident that these links found in mice will be validat-
ed in humans and may lead to medical advances.

In ongoing studies, | am examining additional genetic factors underlying metabolic variance in the BXDs, and con-
tinuing research on the leads into glucose homeostasis and diabetes so far uncovered. However, the data obtained
during this thesis far exceeds the capacity of a single researcher or even a single research group to fully exploit. Critical-
ly, one of the primary benefits of working with strain families like the BXDs is that, due to their “infinite” reproducibility,
exceptionally detailed medical records can be obtained for this population over many years, and results from different
research groups and even research fields can be assembled together. Therefore, the scope of my project will extend
beyond the focus presented in this thesis. While my collaborators and | will continue to find explanations and leads or
treatments for metabolic diseases using this approach, these data may also inform upon critical pathways involved in
(for example) cancer or neurological disorders. By making the data and methods publicly accessible, this work will find
more utility in explaining and treating diseases beyond what we (as a laboratory or even direct collaborative network)
could accomplish alone. As we are already beginning to see, the communal assembly of massive medical records of
phenotypes, gene expression data, metabolite levels, and so forth, provides a platform with which we will actually be
able to accurately predict disease susceptibility, ushering us into the era of personalized medicine.

Keywords: BXDs, systems genetics, genetic reference populations, holistic genetics, reductive genetics, energy metabo-
lism, diabetes, QTL mapping, ALPL, AHR, DHTKD1, NCoR1, AP-1, PPARg



Résumé

Voila plus d’un siecle, il a été démontré que notre héritage génétique interagit avec notre environnement pour dé-
terminer qui nous sommes et comment nous agissons (inné/acquis). L’étude de la génétique nous permet d’expliquer
pourquoi les caractéres phénotypiques différent autant entre individus (i.e. variance de trait) mais peuvent pourtant
étre tres similaires entre les membres d’une famille (héritage de traits). Les scientifiques, les statisticiens et les physi-
ciens ont mesuré les effets d‘héritage et d’environnement, mais peu d’interventions ou de traitements ont émergé de
cette grand connaissance. Ceci est en grande partie d{ au fait qu’il est difficile de tester des hypotheses biomédicales,
que nous sommes tous tres différents et parce que les facteurs de I'environnement sont tres difficiles a contréler.

En 2001, la premiére séquence ADN quasi compléte du génome humain a été générée, aprés des années de déve-
loppement technique et de travail acharné. Cet accomplissement a permis la création d’un nouveau domaine de re-
cherche, la médecine personnalisée, ou la prévention et les traitements peuvent étre congus a partir du génome et de
I’environnement des patients. Malheureusement, la génomique a largement dépassé notre capacité a comprendre le
code génétique et il est encore difficile de prédire correctement les caractéristiques (et susceptibilités, risques) d’un
individu, hormis dans des cas flagrant tel que la couleur des yeux ou le risque de développer la maladie de Huntington.
Il'y a plusieurs raisons a cet écueil : (1) beaucoup de traits et de maladies sont les conséquences d’interactions com-
plexes entre causes environnementales et risques génétiques ; (2) beaucoup d’aspects de la génétique sont difficiles a
comprendre et a observer (par ex. : ARN non codants, modifications épigénétiques et cohortes métagénomiques com-
plexes que nous possédons tous) et (3) les produits de génes (ARN codants et protéines) changent radicalement au fil
du temps et des types de cellules, de maniére complexe et imprévisible.

Aujourd’hui, une combinaison de développements pourrait permettre d’améliorer notre capacité a prédire résis-
tance et vulnérabilité aux maladies, en se basant sur notre génome individuel. Cette possibilité technique ouvre la voie
au développement de nouvelles approches thérapeutiques ou des changements de style de vie. Cependant, malgré
toutes les avancées scientifiques, la médecine personnalisée ne pourra jamais permettre une prédiction parfaite, car
I’environnement et nos choix personnels auront toujours une influence sur notre santé; les traitements médicaux né-
cessiteront encore des informations obtenues lors de contréles médicaux standards. Plutdt qu’une prédiction parfaite,
la médecine personnalisée apportera une prédiction de notre santé plus correcte que celles possibles auparavant. Ainsi,
les patients présentant un haut risque de (par ex.) diabéte sauront mieux surveiller leur alimentation, alors que ceux a
faible risque devraient garder en téte que la biologie n’est jamais totalement prévisible.

Durant cette thése, j’ai analysé 45 souches d’une population de référence génétique nommée BXD, dans le but
d’identifier les génes régulateurs de phénotypes métaboliques, comme la capacité a réaliser un exercice physique et la
réponse au glucose. Chaque membre de cette famille de BXD (environ 150 lignées reliées mais distinctes) a un
fond génétique unique, qui a été corrigé par rétrocroisement. Chaque membre est ainsi disponible comme une source
illimitée de « jumeaux identiques », qui peuvent étre étudiés au fil des ans et des laboratoires. Avec cette population, il
est possible de (1) tester les effets sur un seul individu de divers environnements et (2) analyser a quel point les in-
fluences de I'environnement varient entre des individus génétiquement différents. Par exemple, une étude examinant
10 individus provenant de 100 souches équivaut au cas ol deux parents auraient eu 1'000 enfants, divisés en 100 paires
de 10 couples identiques. Dans ce cas, chaque individu a neuf jumeaux génétiquement identiques, et 990 autres fréres
et sceurs qui partagent la moitié du génome en moyenne.

Dans ma theése, je cherche a répondre principalement a deux questions : (1) de quelle maniére la génétique, le sexe
et I'environnement interagissent pour former notre métabolome. Et (2) comment peut on exploiter un systéeme de base
de données de cette échelle pour d’autres projets de recherche que le mien ? Pour la premiére question (chapitre 2),
j’ai examiné les différences métaboliques entre individus males et femelles qui partagent un méme génome (sauf les
chromosomes X et Y). J’ai évalué comment les traits entre males et femelles jumeaux varient, ainsi qu’entre freres et
sceurs. Dans la deuxieme étude concernant cette question (chapitre 4), j’ai examiné les différences entre une popula-



tion male de souche BXD ayant une alimentation pauvre en graisses (dite « chow diet » CD, 6% de calories provenant de
graisses, 74% de carbohydrates et 20% de protéines) et la population de leur jumeaux monozygotes, nourris avec une
alimentation riche en graisses (dite « high fat diet » HFD, soit 60% de calories provenant de graisses, 20% de carbohy-
drates et 20% de protéines). De méme, cette étude a permis d’observer d’importantes différences dues a I'alimentation
et au génotype. Par exemple, la plupart des souches nourries au HFD ont vus leur masse corporelle augmenter de 25%,
sauf deux souches qui sont restées minces, indépendamment de leur alimentation ! Dans cette deuxiéme étude, d’une
plus grande portée, j'ai collecté des données moléculaires détaillées des mémes individus, comprenant I'expression de
leurs génes et leurs niveaux de métabolite dans divers tissus. Grace a ces « systemes » de données, j’ai pu non seule-
ment déterminer a quel point les traits phénotypiques sont sensibles au changement de I'environnement (différentes
alimentations) et les différences génétiques (entre souches) mais également identifier comment et pourquoi nombre de
ces différences existent, incluant notamment l'identification d’'un nouveau gene de susceptibilité au diabete appelé
DHTKD1 et impliqué dans le métabolisme de I'acide 2-aminoadipadic.

Pour le deuxiéme cas (chapitre 3), j’ai utilisé les données obtenues dans les chapitres 2 et 4, mais en les appliquant
cette fois-ci des hypotheses générées par d’autres scientifiques. Le but étant ici de faire un usage le plus large possible
des données produites. La population étudiée est trop grande et trop diverse pour qu’un seul chercheur puisse utiliser
tout son potentiel ; j’ai donc partagé mes découvertes avec d’autres chercheurs, afin de voir si leurs hypothéses pou-
vaient étre confirmées et étendues, en utilisant les données BXD. Dans ce cas, il n’y a pas une seule grande questions,
mais plutot plusieurs questions indépendantes, auxquelles on peut répondre en utilisant les mémes données que celles
générées pour répondre aux questions de sexe, génotype, métabolisme et alimentation.

A travers ces deux études, j'ai pu identifier des différences entre les souches pour pratiquement chaque caractéris-
tigue mesuré : tant pour les traits/caractéristiques « cliniques » tels que le poids, que pour des traits/caractéristiques
« moléculaires », tel que I'expression des génes. Dans ce cas, on pourrait attribuer la variation a des différences (1)
génétiques, (2) de sexe et/ ou (3) d’alimentation. La génétique affecte pratiquement toutes les caractéristiques/traits,
le sexe des animaux influence environ la moitié des traits et I'alimentation agit environ un tiers des traits. Si attribuer le
changement de sexe et d’alimentation a une fonction causale est relativement simple, le principal défi est bien
d’identifier précisément quelles variantes génétiques causent le changement. Nous avons pu identifier des régions de
causalité génétiques, dont découlent des différences majeures dans le rythme cardiaque des animaux, leur capacité
d’exercice, leur réponse au glucose, les mouvements de base et beaucoup de parametres métaboliques. D’autres pa-
rametres, tel que la prise de poids, sont affectés par trop de variantes génétiques disparates pour pouvoir identifier une
cause particuliere. Pour certaines de ces régions génétiques, nous avons pu identifier avec précision quelle variante
d’un géne causait la variante phénotypique.

Dans le chapitre 2, je suis parvenu a définir deux genes responsable d’effets phénotypiques majeurs, ainsi que les
différences de sexe et d’alimentation liés. Pour la premiére étude (chapitre 2.1), j’ai pu établir que les effets liés aux
mutations ainsi qu’au sexe sur le géne de I'alkaline phosphatase (Alpl) provoquent des changement de densité et de
taille des os. Dans la deuxieme étude (chapitre 2.2), j’établis que I'activité physique spontanée est influencée par les
mutations dans le gene aryl hydrocarbon receptor (Ahr), le sexe et I'alimentation. Dans le chapitre 3, nous avions pré-
cédemment identifié deux génes, NCoR1 et Fra-1, qui influencent respectivement la force musculaire et le métabolisme
du foie. En utilisant les données BXD, nous avons pu voir comment ces deux genes peuvent indfluencer leurs phéno-
types associés. Dans le chapitre 4, nous avons examiné dans le détail les caractéristiques moléculaires du foie dans la
population BXD, et nous pouvons affirmer que les changements génétiques dans le geéne Dhtkd1 a une influence sur le
développement de la maladie 2-aminoadipic aciduria, qui affecte elle-méme I’homéostasie du glucose et le diabéte. De
plus, nous avons pu appliquer les liens entre Alpl, Ahr et Dhtkd a des études de populations humaines. Nous pensons
que ces liens trouvés chez la souris seront validés chez I'étre humain et pourront amener des avancées pour la méde-
cine.

Dans des recherches en cours, j'observe d’autres facteurs génétiques causant des variances métaboliques chez les
BXD et je continue la recherche sur ’homéostasie du glucose. Cependant, les données obtenues dans le cadre de cette
these excedent de loin la capacité d’un seul chercheur ou méme d’un groupe de chercheurs a en exploiter tout le po-
tentiel. Un des avantage a travailler avec des famille souches comme les BXD est leur « reproductibilité infinie », ainsi
que les données médicales incroyablement détaillées que I'on peut obtenir au fil des années. Les résultats de divers
groupes de recherches et méme de divers domaines de recherches peuvent étre rassemblés. Mon projet pourra ainsi



servir au-dela du sujet abordé dans cette these, tandis que mes collaborateurs et moi continuerons a trouver des expli-
cations et des traitements aux maladies métaboliques, en utilisant la méme approche. Il se peut que ces données puis-
sent révéler des causes de cancer ou de problemes neurologiques. En rendant les données et les méthodes accessibles
au public, I'utilité de ce travail s’en trouve décuplée. Nous pouvons déja I'observer : la collecte commune massive de
données médicales sur les phénotypes, I'expression des genes, les niveaux de métabolites, etc. offre une plateforme
qui pourra prévoir de maniére précise la sensibilité aux maladies, nous propulsant dans I'ére de la médecine personna-
lisée.

Mot clés : BXD, systéemes génétiques, population génétique de référence, génétique holistique, génétique réductive,
métabolisme énergétique, diabete, cartographie des QTLs, ALPL, AHR, DHTKD1, NCoR1, AP-1, PPARg
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Chapter 1 Introduction

Modern scientific studies using animals to model human diseases began in the 19t century, driven initially by the
development of vaccines and drug treatments for transmissible diseases [1]. A few decades thereafter, mice and Dro-
sophila began to be used in research on fundamental genetics [2, 3]. The potential of using such organisms as models
for complex human processes was quickly realized [4], yet the key genetic and environmental factors behind risk or
resistance to diseases remained elusive. Nevertheless, dramatic strides were made in both genetic understanding and
in scientific techniques and technologies, which gradually illuminated the full complexity of physiology. In tandem, it
became clear that more numerous, complex, and controlled model populations would facilitate deciphering the human
genetic puzzle. Today, a wide array of such models have been developed from every branch of life: prokaryotes (e.g.
Escherichia), single-cell eukaryotes (e.g. Saccharomyces), plants (e.g. Arabidopsis), roundworms (e.g. Caenorhabditis),
insects (e.g. Drosophila), fish (e.g. Danio), mammals (e.g. Mus), and so forth.

The first approach used to establish links between the genome and phenome was forward genetics, wherein a di-
vergent phenotype is observed, then the causative gene identified (Fig. 1:1A). The earliest such studies, such as those
on eye color in Drosophila [2], would perform multigenerational backcrossing for the “target” strain (e.g. a white-eyed
fly) against a “reference” strain (e.g. a red-eyed fly). Through this approach, geneticists were able to determine the
mechanics of genetic recombination, link causative genetic loci to phenotypic traits, and gradually develop linkage
maps of the genome [5]. Decades later, following the development of mutagenic techniques, the field of reverse genet-
ics arose (Fig. 1:1B), whereby a gene of interest could be rationally modified, and the associated phenotypic change(s)
sought out. This approach is today driven largely by gain-of-function or loss-of-function (G/LOF) models, and has been
indispensible in the mechanistic delineation of many molecular pathways. These two approaches still serve today as the
fundamental basis for genetics studies: “top down” phenotype-to-genes forward genetics, and “bottom up” gene-to-
phenotypes reverse genetics.

A B

Forward Genetics Reverse Genetics

b e

Monogenic Tralt Complex Trait Gene of Interest
Back Population Gain or Loss
cross Study of Function
Isolate Causative Locus Calculate Causative Loci Scan for Phenotypes
Apte= Chr1@120: 10% Body Weight: p = 0.67
Chr2@96 - 14% Fasted Glucose: p=0.01
Chro@42 : 8% Activity: p = 0.15

Figure 1:1 Principal Genetic Approaches

Summary of genetics approaches. (A) The forward genetics approach relies on identifying divergent pheno-
types between two groups and then searching for the causative gene. The causative gene region, called the
locus (plural loci), is identified either through backcrossing or through QTL or SNP mapping analysis. Back-
crossing can also be performed in population studies in GRPs, but is much slower and typically no longer
used. (B) The reverse genetics approach relies on identifying a gene of interest and then scanning mutant
versions of this gene for impact on traits, such as phenotypes or on gene expression for known targets.

As with the contrast between forward and reverse genetics, there is a similar polarity between the systems genetics
(or also holistic) and reductive approaches (Fig. 1:2A-B). Until recently, most studies in model organisms relied on the
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reductive approach, which aims to understand biology by focusing on genetic or environmental variants one at a time.
This technique has succeeded in identifying many genes and environmental effects that influence complex phenotypes,
such as the influence of AP-1 and C/EBP [6] or of the E2F family of transcription factors on adipogenesis [7]. Such results
were built upon painstakingly over decades, and thousands of genetic interactions have now been proven by this ap-
proach. Thanks to such efforts today hundreds of biological pathways are well-detailed [8]. Despite such achievements,
few medical advances have yet come out of this knowledge. This is due in large part because the most common meta-
bolic disorders are driven by dozens of gene-by-environment (GXE) variants in single individuals, i.e. the actions of
single genes or even pathways are not primarily additive [9, 10]. While the reductionist approach can explain how one
gene affects several diverse phenotypes (pleiotropy), it is less inefficient for examining how many genes interact to
affect one phenotype (epistasis). Furthermore, the most common reductionist approach typically relies on G/LOF mu-
tants such as knockouts, which are a poor model for the occurrence of common complex diseases in humans [11], and
moreover such studies are typically performed on only a single genetic background (e.g. the C57BL/6J mouse).

A Systems Approach B

Reductionist Approach
Diverse Population Target Phenotype
Screen Screen
Phenotypes Knockouts
Calculate Causative Loci Note Significant Changes
Body Weight: GeneX: 15% GeneX: +12% weight (p = 0.09)
Fasted Glucose: GeneY: 22% GeneY: +22% weight (p = 0.01)
Activity: GeneZ: 19% GeneZ: — 6% weight (p = 0.25)

Figure 1:2 Principal Study Designs

(A) The systems genetics approach relies on using genetically diverse populations, phenotyping, genotyping,
and acquiring other information on the cohort, and then identifying genes or loci, which contribute to vari-
ance in the trait(s) of interest. (B) The reductionist approach typically already has a single phenotype of in-
terest, then mutants (e.g. knockouts, ENU mutants) are screened to observe which knockouts influence the
phenotype. These diagrams are simplified, and while they describe the approach used in the majority of
studies, these are not the only possibilities (e.g. please read [12] to view alternative approaches).

Such limitations to the reductive approach have been long recognized [13], but a systems genetic approach using
genetic reference populations (GRPs) was long impeded by technical hurdles which have only recently begun to clear,
stemming initially from improvements in “omics” technologies, namely genomics [14] and transcriptomics [15]. With
this approach, completely novel regulatory genes or GXE effects can be identified de novo in the context of the whole
organism through the use of quantitative trait locus (QTL) mapping or genome-wide association studies (GWAS). Fur-
thermore, systems genetics analyses can identify entire sets of regulatory genes affecting complex phenotypes (i.e.
gene-by-gene (GXG) interaction, called epistasis) as well as GXE effects in a single study [16-18], rather than the singular
results from the reductive approach. While mechanistic validations are more difficult to perform in populations, doing
so is not impossible, and today due to the increase in omics datasets, hypotheses can frequently be immediately tested
in silico by analyzing similar, but independent, populations (e.g. from GEO [19]). Alternately—or subsequently—these
hypotheses can be fed back into reductive approach for more detailed mechanistic examination, even for experiments
on epistasis [20].

In tandem with research in model organisms, studies in human cohorts have also sought to identify novel genetic,
environmental, and GXE risk factors for disease. In contrast to research in model organisms, human genetics has been
driven primarily by the systems approach, although reductive studies on twins have also been extensively performed
[21]. Early, large population studies such as the Framingham Heart Study successfully identified dozens of major envi-
ronmental factors influencing complex traits and led to a number of major improvements in health, e.g. by linking
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smoking to atherosclerosis [22]. However, while heritability in complex traits could be calculated in these studies [23],
the underlying variants driving the inheritance could not typically be identified, largely due to an inability to obtain
extensive sequence data on the patients. As with GRPs, this changed in the early 2000s with the development and
application of improved sequencing technology, and briefly led to high hopes of personalized medicine, whereby the
genetic variants underlying disease could be directly identified and attributed in specific patients. Unfortunately, de-
spite the identification of a few major SNP—phenotype connections [24-27], it was readily apparent that linkage studies
using human populations alone are generally insufficient for the identification, validation, and molecular characteriza-
tion of causal variants behind heritable traits [28, 29]. This difficulty stems from many factors, but chief among them
that (a) these diseases typically have a long-term progression caused by myriad GXE factors, which are particularly
difficult to control in human studies, (b) it is difficult to obtain tissue biopsies in humans, and thus the ongoing cellular
and molecular processes cannot be readily or comprehensively followed, and (c) mechanistic interactions cannot nec-
essarily be validated in vitro.

In this review, we will discuss how a systems genetics approach using GRPs provides a platform that may be used to
identify novel GXE elements leading to disease and establish hypotheses for the underpinning molecular mechanisms,
which may then be used to create detailed experimental designs for reductive validation and subsequently treatment
of disease in human patients.

1.1 Development and Application of Systems Genetics Approaches

1.1.1  Model Organisms in Disease Research

By the early 20" century, the use of specific model organisms, primarily mice and Drosophila, had become com-
monplace in laboratory research, and today dozens of model organisms are used, depending on the situational needs
for particular aspects of biology research. These models vary dramatically in their similarity to humans and in their
research applications—from mice, to which ~99% of human protein-coding genes have approximate homologs [30], to
fruit flies with ~77% [31], C. elegans with ~65% [32], yeast with ~58% [33], and A. thaliana with ~48% [34]. While
mammals serve as the closest proxy to humans, the primary mechanisms of genetic action, and even many basic cellu-
lar phenotypes, such as mitochondrial function, are well conserved throughout evolution. In such cases, examining a
simpler organism may provide hypotheses that can be far more efficiently validated, though it is essential to consider
potential cross-species complementarity [35], even for highly complex neurological phenotypes, e.g. Drosophila or C.
elegans are commonly used in research on Parkinson's disease [36, 37]. For basic knowledge of metabolic pathways—
which are relatively well conserved to invertebrates—much of our understanding has stemmed from such “down-
thinking” approaches, e.g. a significant amount of our insight of insulin signaling stems from C. elegans research [38-
40]. By examining such models for analogs and mechanisms to human diseases, the primary genetic, environmental,
and GXE regulators of complex phenotypes such as energy metabolism and immune response may be identified, then
tested in human populations for ultimate validation.

1.1.2  Scientific Development of Genetic Models

While it had been recognized since the 1860s that studies in identical twins provide the ability to separate environ-
mental from genetic effects, pioneering studies on model organisms had no such way to readily obtain such equiva-
lents. Thus, the often striking variability between individuals resulted in experiments which were difficult to reliably
reproduce. It was recognized that inbreeding would (mostly) eliminate this unpredictable genetic variation, and the
success of the earliest such approaches led to a massive and gradual process that has adapted thousands of “wildtype”
organisms into controlled inbred strains (Fig. 1:3A). For the most commonly used model organisms, dozens of inde-
pendent derivations have been performed from populations collected across the world [41, 42]. Thus, studies using
inbred strains can take advantage of both genetic homogeneity (within strains) or genetic diversity (across strains).
While inbred strains are most commonly used for the reductive research strategies, there are an increasing number of
studies, which use multiple different inbred strains in tandem to create diversity panels (e.g. [43]), akin to GWAS.
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Alternatively, inbred lines may be intercrossed to directly observe trait inheritance and heritability. The first such
applications of this method relied on scanning diverse populations of second-generation (F2) recombinant crosses
between inbred parental lines (Fig. 1:3B). For complex traits, F2s will display a gradual range of phenotypes, typically
exceeding the differences between the parents. The causal loci underlying these effects may either be defined through
genotyping and QTL mapping, or the strains of interest can be successively phenotyped and backcrossed with one of
the parental strains in order to narrow down the causal region(s). However, as the F2 populations themselves are non-
inbred, genotyping must be performed on every individual—until recently an expensive and imprecise process. Fur-
thermore, results can be difficult to reproduce, and GXE factors cannot be readily deciphered. Lastly, the QTLs observed
in F2 populations are often quite broad; an average mouse F2 study using ~500 genotypes can expect QTLs of 20-30
megabases, corresponding to an average of 200-300 candidate genes [44]. While such QTLs can be narrowed down and
validated by backcrossing, this requires 10+ generations of successive phenotyping and genotyping, a time consuming
process even in species with short generation times.
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Figure 1:3 Breeding Schematic for Common Types of Genetic Populations
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(A) Wildtype organisms can be collected in diverse locations, either randomly, or due to suspected envi-
ronmental adaptations. After 20 generations of inbreeding, the lines are considered fully inbred with 99.5%
homozygosity. (B) Inbred lines can then be crossed to form genetically diverse populations of F2 grandchil-
dren, which can then be used for gene mapping studies. When a phenotype or QTL is located, the region of
interest can be selected and backcrossed over 10+ generations for validation. (C) Alternatively, the F2 ani-
mals may be again inbred to form recombinant inbred (RI) lines, which provides biologically reproducible
“clones” that may be used for more accurate QTL mapping. These Rl lines may be crossed to Fl1s to create
semi-heterozygotic recombinant intercrosses (RIX), or may even be outbred further to develop diversity
outbred populations. (D) Alternative types of inbred strains exist, including a spectrum of similar approaches
leading to coisogenic strains that have one or a few variants in only a single gene separating them from their
“parent” line, congenic lines that have a larger gene-region separating the two lines, or chromosome substi-
tution lines, with an entire chromosome replaced. Similarly, conplastic lines can be generated with the mito-
chondria of one inbred strain but the nuclear genome of another. (E) Inbred lines are also commonly ration-
ally turned into G/LOF “strains”, historically through chemical mutuagenesis, but now typically through ES
cell modifications). Please note that this figure is a summary of the techniques most commonly applied in
murine models, and is not exhaustively comprehensive.
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Because of the shortcomings of F2s and backcrosses, development continued on recombinant GRPs, and in the late
1960s, the first recombinant inbred (RI) populations were developed (Fig. 1:3C) [45]. As with F2s, Rl populations provide
genetic variance, yet as each “individual” is an inbred strain, which can be controlled and replicated at will, outliers may
be accounted for, heritability accurately calculated, and causative QTL regions calculated with higher precision (typically
on the order of 1-5 megabases in mice [16, 46]). Furthermore, the fact that identical populations can be studied in
multiple research groups provides economics of scale: higher quality sequencing/genotyping can be performed, more
tissues can be studied, more phenotypes examined, better molecular records assembled, and so forth. Consequently,
the RI concept has been implemented in a variety of organisms and has now been implemented in a wide variety of
organisms, e.g. corn [47], rats [48], mice [49], Arabidopsis [50], yeast [51], C. elegans [52], and Drosophila [53]. More
recently, recombinant intercross (RIX) lines have been developed, which are the F1 progeny of two Rl lines [54]. These
animals are semi-heterozygous, and can thus be examined for dominant and recessive traits, yet are also fully biologi-
cally reproducible, solving weaknesses of both F2 and RI GRPs.

A variety of other models are available as well (Fig. 1:3D), including coisogenics, which differ from their cousin strain
by only a single point mutation, congenics, which differ by a somewhat larger genetic region, chromosome substitution
strains with full chromosome(s) changed [55], and conplastic strains with mitochondria from one inbred strain and the
nuclear genome of another. Finally, it is worth recalling that not even fully inbred organisms are truly genetically identi-
cal, due to differences in epigenetic modifications, gut microbiota, and the thousands of spontaneous mutations that
arise over an individual's lifetime. These changes can be transmitted to progeny, and have led inbred strains to diverge
over time when kept in separate facilities unless special attention is taken. While such spontaneous mutations have in
some cases led to the fortuitous discovery of gene—phenotype links, such as the link between leptin and obesity [56] or
between Nnt and glucose levels [57]. However, in general this genetic drift is an undesirable experimental variable.

1.1.3 Reductionist Genetics : G/LOF Variants

In 1927, it was discovered that ionizing radiation can induce DNA changes [58], a finding followed by the first prov-
en chemical mutagenic chemical agents [59]. While early mutagenesis studies were unable to target any specific gene,
they paved the way for the rational capability to modify an organism's genes at will. By the late 1970s, genetic modifi-
cation (GM) techniques had advanced such that specific genes could be effectively targeted [60], and for the first time
the reverse genetics studies on gene-to-phenotype could be feasibly undertaken. This field rapidly expanded, leading
first to developments allowing arbitrary genome modifications in cell lines [61], and soon after by the creation of the
viable transgenic organisms via pronuclear microinjection of transgenes into fertilized germ line cells [62] (Fig. 1:3A and
Fig. 1:4A). These developments, combined with the advances in genetic engineering, provided a stable platform for
rationally modifying model organisms, and by the 1990s, G/LOF models were possible for nearly any gene in many
model organisms, and with temporal (i.e. can be activated at a given time) or spatial (i.e. tissue-specific) precision [63-
65]. This targeted GM approach has since become not only the standard method for validation of novel gene—
phenotype links and for the in-depth mechanistic examination of metabolic and cellular pathways, but is also used to
screen for the effects of genes by the reductive approach. Such screening programs predominantly rely on using LOF
modifications of genes one-by-one on a single inbred strain background, then phenotyping each mutant strain and
hoping the relevant phenotype was examined. Nearly all genes have been examined using this approach in C. elegans
[66], D. melanogaster [67], A. thaliana [68], and S. cerevisiae [69].
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Figure 1:4 Generation Schematic for Common Types of G/LOF Populations

Preparing gain and loss of function model organisms usually starts with an inbred line. It is important to con-
sider that most G/LOF models are done in one specific genotype in most model organisms. (A) Traditionally,
inbred organisms were targeted by non-specific mutagens such as X-rays or the chemical mutagen ENU. The
many resulting mutations would then be isolated to find the causative change by successive generations of
backcrossing, with phenotyping performed at each generation. In C. elegans, RNAi treatment can be per-
formed by direct feeding of bacterial clones expressing the RNAI; in other species, the technique requires
genomic modifications. In the germ line, oocytes may be modified, e.g. by retroviruses or pronuclear injec-
tion, to include target DNA into an organism. (B) More precise techniques generally use ES cells or eggs as a
platform providing improved reliability in complex organisms, e.g. mice, zebrafish, and Drosophila. These
techniques rely on accurate targeting of a gene region, excision of the DNA, and then either insertion of new
DNA, or proper repair of the broken ends. Several such tools are available, e.g. the older viral methods (ade-
noviruses and lentiviruses) or traditional homologous recombination as well as more modern nuclease-
based techniques (e.g. ZFN, TALEN, CRISPR). Genetic modifications can all be applied in a highly specific (e.g.
modifying a single phosphorylation site), spatially controlled (e.g. tissue-specific) or temporally controlled
(e.g. drug activated) manner. For spatial and temporal control, several such systems are available, e.g. the
Cre-lox and the FLP/FRT systems in mice and zebrafish, or the GAL4/UAS system in Drosophila [70].

However, the cost-benefit ratio of such hypothesis-null screening approaches came into question during the devel-
opment of equivalent programs in mice, where even with a worldwide consortium, the entire genome cannot be feasi-
bly screened (though more than half the genes are now available with targeted mouse ES cell lines [71-73]). Even in
invertebrates, it is impossible to screen every gene for all major phenotypes of research interest. More importantly, it is
clear that the reductive approach is ill-suited for decomposing complex traits into their major components [74], a diffi-
culty arising from the geometrically increasing number of epistatic interactions, the pleiotropic effects of genes [13, 75],
and the fact that even for Mendelian connections, gene action is not a simple on—off mechanism or even necessarily a
linear response [76]. Consequently, most knockout consortiums have turned away from blind screening and moved
towards serving as a resource platform for validation. This change has particularly been driven by the “omics” revolu-
tion, which has demonstrated the improved capability for GWAS and GRP studies to identify novel gene—phenotype
links, which can then be examined with G/LOF models. The most recent developments in reductive genetics now allow
relatively expedited modifications of several genes at once, such as through the TALEN or CRISPR-Cas9 systems (well
covered in recent reviews such as [77] and [78], summarized in Fig. 1:4B), meaning even multi-gene networks identified
through systems studies can be feasibly tested in a reductive setting.
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1.1.4  Synthesis of Complex Trait Analysis

Recently, an increasing number of studies have been published using a hybrid approach combining systems genetics
and reductionism to identify new regulators of complex metabolic processes and diseases [79, 80]. Furthermore, there
is far more capability today to directly validate results in a cross-species approach [81-84]. Thanks to the above-
described technical developments on model organisms, and the exponential increase in omics datasets and technolo-
gies, it is now feasible to combine large-scale genomic, transcriptomic, proteomic, metabolomic, and phenomic layers
in a single study. In human studies too, it is becoming increasingly common to include metabolomic [85] and proteomic
[86, 87] profiles, in addition to the SNP-transcriptome—phenotype layers that have become more common over the
past decade. This multilayered approach has been recently shown for several complex diseases where novel genes and
networks were found as causal: diabetes [18], obesity [88], general mitochondrial function [89], and drug response
[90]. Lastly, even for the reductive approach, these technologies improve the ability to fully characterize the effects of
modifications to target genes: i.e. there is less risk of an unknown/off-target pleiotropic effect to go missed when the
full transcriptome is quantified.

Today, the large-scale availability of detailed omics datasets means that novel results can, in many cases, be vali-
dated completely in silico. For example, a recent observation linking variants in the gene Dhtkd1 to 2-aminoadipate
levels in the BXD mouse population was also observed in two independent mouse populations [18, 91], and then trans-
lated cross-species to humans using one of the dozens of large hospital studies [18, 85]. A similar, but converse, ap-
proach was also taken with 2-aminoadipate, where it was connected to glucose response in a human population study,
then validated in mice [92]. To note, while these links were indeed highly significant in the original human data alone,
the simple scale of omics datasets means that there is a frequently inseparable mixture of false positives and false
negatives and such validation is necessary [93]. This noise particularly affects the study of complex traits, as the impact
of any individual gene variant is often so small as to be almost negligible on the population scale [94]. Thus, the overlaid
consistency across multiple populations brings noisy connections into focus [18, 95], or can indicate differences be-
tween populations [96, 97].

Once such links have been confirmed independently (and ideally translated to humans), it becomes of strong inter-
est to examine the detailed molecular action of these new targets. The original datasets can then be used again to
generate further hypotheses to be applied with the reductive approach—thus a factor which is known to be of interest,
can be gradually built upon to define a why and how link to the phenotype. In these cases, G/LOF models provide a
level of control not possible in population genetics, and minute perturbations can be made to assess and monitor every
step of the pathway [98]. Thus, the reductionist and systems approaches complement, rather than compete, with one
another.

1.1.5 Developments on the Horizon

Despite the tremendous gains in our ability to quantify and understand biological mechanisms, we remain far from
obtaining a complete picture of physiology. Most omics datasets only make use of the genome and transcriptome, as
the proteome, metabolome, epigenome, and other aspects of cellular systems can only be partially quantified and only
by specialized research groups. Furthermore, while an individual's DNA is relatively fixed from cell-to-cell and day-to-
day, nearly all other aspects of biology vary dramatically from cell to tissue and across time. Single-cell sequencing
promises to address the cell-to-cell disparity of measurements [99], while fluorphoric techniques promise the ability to
address day-to-day differences—at least in cell lines [100]. Other developments, such as SWATH proteomics [101],
promise to expand the number of omics “layers” that may be examined. Unfortunately, these upcoming technical
developments—and even more prospective theoretical technologies—do not herald a capability to bypass model re-
search and fully characterize complex diseases directly in humans. Model organisms retain the capability of much
stronger environmental control, controlled genetic variability, faster generation time and hypothesis testing, far more
easily obtained tissue samples, biological replication of results, a better capability to examine GXE factors, and a safer
way to examine potential treatments. Ultimately, however, the goal of disease research is to confidently define major
risk factors in humans, provide early diagnosis and monitoring of disease progression, and establish effective treat-
ments. It is increasingly clear that large population studies in model organisms will serve far beyond their initial scope,
just as just as the Framingham Heart Study continues to yield results more than 70 years after its debut.
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1.2 Perspectives on Holistic and Redudctive Genetics

The wealth of genetic information painstakingly generated over the past century, along with associated technologi-
cal developments, has resulted in an increasing variety of viable scientific approaches towards understanding complex
traits: through reverse and forward genetics, and through reductionist and systems designs. Both approaches necessi-
tated the generation of a tremendous range of technological advances in order to better understand and explain the
fundamental relationships between genotype and phenotype, and extensive development of model organisms. In the
past thirty years, the reductive approach has become nearly perfected, with an ability to apply precise genetic modifi-
cations in vitro and in vivo, allowing the exact assessment of molecular reactions driving many biological pathways.
Conversely, it is only within the past decade that the systems genetics approach became truly viable for the decomposi-
tion of complex genetic systems. This capability has come in part due to new population models, but moreover because
the widespread use of transcriptomics, genomics, and a rising capability in metabolomics and proteomics has allows
unprecedented understanding of the totality of an organism's biological machinery and thus a corresponding increase
in our understanding of molecular interactions at the cellular level.

Despite these advances, our ability to predict or prevent the incidence of complex (and common) diseases such as
cancer, diabetes, and atherosclerosis remains limited except for the most striking environmental influences (e.g. tobac-
co) or genetic variants with major impacts (e.g. leptin deficiency). These failures had led to a crossroads where many
argue for one research approach by pointing to its merits, and to the deficiencies of other methods, and many such
criticisms are valid. Within the context of reductionist approaches, it is clearly infeasible to combine genome wide
G/LOF strategies with exhaustive phenotyping, even under “basal” non-challenged conditions for a simple model organ-
ism such as C. elegans, much less for the mouse. Likewise, systems genetics studies are frequently plagued by an excess
of nominally significant findings, too many potentially causative variants, and/or an inability to convincingly pinpoint
the genetic causation. While further technical developments will assist in the deconvolution of complex traits, the
fundamental differences between reverse and forward, systems and reductive techniques can already be considered
complementary with their reciprocal strengths rather than as competitors. This synergy, for example, allows general
phenotype screening platforms to provide hypotheses for G/LOF experiments, providing a full understanding from the
complex organism phenotype down to the molecular interactions at the cell level. The results from such hybrid ap-
proaches have begun to increasingly provide biologists and clinicians with an understanding of many fundamental
relationships and interactions between genetic inheritance and environmental influences.

In this review, we have focused on the fundamental applications of population studies for the deconvolution of
complex traits, yet this is only the first step towards improving human health. Gains in the understanding of molecular
mechanisms underpinning diseases must be followed by new therapeutic strategies, accurate suggestions for lifestyle
changes, and must be accurately tailored to the needs of each individual based on the minimal information obtainable
for most human subjects (e.g. blood, urine, and DNA). The variation of individual susceptibility to illnesses is becoming
increasingly recognized and tested, yet also creates complexities which must also be addressed in the development of
new therapeutic agents; if a complex disease can be caused by ten independent mechanisms, it is unlikely for a single
drug to treat all patients. While this situation is increasingly realized in human trials for cancer therapeutics [102], the
preclinical success of many compounds is hinged largely on whether the compound works in a single genetic back-
ground of cells in vitro or animals in vivo. Doing so is risky: for example, had early researchers exclusively used the
DBA/2J mouse strain for drug screening, they likely would have concluded that morphine is a non-addictive and ineffi-
cient painkiller [103]! Examining even a handful of diverse cell lines or inbred strains would allow a basic characteriza-
tion of genetic diversity in drug response and inform greatly for early clinical trials. Combining the reductive and sys-
tems approaches will not allow identification of all the intricacies of complex genetic diseases, nor will they provide a
silver bullet for rational drug development. However, this approach will allow further insights into complex traits, lead-
ing not only to additional potential drug targets, but an improved capability to understand the development of disease
states and thus earlier diagnosis, better monitoring, and eventually prevention. With currently available tools and tech-
nology, complex mechanisms may now be rationally simplified to allow for more rapid and accurate identification of
novel genetic or GXE factors that lead to disease and provide a more effective bridge from studies in model organisms
to the clinic.
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Chapter 2 Reducing Systems Genetics

Section 2.1 is adapted from Andreux P.A.*, Williams E.G.*, Koutnikova H., Houtkooper R.H., Champy M.F., Henry H.,
Schoonjans K., Williams R.W., and Auwerx, J. Systems genetics of metabolism : the use of the BXD murine reference
panel for multiscalar integration of traits, Cell, 2012. (* : Co-first author with Andreux.)

Section 2.2 is adapted from Williams, E.G., Mouchiroud L., Frochaux M., Pandey A., Andreux P.A., Deplancke B., and
Auwerx J. A conserved role for the aryl hydrocarbon receptor in the regulation of movement, PLoS Genetics, 2014.

Over the past decades, study designs have been optimized to analyze genetic factors in large populations of natural-
ly-divergent strains, chiefly in Mus musculus, S. cerevisiae [104, 105], Drosophila melanogaster [106], and more recent-
ly, C. elegans [107]. Murine genetic reference populations (GRPs) are among the best-established mammalian models
with which to study gene-by-environment (GXE) interactions. These GRPs are typically sets of inbred strains which have
been assembled to incorporate carefully titered levels of genetic complexity that model aspects of human populations.
The recombinant inbred (RI) strain families enable tight experimental control while each genotype is represented by an
entire isogenic line, thereby enabling extensive replication studies [108, 109]. The BXD family, currently the largest and
best characterized mouse GRP, is composed of ~160 lines which descend from crosses between C57BL/6J (B) and
DBA/2J (D) [110]. GRPs such as the BXDs have been bred for quantitative trait loci (QTL) analyses, which are statistical
genetic techniques that define regions of the genome (intervals or loci) and their modulating effects on phenotype. The
fixed genotypes of each strain can be combined with full sequence data of the parental strains to simplify QTL mapping
and in some cases specifically identify causal sequence variants [111, 112]. Furthermore, owing to the relatively fixed
genotypes of Rl populations, massive databases of phenotypes and expression data can be assembled and shared
across time, allowing for rapid multiscalar analyses. Over the last two decades the BXD family has been exploited main-
ly to study the genetics of immune function and infectious disease [113, 114] and in behavioral and neuropharmacolog-
ical research [64, 115-117]. However, few metabolic phenotypes have been previously generated. In the present meta-
bolic survey, we systematically generated quantitative data for 140 standardized phenotypes, including glucose re-
sponse, body weight change, physical activity, and oxygen consumption across a large subset of the BXD family using
adult males and females.

Energy homeostasis in metabolism is the result of a tight balance between energy intake and expenditure. Metabol-
ic disorders, such as obesity and type 2 diabetes, often result when this equilibrium is disturbed by complex interac-
tions between genetic and environmental factors [118]. Predisposition to complex diseases such as the metabolic syn-
drome is inherited in a non-Mendelian fashion, emphasizing genetic heterogeneity and complex GXE in pathogenesis.
Genetically engineered mouse models are not ideal for dissecting polygenic networks or GXE interactions precisely
because they have been optimized to study actions of single genes on single genetic backgrounds [72]. In contrast,
studies in humans have identified risk factors for developing metabolic diseases with both environmental (e.g. lack of
exercise) and genetic causes (e.g. mutations in the FTO locus [119]), but these studies typically fall short of defining GXE
due to an inability to control environmental influences, cohort and admixture effects, difficulty in obtaining certain
types of physiological and molecular data, and the inability to sample many individuals with identical genomes under
different conditions. Effective population-based experimental methods to dissect intricate GXE effects, such as the
BXDs, are needed to model complex genetically admixed human populations.

All data are publicly available as a resource to the scientific community and complement massive expression data
for key cells, tissues, and organs that we and others have deposited in the GeneNetwork database
(www.genenetwork.org). These essential baseline clinical phenotypes are widely variable, often highly heritable, and in
many cases can be linked to genetic loci encompassing known and novel candidate genes. Heritability and sex effects
were highly variable among traits. Variation in one key trait, alkaline phosphatase, was linked to hypophosphatasia in
lines containing the C57BL/6 allelic variant. Downstream of this hypophosphatasia, differences in bone structure were
noted, as well as a significant increase in pyridoxal-phosphate (PLP) levels and a corresponding decrease in pyrixodal
levels. In the same study, we also observed major differences in glucose homeostasis and response to a glucose toler-
ance test across the BXDs, and across male and female mice. However, in both cases, a few key genes were observed as
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responsive for different stages of glucose response. In a followup study (section 2.2), we examined how spontaneous
activity varies across the population, and we uncovered a single gene, the aryl hydrocarbon receptor (Ahr) which is
responsable for a major portion of this variability. These studies validate the use of the BXD GRP as a powerful resource
to study metabolic homeostasis and identifies new candidate genes for disease, and highlight the importance of con-
sidering males and females separately in the study of most metabolic traits.

2.1 Sexual Dimorphism in General Metabolic Traits

2.1.1 Optimization of Study Design for Genetics of Metabolism

Mendelian traits such as coat color can be accurately measured with a sample size of one per genotype. In contrast,
complex metabolic traits with lower heritability benefit greatly from larger sample sizes per genotype. One of the ad-
vantages of GRPs over non-inbred yet genetically diverse strain populations (such as an F2 intercross) is that the herita-
bility of a trait can be accurately measured and effectively boosted by repeatedly resampling cohorts of isogenic indi-
viduals of the same genotype and sex (Fig. 2:1A). The observed variability within isogenic strains is thus primarily envi-
ronmental, whereas differences among strains are largely genetic. A first step in experimental designs using GRPs is to
estimate heritability and the sample size required to accurately measure a phenotype in a specific environment. Such
calculations provide both a justifiable number of replicates per genotype and the total numbers of genotypes needed to
reliably discriminate gene loci using QTL mapping methods. When traits have high heritability, increasing the number of
genotypes (i.e. strains) greatly improves the power and precision with which QTLs can be mapped, while increasing the
number of cases per genotype has almost no impact (Fig. 2:1B, top). In the case of a Mendelian trait such as coat color,
mutations in the brown (Tyrp1) and dilute (Myo5a) genes explain nearly all variation in pigmentation in the BXD family
and map with peak LOD scores above 25 at these genes [120]. In contrast, complex diseases, including virtually all met-
abolic disorders, are polygenic, more dependent on environmental influences, and typically have a nearly normal distri-
bution across genotypes. Power analysis shows that a study using 20 BXD strains with 4 animals per genotype will often
detect loci that explain 50% or more of the genetic variance of a moderately heritable trait, while a study using ~40
strains will typically detect loci responsible for ~¥30% of the variance (Fig. 2:1B, bottom).

We phenotyped a set of 43 strains—24 strains with male and female animals, 18 strains only with males, and 1
strain only with females (Fig. 2:1C). Phenotyping was initiated at 13 wks of age and all cases underwent six testing
categories (Fig. 2:1C). Mapping power was estimated as a function of heritability and sample size. We calculated herita-
bility as 1 minus the ratio of the within-strain variance to total sample variance (Fig. 2:1D). Most parameters have mod-
erate to high heritability (h?), averaging 0.67. The more heritable a trait, the higher the likelihood it will map to signifi-
cant QTLs [121]. Under the tightly controlled environmental conditions in our vivarium, both glucose tolerance and
blood pressure had h? ~0.7, indicating ~70% of the variance in these traits could be explained by genetic factors. Con-
sistent with these moderately high values, each of these traits was associated with at least one significant locus. In the
case of blood pressure, we have defined a strong candidate gene—UBP1—using a human genome-wide association
study (GWAS) as a cross validation cohort [81]. The BXD GRP allows complementary forward and reverse genetic meth-
ods to analyze metabolic traits (Fig. 2:1E). Conventional forward mapping methods start with heritable differences in
phenotype and define loci and sequence variants (Fig. 2:1E). Reverse genetics starts from defined candidate genes and
identifies downstream phenotypic effects (Fig. 2:1E) [92, 122]. Because full sequence data are available for both paren-
tal strains of the BXD family, reverse methods can now be applied genome-wide using a standard mapping population.
In this resource manuscript, we demonstrate both approaches to the data.
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Figure 2:1 Study Design for Identifying Genetic Loci Which Control Metabolic Traits

(A) The BXD lines were created by crossing B and D parents. The resulting heterozygous F1 mice were again
crossed to generate genetically diverse but non-reproducible F2 animals. These F2 animals were inbred until
generation F20+, at which point the genome was 99.5+% isogenic and the strains are considered fully inbred
and together constitute a GRP. The ~160 BXD strains are numbered 1-183. (B) Top panel: power depends
mainly on strain number instead on number of mice/strain. Bottom panel: the power to detect a given frac-
tion of variance with a single QTL. Power was calculated with cohort size fixed at 4. Both calculations were
done for a trait with heritability of 0.67. (C) All animals underwent the same phenotyping programs as speci-
fied in the result section. The age corresponds to the timing of the phenotype experiment. BXD60 was only
phenotyped in females—all other female strains overlapped with male strains. (D) Heritability of select traits
from each phenotyping group. Traits discussed in-depth in this resource paper are indicated in black. Traits
are grouped according to phenotyping test. "Body Composition" represents echocardiography phenotypes,
bone size, bone density, and body weight. (E) The analysis flow-chart. The cause-to-consequence effect
reads from top to bottom. A SNP induces a change in the expression or function of a candidate gene, which
has an impact on a given downstream effect or phenotype.

2.1.2 The BXD Family Has Wide Variation in Metabolic Traits

Metabolic traits vary to a remarkable degree among the BXD strains, with every trait showing significant variation
(Fig. 2:2A). The least variable trait, basal body temperature, varied significantly (from 35.8%0.3 °C in BXD34 to 38.9+0.2
°C in BXD95) despite an overall variation of less than 1.1 fold, and the most variable trait, alkaline phosphatase (ALPL)
protein level, varied 6.5-fold between BXD31 (44+11 U/L) and BXD90 (28718 U/L). For the majority of traits, the distri-

bution of phenotypes is continuous and approximately normal in both sexes.

As expected, sex-linked differences are a significant source of variance [123], with the more variable traits some-
what more likely to exhibit significant sexual dimorphism (Fig. 2:2B), although nearly 60% of metabolic traits had no
significant differences between the sexes. These metabolic traits can thus be divided into four categories in terms of
the significance of variation and correlations between sexes. The first separation considers whether the trait is variant
between the sexes, while the second separation considers traits which do not correlate between the male and female
trait values (e.g. shortening fraction in Fig. 2:2C), and then those which are correlated (e.g. red blood cell volume in Fig.
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2:2D). The first category, for traits with no significant sex differences but also without strong correlation between males
and females, indicates a phenotype where variation cannot be reliably attributed to genetic factors (i.e. variation is due
to environmental or technical influence) or that there is an inconsistent sex-by-strain interaction effect. In the case of
the shortening fraction, we suspect the environmental or technical noise as the cause of this discrepancy due to the
relatively low heritability (h? = 0.5) of this trait (Fig. 2:2C). In contrast, the traits with strong correlations between sexes
indicate that the genetic variability is not affected greatly by the environment, and thus the slope of the correlation is
close to 1 (Fig. 2:2D).

The remaining 40% of traits exhibit significant differences between males and females, and again thse traits can be
with or without strong male-female correlation. One such striking example is body weight, where there are dramatic
differences between males and females, but again without consistency across strains: e.g. BXD75 males are the leanest,
whereas the BXD75 females are in the middle range of body weights (Fig. 2:2E). Lastly, a few traits had both significant
sex-associated differences, but also strong genetic correlation, indicating both genetic and sex-by-strain interaction
effects. One such trait, alkaline phosphatase, will be discussed further in Fig. 2:4.
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Figure 2:2 Strain and Sex Influences Differ Widely Across Metabolic Parameters

(A) Metabolic phenotype variation for all cohorts. (B) Traits with higher variation are more likely to have sig-
nificant differences between males and females; 41% of traits are significantly different (traits on the x-axis
to the left of rank 22). (C) Example of a sex-independent trait that is mostly determined by environment: the
ventricular shortening fraction. (D) Example of a sex-independent trait that is mostly determined by genet-
ics: the mean cell volume of red blood cells. (E) Example of a sex-influenced trait that is explained by a mix of
genetic and environmental factors: body weight at 18 wks.

2.1.3 QTLs Link Phenotypes to Causal Loci

The data sets generated in this population consist of both general blood parameters, such as hematocrit and iron
levels, and physical phenotypes, such as heart rate and oxygen consumption. Suggestive or significant QTLs were de-
tected for nearly 40% of all phenotypes. Traits with the highest heritability and most significant QTLs usually mapped to
a single locus. This type of trait is exemplified by the tissue-nonspecific (liver/bone/kidney) alkaline phosphatase (here-
after termed ALPL) protein activity, a trait for which 58% of the variance is explained by a single QTL (Fig. 2:3A). Many
other traits, particularly complex phenotypes such as respiration, map to several differnt loci. In these cases, polygenic
networks of unlinked loci influence trait variance. One such example is basal oxygen consumption (VO,), a trait for
which three loci independently contribute to phenotypic variation—21% for the most significant locus on Chrl, 18% for
the locus on Chr4, and 8% for the locus on Chrl1 (Fig. 2:3B).

Genes located within all QTLs were first examined for known links to function using PubMed and GeneRIF [124]. All
but one of the top 10 QTLs contained at least one strong positional and functional candidate (Fig. 2:3C). In some cases,
the positional candidate is well-established in literature as the causative gene behind the QTL, e.g. the QTL for hemato-
crit levels maps to a locus containing the hemoglobin gene [125]. In other cases, the candidates are linked more tenta-
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tively. For example, the QTL for bone surface area contains the steroid 5 alpha-reductase 1 (Srd5a1) gene, which has
been linked to bone mass in a recent study on Srd5al knockout mice [126], while other phenotypes were not clearly
linked to any candidate gene, suggesting that the QTL is either completely novel, or not well studied.
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Figure 2:3 Analysis of Peak Trait QTLs

(A) The genetic variation attributable to a QTL is calculated by the correlation between the trait values (here,
ALPL levels) and the genotype at the peak location. ALPL has only one QTL, which explains 58% of the genet-
ic variation. (B) The genetic variation attributable to each of the three QTLs mapped to oxygen consumption.
Each QTL has a smaller effect than for ALPL, but together account for a large amount of variation. General-
ized linear modeling or ANOVA (used here) is necessary to calculate the variation independently attributable
to each QTL for traits which map to multiple QTLs. (C) The LOD score, corrected p-value, and QTL peak loca-
tion are given along with the trait for the top 10 distinct phenotypes. Of note, this is not all of the significant
or suggestive peaks for each trait; only the most significant peak is listed. One positional candidate is given
for traits when a literature analysis of every gene under each peak has yielded a linked result. Candidates
not discussed in the text include the link between white blood cells and Irak-M [127], Pten and heart rate
[128], and RER in females and Bckdh [16]. Systolic BP LOD score is for analysis as described in [81].

2.1.4 ALPL Variants Contribute to Changes in Bone and Vitamin Bg Homeostasis

Serum ALPL levels are strongly variable among BXD strains, with females having significantly higher expression (but
less variation) than males (Fig. 2:4A). Expression of Alp/ mRNA in the liver is also highly variable, but does not differ by
sex (Fig. 2:4A) [129]. Interestingly, both Alp/ mRNA and ALPL protein activity are highly correlated by strain, regardless
of the sex of the animal (Fig. 2:4B), suggesting strong genetic modulation and a sex effect shared by all strains. Data for
ALPL activity in males and females mapped to a common QTL: an 11 Mb region of Chr4 (Fig. 2:4C) that has already been
reported in an F2 cross between C57BL/6 (B) and DBA/2 (D) mice [130]. Alp/ mRNA also mapped to the same region
(Fig. 2:4C). This QTL harbors ~100 genes, including the Alpl gene itself. We hypothesized that differences in ALPL activity
are primarily and perhaps almost exclusively caused by one or more allelic differences in the cognate Alp/ gene, i.e that
this is a so-called cis-regulated expression QTL (cis-eQTL). Rapid identification of all sequence variants in the region was
performed using a mouse SNP database (www.genenetwork.org). Of 11 exonic SNPs that differentiate B and D haplo-
types of Alpl, nine cause synonymous mutations and two cause missense mutations in exon 9, resulting in amino acid
changes of R318Q and L324P (Fig. 2:4E). We then modeled the impact of these mutations on ALPL protein structure
using Phyre2 (www.sbg.bio.ic.ac.uk/phyre2/) (Fig. 2:4D). Although these mutations are not located in the active site of
ALPL (around S110) [131], they are predicted to change the 3-sheet/a-helix structure (R318Q and L324P are in green in
Fig. 2:4D, showing the described excerpt of ALPL + 21 amino acids). Remarkably, mouse and human ALPL protein se-
quences share 93%/97% identity/homology. In particular, the region harboring the two SNPs is highly conserved in
vertebrates—notably proline 324 is invariant in other vertebrates, except in C57BL/6 where it has mutated into leucine

27



(Fig. 2:4E, same excerpt as in Fig. 2:4D). Moreover, the high degree of conservation of the ALPL protein is also revealed
by phylogenetic tree analysis—human ALPL has 77%/87% sequence identity/homology with zebrafish ALPL, 44%/61%
with D. melanogaster, and 32%/45% with E. coli (Fig. 2:4E). ALPL orthologs separate into three clusters: vertebrates,
insects, and bacteria (Fig. 2:4F). Given this genetic conservation, it is likely ALPL has functions in vertebrates that are
wholly unrelated to bone structure.
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Figure 2:4 Reducing ALPL to the Causative Allelic Variant

(A) Expression variation of serum ALPL activity and mRNA levels from liver transcriptome data. Strains with
the D allele (red) have significantly more ALPL protein and Alp/ mRNA than strains with the B allele (white)
for all comparisons (p < 0.005). Males have significantly less ALPL protein than females, but there is no dif-
ference in mRNA levels. (B) Correlation between male and female Alp/ mRNA and ALPL protein levels
demonstrate high trait heritability (Fig. 2:1D). (C) QTL map for liver Alp/ mRNA and blood ALPL levels in
males and females. All four QTLs (male and female traits are mapped separately) mapped to the same loca-
tion and crossed the significance threshold of p < 0.05, indicated by the red horizontal line. The Alp/ gene is
located below the rectangular peak at right. (D) 3D model of ALPL from Phyre2, based on the crystal struc-
ture of the placental form of alkaline phosphatase. Enlarged on the right are the structure of the amino acids
flanking and including the two missense mutations (noted in green). (E) 44 amino acid excerpt of sequence
comparison of orthologs of ALPL, the amino acid sequence of the region modeled in panel D is shown here.
The full protein sequence is highly conserved in mammals (>90% homology) and moderately from mammals
to bacteria (>30% homology). (F) Phylogenetic tree of Alpl. The gene has orthologs in all known species, no-
tably including invertebrates.

In humans, mutations in the ALPL gene can cause varying degrees of hypophosphatasia [132], a disorder nearly al-
ways associated with the accumulation of phosphoethanolamine (PEA) in the urine, extracellular pyridoxal-5'-
phosphate (PLP) in the blood, and extracellular inorganic pyrophosphate (PP;) in urine and blood. Downstream of these
biomarkers are many pathways involved in bone remodeling [133], amino acid metabolism, and neurotransmitter
regulation [134]. Therefore, we examined patterns of segregation of phenotypes among BXDs by testing several strains
with either the B allele (C57BL/6, BXD48, BXD65, BXD68, BXD75, BXD103) or the D allele of Alp/ (DBA/2, BXD89, BXD90,
BXD95). We first reconfirmed that ALPL enzymatic activity was different among strains carrying the alleles (Fig. 2:5A).
As predicted, extracellular PLP levels were strongly negatively correlated with ALPL in both sexes, supporting the hy-
pothesis that the BXDs are a good model for hypophosphatasia (Fig. 2:5B). Furthermore, ALPL levels did not correlate
with levels of calcium or phosphate (P;), consistent with studies in humans differentiating hypophosphatasia from rick-
ets and osteomalacia [133]. Femur bone structure evaluated via X-ray microtomography (uUCT) indicated decreased
bone area and volume in females with the B allele of Alp/ (Fig. 2:5C), with no difference in overall animal weight be-
tween cohorts (p = 0.76). The same tendency was also noted for males. Together these data suggest that the BXD
strains are a useful model for hypophosphatasia.
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It is very plausible that the differential regulation of PLP (Fig. 2:5B) by ALPL drives further phenotypic changes (Fig.
2:5D). PLP acts as a cofactor in many important biochemical reactions: principally, it is a required prosthetic group for

all aminotransferases, suggesting a critical role in amino acid metabolism [134], and it is also an essential coenzyme for
biosynthesis of heme [135]. Confirmation of this link between ALPL over PLP to amino acid and hematological parame-

ters warrants future work.
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Figure 2:5 Clinical Phenotyping of Lines with Extreme Alkaline Phosphatase Levels

(A) ALPL levels in all individuals in a further in-depth study in male and female mice for individuals from the
11 strains described in the text. The effect observed on serum ALPL levels shown in Fig. 2:4A was highly re-
producible in this independent study, even given a significant difference in the age of the animals in the two
studies (19 weeks vs. ~46 weeks). (B) Extracellular PLP levels strongly negatively correlated with ALPL levels
in males and females. No correlations were observed between ALPL and extracellular PL, but the ratio of ex-
tracellular PLP/PL was also strongly negatively correlated with ALPL. (C) Bone volume and surface area were
significantly decreased in animals with the B allele of Alp/, consistent with the hypothesis of hypophosphata-
sia in the strains with the B allele. (D) Scheme summarizing the multiple roles of ALPL in metabolism. Before
entering tissues, pyridoxal-5'-phosphate (PLP) in the plasma must be dephosphorylated by ALPL into pyri-
doxal (PL), which can traverse cell membranes. PL is converted back into PLP by the pyridoxine kinase (PDXK)
in the target tissues, such as liver or brain. PLP is a cofactor in many enzymatic reactions. Circulating ALPL al-
so converts pyrophosphate (PP;) into inorganic phosphate (Pi). While PP; inhibits bone mineralization, Pi and
calcium (Ca?") stimulate it. Low levels of ALPL activity disrupt proper bone development and remodeling via
this mechanism.

2.1.5 Variation in Glucose Response Indicates Genetic Factors Influencing Diabetes

Analysis of complex metabolic phenotypes also yielded QTLs with promising candidates. One such phenotype is glu-
cose response during intraperitoneal glucose tolerance test (IPGTT), which records glycaemia levels before and 15, 30,
60 and 120 minutes after glucose injection and the overall glucose excursion, calculated as area under the curve (AUC).

The AUC is significantly higher in males (Fig. 2:6A), but correlates between the sexes (Fig. 2:6B). The AUC is also linked

to physical parameters such as body weight and composition in males, but surprisingly, not in females (Fig. 2:6B), per-
haps partly explained by the fact that fewer female strains were studied. These results show that variation in glucose
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response is significantly determined by genetics and partly sex independent. Consistent with these observations, map-
ping QTLs for glucose levels during IPGTT revealed both common and distinct loci in both sexes.

All genes under the four significant or suggestive QTLs for female glucose response on Chrs1, 2, 7 and 9 (Fig. 2:6C)
were investigated. The locus on Chrl was associated with late glucose response, with glycaemia at 120 minutes giving
the highest LOD score (Fig. 2:6C). Within this locus, two genes are associated with type 2 diabetes susceptibility in
humans: cytosolic phospholipase A2 group IV gene (Pla2g4a) and prostaglandin-endoperoxide synthase 2 (Ptgs2, also
known as Cox2), both involved in prostaglandin metabolism [136, 137]. A second QTL for early glucose response
mapped on Chr2 (Fig. 2:6C). Several genes known to be involved in insulin secretion or type 1 diabetes susceptibility are
located under this peak, including paired box 6 (Pax6), Cd44, and catalase (Cat) [52, 138, 139]. When blood glucose is
measured from mice under fasting conditions, only a single locus is mapped on Chr7 (Fig. 2:6C). Although there are 91
genes under the locus, no gene was previously linked to fasting glucose levels in mice or in humans. Finally, the global
AUC is strongly associated with the QTL located on Chr9 (Fig. 2:6C). This region contains 31 genes, including one that
has also been linked with insulin secretion: plasma membrane-related Ca?*-ATPase-1 (Atp2c1) [140].
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Figure 2:6 Analysis of Response to an Intraperitoneal Glucose Tolerance Test

(A) Variation of the AUC of the glucose levels from 0 to 120 minutes. (B) Network of glucose tolerance re-
sponse determinants in males and females. Full details are given in Table S2. (C) Multiple and single QTL
heat map for glucose levels at each time-point. Loci switch according to the feeding status of the mice. Fast-
ing glucose (t = 0min) maps appear only on Chr7. The early response to glucose injection (t = 15min) maps
on Chr2 only, while the rest of the time points also map on Chrl and Chr9. Candidates under each QTL were
selected according to existing literature showing their link with type 2 or type 1 diabetes. (D) Network built
around overall glucose response using gene expression in the liver. Among the top 500 liver mRNA corre-
lates with AUC, two were located on Chrl QTL (Arpc5 and BC003331), and one on Chr9 QTL (Rabé6b) (yellow
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boxes). One gene had a transQTL on the Chrl QTL (Ppp1r3b), four had transQTLs on the Chr2 QTL (Sfrs6,
Clic4, Slco4al and Mtf2), and one had a transQTL on the Chr9 QTL (Gip) (yellow boxes). Blue boxes indicate
the five genes best correlated with AUC (Wapal, Rin3, Omt2b, Stradb and Myc). Bold dark blue lines repre-
sent -1 <r<-0.7, light blues line -0.7 < r < -0.5, light orange lines 0.5 < r < 0.7 and bold red lines 0.7 < r< 1.

Functional analysis of the three QTLs related to glucose response on Chrl, 2, and 9 uncovered six genes known to
be involved in glucose regulation. However, these QTLs contain altogether 131 genes, many of which are not yet char-
acterized. Therefore, we highlighted potential new candidates by finding the strongest mRNA correlates in liver (Fig.
2:6D). From the list of the 500 best correlates, we selected candidates from three categories: (1) genes located under
the QTLs on Chrl, 2 and 9; (2) genes that have trans-QTLs mapping to these loci; and (3) the five top gene correlates
with glucose response. The most significant matches were integrated into the network (Fig. 2:6D). Protein phosphatase
1 regulatory subunit 3B (Ppp1r3b), a protein that regulates hepatic glycogen synthesis [141], Myc, which plays a role in
hepatic glucose uptake and utilization [142], STE20-related kinase adaptor beta (Stradb), and Rabéb, correlated exclu-
sively with AUC (Fig. 2:6D). In contrast, the rest of the candidates were entangled in an intricate network evolving
around the AUC (Mtf2, Slco4al, BC030417, Srfs6, Gip, Wapal, Clic4, Arpc5, Rin3, Omt2b, and BC003331) (Fig. 2:6D).
Amongst these genes, Sfrs6 and Gip have also been linked with glucose homeostasis [143, 144].

2.1.6 Energy Expenditure Linked to mRNA Expression Networks

The volumes of oxygen consumed (VO,) and CO, exhaled (VCO,) give an indirect measurement of mitochondrial
function in vivo—another key complex metabolic phenotype [43, 118]. The respiratory exchange ratio (RER), defined as
VCO, / VO,, is an indirect measurement of the primary energy substrate used by the organism, e.g. fats, proteins, or
carbohydrates. Together, these parameters provide a window on global energy homeostasis. In contrast to ALPL and
glucose response, the overall variation in these three parameters was quite modest (Fig. 2:7A). Furthermore, these
traits had only average heritability (Fig. 2:1D). Males and females did not have significantly different energy expendi-
ture, and the phenotypes were not significantly correlated by strain. Despite these modest indicators of genetic influ-
ence, these traits mapped significantly and suggestively to five distinct QTLs (Fig. 2:7B).
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Figure 2:7 Regulatory Network Underlying Differences in Respiration

(A) Variation among male strains of BXD mice in three parameters of respiration: VO,, VCO and RER. (B) QTL
graphs of the three respiratory parameters, VO: (blue), VCO: (red), and RER (green). Significance is shown by
the red horizontal line, suggestive by the blue line (LOD > 3.3 & 3.0, respectively). Candidate genes with es-
tablished links to energy expenditure are listed below the locus (Aox1, Atp5/, Creb3, Ube2r2, Aqp3, Mrpl54,
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Pias4, Tab1, and Atf4). (C) Network graph showing all positional candidates with mRNA expression that cor-
relates significantly with the phenotypes in whole eye tissue [120]. (D) Expanded network graph using the
same dataset, including the top 10 mRNA correlates of the phenotypes (light blue boxes). Interestingly, RER
had the strongest top mRNA correlates (Acad9, Dusp10, and Adar), while Kif4 was the only significant corre-
late of all three parameters, and the only strong (|r|>0.7) mRNA correlate to VO, and none were observed
for VCO.. Prkca and Mgat4a were shared significantly between two parameters. Despite the strong correla-
tion between VO, and VCO,, most top correlates were not shared. Bold dark blue lines represent -1 <r<-0.7,
light blues line -0.7 < r <-0.5, light orange lines 0.5 < r < 0.7 and bold red lines 0.7 < r < 1.

Similar to glucose response mapping, common QTLs were observed, with VO, and VCO, containing overlapping
peaks on Chrl, 4, and 11. Somewhat surprisingly, RER maps to separate QTLs on Chr10 and Chrl5 (Fig. 2:7B). All 441
genes under the five peaks were analyzed for functional relationships to energy expenditure. Several genes closely
related to mitochondrial function were identified under the QTLs (Fig. 2:7B), for example ATP synthase H* transporting
mitochondrial Fo complex subunit G (Atp5/) and mitochondrial ribosomal protein 54 (Mrpl/54) (Fig. 2:7B) [145]. Several
candidates related to fat metabolism were also identified, including aldehyde oxidase 1 (Aox1) and activating transcrip-
tion factor 4 (Atf4, also known as Creb2) [146, 147].

All positional candidates were subsequently analyzed for covariation with VO,, VCO,, and RER in order to identify
potential candidates that were not yet reported in literature. This was done using an extensive BXD microarray data-
base of whole eye mRNA [120], a tissue containing a variety of cell types, including neurons and both glycolytic and
oxidative muscle. The network analysis of the 441 genes under the RER, VO,, and VCO;, QTLs narrowed the list to four
genes tightly covarying with the phenotypes: aquaporin 3 (Agp3), ubiquitin-conjugating enzyme E2R 2 (Ube2r2), cAMP
responsive element binding protein 3 (Creb3), and protein inhibitor of activated STAT 4 (Pias4) (Fig. 2:7C). Agp3 and
Pias4 are negative correlates of RER, while Ube2r2 and Creb3 are positive correlates of VO, and VCO, (Fig. 2:7C). As of
yet, none of these genes have been clearly linked to respiration or mitochondrial function. However, these candidates
belong to gene families with clear ties, suggesting a functional, yet hitherto unknown relationship.

To expand the small network of positional candidates, the top 500 expression correlates with each trait were calcu-
lated and the top 10 correlates added into the network (Fig. 2:7D). This network indicated that while VO, and VCO, are
tightly correlated and share QTLs, several of the most significantly correlated genes, like profilin 1 (Pfn1), phosphatidyl-
inositol 3-kinase, regulatory subunit 1 (Pik3r1), and aryl hydrocarbon receptor repressor (Ahrr), were linked to VCO,
exclusively (Fig. 2:7D). RER also presented exclusive correlates, such as dual specificity phosphatase 10 (Dusp10) and
acyl-CoA dehydrogenase family, member 9 (Acad9). While on first thought it may be surprising that RER does not net-
work closely with VO, and VCO,, RER is a weight-independent measurement of metabolic flexibility. The common nodes
that link VO, or VCO, with RER, such as protein kinase C alpha (Prkca), pantothenate kinase 1 (Pank1), and kinesin
family member 4 (Kif4) have clear relevance to energy regulation [148]. Importantly, the only gene significantly linked
to all energy expenditure phenotypes, Kif4, could affect metabolism possibly due to its regulation of poly ADP-ribose
polymerase 1 (Parp1) [94, 149]. Similar network analyses using the same analytical technique in liver showed many
similar top candidates, notably including Pank1 and Kif4, which are also linked in the eye network to VO, or VCO; with
RER.

2.1.7 Discussion

One of the main challenges in biomedical research is determining how genetic factors interact to influence human
healthspan and how to develop effective strategies for the diagnosis, prevention, and treatment of chronic multifacto-
rial metabolic diseases. Studies in model organisms often focus on single genes, which allows for precise mechanistic
dissection of individual pathways yet lacks the same level of real-world genetic complexity behind variation in metabolic
traits. This can compromise the generality and the translational utility of findings. To address this problem and to pro-
duce more robust models for systems genetics approaches on metabolism, we have shown the utility of the BXD GRP,
which is currently the largest and best studied mammalian GRP. The BXDs constitute a reproducible and high resolution
mapping panel with ~5 million segregating variants, similar to human populations [150]. When using GRPs, statistical
power and mapping precision are mainly a function of the number of genotypes that are included in a study. For the
metabolic phenotypes measured here, non-genetic variation within a genotype is generally low compared to variation
across genotypes, demonstrating high heritability in a standard vivarium environment. Essentially all measured traits
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have sufficient heritable variation to motivate detailed genetic and QTL analyses using only a moderate number of
strains (~40) and mice (~180). Nearly half of the metabolic phenotypes differed significantly between sexes, thus meta-
bolic traits do not generalize reliably from one sex to the other. While balanced and interleaved sampling of both sexes
may offer more benefit than studying only one sex, though practical reasons often limit such designs.

As such, we analyzed 140 basic metabolic traits in both sexes, such as glucose response and body weight, of which
approximately half displayed significant differences between males and females. For one such trait, activity, we exam-
ined it in closer depth in a cohort of male mice only. Across these measurements, we observed 40 significant peak QTLs
and a further 16 had suggestive peak QTLs. The strongest QTLs are for expression phenotypes and Mendelian-like clas-
sical phenotypes, with the strongest mapping for ALPL enzyme levels and could be clearly linked to the Alp/ gene. The
BXDs have several variants in this gene, two of which cause amino acid changes in evolutionary conserved residues—
R318Q and L324P—and are predicted to change the 3D structure and activity of the ALPL protein. Presence of these
mutations in carriers of the B6 allele closely mimics downstream phenotypes of the human disorder hypophosphatasia,
primarily the strong increase in extracellular PLP levels, which along with ALPL levels provides the most precise bi-
omarker of hypophosphatasia [133]. One prominent downstream effect of ALPL is its effect on promoting bone mineral-
ization by hydrolyzing inorganic pyrophosphate (PP;), an inhibitor of hydroxyapatite formation, into inorganic phos-
phate. Consistent with this hypothesis, mice with the B allele had significantly reduced bone volume and surface area.
These observation have important translational value, as Alp/ coding variants are known to contribute to heritable
differences in bone metabolism in humans [151].

Most metabolic traits are, however, complex and map to multiple loci and with lower strength. In one striking ex-
ample, we identified that ~30% of the variability in spontaneous movement (itself 5-fold variable across the BXD popu-
lation) is attributable to a single locus on chromosome 12. Through bioinformatic approaches, we were able to priori-
tize and rank genes in this locus and attribute Ahr as the most likely causal candidate. In a cross-species validation, we
identified that reducing the activity of this transcription factor leads to a substantial increase in humanized mice, C.
elegans, and Drosophila, a surprisingly conserved role for this gene in the regulation of movement (a relatively general
phenotype) across such a wide range of species. For other complex traits, such as glucose levels, we were able to detect
multiple loci. In this case, we confirmed six established positional candidates. Three of these candidates—Cd44, Cat,
and Pax6—are located in the Chr2 locus and linked to insulin secretion or type | diabetes. In line with this linkage, a
large F2 cross study of basal insulin levels also revealed a QTL on the same region [152]. Studies in humans have identi-
fied only a single insulin sensitivity gene (PPARE [153]), yet GWAS have identified several genes that control insulin
secretion [44]. In addition to those identified genes that are clear candidates for glucose response, it is possible, even
likely, that other genes under these loci also influence glucose/insulin response.

Similarly, genetic mapping of energy expenditure traits yielded five distinct QTLs containing over 400 positional
candidate genes, including established genes in oxidative metabolism in two general categories: those tied to general
mitochondrial function (e.g. Mrpl54 and Atp5/) and those tied to the regulation of lipid metabolism (e.g. Aox1 and Atf4).
Atp5/ is a component of the complex V ATP synthesis machinery in oxidative phosphorylation, while Mrpl54 is part of
the mitochondrial ribosome responsible for the translation of the 13 proteins encoded by the mitochondrial genome
that are key components of the electron transport chain [145]. From the other angle, Aox1 is involved in lipid metabo-
lism and produces reactive oxygen species as byproducts [147] that are known to affect respiration [154]. Atf4 (aka
Creb2) is an established regulator of lipid and energy homeostasis [146]. However, in this case, the sheer number of
candidate genes—and the likelihood that several are, together, involved in energy expenditure—precluded rapid vali-
dation of any particular candidate(s) by knockout or cross-species approaches, as used for Ahr (which mapped to a
locus with only 9 candidate genes).

However, by combining QTL mapping with network building of transcriptomics, proteomics, genomics, and so forth,
it becomes practical to expand the phenotype and positional candidate networks to highlight intriguing candidates
genes that are good targets for mechanistic studies of glycaemia and energy expenditure. For example, the ser-
ine/arginine-rich splicing factor 6 (Sfrs6) is among the top correlates of glucose response, and it is associated with type
2 diabetes susceptibility in humans [143]. Many other relevant genes appear as top correlates when networks are
extended further—the glucose-dependent insulinotropic polypeptide (Gip) is only vicariously connected to the pheno-
types, but it has a strong functional relation: it promotes pancreatic islet function and exerts pro-survival actions in
humans [144]. As with glucose response, network identification of the top mRNA correlates with the phenotype re-

33



vealed a melange of genes involved in different aspects of energy regulation. For example, the only significant correlate
of all three parameters, Kif4, regulates Parp1, the major NAD* consuming enzyme in the cell [155]. Parp1 critically con-
trols oxidative metabolism, due to its competition with SIRT1 for a common and limiting NAD* pool in the cell [149].
Acad9, linked with RER, is essential for complex | assembly, via its impact on Ndufal and Ecsit [93, 156]. However, other
genes without known ties to lipid or glucose metabolism also appeared as top correlates, for example, Ahrr and Pfn1.

In terms of building and testing models of complex processes such as metabolism, even traits with low heritability
or without strong QTLs provide great value. For instance, while VCO, is not linked to unique QTLs, its inclusion in net-
work analysis not only strengthens the common interacting genes with VO,, but also uncovers unique genes, which may
be novel to the phenotype. Likewise, the integration of gene expression from liver to the glucose tolerance network
increases the power to identify genes that are specific to one organ function—in this case hepatic glucose metabolism.
For both analyses, it is likely that more novel genes involved in glucose response and energy expenditure remain under
the loci described. Such network construction underscores the usefulness of the BXD GRP as a powerful resource for
hypothesis generation and validation in a field as complex as metabolism. Further complementary phenotypic meas-
urements of the BXDs under challenged conditions may help refine these regulatory pathways. Today, even the most
striking connections derived bioinformatically must be validated mechanistically (a laborious and lengthy process), yet
as models improve, old data may be revisited and reanalyzed, allowing such tentative linkages to be confirmed later
due to improvements in technology or statistical approaches.

2.1.8 Methods

We acquired 25 BXD strains of females and 42 BXD strains of males from the University of Tennessee Health Science
Center (Memphis, TN, USA). Strains and sexes were housed together with 2—4 animals per cage under 12h light, 12h
dark cycle with ad libitum access to water and chow diet food (D04, SAFE, Augy, France) at all times. The studies shown
in Fig. 2:5 were carried out in a subset of these strains at a significantly older age (40-52 weeks) than the animals in the
primary study protocol (8—20 weeks). The general outline of the phenotyping study is described in the results section
and summarized in Fig. 2:1C. All tests were carried out according to rigorous standard operating procedures (SOP)
established and validated within the EUMODIC EMPReSS program [123, 157]. R was used for the analysis of phenotypic
data, and GeneNetwork (www.genenetwork.org) was used for all genetic analyses [158]. Student's t-test was used to
calculate significance between males and females. Pearson's r and p-values were calculated to determine magnitude
and significance of correlations except when otherwise indicated. Correlation networks and QTL calculations are Bon-
ferroni-corrected for multiple testing. Bar graphs and X-Y plots are expressed as mean+SEM. The y-axes of bar graphs
are often cropped to highlight strain differences. Most analyses in this resource—including all of Fig. 2:6 and 2:7—can
be generated entirely with public access to www.genenetwork.org. The phenotypes from this study can be found
under BXD phenotypes by searching for "LISP1" and either analyzed on-site, or downloaded for separate analysis. A
wide variety of public microarray data and phenotype data from other studies on the same BXD strains are also availa-
ble for translational analyses on GeneNetwork. Together this makes the BXDs among the largest and best-categorized
family of isogenic strains, and we expect resources like this to serve as the backbone for murine studies on complex
disease for the coming decade.
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2.2 Effects of Genetics on Spontaneous Movement and Exercise

2.2.1 Examination of Behavioral-Metabolic Traits: Movement

Due to the striking results obtained for metabolic variability in male and female BXD strains, we chose to examine
further metabolic phenotypes, including traits influenced by behavior such as voluntary spontaneous activity, in new
experimental programs. One such phenotyping program was developed to examine how two basic metabolic parame-
ters—activity and weight—vary across the population, and how much of this variance may be attributed to genetic
variants. In the previous study (chapter 2.1), we examined how many metabolic traits vary due to sex in the BXDs [16],
but did not examine basal movement. We thus examined 68 female and 68 male animals from 22 BXDs strains at
around 16 to 24 weeks of age. Animals were placed individually in normal housing cages and spontaneous movement
recording over a 48 hour period. Females were slightly more active (Fig. 2:8A), and movement was highly variable for
both sexes (¥3-fold for ambulations and ~4-fold for rearing), but overall, movement was strongly correlated by strain
between males and females (Fig. 2:8B), with the range of across genotypes (~5-fold range) dramatically outweighing
the range across the sexes (~1.3-fold, Fig. 2:8A).

With this variance and sexual dimorphism in mind, we designed an enlarged phenotyping program to search for ge-
netic regulators of activity, but this time only in male BXDs and using a larger population sample: 43 strains with 5
animals per cohort phenotyped at precisely 23 weeks of age, using the same diet and recording setup. In the expanded
data, both rearing and ambulatory activity again varied dramatically across the population—5-fold and 8-fold respec-
tively (Fig. 2:8C). The two aspects of movement were tightly correlated by strain (Fig. 2:8D) and highly consistent for all
five biological replicates within each strain, yielding high estimates of heritability (h? = 0.59 for ambulations, not shown,
and h? = 0.68 for rearing, shown in Fig. 2:8E). The BXD population likewise had highly variable body weights across the
population (~2-fold range) with a similarly high estimate of heritability (h*> = 0.74; data not shown). Surprisingly howev-
er, spontaneous activity had no association with body weight or food intake (Fig. 2:8F), indicating the strains' move-
ment is driven primarily by internal motivating factors, rather than by access to food or water, despite that both require
rearing to reach. Due to the strong heritability and wide and consistent cross-strain variance, we suspected that the
movement variation may be linked to quantitative trait loci (QTLs), which could indicate the region(s) of the genome
causing the genotypically-driven effects. Indeed, for both measurements, rearing and ambulation, we detected QTLs,
and interestingly, both overlapped to a small narrow-sense peak on chromosome 12 from 35.5 to 37.6 Mb (broad-sense
from 30.3 to 37.6 Mb) (Fig. 2:8G). For ambulatory activity, this locus explains 25% of the overall variance (not shown),
corresponding to 1300 counts/hr, and for rearing the same locus explains 41% of the variance, or 400 counts/hr (Fig.
2:8H).
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Figure 2:8 Identification and Validation of a Movement QTL

(A) Nighttime rearing and ambulatory activity for all 68 males and 68 females phenotyped across 22 (male)
and 19 (female) strains. These 19 strains were phenotyped in both sexes. Females are slightly more active.
(B) Despite moving somewhat more, female and male activity are strongly correlated by strain. (C)
Nighttime rearing and ambulatory activities for all 196 animals across 43 strains. Each strain has ~5 biologi-
cal replicates. (D) Ambulatory and rearing activity are tightly correlated, though the measurements are
technically independent. (E) Nighttime rearing activity for all 43 strains, ordered by value. Activity varies by
3.9 fold across the population. The strong heritability (h?) of 0.68 indicates that the majority of this variance
can be attributed to genetic factors. (F) Body weight (Left) and food intake (Right) have no effect on ambula-
tory or rearing activity, suggesting movement is largely independent of the weight or the need to eat or
drink. Animals must rear to reach the food basket or drink. (G) Rearing and ambulatory movement mapped
to a common narrow 2 Mb locus on chromosome 12. (H) The target locus (chromosome 12 from 35.5-37.6
Mb) explains ~40% of variance (r?) in rearing activity and ~25% of variance in ambulatory activity (not
shown).

While the movement parameters mapped to several suggestive and two significant loci, the significant locus on
chromosome 12 was the most striking and consistent (Fig. 2:9A), thus we prioritized it for validation. To establish the
effect of the Chr12 locus, we examined a congenic strain of C57BL/6J (B6) with the DBA/2J (D2) locus at the region of
interest (B6.D2N-Ahr?) [122]. We sequenced this line and observed it carries a 6 Mb segment of D2 genome on Chr 12
between 34.60 and 40.48 Mb, while the rest of the genome is B6 (though several dozen individual SNPs—i.e. spontane-
ous mutations—are observed elsewhere in the genome). Ten males from all three cohorts were then entered into the
same phenotyping platform until 23 weeks of age, at which point the movement experiment was performed. As pre-
dicted, the congenic line and D2 moved significantly more than the B6 animals, while the congenic line and D2 moved
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the same amount (Fig. 2:9B), validating the QTL as causative of movement variance. Moreover, these increases
matched the calculated effect size from the QTL: ambulatory activity increased by 1500 counts/hr, while rearing activity
increased by 380 counts/hr. This analysis validated the QTL as influencing movement, though did not indicate which
candidate gene(s) cause the effect (Fig. 2:9C). The broad-sense QTL, from 30.3 to 37.6 Mb, contains 38 genes, including
9 which are under the narrow-sense QTL (35.5 to 37.6 Mb). The congenic region, from 34.6-40.5 Mb, contains 17
genes, 13 of which are within the QTL bounds. We retained all 42 genes (38 within the QTL, 4 exclusively in the congen-
ic region) for subsequent bioinformatic analyses, though with a particular eye for the 9 genes overlapping in the con-
genic and significant narrow-sense QTL.
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Figure 2:9 Identification of the Movement QTG: Ahr

(A) The movement QTLs across all chromosomes indicates one consistently significant locus on chromosome
12, and one significant locus on chromosome 19 only for rearing activity. (B) A congenic strain on a B6 back-
ground with a D2 congenic interval at the region of the chromosome 12 QTL has significantly more sponta-
neous movement, validating that this locus impacts movement. One-way ANOVA is suggestive (p = 0.09),
while the t-test between only the congenic and control groups is significant (p = 0.01). (C) Close-up of the
congenic (red) and overlapping significant QTL (black) and suggestive (yellow) regions on chromosome 12.
All genes are represented by rectangles at their approximate chromosomal positions. Genes that are se-
quence identical across the BXDs are marked in grey and were discounted. Genes with sequence variants of
unknown effect (maroon) and genes with sequence variants with clear effects (e.g. coding differences, red)
were considered more likely candidate QTGs. (D) eQTLs were plotted for all positional candidates in all eight
datasets tissues. Five genes map to chromosome 12 (~25-45 Mb) as cis-eQTLs. As the movement QTL also
maps to this locus, trans-eQTLs are of less interest. (E) Transcript variance was checked across all 9 datasets.
Half of the transcripts are at least moderately variable (range > 1.75 fold) across the cohorts, while 9% of
transcripts are highly variable (> 3.0 fold). Upper stripchart: Variance of all 42 candidate genes in all 8 tissues
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(i.e. each gene is represented ~8 times). Lower stripchart: Variance of all 42 candidate genes in CD liver. (F)
Few transcripts are consistently expressed across strains in different tissues (Brown Adipose: B; Liver: L;
Muscle: M; Hypothalamus: H, Pituitary: P, Adrenal: A; F: High fat fed cohorts; all others are chow fed). Ahr
covaries well for all five datasets taken from this study, but negatively with the three publicly available BXD
datasets; Acpl covaries positively in all datasets, although much stronger in the five paired sets. Most other
genes (e.g. the four shown) have little consistency. (G) Gene expression correlates with movement incon-
sistently by tissue, with only a handful of genes yielding consistent (Acp1, Tpo, Tmem18) or significant (Ahr,
Acp1) correlations. Nominally significant correlations (p < 0.05) are displayed on the chart. For brown adi-
pose tissue, no genes correlate highly significantly (p < 0.01) with activity.

2.2.2 Identification of the Causative Gene, Ahr, in a Gene-Dense QTL

To select candidate genes for validation experiments, we used several established methods to prioritize candidate
gene(s), which are most likely to influence movement [159]. First, the sequence variants were examined for all candi-
date genes, including within 5 kb of the 3' or 5' untranslated regions. 10 of the candidates are identical by descent
across all of the BXD strains, making these genes unlikely to be causal for the QTL [160], including 3 of the 9 priority
candidates. For the 32 genes with sequence variants, seven have protein-coding changes: peroxidasin homolog (Pxdn),
thyroid peroxidase (Tpo), histone deacetylase 9 (Hdac9), mesenchyme homeobox 2 (Meox2), transmembrane proteins
18 and 195 (Tmem18 and Tmem195), and Ahr. To further rank the candidate genes, we examined the transcriptional
variance and regulation in eight diverse microarray datasets. Candidate genes with higher transcript variability, which
have strong genetic variants at the same locus as the phenotype, and/or which associate with the phenotype are more
likely to be the QTG under the QTL [159].

First, we examined the 42 genes in 8 datasets from 6 tissues. In three tissues—liver, brown adipose, and quadri-
ceps—measurements were performed in the same BXD animals, which mapped to the movement QTL. Quadriceps and
liver were also sampled in the same BXD strains on a high fat diet (explored in more depth in Fig. 2:11). The other three
tissues—hypothalamus, pituitary, and adrenal—were collected previously and published by other research groups in
the same BXD strains in similar conditions (i.e. age, sex, diet) [141]. All transcripts were detected in at least one tissue
except Slc26a3 (in the congenic interval) and Prps1/1 (in the narrow QTL region). We then mapped all transcripts to
identify the existence and location of significant expression QTLs (eQTLs; LRS =20, Fig. 2:9D). No trans-eQTLs were
consistent across more than one dataset, while four genes gave consistent significant cis-eQTLs: acid phosphatase 1
(Acp1, in 5 datasets), Tmem18 (in 4), Ahr (in 3) and syntrophin gamma 2 (Sntg2, in 3). We then examined the transcript
variance of all candidate genes in the eight datasets. Most genes had at significant variability across the strains in each
tissue (50% have variance > 1.75 fold; Fig. 2:9E), with three genes, Sh3yl1, Prkar2b and Acp1, being particularly highly
variable (range > 3.0 fold) in multiple tissues. However, most genes did not covary across the tissues, with only two
having particularly consistent expression: Ahr and Acp1 (Fig. 2:9F). We last examined how the expression of each gene
associated with movement phenotypes in the BXDs, with particular focus on candidates under the significant QTL and
congenic locus (e.g. Ahr, Sostdcl, Ispd) and those with major or consistent transcript variance (e.g. Acp1, Prkar2b, and
again Ahr). Only two genes, Ahr and Acpl had significant correlations after multiple testing correction (Fig. 2:9G),
though several other genes yielded consistent but non-significant correlations (e.g. Tmem18). Together, these bioin-
formatic analyses indicated several genes as potentially causative of movement variance, and with one top candidate:
Ahr, which was prioritized as the first gene for validation as the quantitative trait gene (QTG), as the other strong candi-
date gene, Acp1, was not in the congenic region or under the peak QTL.

2.2.3 The Effect of Ahr On Movement is Highly Conserved Across Evolution

Ahr is strongly conserved throughout evolution (Fig. 2:10A), and acts as a bHLH-type transcription factor with im-
pact on development and homeostasis in all species [142]. Given this consistency, we examined whether movement
regulation may be another conserved physiological process regulated by the gene. In the BXDs, three particular SNPs
have been established as causal for differences in Ahr by affecting its enzymatic activity (A375V), ligand binding and the
cis-regulatory mechanism (L471P), and protein length (*805R, which adds 43 amino acids to the C terminus) [161, 162].
Strikingly, these three particular variants are conserved in humans, with the most common human allele (hAHR) hu-
mans matching the D2 allele at all three (Fig. 2:10B) [163]. Correspondingly, hAHR enzymatic activity is similar to that of
D2 mice [163, 164]. Moreover, the valine at position 375 (or 381 in humans) is unique among mammalian reference
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genomes to D2 and humans, and is not even found in macaques, which likewise have much higher Ahr activity than
humans and D2-type mice [165, 166]. To examine a potential link between hAHR and activity, we phenotyped transgen-
ic B6 mice with the hAHR allele replacing the murine Ahr [167]. In the same home cage monitoring experiments as
those used before, we observed that the humanized animals were significantly more active than their wildtype coun-
terparts (Fig. 2:10C), and again with an increase equal to that of the congenic line (Fig. 2:9A). This finding indicates both
that Ahr was properly selected as the QTG, and that the effect may well be conserved cross species. To validate this
hypothesis, we looked to lower organisms.

The key transcription factor motifs in Ahr (bHLH and PAS) are highly conserved in the D. melanogaster ortholog
called spineless (ss) [168], and the C. elegans homolog called ahr-1 [169], thus we hypothesized the regulation of
movement may be further conserved to these simpler model organisms. We first examined movement in D. melano-
gaster, where we crossed the w strain with a loss of function allele ssP?1>7[168], and examined this line as a heterozy-
gous knockout, both in males and females. In both models, ss reduction resulted in a robust ~25% increase in move-
ment (Fig. 2:10D). Given the conservation to D. melanogaster, we hypothesized that this connection may manifest also
in C. elegans. As before, inhibition of ahr-1 by RNAI resulted in a marked and robust increase in activity (Fig. 2:10E).
Moreover, the data in C. elegans indicates that the effect of Ahr inhibition on activity is approximately linear, at least
within the expression variation tested. Full knockouts in mice, while viable, have poor postnatal survival rates [170] and
have dramatically smaller livers (< 50% size [171]); likewise, full knockouts in Drosophila of ss have notable morphologi-
cal problems [142].
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Figure 2:10 Evolutionary Analysis Links Ahr to Movement

(A) Phylogenetic BLAST analysis of mouse Ahr showed that the gene is highly conserved down to simple mul-
ticellular animals such as C. elegans, the gene likely has conserved basic metabolic functions. (B) Sequence
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analysis of the three missense mutations of Ahr between B6 and D2 known to have an impact oh AHR activi-
ty (375, 471, 805). (C) B6 mice with the humanized AHR allele are nearly twice as active as controls. The hu-
manized AHR allele is similar to the D2 allele in many tests of enzymatic activity, with a ~90%+ reduction in
activity compared to the B6 allele [24]. (D) D. melanogaster with a heterozygous deletion allele of the Ahr
ortholog ss are also significantly more active than controls. The 50% reduced expression appears to increase
movement by about 20% in both males and females. Each comparison is a separate Welch's t-test with p <
0.001. Females are ~30% less active than males in both instances (p < 0.001). (E) C. elegans treated from ear-
ly development with RNAi for ahr-1 are nearly twice as active as worms treated with a control vector. Re-
duced doses of RNAi have intermediary effects on activity. p = 2.9e-6 for 100% vs. empty vector (ev).

Ahr inhibition robustly increased movement in all models examined, and the effect was observed in the absence of
any clearly established Ahr ligand. In Drosophila and C. elegans, the Ahr orthologs are suspected to be exclusively con-
stitutively active [172]. However, this does not indicate whether it is constitutive activity operating in the mice, or if it is
an unknown dietary component of the chow diet common to all cohorts, which could influence movement in a ligand-
dependent manner. As known Ahr ligands are either known to be non-selective and activate multiple signaling path-
ways (e.g. resveratrol or quercetin [147, 173]) or are highly toxic and poorly suited for normal physiological studies (i.e.
TCDD), we chose to expose BXD cohorts to an environmental component that is known to influence movement: a high
fat diet (HFD). We raised males from the same BXD strains, but now on a HFD from 8 until 23 weeks of age at which
point we again measured spontaneous activity (Fig. 2:11A). HFD robustly increases body weight by this age, by about 12
grams or ~35% of body weight in each strain (Fig. 2:11A). Movement is similarly affected, with rearing decreasing by
~50% (Fig. 2:11B) and ambulatory movement by ~25% (not shown). Strikingly, both movement parameters again map
to the same locus on Chromosome 12, indicating the genetic effect of this locus is independent of the dietary influence
on movement (Fig. 2:11C). Moreover, the dietary effect is consistent across all strains (Fig. 2:11D, left) and is not direct-
ly due to the increase in body weight (Fig. 2:11D, right). Thus, while there may be a gene-by-environment effect of diet
on movement in the BXDs, it is independent of Ahr, which is equally expressed in both dietary cohorts (not shown). As
in the CD cohorts, Ahr expression has a strong negative correlation with spontaneous activity in the HFD population
(Fig. 2:11E). This independent phenotype both confirms the locus identified using CD cohorts, but also indicates that
Ahr can influence movement in mammals independently of incidental dietary or environmental effects.
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Figure 2:11 Environmental Effects on Movement and Ahr

(A) Weight is significantly increased in cohorts fed HFD (dark blue) by 23 weeks of age—after 15 weeks on
HFD—compared to the CD-fed cohorts (light blue). (B) Rearing activity and ambulatory activity (not shown)
are significantly reduced by HFD feeding. (C) Both movement parameters also map significantly to the Ahr
locus in BXDs fed HFD, indicating that the effect of HFD on movement is independent of this locus. (D) Left:
Rearing and movement activity in HFD cohorts correlates well with the movement of chow diet (CD) cohorts
run previously. Right: Body weight has no effect on spontaneous activity in mice on HFD, which is similar as
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observed previously for animals on CD. (E) Ambulatory activity (left) and rearing activity (right) correlations
with Ahr expression in CD and HFD BXD cohorts. Ahr expression is unaffected by HFD.

2.2.4 Discussion

In this study we characterized 43 strains of the BXDs genetic reference population to assess basal physiological pa-
rameters: movement and body weight. Both phenotypes are driven by numerous and complex interactions between
genes and environment, by neurological/motivational states, and by physiological limitations. In the BXDs, body weight
and physical activity are both sexually dimorphic, highly variable, and heritable. Surprisingly, body weight and food
intake have no impact on standard spontaneous activity in either CD or HFD-fed cohorts despite a major decrease in
movement in HFD cohorts, and despite that animals must be active to eat and drink. In both dietary groups, we identi-
fied a single common QTL causal of ~25-40% of the variance of movement across the population. Using a congenic line,
we confirmed the effect of this locus and set out to establish the causal gene through a bioinformatics approach. By
analyzing nine diverse tissues, five in the cohorts phenotyped and three from other published BXD studies, we were
able to establish the aryl hydrocarbon receptor (Ahr) as the single best candidate gene for mechanistic validation.

Ahr is an evolutionary conserved transcription factor involved in development, signal transduction, and metabolism
[174, 175]. Ahr has constitutive activity, but can also be activated by a variety of ligands such as the endogenous me-
tabolite, kynurenine, and a wide variety of environmental chemicals. Moderate to strong (~¥95%) reductions in Ahr
activity appear to have little negative effect an organism's health or viability, whether in D2 or humanized hAHR mice,
or in heterozygotic fly mutants. Through cross-species analysis to Drosophila and C. elegans, we were able to confirm
that reducing the expression of this gene consistently leads to an evolutionarily consistent increase in spontaneous
movement.

After examining the same BXD strains on a HFD, we observed that despite a major decrease in movement in this
population, the Ahr QTL is consistent and with a similar effect as calculated in the CD population, and further is inde-
pendent of the major environmental perturbation caused by diet. This conserved effect in BXDs across different envi-
ronmental conditions indicates that the role for Ahr in the regulation of movement is likely constitutive, i.e. innate and
not reliant on dietary ligands. This hypothesis is further supported by the observation that reduction of Ahr orthologs in
invertebrates has a consistent effect on movement, as the Drosophila ortholog (spineless) and C. elegans ortholog (ahr-
1) are both constitutively active [176] and are not known to be affected by any exogenous ligands [172]. In humans, a
large number of AHR polymorphisms have been identified in diverse population studies [177, 178], though it remains to
be seen if these variants lead to variation in locomotion and/or disposition to exercise in humans as in mice. However,
as the movement link is conserved in mice with a humanized Ahr allele, it seems likely that natural variation in Ahr or of
its ligands may explain part of the natural variation in human proclivity for activity. Furthermore, while our data indi-
cate constitutive Ahr activation as a regulator of movement, it is conceivable that this role may be further modulated by
specific ligands in mice and humans. In combination, our study expands the phenotypic roles of AHR, endowing it with a
commanding role in the control of movement that is conserved across evolution.

2.2.5 Methods

All animals were communally housed by strain until phenotyping and fed a chow diet (CD; (Harlan 2018; 6%
kCal/fat, 20% kCal/protein, 74% kCal/carbohydrate) throughout life after weaning. All BXD strains (BXD43-103) were
originally sourced from the vivarium at the University of Tennessee Health Science Center (Memphis, TN, USA) then
bred for two or more generations until progeny entered the phenotyping colony.

Male versus Female Phenotyping: 136 retired breeders (68 female, 68 male) from 22 strains (male) or 19 strains
(female; all 19 overlap) were taken at 20+4 weeks of age from a breeding colony at the EPFL facility and transferred to
the phenotyping unit. Males and females were separated for 3+ weeks to ensure pregnant females were not pheno-
typed. Males and females were phenotyped on separate days, with 10-16 animals entered into the phenotyping pro-
gram every 2 days.

CD Male Phenotyping: 196 male mice from 43 strains of the BXD family were bred at the EPFL facility and trans-
ferred to the phenotyping unit at 8 weeks of age. Each cohort was communally housed (3—-5 animals per cage) under 12
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h light, 12 h dark cycle with ad libitum access to food and water at all times. Animals were in solitary cages only for the
movement phenotyping test (48 hours) and were sacrificed 5 weeks after at ~28 weeks of age.

HFD Male Phenotyping: 186 animals from 42 strains (all but 1 overlapping) were entered into the colony as before,
with HFD starting at 8 weeks of age (Harlan 06414; 60% kCal/fat, 20% kCal/protein, 20% kCal/carbohydrate). Animals
were in solitary cages only for the movement phenotyping test (48 hours) and were sacrificed 5 weeks after at ~28
weeks of age.

Congenic AHR mice were purchased from The Jackson Laboratory (stock number 002921), with animals delivered at
8 weeks of age along with control B6 and control D2 mice. The congenic mice were generated by crossing B6 with D2,
followed by successive backcrossing (N13) to return the B6 genome except in the region of Ahr [122]. The congenic
region was genotyped independently to confirm the size of the interval. We then sequenced the DNA of the congenic
strain using an lon Proton Pl Chip at 1.5x depth (i.e. ~15 million 200 bp reads) and aligned it against the C57BL/6) refer-
ence. We confirmed the reported congenic interval is the only region that retains a D2 background. Several dozen SNPs
were observed throughout the genome outside the reported Chr12 interval (~34.6 to 40.5), but were distributed evenly
across the chromosomes and consequently represent spontaneous mutations or sequencing and assembly errors,
rather than residual D2 genotype. 10 humanized AHR mice were ordered from Taconic (model 9165), delivered at 8
weeks of age along with B6 controls [164]. The transgenic mice have exons 3-11 (of 11) replaced with hAHR, while
exons 1-2 retain the B6 sequence, retaining 2 amino acids unique to B6 not present in hAHR. The key mutations (375,
471, and the lost stop codon) are present in the transgenic animal.

For tissue collection on CD and HFD BXD cohorts, animals were sacrificed under isoflurane anesthesia and cardiac

perfusion after an overnight fast. High fat diet treatment and two day isolation for the recording experiment were
considered as having low impact on the animals' welfare, while all other measurements and conditions were consid-
ered as having no negative impact. All research was approved by the Swiss cantonal veterinary authorities of Vaud
under licenses 2257.0 and 2257.1.
Home cage monitoring was performed at 23+1 weeks of age for all mice except retired breeders (2314 weeks), using a
laser detection grid developed by TSE Systems (Bad Homburg, Germany) and used in the animals' standard housing
cages. The detection grid has two layers: one for detecting X-Y movement (“ambulations”) the other for Z movement
(“rearings”). Both measurements are technically independent, though the measurements of movement are strongly
correlated (r ~ 0.70, see Fig. 2:8B). Animals were housed individually for the 48-hour experiment starting at about
10am, with the night cycles (7pm—7am with 30 minutes of both dawn and dusk) used for movement calculations [179].

D. melanogaster lines containing a null mutation in the spineless gene, the D. melanogaster ortholog of Ahr, w;
ssP1>7 / TM3, were obtained courtesy of lan Duncan's laboratory and passaged for two generations in a standard incu-
bator. This line was crossed with w™ and the progeny segregated accordingly (i.e. w vs. w;**P1>7 and w;TM3, hb-LacZ vs.
wssP1I5.7 / TM3, hb-LacZ). Movement was recorded by placing flies in a sealed chamber, tapping the chamber, and re-
cording their movement as they naturally climb towards the top. For the tapping test, 1-2 day old flies were recorded
using a standard SLR camera with a Leica macro objective. The experiment was performed four times for each cohort
with one minute recordings each, with a “tap” sending the flies to the bottom of the chamber every 10 seconds. The
speed with which flies reached the top of the chamber was measured using the Parallel Worm Tracker for MATLAB,
which we modified slightly to work with D. melanogaster [180]. This speed was converted into distance by taking the
area-under-the-curve (AUC) integral of their velocity.

C. elegans movement was recorded for 45 seconds at days 2, 3, and 4 of adulthood using a Nikon DS-L2 / DS-Fil
camera and controller setup, attached to a computerized Nikon bright field microscope. Seven plates of worms, with 10
worms per plate, were measured in each condition. The movement of worms during this time was calculated by follow-
ing the worm centroids using the same modified version of the freely-available for the Parallel Worm Tracker as above.

R was used for basic analysis of phenotypic data. GeneNetwork (www.genenetwork.org) was used for correlation
and genetic analyses. The original phenotypes published in this paper and all microarray data generated in these co-
horts are available for public analysis or download using the GeneNetwork database (Species: Mouse, Group: BXD,
Type: Adipose mRNA, Liver mRNA, or Muscle mRNA, then select the EPFL datasets). The three historical BXD mRNA
datasets, for adrenals, pituitary, and hypothalamus, are also available here [181].

Phenotype data were checked for normality using the Shapiro-Wilk test, with a W-value > 0.80 accepted as approx-
imately normal. Heritability was calculated by one-way ANOVA—the aov() function in R—taking the sum of squares of
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within-strain variance divided by the total sum of squares variance. Dot plots are represented as individual measure-
ments, or mean + SEM depending on the figure panel. Dot plots with error bars (e.g. Fig. 2:8D) indicate each dot is a
strain average of ~5 individuals. Individual QTL plots consider a suggestive LRS > 12 and significant LRS > 18. Large scale
QTL plots (Fig. 2:9D) use LRS 2 20 for significance due to multiple testing. Welch's t-tests were performed for two-way
comparisons between phenotype data, as variances were typically unequal in these comparison groups. Student's t-
tests were performed for array data, as all data are normally distributed with equal variance. Pearson's r is calculated
for correlation plots as no outliers were observed. A p-value of less than 0.05 was considered the significance threshold
for all analyses, except in QTL mapping when correction for multiple testing was used. All BXD phenotype data can be
found on www.genenetwork.org under the “Type: Phenotype” entry then by searching for “Lisp3”.
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Chapter 3 Expanding Reductive Genetics

This chapter is adapted from three separate projects :

® Muscle : Yamamoto H., Williams E.G., Mouchiroud L., Canté C., Fan W., Downes M., Héligon C., Barish G.D.,
Desvergne B., Evans R.M., Schoonjans K., Auwerx J. NCoR1 Is a Conserved Physiological Modulator of Muscle Mass and
Oxidative Function, Cell, 2011.

® Muscle : Pirinen E., Canté C., Jo Y.S., Morato L., Zhang H., Menzies K.J., Williams E.G., Mouchiroud L., Moullan N.,
Hagberg C., Li W., Timmers S., Imhof R., Verbeek J., Pujol A., van Loon B., Viscomi C., Zeviani M., Schrauwen P., Sauve
A.A., Schoonjans K., Auwerx J. Pharmacological Inhibition of Poly(ADP-Ribose) Polymerases Improves Fitness and Mito-
chondrial Function in Skeletal Muscle, Cell Metabolism, 2014.

e Liver : Hasenfuss S.C., Bakiri L., Thomsen M.K., Williams E.G., Auwerx J., and Wagner E.F. Regulation of Steatohepati-
tis and PPARg Signaling by Distinct AP-1 Dimers, Cell Metabolism, 2014.

In the following chapter, derived from three independent papers, | applied the BXD genetic reference population to
delve further into specific aspects of biomolecular mechanisms which had been identified through prior works. While
none of these studies were designed with the BXDs in mind, for all, the mechanism could be better explained and more
convincingly validated by applying the results from a large, genetically-diverse population. In the first two sections, on
muscle, we observed that either NCoR1 skeletal muscle knockouts or treatment with PARP inhibitors can improve mus-
cle function, but the precise mechanisms of action were unknown. By examining transcripts covarying with NCoR1 and
PARP across the BXDs and similar F2 populations, we could associate a number of molecular signatures of mitochondri-
al homeostasis (and muscle function), then re-validate these targets in the knockout and PARP-treated populations. In
the third section, | used the BXDs in a more exploratory fashion to choose the “best” target gene to examine in knock-
out and transgenic models. After observing an expected metabolic link in the BXDs—between PPARg and fitness (par-
ticularly liver health), with a magnified effect in animals on the high fat diet—I was able to select related and novel
genes for further mechanistic development.

From these analyses, my colleagues H. Yamamoto, E. Pirinen, S. Hasenfuss, and L. Bakiri were able to generate and
analyze the mutant forms of target key genes to perform detailed mechanistic work on their pathways of interest. In
these projects, the systems approach was built on top of years of study by many research groups, thus the BXDs were
used to (A) validate and (B) extend findings made by GEMM studies, for example by associating new genes with estab-
lished pathways. Such information not only highlights genes involved in pathways of interest, but it also proves that the
mechanisms are not isolated to work in only a single cell line or genotype of mouse, and could be reasonably extrapo-
lated to work in all mice, in turn greatly improving the odds that these pathways are conserved across species, particu-
larly to humans. These three papers have been reduced to the “core content” necessary to understand the scope of the
project and my contribution. Please see the above references for full details on the works by Yamamoto (public access),
Hasenfuss (public access in January 2015), and Pirinen (public access in June 2015).

3.1 Genetic Alterations to Improve Muscle Function

3.1.1 NCoR1: A Physiological Modulator of Muscle Mass & Oxidative Function

Transcriptional coregulators control the activity of many transcription factors and are thought to have wide-ranging
effects on gene expression patterns. In this section, we show that muscle-specific loss of nuclear receptor corepressor 1
(NCoR1) in mice leads to enhanced exercise endurance due to an increase of both muscle mass and of mitochondrial
number and activity. The activation of selected transcription factors that control muscle function, such as MEF2,
PPARb/d, and ERRs, underpins these phenotypic alterations. NCoR1 levels are decreased in conditions that require fat
oxidation, resetting transcriptional programs to boost oxidative metabolism. Knockdown of gei-8, the sole C. elegans
NCoR1 homolog, also robustly increased muscle mitochondria and respiration, suggesting strong evolutionary conser-
vation of NCoR1 function. Collectively, the data suggest that NCoR1 plays an adaptive role in muscle physiology and
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that interference with NCoR1 action could be used to improve muscle function.

Transcription factors are key mediators in homeostatic circuits, as they process environmental signals into tran-
scriptional changes [182, 183]. Transcriptional coregulators have recently emerged as equally important modulators of
such adaptive transcriptional responses. The fact that the activity of coactivators and corepressors is tightly regulated
through the spatial and temporal control of their expression and activity levels opens another avenue to adapt tran-
scription to environmental cue [184-187]. Interestingly, many of these coregulators do not operate in isolation but are
part of large multiprotein complexes that integrate complex signaling pathways. The convergence of an elaborate
coregulator network on the peroxisome proliferator-activated receptor (PPAR) coactivator a (PGC)-1a illustrates this
principle well, as its activity depends on several other coregulators, including the steroid receptor coactivators, NR-
interacting protein 1 or RIP140, CREB-binding protein, p300, protein arginine methyltransferase 1, general control of
amino acid synthesis 5, and SIRT1 [188, 189].

The corepressor NCoR1 and the silencing mediator for retinoid and thyroid hormone receptor (SMRT or NCoR2) al-
so act as cofactor scaffolding platforms. NCoR1 and SMRT hardwire corepressor pathways that incorporate several
deacetylases (including class | [HDAC3], class Il [HDAC4, 5, 7, and 9], and class Il [SIRT1] HDACs), transducin beta-like 1
(TBL1) and TBLR1, two highly related F box/WD40-containing factors, and the G protein pathway suppressor 2 (re-
viewed in [190]). Because germline NCoR17/~and SMRT/~ mice are embryonically lethal [191, 192], information on the
role of these proteins in adult physiology is limited. Studies of mice with mutations in the NR interaction domains (RIDs)
1 and 2 of SMRT (SMRTmRID), which solely disrupts its interaction with NRs, indicated that lethality of SMRT~ mice is
caused by non-NR transcription factors [193]. Work in 3T3-L1 cells in which NCoR1 or SMRT expression was reduced by
RNA interference demonstrated that they repress adipogenesis by inhibiting PPARg [194]. In line with this, adipogenesis
was enhanced in mouse embryonic fibroblasts (MEFs) from SMRTmRID mice [193]. Interestingly, SIRT1 is also part of
the NCoR1/SMRT complex and contributes to the inhibition of PPARg [195].

Contrary to adipose tissue, the function of NCoR1/SMRT in skeletal muscle has not yet been established. We here
report the generation and characterization of muscle-specific NCoR1”~ (NCoR1*™-) mice, which display a remarkable
enhancement of exercise capacity. This was the result of increased muscle mass and a muscle fiber type shift toward
more oxidative fibers, coordinated by the induction of genes involved in mitochondrial biogenesis and function, ensuing
from the activation of PPARb/d, the estrogen-related receptors (ERRs), and myocyte-specific enhancer factor 2 (MEF2).
Worms with a muscle-selective knockdown of gei-8, the sole C. elegans NCoR1 homolog, also had improved mitochon-
drial activity. These data combined with the specific reduction in the expression levels of NCoR1, but not SMRT, in
situations of enhanced fat oxidation establish NCoR1 as a key physiological regulator of muscle mass and function.

3.1.2 NCoR1%*™/~Mice Have Improved Muscle Function and Exercise Performance

Given the embryonic lethality of germline NCoR17~ mice [191], we generated a floxed NCoR1 mouse line in which
exon 11 of the NCoR1 gene [196] was flanked with LoxP sites, priming it for subsequent deletion using the Cre-LoxP
system. These mice, bearing floxed NCoR1 L2 alleles, were then bred with a skeletal muscle (skm)-specific Cre driver
(human a-skeletal actin promoter) [197] to yield NCoR1*™/~ and NCoR1%™*/* mice. As expected, NCoR1 mRNA expres-
sion was significantly decreased in soleus, gastrocnemius, and quadriceps and modestly reduced in the heart muscle of
NCoR1%™/~ mice, but not altered in other tissues (Fig. 3:1A). No compensatory induction of the related corepressor
SMRT/NCoR2 [198] was observed (Fig. 3:1A). We also tried to determine NCoR1 protein levels in muscle but failed to
detect the endogenous protein with the currently available NCoR1 antibodies.
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Figure 3:1 Metabolic Phenotypes of NCoR1¥"/~ Mice

(A) mRNA levels of NCoR1 and Smrt in different tissues, determined by qRT-PCR. Values were normalized to
36B4. n = 8-10/group. (B) Biochemical analysis of plasma from NCoRI*™*/* and S*™~/~ mice after 6 hr fast-
ing (n = 8) either fed CD (top) or HFD (bottom). (C) Circadian activity, measured as total locomotor activity,
and energy expenditure were evaluated by the measurement of oxygen consumption (VO2) and by the cal-
culation of the RER over a 24 hr period after 12 weeks of HFD. n = 12. (D) Body temperature was measured
for 7 hr in mice exposed to 4°C after 18 weeks of HFD. n = 7-8. (E and F) Exercise experiments, measuring
running time and distance until exhaustion (endurance exercise) (E) and the increment of VOamax during ex-
ercise and RER levels at basal and VOamax condition (F) were performed after 14 and 17 weeks HFD. All bar
graphs represent the average + SEM for each group.

NCoR1%™/~ mice were indistinguishable from NCoRI*™/* mice upon visual inspection, and no gross organ anoma-
lies were revealed upon autopsy. The relative mass of the soleus muscle was higher, whereas the mass of the gas-
trocnemius showed a trend toward an increase, though did not reach statistical significance. The soleus was also more
intensely red, and there were larger sections with reddish color in the gastrocnemius in NCoR1%*™~/~ mice. Body weight
evolution and food intake of male NCoR1%™~~ and NCoR1%*™*/* mice after weaning were comparable for the cohorts fed
either CD or HFD. On CD, carbohydrate and lipid profiles were similar except for LDL cholesterol, which was reduced in
NCoR1%™/~ mice (Fig. 3:1B). In addition to the lower LDL cholesterol on CD, total and HDL cholesterol levels were also
reduced in NCoR1%™/~ mice on HFD (Fig. 3:1B). Furthermore, glucose edged down (p = 0.074) in the wake of similar
insulin levels on HFD. The slightly reduced area under the curve (AUC) in intraperitoneal glucose tolerance test (IPGTT)
and the delayed recovery from hypoglycemia during intraperitoneal insulin tolerance test (IPITT) in mutant mice on HFD
may also suggest a discrete improvement in insulin sensitivity but without a clear impact on glucose tolerance.

We next evaluated energy expenditure by indirect calorimetry and actiometry in CD- and HFD-fed mice (Fig. 3:1C).
Total locomotor activity was significantly higher in NCoR1%™~/~ mice. Consistent with this, O, consumption (VO,) was
increased under both CD and HFD. Interestingly, the NCoR1**™~/~ mice displayed a marked decrease in the respiratory
exchange ratio (RER) on a HFD (Fig. 3:1C), indicating an enhanced use of fat as a main energy source. NCoR1%™/~ mice
were also more cold tolerant, as they maintained their body temperature better when exposed to 4°C over a 7 hour
period (Fig. 3:1D). Exercise performance was also strikingly improved in NCoR1%™~/~ mice (Fig. 3:1E and 3:1F). In endur-
ance exercises, NCoR1%™/~ mice ran for a significantly longer time and distance before exhaustion (Fig. 3:1E). The in-

47



crease of the VO, values (AVO,) during exercise and the maximal ability to utilize oxygen during exercise (VO2max), which
critically determines the endurance performance of skeletal muscle, was slightly higher in NCoR1*™~/~ mice on both CD
and HFD (Fig. 3:1F). Despite the moderate reduction in NCoR1 mRNA levels in cardiac muscle of NCoR1%™/~ mice, heart
rate, blood pressure, cardiac morphology, and function were not changed.
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Figure 3:2 Histological Analyses of the Muscles of Control and NCoR1*™/~ Mice

(A) Histological analysis of gastrocnemius sections stained with hematoxylin and eosin. (B) Distribution and
mean diameter of muscle fibers in gastrocnemius and soleus. (C and D) Histological analysis of gastrocnemi-
us and soleus sections by succinate dehydrogenase (C) and cytochrome C oxidase staining (D). S, soleus; G,
gastrocnemius. The ratio of the stained fibers is indicated in the graph at right. Data are expressed as mean
+SEM.

The enhanced exercise capacity, associated with the increase in overall muscle mass and change in muscle appear-
ance, led us to examine muscle morphology. Upon staining muscles with hematoxylin/eosin or toluidine blue, not only
was the diameter of single muscle fibers larger, but also the connective tissue between muscle bundles was less abun-
dant in NCoR1*™/~ mice (Fig. 3:2A and 3:2B). The increased number of intensely stained fibers upon succinate dehy-
drogenase (SDH) and cytochrome oxidase (COX) (Fig. 3:2C and 3:2D) staining further testified to increased mitochondri-
al activity in the NCoR15*™/~ gastrocnemius. Two mitochondrial DNA markers, cyclooxygenase 2 (Cox2) and 16S riboso-
mal RNA, normalized by genomic DNA markers (uncoupling protein 2 [Ucp2] and hexokinase 2 [Hk2]) were both signifi-
cantly higher in NCoR1%™~/~ muscle, indicative of increased mitochondrial content (Fig. 3:3B). This observation was also
underscored by electron microscopy, which revealed more abundant and larger mitochondria with normal structure
(Fig. 3:3A). Immunohistochemical analysis of the myosin heavy-chain (MyHC) isoforms [199] demonstrated a decreased
number of the more glycolytic MyHC2b fibers, with a concomitant increase in the number of more oxidative MyHC2x
and 2a fibers in the NCoR1%*™/-gastrocnemius (Fig. 3:3C). This observation was consolidated by analysis of MyHC iso-
form mRNAs, which indicated an increased expression of the mRNAs of MyHC2x and 2a (more oxidative fibers) com-
pared to that of MyHC2b (more glycolytic) in both NCoR15™~/~ gastrocnemius and quadriceps (Fig. 3:3D). In quadriceps,
but not gastrocnemius, the expression of MyHC1 mRNA was also increased. Finally, staining of platelet-endothelial cell
adhesion molecule (PECAM)-1, an endothelial cell marker of angiogenesis and tissue vascularization that contributes to
enhanced myocellular aerobic capacity, also increased in NCoR1™/~ muscle.
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Figure 3:3 Histological Analyses of the Muscles of Mice and C. elegans

(A) Transmission electron microscopy of nonoxidative fibers of NCoR1k™*/* and skm~/~ gastrocnemius. M, mi-
tochondria. (B) Relative mitochondrial DNA content (Cox2 or 16S) in gastrocnemius was measured and nor-
malized by genomic DNA content (Ucp2 and Hk). n = 6. (C) Representative MyHC1, 2a, and 2b immuno-
histochemical detection on serial sections of the soleus and gastrocnemius. (D) Subtypes of MyHCs in gas-
trocnemius and quadriceps were analyzed by qRT-PCR in NCoRI*™*/* and kM7~ mice. n = 6. (E) Identi-
ty/similarity (%) in the sequences of gei-8 with mammalian NCoR1. Multiple alighments of SANT domains of
NCoR1 homologs. Color identifies similarity. (F) Representative pictures of the effects of RNAi-mediated
knockdown of gei-8 on mitochondrial morphology and number in a C. elegans strain carrying a mitochondri-
al GFP reporter driven by the muscle-specific myo-3 promoter (left). Quantification of the mitochondrial in-
duction by fluorescence upon gei-8 knockdown (middle) and of the efficacy of the RNAi-mediated gei-8
knockdown by gRT-PCR analysis (right). (G) Muscle-specific RNAI inhibition of gei-8 enhances respiration in
C. elegans. Data are expressed as mean + SEM.

To investigate whether the effects of NCoR1 deficiency are evolutionary conserved, we took advantage of the pow-
er of C. elegans genetics. A protein blast search indicated that GEX-interacting protein family member 8 (gei-8) is the
only putative NCoR1 homolog in the C. elegans genome. Further analysis showed that the total amino acid sequence of
gei-8 is 43% homologous to mouse NCoR1 and contained conserved SANT domains (switching-defective protein 3
[Swi3], adaptor 2 [Ada2], nuclear receptor corepressor [N-CoR], transcription factor [TF] IIB; 34% identical/77% similar
for SANT1; 20% identical/ 57% similar for SANT2) (Fig. 3:3E). Other important functional domains (repressor domain
[RD] and nuclear receptor interaction domain [ID]) were also conserved (Fig. 3:3E). Upon the robust gei-8 knockdown in
worms expressing a mitochondrial GFP reporter driven by the muscle-specific myo-3 promoter, a striking enlargement
of the mitochondria was observed in body wall muscle (Fig. 3:3F). This result is not due to an indirect effect on tran-
scriptional activity through the myo-3 promoter because no increase in GFP expression is observed with another strain
carrying the Pmyo-3::GFP reporter. We also measured O, consumption in NR350 transgenic worms fed with gei-8 dsR-
NA. NR350 worms lack rde-1, an essential component of the RNAi machinery encoding a member of the
PIWI/STING/Argonaute family, in all tissues except the body wall muscle in which the wild-type rde-1 gene has been
rescued using the hlh-1 promoter [200]. Consistent with the effects observed in the mouse, also the muscle-specific
knockdown of gei-8 enhanced 02 consumption in these NR350 worms (Fig. 3:3G), suggesting that the function of gei-8
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in controlling mitochondrial metabolism is conserved through evolution.

3.1.3 NCoR1Is Associated With Muscle Function in Mouse GRPs

After establishing these striking mitochondrial effects of NCoR1 in mice and worms, we exploited a complementary
systems genetics approach to evaluate NCoR1 molecular coexpression partners in the BXD and BH F2 mouse popula-
tions [201, 202]. Expression of NCoR1 in these two panels of genetically heterogeneous mice varied by + 1.5-fold be-
tween cases in both lung and muscle (Fig. 3:4A). A large number of transcripts covaried significantly with NCoR1 in the
different mice lines belonging either to the BH cross or BXD strains. Most distinctively, a large fraction of the top covari-
ates were negative (~50% of top 500 correlates, compared to ~20% for a random gene). In skeletal muscle from the BH
F2s (n = 124 females), strong covariates of NCoR1 include Mef2d, myoglobin (Mb), muscle creatine kinase (Mck), and
glucose transporter type 4 (Glut4) [203]. A similar analysis of lung tissue from the BXD (n = 51 strains) includes genes
such as cytochrome c (Cycs), citrate synthase (Cs), pyruvate dehydrogenase kinase 4 (Pdk4), uncoupling protein 3
(Ucp3), vascular endothelial growth factor b (Vegfb), and long-chain acyl-CoA dehydrogenase (Lcad) (Fig. 3:4B) [204].
These analyses significantly extend the number of NCoR1 targets and covariates, with several of them being consistent
with increased mass and mitochondrial biogenesis observed in NCoR1*™~ muscle, and provided hypotheses for fur-
ther mechanistic validation. This initial set of NCoR1 covariates (Fig. 3:4B) was then included together with other poten-
tial candidates for gRT-PCR analysis in mixed fiber muscle such as the gastrocnemius (Fig. 3:4C).
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Figure 3:4 Identification of NCoR1-Correlated Genes

(A) Expression of NCoR1 mRNA in lung tissue of the different BXD strains (top) and in muscle tissue from an
F2 intercross between C57BL/6) and C3H/HeJ (bottom). Natural expression variation across the animals is ~
1.5-fold in each tissue. (B) Pearson's r and Spearman's rank correlation coefficient, rho, were calculated
with corresponding p values for the mRNA covariation between NCoR1 and genes involved in oxidative
phosphorylation (Cycs, Cs, and Pdk4), mitochondrial uncoupling (Ucp3), fatty acid metabolism (Lcad), angio-
genesis (Vegfb), glucose uptake (Glut4), and myogenesis (Mef2d, Mb, and Mck). The tissue from which data
were generated is indicated. (C) Gene expression analysis by qRT-PCR in NCoR1 $k™*/* and $km~/~ gas-
trocnemius. n = 10. Data are expressed as mean + SEM.
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While the mRNAs of most relevant NRs were unchanged, mRNA levels of PGC-1a and b (Ppargcla and 1b) in-
creased. Several genes involved in mitochondrial function, including those encoding for proteins involved in TCA cycle
and oxidative phosphorylation (Cs, cytochrome c oxidase subunit IV [Cox/V], Pdk4), uncoupling (Ucp2 and Ucp3), fatty
acid uptake, and metabolism (Cd36 and Lcad), were robustly induced in NCoR15*™/~ muscle. In addition, mRNA levels of
Vegfb and its receptor Fit1, which regulates trans-endothelial fatty acid transport [205], were also induced. Interesting-
ly, the expression of hypoxia-inducible factor (Hif) 1a and of its targets, glucose transporter 1 (Glutl), fibroblast growth
factor (Fgf), and Fgf-receptor 2 (Fgfr2), were unchanged, whereas all three Vegfa isoforms, i.e., Vegfa-121, -165, and -
189, were induced in NCoR17/~ quadriceps, gastrocnemius, and soleus (Fig. 3:4C and 3:5B). Together with this increase
in Vegfa, both Angpt2 and Pdgfb mRNA levels were induced (Fig. 3:4C), suggesting that myocellular aerobic capacity is
facilitated by an HIF1a-independent angiogenic pathway in NCoR1%™~/~ mice [206]. Several genes whose expression is
changed in the absence of NCoR1 are PPARb/d and/or ERR targets (Fig. 3:4). Because the expression of PPARb/d and/or
ERR was unchanged in NCoR1%*™~/~ mice, a direct effect of NCoR1 on the expression of these targets through the activa-
tion of these NRs was expected. As cases in point to demonstrate the recruitment of NCoR1 to these genes, we selected
the murine Ucp3 and Pdk4 promoters, which contain three PPAR responsive elements (PPREs) (Fig. 3:5A) and extended
NR half-sites (NR1/2), known to bind members of the ERR subfamily (Fig. 3:5E) [207], respectively. We first used NIH
3T3 cells in which an epitope-tagged version of NCoR1 (NCoR1-FLAG) was expressed. The two PPREs adjacent to the
Ucp3 transcription start site recruited NCoR1 more efficiently, compared to two control sequences in the Gapdh and
Ucp3 promoter that lack PPREs (Fig. 3:5B, left). Likewise, NCoR1 bound avidly to the mouse Pdk4 promoter NR1/2 site
in transfected NIH 3T3 cells (Fig. 3:5F, left). Although there is a two nucleotide difference in NR1/2 site of the human
Pdk4 promoter (Fig. 3:5E), NCoR1 and ERRa were also recruited to this site in human HEK293 cells (Fig. 3:5H).
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Figure 3:5 Increased PPARB/D and ERR Activity in NCoR1**™7~ Muscle

(A, B, E, F, and H) NCoR1 recruitment to the PPREs on mouse Ucp3 promoter (B) and to the ERR-RE on hu-
man (H) and mouse (F) Pdk4 promoter determined by ChIP in NIH 3T3 cells transfected with an NCoR1-FLAG
vector or in C2C12 myotubes. A schematic of the promoters of the Ucp3 (A) and Pdk4 (E) genes and the se-
quence alignment of the mouse, rat, and human Pdk4 promoter is also shown to highlight the conservation
of the NR1/2 (or ERR-RE) (E). Boxes indicate putative PPREs in the Ucp3 and the NR1/2, IRS, and Sp1 in the
Pdk4 promoter. ChIP experiments for the Ucp3 promoter were performed in C2C12 myotubes both before
and 6 hr after addition of a PPARb/d agonist (100 nM GW501516). #, not detected. ChIP experiments in

51



HEK293 cells transfected with FLAG-NCoR1 and HA-ERRa vector (H). (C and G) Binding of acetylated histone
4 (H4) to the PPREs on the Ucp3 and to the NR1/2 on the Pdk4 promoters in ChIP assays, using either im-
mortalized NCoR1'%2 MEFs, infected with an adenovirus either expressing GFP or Cre recombinase, or
C2C12 myotubes infected with the Ad-shNCoR1 virus. Representative data are shown from three experi-
ments. (D) Interaction between PPARb/d and NCoR1 determined by in vitro co-IP experiments from HEK293
cells in which NCoR1-FLAG and/or V5-PPARb/d are expressed. IP was performed with control IgG (lanes 1, 3,
5, and 7) or anti-FLAG antibody (lanes 2, 4, 6, and 8), and the immunoblot was developed with an anti-V5
antibody. PPARb/d coimmunoprecipitated by the anti-FLAG antibody is indicated by an arrow. Input samples
are shown in lanes 9-12. Data are expressed as mean + SEM.

The increased muscle mass observed in NCoR1%™~/~ mice indicated that the absence of NCoR1 not only induced ox-
idative metabolism, but also stimulated myogenesis. In line with this, mRNA levels of two markers of myogenesis, Mb
and Mck, were increased in the quadriceps of NCoR1%™~/~ animals (Fig. 3:6A). Among several myogenic regulatory
factors, only the expression of two Mef2 family members, i.e., Mef2c and Mef2d, negatively correlated with NCoR1
expression in our systems genetics analysis (Fig. 3:4). The selective induction of Mef2c and Mef2d mRNA was further-
more confirmed by qRT-PCR of NCoR1*™/~ gastrocnemius and quadriceps, whereas no changes were found in MyoD,
Myf5, and myogenin mRNA (Fig. 3:6A). The activity of MEF2 family members is not only controlled by their expression
levels, but is also modulated by their acetylation status. MEF2 is acetylated and activated by p300, whereas it is
deacetylated by HDAC3 and HDAC4, which are part of the NCoR1 corepressor complex [208, 209]. Because the expres-
sion of the Mef2d isoform is most prominently correlated with NCoR1 expression, we investigated MEF2D acetylation in
gastrocnemius and found that its acetylation levels were enhanced in NCoR1%™~~ mice (Fig. 3:6A and 3:6B).

We then compared the acetylation of MEF2D in floxed NCoR1'%/'2 MEFs infected with an adenovirus expressing ei-
ther GFP as control or Cre-recombinase to reduce NCoR1 protein expression (Fig. 3:6C, left). Whereas MEF2D protein
levels were stable in NCoR1~~ MEFs, perhaps due to the more acute nature of the deletion, MEF2D was robustly hyper-
acetylated when NCoR1 levels were attenuated (Fig. 3:6C, right). Likewise, a slight but consistent MEF2D hyperacetyla-
tion was observed in C2C12 myotubes infected with Ad-shNCoR1 to knock down NCoR1 expression (Fig. 3:6D), further
underscoring the importance of MEF2D deacetylation by the NCoR1 complex. Given the induction of MEF2D expression
and its hyperacetylation and consistent with our systems genetics analysis (Fig. 3:4B), mRNA levels of the MEF2 targets,
Mb and Mck, were robustly induced in NCoR1%™/~ gastrocnemius (Fig. 3:6A). Silencing of NCoR1 in C2C12 myotubes
also resulted in a similar induction of several MEF2 target genes, including Mb, Mck, Glut4, c-Jun, Nur77, PGC-1a, and
PGC-1b (Fig. 3:6E). In line with these data, endogenous NCoR1 was readily detected on MEF2-binding sites on these
target promoters in C2C12 myotubes, as illustrated for the Mb promoter (Fig. 3:6F). The induction of these MEF2 tar-
gets by NCoR1 knockdown was furthermore accompanied by H4K16 and global H4 hyperacetylation on their promoters
(e.g., Mb, Glut4, and Mck) (Fig. 3:6G).
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Figure 3:6 Enhanced MEF2 Activity in NCOR1*"~ Muscle

(A) Gene expression of myogenesis-related genes was measured by qRT-PCR in NCoRI*™/* and ™/~ quadri-
ceps. n = 10. (B-D) Acetylation levels of MEF2D were determined by western blot after immunoprecipita-
tion with an Ac-Lys Ab from gastrocnemius (B), from NCoR1'**? MEFs infected with Ad-GFP or Ad-Cre re-
combinase (C, right), and from C2C12 myotubes infected with Ad-shLacZ or Ad-shNCoR1 (D). MEF2D expres-
sion in total protein extracts was shown in the bottom panels. The expression of NCoR1 and actin in
NCoR1*/*? MEFs was also shown (C, left). (E) MEF2 target mRNAs determined by gRT-PCR in C2C12 myo-
tubes infected with either Ad-shLacZ or Ad-shNCoR1. n = 6. (F) NCoR1 recruitment to the MEF2 site of the
mouse Mb promoter determined by ChIP in C2C12 myotubes. (G) Binding of either global acetylated his-
tone 4 (H4) or H4 acetylated on K16 (H4K16) to the MEF2 site of the Mb gene was evaluated by ChIP from
C2C12 myotubes infected as in (E). Data are expressed as mean + SEM.

3.1.4 NCoR1 Muscle Discussion

The increased muscle mass, associated with a strikingly improved exercise capacity, is the most prominent pheno-
typic outcome of the muscle-specific NCoR1 gene deletion. The enhanced exercise capacity is associated with a repro-
gramming of glycolytic to more oxidative muscle fibers and a corresponding stimulation of oxidative mitochondrial
metabolism, indicative of an improved intrinsic quality of the muscles. The increased muscle quantity and oxidative
profile in NCoR1*™/~ mice also contribute to the slight improvement in metabolic parameters after HFD feeding and to
the cold resistance subsequent to shivering thermogenesis [210]. Combined, these properties suggest that NCoR1 acts
as a master modulator of mitochondrial metabolism in the muscle, a hypothesis bolstered by the fact that the inhibition
of the single worm NCoR homolog, gei-8, also robustly boosts muscle oxidative mitochondrial metabolism in C. elegans.
The evolutionary conservation of the structure and function of this corepressor makes it tempting to speculate that
NCoR may have evolved to facilitate metabolic adaptation of the mitochondria to energy availability, as has been de-
scribed for other cofactors as SIRT1 [210].

As to how the absence of NCoR1 in the muscle achieves these remarkable effects, it is important to recall that
NCoR1 docks histone deacetylases, such as HDAC3 [211] and SIRT1 [195]. The use of mice with a point mutation in the
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NCoR1 deacetylase activation domain, incapacitating its interaction with HDAC3, indicated that this interaction is a
nodal point in epigenetic regulation [211, 212]. The physiological alterations in the NCoR1%*™/~ muscle together with
the study of the expression correlates of NCoR1 suggested that, rather than the generalized transcriptional activation
expected upon ablation of a corepressor platform protein, only a small set of transcriptional pathways was selectively
affected.

Several transcription factors control muscle differentiation and development, including MyoD, myogenin, Myf5,
Myf6, and Mef2 [213-216]. Mef2 especially caught our attention, as only its expression negatively correlated with
NCoR1 (Fig. 3:4B) and was induced in NCoR1%*™7/~ muscle (Fig. 3:6A). Mef2 is key for muscle development and also
participates in muscle stress response and remodeling in adulthood, such as occurs during muscle fiber type switch
[216, 217]. Mef2 activity is not only controlled at the level of its expression, but also by a wide range of intracellular
signaling pathways and interacting coregulator molecules (reviewed in [216]). The histone acetyltransferases,
p300/CBP, bind, acetylate, and activate MEF2 [208, 214], whereas class | (HDAC3 [218]), class Il (HDAC4, 5, 7, and 9
[214, 219]), and class Il HDACs (SIRT1 [220]) all are reported to interact with MEF2 and prevent the activation of its
target genes [214]. The absence of NCoR1 would hence favor the acetylation and activation of MEF2. The hyperacetyla-
tion of MEF2D and histone 4 in NCoR1-deficient MEFs, C2C12 myotubes, and muscles, which translates into the induc-
tion of Mef2 targets and the gain of muscle mass in NCoRI*™/~ mice, is fully in line with this idea (Fig. 3:6).

The increased expression of genes related to fatty acid catabolism and mitochondrial respiration underlies the oxi-
dative mitochondrial changes observed in the NCoR1*™/~ mice. In the muscle, the expression of these gene sets is
tightly controlled by NRs belonging to the PPAR and ERR families [221]. PPARb/d, the predominant PPAR isoform in
oxidative fibers, regulates oxidative capacity and enhances slow fiber-type function, resulting in improved exercise
capacity and metabolic protection [222-224]. Among the ERRs, mainly ERRa and ERRg seem to be involved in the coor-
dination of muscle energy homeostasis (reviewed in [225, 226]). In line with this, a genome-wide location analysis of
ERRa and ERRg identified binding sites in genes of a large number of mitochondrial proteins [227], and studies in mouse
models show that they coordinate many aspects of muscle oxidative metabolism, including endurance capacity [225,
226, 228]. Several features of the NCoR1%™/~ mice are suggestive of the activation of PPARb/d and ERR. The demon-
stration that NCoR1 is recruited to the PPREs in the Ucp3 and the NR1/2 in Pdk4 promoters and that histone 4 is hyper-
acetylated on these promoters when NCoR1 is absent suggests that coactivators now activate the transcription of these
genes in a fashion unopposed by the NCoR1 corepressor platform. Given that PGC-1a is a key coactivator of PPARb/d
and ERR transcriptional programs (reviewed in [188]), it is no surprise that several phenotypic features, ranging from
similarities in gene expression patterns over the induction of mitochondrial oxidative metabolism and exercise capacity
to HIFla-independent angiogenesis, are shared between mice that lack NCoR1 or that overexpress PGC-1a [206, 229].

NCoR1 action is tightly regulated by various physiological challenges, and this is achieved through at least two dif-
ferent mechanisms. First, nuclear levels of NCoR1 are regulated. Our results show how insulin, which stimulates glucose
oxidation at the expense of fatty acid oxidation, increases NCoR1 levels in the nucleus, enabling it to subsequently
repress lipid oxidation genes. Interestingly, this effect of insulin on nuclear NCoR1 accumulation is consistent with the
positive effect of mTORC1 on nuclear NCoR1 accumulation, recently reported in hepatocytes [230]. The second mecha-
nism involves the modulation of NCoR1 expression. Exposing cells to media with low glucose and/or high fatty acid
levels reduces specifically NCoR1 (but not SMRT) mRNA and protein levels, ultimately derepressing genes that control
oxidative lipid metabolism. Likewise, endurance exercise, fasting, high-fat feeding, and aging—conditions paired with
increased fat oxidation—also are characterized by attenuated muscle NCoR1 mRNA expression. Although we are unable
to detect NCoR1 protein in the muscle with the currently available antibodies, our data in adipose tissue unequivocally
show that the specific reduction in NCoR1 mRNA observed in that tissue after HFD is matched with a spectacular drop
in NCoR1 protein. If the reduced NCoR1 mRNA levels in muscle also translate to corresponding changes in NCoR1 pro-
tein, they will prime the muscle for mitochondrial oxidation. These selective effects of NCoR1 to repress muscle fatty
acid oxidation hence suggest that changes in NCoR1 levels adapt transcriptional outcomes to physiological energy
needs.

In conclusion, we demonstrated here that NCoR is an evolutionary conserved negative regulator of both muscle
mass and mitochondrial oxidative metabolism in nematode and mammals. In the mouse, NCoR1 achieves these effects
through controlling a rather selected set of functional pathways, which are governed by MEF2, PPARb/d, and the ERRs,
and can be seen in diverse genetic populations. The NCoR1%*™/~ muscle phenotype furthermore mirrors many features
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of the stimulation of PGC-1a, a coactivator, whose action is less constrained by the absence of the NCoR1 corepressor
scaffold. Our work also provides evidence that NCoR1 expression is regulated in a dynamic fashion and, as such, could
play a role similar to PGC-1a in transcriptional adaptation to physiological challenges. Moreover, pharmacological inhi-
bition of NCoR1 and/or its interaction with deacetylases may be a viable approach to improve muscle mass and oxida-
tive metabolism. The fact that the inhibition of HDACs increases muscle cell size supports this concept [231]. It is also
tempting to speculate that the beneficial effects of the inhibition of mMTORC1 and insulin signaling on health and life
span may, in part, rely on the attenuation of NCoR1 activity and the subsequent induction of oxidative metabolism in
the muscle (reviewed in [202]).

3.1.5 Methods

NCoR1 floxed (NCoR1:%'2), NCoR1*™/*, and ™/~ mice were generated at the Mouse Clinical Institute (Strasbourg,
France) and phenotyped according to standard procedures [123, 157]. C. elegans O, consumption was measured using
200 2-day-old worms using a Seahorse XF24. Staining of muscles with hematoxylin and eosin, immunohistochemical
and EM analysis, and analysis of enzymatic activity of SDH and COX were carried out as described [232]. mRNA expres-
sion levels were measured in cells and tissues using gRT-PCR [232]. The GeneNetwork program
(www.genenetwork.org) was used to generate a broad range of NCoR1-correlated genes that may contribute to the
phenotype of NCoR1%™/~ mice. Skeletal muscle mRNA expression was analyzed using 124 females from a classic F2
intercross between C57BL/6J and C3H/HeJ) (UCLA BHHBF2 Muscle; GEO GSE12795; [203]). NCoR1 (10024414685, 3'
UTR) was compared across all transcripts to find muscle covariates. Lung mRNA in a recombinant inbred intercross
between C57BL/6J and DBA/2) was analyzed across 51 strains (HZI BXD Lung M430v2 [Apr08] RMA) [204]. Four NCoR1
probe sets from this microarray were analyzed (1423200_at, 3' UTR; 1435914 _at, 3' UTR; 1423202_a_at, exonic and 3'
UTR; 1423201 _at, exonic). For all probe sets, the top correlates were calculated. Strong or interesting correlates were
selected for validation by gRT-PCR. Statistical analyses were performed with a Student's t-test for independent samples.
Data are expressed as mean + SEM, and p values smaller than 0.05 were considered as statistically significant. *p < 0.05;
**p <0.01; ***p < 0.001.
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3.2 Drug Treatments to Improve Muscle Function

3.2.1 PARP Inhibition Enhances Energy Expenditure and Improves Muscle Function

Reductions in mitochondrial number and activity are a hallmark of several inherited mitochondrial diseases, as well
as a number of age-related neurodegenerative and metabolic disorders [233]. The sirtuin enzymes have emerged as
critical regulators of mitochondrial and oxidative metabolism [234]. Several studies have shown that NAD* levels can be
rate limiting for the deacetylase activity of SIRT1, the best-characterized sirtuin [235]. Boosting intracellular NAD"* levels
has hence become an attractive approach to activate SIRT1 and mitochondrial metabolism. In line with this, NAD* avail-

55



ability might even determine circadian shifts in oxidative capacity [236]. One strategy to increase NAD* levels consists of
the inhibition of alternative NAD*-consuming enzymes, such as poly(ADP-ribose) polymerase-1 (PARP-1) [131], which is
involved in DNA damage detection and repair. Upon activation, PARP-1 can deplete intracellular NAD* levels by 80%.
Genetic ablation of Parp-1 increases NAD* availability and SIRT1 activity in tissues, such as skeletal muscle and brown
adipose tissue [149]. As a consequence, mitochondrial oxidative capacity is enhanced in muscle of Parp-17/- mice, pro-
tecting them against high-fat diet (HFD)-induced insulin resistance. Therefore, PARP inhibition constitutes a plausible
strategy to improve metabolic homeostasis. PARP inhibitors (Paribs) already exist and are clinically tested in the cancer
field [150]. The role of PARPs in genome maintenance, however questions whether Paribs can be used therapeutically
over longer periods of time to prevent the detrimental metabolic consequences of mitochondrial dysfunction. Here, we
demonstrate that long-term Parib treatment is sustainable and improves mitochondrial function in skeletal muscle,
enhancing endurance performance and protecting against HFD-induced metabolic complications. We furthermore
show that Parp-1 expression is negatively correlated with energy expenditure in mouse genetic reference populations.
Finally, we demonstrate how acquired and genetic mitochondrial defects can be improved by Paribs. Therefore, our
work sets the stage for the possible clinical use of Paribs in situations of defective mitochondrial function.

As defects in mitochondrial metabolism are a hallmark for many diseases, Paribs could in principle also be used for
these nononcological indications. However, such use could be overshadowed by several concerns. First, chronic Parib
treatment could induce genomic instability [150]. Second, Paribs would affect not just PARP-1 but also PARP-2, and the
combined reduction of both activities could be detrimental for long-term viability [237]. Hence, we characterized the
impact of long-term MRL-45696 treatment in mice. We initially determined that dietary admixture achieved higher
MRL-45696 levels in plasma and muscle than oral gavage, hence choosing this route for further studies. We then fed
HFD admixed with MRL-45696 (50 mg/kg/day) to 10-week-old male C57BL/6J mice. MRL-45696 blunted HFD-induced
body weight gain (Fig. 3:7A) due to reduced fat accumulation (Fig. 3:7B) and was associated with higher energy ex-
penditure (Fig. 3:7C), without affecting activity or food intake (Fig. 3:7D and 3:7E). Although PARP-1 has been shown to
impact genome stability and cell viability, no evidence for toxicity on genomic DNA or cellular damage was found, as
liver 8-oxo-dG and muscle lipid peroxidation levels were similar between the groups (Fig. 3:7F and 3:7G). This is in line
with the fact that Parp-17/- mice are viable and do not show signs of DNA damage unless challenged with cytotoxic

stimuli [238].
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Figure 3:7 Paribs Protect from HFD-Induced Metabolic Complications

Ten-week-old male C57BL/6J mice were challenged with HFD supplemented with either vehicle (DMSO; Veh)
or MRL-45696 (50 mg/kg/day) (n = 10/group). (A) Body weight gain during 18 weeks of HFD. (B) Fat mass
was measured using Echo-MRI. (C and D) A comprehensive laboratory animal monitoring system was used
to evaluate VO2 (C) and activity (D) after 7 weeks of HFD. (E) Food intake measured by averaging weekly
food consumption during HFD. (F) Liver 8-oxo-dG, an indicator of DNA damage, (G) muscle lipid peroxida-
tion-derived aldehyde, 4-hydroxy-2-nonenal, and (H) muscle total poly(ADP-ribose) (PAR) contents were
measured in vehicle and MRL-45696-treated mice (n = 7/group). (I and J) Total intracellular (I) and mito-
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chondrial (J) NAD* levels in gastrocnemius of refed vehicle and MRL-45696-treated mice (n = 5-10/group).
(K) SIRT1, acetylated FOXO1, and total FOXO1 protein levels were assessed in total homogenates from quad-
riceps of CD-fed mice. (L) The acetylation status of NDUFA9 immunoprecipates was tested as a marker of
SIRT3 activity. Values are shown as mean + SEM. Asterisk indicates statistical significant difference versus re-
spective Veh group. *p < 0.05; **p < 0.01; ***p < 0.001.

MRL-45696 reduced total PARP activity in skeletal muscle (~50%; Fig. 3:7H) and in other tissues tested, including
brain and liver (not shown). In line with PARP inhibition, intracellular NAD* content was higher in muscle from treated
mice (Fig. 3:71). The higher NAD* levels were restricted to the nuclear and/or cytosolic compartments, since mitochon-
drial NAD* content was similar between both groups (Fig. 3:7J). Reductions in PARP activity translated also into SIRT1
activation, as reflected by lower FOXO1 acetylation, despite slightly lowered SIRT1 levels (Fig. 3:7K). Conversely, the
unaltered mitochondrial NAD* levels did not change SIRT3 activity, as manifested in the acetylation of NDUFA9 (Fig.
3:7L). These observations are in line with observations in Parp-17/~ mice, where SIRT1, but not SIRT3, activity was en-
hanced [149].

3.2.2 PARP Inhibition Enhances Endurance and Mitochondrial Function

Given that MRL-45696 accumulates and inhibits PARP in the skeletal muscle (Fig. 3:7H), we next examined the im-
pact of Paribs on muscle performance and mitochondrial function in CD-fed mice. Despite similar body weight and
composition (not shown), MRL-45696-treated mice ran for a significantly longer distance (Fig. 3:8A). Maximal O, con-
sumption capacity (VOamax), Which critically determines endurance performance, was significantly higher with MRL-
45696 (not shown). As cardiovascular parameters, including ejection fraction, fractional shortening, ventricular mass,
and diameter (not shown), were unchanged, the higher endurance was most likely due to improved muscle mitochon-

drial function.
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Figure 3:8 Paribs Enhance Exercise Capacity and Muscle Mitochondrial Function

Chow-fed male C57BL/6J and congenic SIRT1%™~ mice (n = 5-10/group) treated with vehicle (DMSO; Veh)
and/or MRL-45696 (50 mg/kg/day) were subjected to (A) endurance treadmill test after 13 weeks of treat-
ments, (B) respirometry analysis of permeabilized EDL muscle fibers (CI/Il, complex I/Il; ETS, electron
transport system), and (C) CS activity measurement. (D) Oleic acid oxidation rate in the muscles of Veh and
MRL-45696-treated mice after 18 weeks of treatment (n = 5-7/group). (E) Mitochondria DNA abundance in
quadriceps of Veh and MRL-45696-treated mice (n = 8/group). Results are expressed as mitochondrial DNA
amount (16S) relative to genomic DNA (UCP2). (F) Cytochrome c oxidase (COX) and succinate dehydrogen-
ase (SDH) stainings in gastrocnemius of Veh and MRL-45696-treated mice. Soleus is indicated by an arrow.
(G) Protein levels of MHCI and Ilb were evaluated using heat-shock protein 90 (Hsp90) as a loading control.
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(H) Myosin heavy chain I staining (MHCI) of gastrocnemius of Veh and MRL-45696-treated mice. Values are
shown as mean + SEM. Asterisk indicates statistical significant difference versus respective Veh group. *p <
0.05; **p < 0.01; ***p < 0.001.

To substantiate this hypothesis, we performed respirometry tests in permeabilized EDL muscle fibers. Maximal res-
piration in the coupled state, with electron input through either complex | alone—using malate, pyruvate, and gluta-
mate—or complex I+ll—using, in addition, succinate—was markedly higher in muscles after MRL-45696 (Fig. 3:8B).
Maximum electron transport system capacity was also higher after PARP inhibition, even after the addition of the com-
plex | inhibitor rotenone (Fig. 3:8B). These results are consistent with the marked increase in citrate synthase (CS) activi-
ty after MRL-45696 (Fig. 3:8C). Finally, Paribs increased oleic acid oxidation rates by ~50% (Fig. 3:8D). Mitochondrial
DNA abundance was, however, not changed (Fig. 3:8E), suggesting that MRL-45696 does not influence muscle mito-
chondrial function by increasing mitochondrial number.

Histological analysis further certified that Paribs enhanced the oxidative profile of skeletal muscle, as testified by
more intense cytochrome c oxidase and succinate dehydrogenase stainings in gastrocnemius (Fig. 3:8F). Remarkably, an
increase in slow oxidative MHCI, a marker for type 1 fibers, was observed, whereas MHClIb levels, a type 2 fiber marker,
were decreased by MRL-45696 (Fig. 3:8G). Furthermore, MHCI staining of gastrocnemius confirmed the higher type 1
fiber content after MRL-45696 (Fig. 3:8H). The higher oxidative capacity after Paribs was accompanied by increased
insulin sensitivity, as reflected by the higher glucose infusion rate during a hyperinsulinemic-euglycemic clamp (not
shown). We next evaluated the possible contribution of SIRT1 in mediating the effects of Paribs by using a muscle-
specific SIRT1-deficient mouse line (SIRT1%™~~ mice). In line with previous reports [239, 240], endurance or VOzmax Was
not impaired in SIRT1%*™~~ mice (data not shown). Interestingly, Paribs were unable to enhance endurance, respiratory
capacity, and CS activity in the SIRT1*™“-mice (Fig. 3:8A—C). Of note, the expression of Sirt1, Tfam, and c-myc was also
increased in Parib-treated muscles (not shown), which indicates that a recently identified SIRT1-dependent pathway
[241] by which NAD* controls metabolic health might also be at play. Therefore, SIRT1 seems key to the actions of
Paribs on muscle metabolism.

3.2.3 Parp-1 Expression Negatively Correlates with Energy Expenditure

Given the effects of Paribs on mitochondrial function in the C57BL/6J mouse strain, we next aimed to elucidate
whether Parp-1 could determine energy expenditure and oxidative capacity in genetically complex mouse populations
such as the BXD mouse GRP [110]. Parp-1 expression varied by ~1.3-fold in skeletal muscle across the BXD strains,
enabling the study of gene expression correlations (Fig. 3:9A). These changes in Parp-1 expression are not related to
natural variations in fiber type composition, as Parp-1 expression is comparable in muscles having different fiber type
content, such as gastrocnemius or soleus (data not shown). Parp-1 expression in muscles of the BXDs strains was nega-
tively correlated with night VO, (i.e. during the mouse active phase), VO,max improvement after 10 days' training on an
activity wheel, and with expression of the troponin | type 1 slow-twitch muscle isoform (Thni1) (Fig. 3:9B). In contrast,
Parp-1 positively correlated with body weight, troponin C type 2 fast-twitch muscle isoform (Tnnc2) and troponin | type
2 fast-twitch muscle isoform (Tnni2) (Fig. 3:9B).

A

re=—0.51 Figure 3:9 Parp Negatively Correlates
p=0.00 with Mitochondrial Function
s
s (A) Expression of Parp-1 in the quadriceps
E . of 37 BXD strains. Bar represent pools of
5 3°°° Vfgm \;’g : 20 s . ~5 animals. Extremes and parentals are
& “;I'_ﬁmmrz} ?m?k%{ﬂ:;?em '9”"?;3 erifice  Jabeled. (B) (Top) Correlation between
a muscle Parp-1 expression and BXD pheno-
8 r=-037 r= 041 r=030 types. VO2 was measured though indirect
E & p=002 calorimetry. VO, improvement represents
3 ‘v, the change in VOamax after 10 days of
98 D B95 ¥y voluntary exercise. (Bottom) Correlation
BXD Mouse Strains . s s : between quadriceps Parp-1 and fiber type
75 105 ua 148 1o . jad genes in the same data set.
Trnii Tnnc2 Tnni2

This robust genetic correlation
suggests a physiological influence of PARP-1 activity on oxidative metabolism in more diverse populations. Indeed,
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previous results indicated that PARP activity is increased upon HFD [149], likely favoring fat storage over burning [242].
Consistent with this, PARP-1 activity was found to enhance adipogenesis [242]. Oppositely, PARP activity was decreased
in muscle upon fasting [149], when lipid oxidation is favored. Collectively, this indicates that physiological changes in
PARP-1 activity might help balancing whole-body energy metabolism.

3.2.4 Conclusions and Perspectives on PARP Inhibitors

In sum, this work provides evidence that drugs used at present in the cancer field could be retooled to treat meta-
bolic dysfunction linked to impaired mitochondrial activity, even in a long-term fashion. Paribs are currently being
tested for oncology indications, with positive outcomes in tumors with dysfunctional homologous DNA recombination
repair [150]. The success of Paribs is thought to rely on the high dependency of these cancer cells on PARP enzymes for
DNA repair [150], but could also involve their capacity to reprogram cells toward oxidative metabolism [149]. Notably,
Paribs are in general well tolerated by patients, with few reported side effects [135, 243, 244]. Within the time frame of
this study, and in line with findings in Parp-17~ mice [149] and in patients treated with Olaparib [135, 243, 244], no
toxicity or genomic instability was seen in MRL-45696-treated mice. In contrast, marked metabolic effects were ob-
served, such as improved mitochondrial function and protection against diet-induced obesity. Importantly, PARP inhibi-
tion rescued mitochondrial activity in situations of genetically determined mitochondrial dysfunction. Therefore, our
results open the path of using Paribs to improve invalidating diseases caused by impaired mitochondrial function. While
this could also set the stage for Paribs to impinge on other metabolic complex diseases, such as seen during type 2
diabetes, further work must be done to ensure the safety and feasibility of these treatments in non-life-threatening
diseases.

3.2.5 Methods

To compare administration routes, male C57BL/6J mice were given MRL-45696 by gavage or food admix at a dose
of 50 mg/kg/day (mkd) for 5 days. Mice were sacrificed either 6 hr after the last gavage or in the random fed state,
respectively. MRL-45696 concentration in plasma and muscle was measured by mass spectrometry. For the long-term
animal studies, 10-week-old male C57BL/6) mice (Charles River) or SIRT1*™7~mice were fed pellets containing vehicle
and/or PARP inhibitor (50 mkd) for 18 weeks. During the experiment, mice were housed under a 12 hr dark-light cycle
and had ad libitum access to water and food. Clinical tests were carried out according to standard operational proce-
dures. Mitochondrial function in permeabilized EDL muscle fibers was evaluated using the Oxygraph-2k respirometer
(Oroboros, Austria). Correlations in the BXD mouse genetic reference population were identified using the GeneNet-
work database (www.genenetwork.org). All mouse experiments were performed according to Swiss regulations and
approved by the ethical commission of the Canton de Vaud, Switzerland, under licenses 2465 and 2465.1. Statistical
analyses were performed with Prism software (GraphPad). Differences between two groups were analyzed using Stu-
dent's t-test (two-tailed), and multiple comparisons were analyzed by ANOVA with a Bonferroni post hoc test. A p-value
less than 0.05 was considered significant. Data are expressed as means * SEM.
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33 AP-1-Related Regulation of Steatohepatitis and PPARg Signaling

3.3.1 Introduction to AP-1, PPARy Signaling, and NAFLD

Given their high energy-to-weight ratio compared to carbohydrates and proteins, lipids are the most efficient ener-
gy substrate in mammals. The adipose tissue is the major lipid storage organ and it is essential for controlling metabolic
homeostasis [245]. In the healthy state, tissues such as muscle and liver store only minor quantities of lipids [246].
However, metabolic stress, as occurring in obese or alcohol-abusing patients, can cause massive ectopic lipid deposi-
tion, leading to a disease state, termed "steatosis" or "fatty liver disease". Depending on the etiology, this disease can
be further subgrouped into alcoholic or non-alcoholic fatty liver disease (AFLD and NAFLD respectively). NAFLD is the
most common liver disorder in industrialized countries and it frequently leads to severe liver inflammation and damage,
a disease state termed "non-alcoholic steatohepatitis" (NASH) [247]. Moreover, NAFLD contributes to hepatic insulin
resistance in diabetes [248] and is a risk factor for liver dysfunction and cancer development [249]. Understanding the
cellular and molecular mechanisms leading to NAFLD, as well as the identification of novel targets for NAFLD therapy
has therefore become a priority [250, 251].

The Activator Protein-1 (AP-1) (Fos/Jun) protein complex is a dimeric leucine zipper (bZIP) transcription factor.
Three different Jun proteins (c-Jun, JunB and JunD) and four different Fos proteins (c-Fos, FosB, Fra-1 and Fra-2) can
form AP-1 dimers. Jun proteins can either form homodimers, such as c-Jun/c-Jun or c-Jun/JunB, or heterodimers, such
as c-Jun/c-Fos. In contrast, Fos proteins exclusively form heterodimers [252]. Jun and Fos proteins also form heterodi-
mers with other bZIP transcription factors, such as specific MAF and ATF family members [253]. Thus, a vast combinato-
rial variety of AP-1 dimers with likely different molecular and biological functions exists [254-256]. Studies using genet-
ically modified mice have unravelled essential roles of AP-1-forming proteins in development, inflammation and cancer
[253]. Moreover, AP-1 modulates the response to acute cellular stresses, such as reactive oxygen species or DNA dam-
age [257]. Cellular stresses typically activate AP-1 by augmenting transcription, protein stability and transactivation
potential of Jun and Fos family members [258]. In the liver, the genetic inactivation of single Jun or Fos genes in
hepatocytes does not compromise organ homeostasis [253, 259]. However, AP-1 is critical for the liver's response to
acute stress. For example, c-Jun protects hepatocytes from injury [260, 261] and is essential for liver regeneration [262]
and carcinogenesis [263-265]. More recently, we have documented that Fra-1, but not Fra-2, protects hepatocytes from
acetaminophen overdose, a paradigm for xenobiotic-mediated acute liver failure [266]. In contrast, little is known
about the role of AP-1 in chronic stress conditions and the potential contribution of AP-1 to the development of hepatic
metabolic disease. Here we combined system genetics with gain- and loss-of-function (G/LOF) mouse models to study
the function of AP-1 in hepatic lipid metabolism and NAFLD development. We show that, depending on dimer composi-
tion, AP-1 can either repress or activate the transcription of the pro-steatotic nuclear receptor Peroxisome Proliferator-
Activated Receptor y (PPARy), which promotes hepatic lipid uptake and lipid droplet formation. Some AP-1 proteins,
such as Fra-1 and Fra-2, inhibit the PPARy pathway and reduce hepatic lipid content, while other AP-1 proteins, such as
c-Fos and JunD induce hepatic PPARy signaling and lipid accumulation. We also show that AP-1 regulates the PPARy
pathway through direct regulation of the Pparg2 promoter. Using a mouse model for inducible hepatocyte-restricted
Fra-1 expression, we demonstrate that the Fra-1-induced suppression of the PPARy pathway can revert established
NAFLD. For the first time, liver-specific single chain Jun~Fos forced dimer mice were employed, in which dimerization of
a Fos protein is restricted to a single Jun partner [267]. The analyses of these mouse models provide in vivo evidence
that distinct AP-1 dimers regulate the PPARy pathway in an antagonistic fashion. Finally, we show that JunD is essential
for efficient PPARYy signaling and NAFLD formation. Overall, this study identifies AP-1 as a link between dietary obesity,
hepatic lipid metabolism and NAFLD.

3.3.2 AP-1-Mediated Regulation of Hepatic Lipid Metabolism and NAFLD

To identify a possible function of AP-1 in metabolism, we analyzed 42 genetically diverse mouse strains from the
BXD mouse genetic reference population (GRP) [268]. 10 animals for each strain were split evenly into two cohorts fed
either chow diet (CD) or high-fat diet (HFD) for five months. Hepatic AP-1 mRNA expression was then analyzed using
genome-wide expression profiles from the BXD strains. Fra-1 mRNA levels were found to be significantly reduced in the
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HFD-fed cohort, while the expression of c-fos, fosB, fra-2, c-jun, junb and jund were not affected by the diet (Fig. 3:10A).
To explore whether Fra-1 could causally contribute to HFD-associated metabolic changes in the liver, we analyzed
hepatic metabolism in Fra-1"® mice, a previously established model of Doxycycline (Dox)-controllable hepatocyte-
restricted Fra-1-overexpression, which does not display any obvious phenotype under basal conditions [266] (for details
on mouse strains see Table S1). After HFD feeding, the livers appeared less pale on the macroscopic level and weighed
significantly less in Fra-1"®P mice compared to HFD-fed littermate controls (Fig. 3:10B, C). Liver histology indicated a
reduction in lipid droplets in mutant mice (Fig. 3:10B), which was confirmed by the quantitation of Oil-RedO (ORO)-
positive lipid droplets and liver triglyceride (TG) content analysis (Fig. 3:10C).
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Figure 3:10 Fra-1 is Regulated by HFD and Inhibits NAFLD and PPARy Expression

(A) Hepatic fra-1 expression in CD and HFD (for 5 months; 60% kCal/fat) in 42 BXD inbred strains. Each data
point represents the mean expression of 5 mice. (B,C), Fra-1"® mice and control littermates were on CD or
HFD (for 5-9 months; 45% kCal/fat); n>5/cohort. (B) Representative liver pictures and histology in Fra-1"®
and control mice; ORO=0il-RedO; bars=1cm and 100um. (C) Quantitation of ORO-positive areas, liver/body
ratio, liver TG content and serum ALT levels. Bar graphs are presented as meantSEM. ** p < 0.01, *** p <
0.001.

We next addressed the effect of Fra-1 expression on NAFLD-associated liver damage and inflammation. Augmented
serum levels of the liver damage marker alanine aminotransferase (ALT) and increased hepatic inflammation marker
expression were observed in controls after HFD-feeding, but not in Fra-1"¢? mice (Fig. 3:10C). Moreover, immunohisto-
chemistry (IHC) for the pan-lymphocyte marker CD45 and the macrophage marker F4/80 revealed a significant reduc-
tion in immune cell infiltrates in HFD-fed mutants compared to diet-matched controls. In the HFD-fed state, serum IL-6
levels were also reduced in HFD-fed Fra-1"¢? mice compared to controls (data not shown). We next explored the effects
of hepatic Fra-1 expression on circulating metabolite and hormone levels. Serum TG and cholesterol were mildly ele-
vated in HFD-fed Fra-1"¢? compared to control mice in the fasted and/or fed states, while other serum parameters were
not affected. Despite decreased NAFLD and liver damage, glucose tolerance and insulin tolerance tests (GTT and ITT)
revealed that glucose metabolism was not improved, but rather slightly worsened in HFD-fed mutants as compared to
controls. Similar effects of Fra-1 on NAFLD development were also observed in Fra-1"®® mice on a C57BL/6J background
or using 60% kCal/fat HFD (data not shown). These data collectively suggest that hepatocyte-specific Fra-1 expression
protects from dietary-induced NAFLD and secondary liver damage and inflammation, but has little impact on systemic
obesity and glucose metabolism.
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3.3.3 Mechanism of Action: Fra-1 Regulates the PPARg Pathway

We next analyzed the molecular mechanisms underlying reduced NAFLD in Fra-1"P mice. Genome-wide hepatic
gene expression analyses in CD- and HFD-fed Fra-1"® mice demonstrated that the expression of ~3000 genes was
changed by at least 1.5 fold in Fra-1"P livers. The vast majority of these genes were regulated in a similar fashion in
both dietary conditions, and many PPARYy targets such as adipsin and cidea were among the most downregulated genes
(Fig. 3:11A). KEGG pathway analysis [269] of the top 2000 most changed genes established PPARy signaling among the
most significantly affected pathways in both dietary cohorts (Fig. 3:11B). A highly significant fraction of mRNAs, which
were reduced in Fra-1"P mice, were encoded by genes with promoters containing putative AP-1 sites (p=9.0E-13) and
PPARy response elements (PPREs) (p=3.3E-11), as revealed by the UCSC TFBS conserved tracks analyses on DAVID
(http://david.abcc.ncifcrf.gov) [270] (data not shown). gRT-PCR, immunoblot and IHC analyses confirmed decreased
hepatic ppary mRNA/PPARy protein expression in CD- and HFD-fed Fra-1"¢? mice (Fig. 3:11C and 3:11D).
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Figure 3:11 Fra-1 Regulates the PPARy Pathway

(A-D) Fra-1"*P mice and control littermates on CD or HFD (for 5-9 months; 45 % kCal/fat); n>5/condition. (A)
Top: Spearman correlation of > 1.5 fold-changed hepatic transcripts in Fra-1" and control littermates
(C57BL/6J) in CD (x-axis) and HFD (y-axis). Bottom: Top common downregulated genes in Fra-1" livers. (B)
KEGG pathway analyses for the top 2000 most changed transcripts: PPAR target genes and their cellular
functions are indicated. Transcripts changed in CD, HFD or both are highlighted in blue, red and purple re-
spectively. Arrows indicate up- or down-regulation. (C) gRT-PCR analyses of ppary and its isoforms. (D) Im-
munoblot analysis; vinculin is the loading control. Bar graphs are presented as mean+SEM.

Decreased ppary mRNA levels were due to reduced expression of ppary2 mRNA, the main ppary isoform in the liver
(Fig. 3:11C) [271]. Among other metabolic regulators NrOb2, a potential PPARy target [272] and regulator [273], which
encodes the orphan nuclear receptor SHP, was also found reduced in HFD-fed Fra-1"¢? mice. Moreover, we confirmed
reduced mRNA expression for several PPARy target genes, such as fabpl and Ipl, involved in hepatic lipid uptake, and
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plin2, cidea, fitm1, fitm2, g0s2, involved in lipid droplet formation. Notably, the Fra-1-induced reduction of ppary2
expression was reversible, as ppary2 levels reverted to baseline levels upon switching off the transgene. Kinetic anal-
yses of another inducible Fra-1 mouse model (Fra-1%°N mice)[266] revealed that hepatic ppary2 mRNA decreased as
early as 4 days after Fra-1 induction.

G/LOF studies previously established that expression of PPARy in the hepatocytes is both essential and sufficient for
NAFLD formation [271, 274-278]. To determine whether reduced NAFLD development in Fra-1"¢? mice is directly due to
decreased PPARy levels, HFD-fed Fra-1" and control mice were intravenously injected with either Adeno-PPARy or
Adeno-GFP control virus 8-10 days prior to sacrifice. Adeno-PPARy had no overt effect on liver macroscopy in steatotic
control mice (Fig. 3:12A). In contrast, PPARy expression increased ORO-positive lipid droplets, liver TG content, and
liver/body weight ratio in HFD-fed Fra-1"P mice (Fig. 3:12A and 3:12B). Moreover, Adeno-PPARy increased PPARy tar-
get gene expression in the livers of Fra-1"¢? mice (Fig. 3:12C and 3:12D). These data demonstrate that the short-term
induction of PPARy signaling restores hepatic fat accumulation in HFD-fed Fra-1"¢® mice, supporting its central function
in the hepatic phenotype of Fra-1"? mutant mice.
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Figure 3:12 PPARy Delivery Restores NAFLD Development in Fra-1"" Mice

(A-D) Fra-1"" and control littermates on HFD (for 4-5 months, 45 % kCal/fat) were injected with Adenovi-
ruses expressing PPARy (Ad-PPARy) or GFP (Ad-GFP) 8-10 days prior to sacrifice. n = 3 for control geno-
type/cohort; n = 4 for Fra-1"*" mice/cohort. (A) Liver macroscopy and histology; bars=1cm and 100um. (B)
Quantitation of ORO-positive areas, liver/body ratio and liver TG. (C) Immunoblot analyses in Fra-1"** and
control mice. Vinculin served as loading control. (D) gRT-PCR analyses of PPARy target genes involved in lipid
uptake and lipid droplet formation; Ad-GFP controls are set to 1. Bar graphs are presented as mean+SEM.
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To examine whether Fra-1 induction in steatotic livers ameliorates disease symptoms, Fra-1"®? and control litterma-
tes were generated in the "Fra-1 off" state and HFD-feeding was started at 1 month of age (Fig. 3:13A). As expected,
control and mutant mice were indistinguishable at 7 months of age in the absence of transgene expression (Fig. 3:13B-
D). Immunoblot analyses confirmed comparable PPARy, Fsp27 and Fabp1l levels between control and mutant mice in
the "Fra-1 off" state (Fig. 3:4E). A cohort of Fra-1"¢? and control mice were kept on HFD, but Fra-1 expression was
switched on in mutant mice at 7 months of age (Fra-1 off-on). After 2 months of Fra-1 induction, serum ALT was signifi-
cantly lower in Fra-1"¢? mice than in control littermates and continued to improve 3 months later, even though the mice
were maintained on HFD (Fig. 3:13C). At this point the liver was collected for macroscopy, histology, ORO-quantitation,
liver/body weight ratio and liver TG content analysis, revealing an almost complete reversion of NAFLD in Fra-1"¢? mu-
tants (Fig. 3:13B-D). Immunoblotting and gqRT-PCR analyses confirmed transgene induction, as well as the repression of
PPARYy, targets of PPARy and inflammatory markers after switching on Fra-1 expression (Fig. 3:13E and 3:13F). These
data suggest that Fra-1-mediated inhibition of the PPARy pathway can reverse established NAFLD and liver damage.
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Figure 3:13 Fra-1 Expression Reverts NAFLD and Liver Damage

(A) Fra-1MP and control littermates were maintained in the "Fra-1 off" state and HFD (45 %
kCal/fat) was supplied from 1 month of age. Mice were analyzed at 7 months (Fra-1 off, n =
2/cohort) or kept on HFD until 12 months, while transgene expression was induced (Fra-1 off-
on, n = 6/cohort). (B) Liver macroscopy and histology; bars=1cm and 100um. (C) Serum ALT. (D)
Quantitation of ORO-positive areas, liver/body ratio and liver TG content. (E) Immunoblot anal-
yses in Fra-1'"P and control mice. Vinculin served as loading control. (F) gRT-PCR analyses of fra-
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1, ppary isoforms, PPARy target genes and inflammation markers (Fra-1 off-on). Bar graphs are
presented as meanzSEM.

We next searched for correlations between AP-1 genes, PPARy and PPARYy targets in gene expression arrays from
the diverse wildtype BXD family of inbred mice. This analysis revealed that hepatic ppary expression, assessed with a
probe detecting both ppary isoforms, is significantly upregulated in HFD-fed cohorts. As expected, ppary mRNA levels
strongly correlated with the expression of PPARy targets, such as cidea and adipsin. Notably, and consistent with our
findings in Fra-1"P mice, a significant inverse correlation was found between fra-1 and ppary and fra-1 and cidea re-
gardless of the diet (Fig. 3:14A). Other PPARYy targets, such as adipsin followed a similar trend, though without reaching
statistical significance (Fig. 3:14A). Interestingly, junb, a potential dimerization partner for Fra-1 also negatively corre-
lated with ppary (Fig. 3:14B), indicating that several AP-1 proteins consistently regulate PPARYy signaling even in genet-
ically diverse populations.
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Figure 3:14 Several AP-1 Proteins Regulate the PPARy Pathway

Correlation plots for fra-1 with ppary, cidea and adipsin (A) and for Jun members with ppary (B) in CD and
HFD (5months; 60 % kCal/fat) in the BXD inbred family. Each data point represents the average expression
from 5 pooled mice. Pearson's r was used to analyze correlations and p-values are indicated.

3.3.4 Discussion

Combined forward and reverse genetic approaches have a strong potential for discovering new regulators of me-
tabolism. The initial identification of Fra-1 as a potential obesity-related gene in livers from the BXD population of in-
bred mouse strains prompted us to further explore the role of each component in the AP-1 dimer makeup. Subsequent
mechanistic studies led to the discovery that AP-1 can function as a molecular link between obesity and liver metabo-
lism. First, this study established AP-1 as a potent regulator of lipid metabolism and NAFLD development. Second, gene
pathway analysis and BXD population genetics highlighted the AP-1 complex as a novel regulator of hepatic PPARy
signaling. Third, we demonstrate that Fra-1 repressed the PPARy-dependent expression of genes involved in lipid up-
take/lipid droplet formation, thereby efficiently improved established steatosis, liver damage and inflammation.

PPARy promotes lipid uptake by increasing the expression of lipid transporters, such as fatty acid binding proteins
(Fabps), and by promoting lipid storage in lipid droplets. Lipid droplet proteins (LDPs) inhibit TG lipolysis thereby pre-
venting lipid-droplet breakdown [279-281]. Several LDPs are regulated by PPARy at the transcriptional level [reviewed
in 282] and promote NAFLD in mice, including via cidea, plin2, and fsp27 [275, 280, 283-286]. Similarly, deletion of the
fatty acid transporter Fabp1 reduced the dietary induction of NAFLD [287, 288]. Previous studies suggested that hepatic
PPARy also promotes hepatic lipogenesis [274, 278]. In Fra-1"P mice, which display a dramatic reduction in PPARy
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levels, decreased expression of the Stearoyl-CoA desaturase-1 (SCD-1), a key enzyme in the generation of unsaturated
fatty acids, was observed. However, no consistent changes in the expression of SREBP-1/2, the main transcriptional
regulators of de novo lipogenesis, nor of the SREBP-1/2 targets FAS and ACC, were observed. Since FAS and ACC cata-
lyze the rate-limiting steps in fatty acid synthesis, altered lipogenesis likely does not play a major role in the Fra-1-
mediated repression of NAFLD. Instead, decreased hepatic lipid uptake and lipid droplet formation is most likely the
primary cause for reduced steatosis formation in Fra-1M"?, Fra-2M? and c-Jun~Fra-2"®" mice. Previous reports have
shown that PPARy induces the expression of NrOb2 [272]. In line with this, HFD-fed Fra-1"? mice displayed reduced
ppary2 and Nrob2 levels, which appeared normalized after Adeno-PPARy treatment. More recently, NrOb2 was shown
to be required for hepatic PPARy expression and NAFLD [273]. However, we did not observe a consistent correlation
between ppary2 and NrOb2 expression across dietary conditions in our AP-1 mutant mouse models. Therefore, AP-1
likely regulates ppary2 and NAFLD independently of NrOb2.

Hepatocyte-specific Pparg deletion, like Fra-1 overexpression, has been shown to reduce liver TG and to increase
serum TG levels in the obese ob/ob mice and the AZIP lipodystrophy model, likely due to decreased hepatic lipid uptake
[274, 276]. Moreover, PPARy2-dependent hepatic steatosis has been suggested to buffer systemic TG levels [278].
Similar to mice with hepatocyte-restricted Pparg deletion, Fra-1"® mice displayed worsened glucose metabolism after
HFD-feeding, despite a reduction in NAFLD. Thus, hepatic Fra-1 overexpression largely phenocopies the effects of
hepatocyte-specific Pparg deletion on lipid and glucose metabolism. As elevated serum TG levels are associated with
diabetes development, increased serum TG levels likely contribute to the deterioration of glucose metabolism in HFD-
fed Fra-1"P and Pparg-deficient mice.

Our data suggest a functional antagonism between activating c-Fos/AP-1 and repressing Fra/AP-1 dimers. Previous
studies in other organs suggested overlapping functions of c-Fos and Fra-1/2 [289, 290]. Thus, we here identify Pparg as
the first gene to be antagonistically regulated by different Fos proteins via different dimeric composition of AP-1. This
finding raises the intriguing question: How do structurally similar protein complexes, such as c-Fos/AP-1 and Fra/AP-1
dimers, have opposite effects on the same promoter? While further research is required to address this question, sev-
eral AP-1 co-repressors, such as Sirtl [291] and HDAC3 [212, 280, 292] are involved in hepatic lipid metabolism. We
speculate that specifically Fra/AP-1 dimers might interact with such co-repressors to inhibit Pparg2 promoter activity.

The described data from G/LOF mouse models, together with the correlations between AP-1 components and the
PPARy pathway in the BXD cohort, establish AP-1 as an important regulator of PPARy signaling and NAFLD. HFD affects
a plethora of cellular signaling cascades, such as the Insulin [293], the JNK [294] and the PKC [295] pathways. As these
pathways are also known regulators of AP-1 expression and activity, exploring how they affect AP-1 levels and dimeriza-
tion during obesity is certainly an important challenge for future experiments. Moreover, extensive cross-talk between
AP-1 and transcription factors of the NF-kB [296] and the nuclear receptor family [297-299] has been described. Future
studies should further reveal the molecular interplay of these pathways with AP-1 signaling in the context of NAFLD in
both mice and humans.

3.3.5 Methods

Mice were maintained in a 12 hour light/12 hour dark cycle with food and water ad libitum. Chow (D8604, Harlan),
45% kCal/fat HFD (D12451, Research diets), and 60% kCal/fat HFD (D12492, Research diets) were used as specified in
the figure legends. If not indicated otherwise, male mice were used and HFD feeding was started between 4-8 weeks
of age. Dox (1g/l) was supplied in sucrose-containing (100g/l) drinking water. The BXD mice were sacrificed in the
morning (9-11 am) after overnight fasting, while in other experiments, the mice were sacrificed in CO,-chambers
between 2pm and 5pm in the fed state. In the BXDs, cholesterol and TG measurements were performed using serum
from overnight fasted mice at the time of sacrifice. For intra-peritoneal glucose tolerance (GTT) and insulin tolerance
tests (ITT), mice were fasted for 6 hours (GTT) or 8 hours (ITT) and intra-peritoneally injected with 1 mg glucose/kg
body weight (GTT) or 0.5U insulin/kg body weight (ITT). Glucose and insulin were diluted in PBS to an injectable vol-
ume. Blood glucose was determined by tail puncture for all time points. All mouse experiments were performed in
accordance with local and institutional regulations. Blood was collected from the submandibular vein, by tail puncture
or by cardiac puncture at experimental endpoints. Unless indicated otherwise specified, parameters were analyzed in
the fed state. Serum ALT, TG and cholesterol levels were determined using a Reflovet blood chemistry analyzer and
glucose using an Accucheck glucose analyzer (Aviva). Serum Leptin, Resistin, Adiponectin and IL-6 were measured using
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Quantikine ELISA kits (R&D) and serum Insulin was determined with an ultra-sensitive ELISA (Mercodia). Serum B-HB
and FFA were measured using enzymatic assays (Cayman Chemicals). Frozen liver tissue (25-75mg) was homogenized
in chloroform/methanol (8:1 v/v; 500 pL per 25 mg tissue) and shaken at RT for 8-16 hours. H,SO, was added to a final
concentration of 0.28M. After centrifugation, the lower phase was collected, dried, and TG content was measured
using an enzymatic assay (Caymen Chem).

gRT-PCR was performed using the GoTaq® qPCR Master Mix and an Eppendorf light cycler. Expression levels were
calculated using the ACt-method. Data were normalized to a housekeeping gene (rps27 or rpl0). Immunoblot analysis
was performed using standard protocols and following antibodies: ACC, PPARy, CEBPB, c-Jun, phospho-CREBP, total
CREB (Cell Signaling), Vinculin (Sigma), PPARy, Parp-1, CEBPa, c-Fos, Fra-1 (Santa Cruz), HNF4, FAS, Fabpl (Abcam), and
Fsp27 (Novus Biologicals), SREBP-1/2 (BD Bioscience). Nuclear extracts from liver tissue were obtained using the NE-
PER Nuclear Protein Extraction Kit (Pierce). For histology, H&E- and ORO-staining were performed using standard
procedures. ORO-positive areas were quantified as previously described [300]. IHC was performed as described [266]
using following antibodies: PPARy (Cell Signaling), CD45 (Abcam), F4/80 (AbD Serotec).

For generating array data, the RNA was first isolated using the RNEasy Midi kit (Qiagen) and RNA integrity was
evaluated using an Agilent 2100 Bioanalyzer. Samples of RNA integrity score above 7.8 were used for microarray analy-
sis. 100ng of RNA was labeled with Cy3 (RNA pool from at least 5 control mice, which were either fed CD or HFD) or
Cy5 (RNA samples from individual mutants, which were either fed CD or HFD) using the Low Input Quick Amp Labeling
Kit Version 6.5 (Agilent). Labeled RNAs were purified using RNeasy spin columns (Qiagen) and hybridized to a mouse
gene expression array G3 8x60K (Agilent microarray design ID 028005, P/N G4852A). On each array, the Cy3-labeled
control pool and one Cy5 labeled mutant sample were hybridized at 65°C for 17 hours. The microarray was scanned on
a 2505C DNA microarray scanner (Agilent) and images were analyzed using the Feature Extraction Software Version
10.7 (Agilent). Multiple testing correction was performed using the Benjamin-Hochberg procedure. Array data are
deposited in NCBI's Gene Expression Omnibus and are accessible through GEO Series accession number GSE52275
(G/LOF mice) or GSE60149 (BXD mice). Hepatic gene expression of the BXD strains was analyzed using Mouse Gene 1.0
ST Arrays (Affymetrix) and is also accessible on www.genenetwork.org. Standard array analysis methods were used,
e.g. RMA normalization, as described elsewhere [301].

For analyzing the array data, microarray data were analyzed separately in CD and HFD conditions by comparing
control to mutant livers. All nominally significant changes with fold change > 1.5 were retained. Gene sets were then
winnowed using multiple testing correction (Benjamin-Hochberg) and entered independently into the Web Gestalt
(bioinfo.vanderbilt.edu/webgestalt/) resource. Enriched pathways were generated based on KEGG gene ontology
annotations. The PPARy signaling pathway was found significantly modulated in both dietary conditions. The two
independently-generated pathways were then overlaid and redrawn to generate the pathway diagram.

For the in vitro experiments, HuUH7 and 293T cells were cultured in DMEM/10%FCS at 37°C and 5% CO,. For report-
er assays, 0.8x 10° HuH7 or 293T cells were plated per well of a 24-well plate. 24 hours later, 0.01pg Renilla vector,
0.2ug PPARG2-luc vector [302] and 0.6ug pCMV-AP-1 or pCMV-empty control vector were transfected using Lipofec-
tamine 2000 (Invitrogen). Cells were harvested 48h after transfection and luciferase activity was analyzed using the
Dual-Glo Luciferase Assay (Promega). ChIP was performed using following antibodies: Flag (F3165, Sigma), Fra-1 (SC-
183, Santa Cruz), Fra-2 (rat, CNIO polyclonal), c-Fos (PC-05, Calbiochem), c-Jun (BD), JunB (SC-73, Santa Cruz), JunD
(€S5000, Cell Signaling). Pan Jun ChIP with HuH7 cells has been performed with a mixture of 2 antibodies raised against
an epitope present in all Jun proteins. Statistical significance was calculated using Student's two-tailed t-test if not
indicated otherwise, *: p < 0.05; **: p < 0.01; ***: p < 0.001, ****: p < 0.0001.
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Chapter 4 Holistic Omics Analysis

Adapted from Wu Y.*, Williams E.G.*, Dubuis S., Mottis A., Jovaisaite V., Houten S.M., Argmann C.A., Faridi P., Wolski
W., Kutalik Z., Zamboni N., Auwerx J., Aebersold R. Multilayered genetic and omics dissection of mitochondrial activity
in a mouse genetic reference population, Cell, 2014. *Co-first author

The central dogma of molecular biology states that genetic information encoded in DNA is first transcribed by RNA
polymerase, then translated by ribosomes into proteins [303]. However, knowing the DNA sequence of a gene is insuf-
ficient to predict the expression levels of its RNA and protein products, the key parameters that will ultimately deter-
mine phenotypic variation. Consequently, to link genomic variants to phenotypic traits, RNA transcript and protein
levels need to be precisely quantified. Since the advent of microarray technology in the 1990s [15], and more recently
by next generation sequencing [304], comprehensive gene expression patterns—i.e. the transcriptome—can be pre-
cisely quantified across tissues and conditions. Unfortunately, transcript levels generally have only modest correlation
with the levels of corresponding proteins [305-307], and genetic variants similarly affecting both the transcript and
peptide levels of a gene are relatively uncommon [308, 309]. As proteins in most cases are more directly responsible
than transcripts in the regulation of cellular pathways—and ultimately phenotypic traits—there is a critical need for
efficient, large-scale and accurately quantitative proteomics methods to complement transcriptomic datasets

Over the past decade, the development of discovery mass spectrometry (“shotgun”) has allowed the first large-
scale studies on quantitative proteomics. In this approach, protein extracts are cleaved into short peptide sequences,
which are then chromatographically separated and analyzed by tandem mass spectrometry. This allows the untargeted
discovery of thousands of peptides, but if the number of unique peptide fragments in a sample significantly exceeds the
number of available sequencing cycles (as in whole proteome extracts), any individual peptide will be inconsistently
sampled across repeat analyses. This reduces the technical reproducibility, and moreover means that the number of
peptides consistently quantified across all (or most) samples decreases as the study size increases [151]. Consequently,
discovery mass spectrometry strategy has yielded mixed results in large population studies [305, 310], particularly as
specific peptides of interest cannot be targeted, and the most consistently identified peptides are biased towards those
of higher abundance [311]. To overcome these hurdles, selected reaction monitoring (SRM) was developed, which
perfects technical reproducibility and allows consistent multiplexed quantitation of target proteins by deploying a mass
spectrometric measurement assay that is specific for each targeted peptide [312]. Thus, hundreds of target peptides
can be consistently and accurately quantified across large populations of samples. Recent studies in yeast have shown
that the proteins and transcripts of genes are typically controlled by different, distinct mechanisms [309, 313]. Howev-
er, these hypotheses have not been well tested in mammalian genetic reference populations (GRPs) through multi-
layered transcriptomic and proteomic strategies.

Large GRPs are frequently used to determine the extent to which phenotypic variation is driven by genetic variants
(i.e. heritability), and to subsequently identify genes driving such variation. These genes can be identified by genome-
wide association (GWA) or by quantitative trait locus (QTL) mapping, approaches that have been applied to various
species and have led to the successful identification of dozens of major allelic variants [16, 26, 314, 315]. In mammals,
the murine BXD family is the largest and best studied GRP, consisting of ~150 recombinant inbred strains descended
from C57BL/6) (B6) and DBA/2) (D2) [16]. Using 40 strains of this population on both chow (CD) and high fat (HFD)
diets, we have obtained major metabolic phenotypes and established a multilayered dataset focused on 192 metabolic
genes expressed in the liver. For all genes, we know the sequence variants, transcript levels, and protein levels in all
cohorts. These data are further supplemented with targeted metabolite analysis in liver and serum, generating the first
large-scale multilayered quantitative picture of any cellular process in the BXD population.
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4.1 Results

4.1.1 Protein Targeting Across a Genetically and Environmentally Diverse Murine GRP

We first selected 192 metabolic proteins for study, with particular focus on genes regulating mitochondria and gen-
eral energy metabolism. For each gene, synthetic peptides were generated based on established assays [316] (Fig. 4:1A)
to accurately quantify each protein across all cohorts. To validate peptide measurements, we compared the coefficients
of variation (CV) among technical and biological peptide replicates. Both technical and biological replicates showed a
high degree of reproducibility (CV ~ 0.09 and 0.12 respectively), indicating the peptides are sufficiently accurate for the
quantification of targeted peptides across large, diverse populations. More importantly, the results for biological repli-
cates reveal nearly equally high overall reproducibility (r > 0.98; Fig. 4:1B), suggesting low biological variance within
each cohort, particularly relative to cross-cohort variance (CV ~ 0.33). 82.1% of the quantified peptides are highly varia-
ble (CV > 0.20), indicating that the biological error (i.e. variation within a cohort) is much smaller than the variation
induced by differences in genotypes and diet. We observed nearly complete quantification of all 192 proteins across all
cohorts, with only ~60 missing peptide counts out of ~15,000 measurements (i.e. 99.6% completion; Fig. 4:1C, top). This
completion is similar to the level of completeness achieved by microarrays (Fig. 4:1C, bottom) and a major contrast to
shotgun-acquired proteomics, which typically have completeness of ~70% [151].

It has been well-established that transcriptomic networks of many metabolic processes covary quite well, e.g. with-
in the electron transport chain or within the citric acid cycle [139]. On protein level, proteins which function in common
biological processes or which localize to the same functional modules are also reported to be subject to similar regula-
tory process and generally covary [108]. To validate and identify which of these 192 proteins vary synchronously, we
computed the robust Spearman correlation network for all protein pairs using the full SRM dataset (Fig. 4:1D). The
resulting network contained 82 correlated nodes (proteins) with 211 edges in 3 main enrichment clusters. As expected,
many of the mitochondrial proteins and proteins involved in lipid metabolism are highly correlated (Fig. 4:1D, cluster a
and b). Within cluster a. are five of the six measured proteins involved in mitochondrial unfolded protein response
(UPR™) (HSPD1, HSPE1, HSPA9, CLPP, and LONP1 indicated in red), along with three of the four measured NADH dehy-
drogenase genes (NDUFA1, NDUFB3 and NDUFS6—in blue), and four of the eight measured mitochondrial-encoded
proteins (MT-CYB, MT-CO2, MT-CO3, and MT-ND3 in black). Meanwhile, proteins involved in carbohydrate metabolism
are enriched in the same cluster (Fig. 4:1D, cluster c). These results show that functionally-related proteins tend to be
coordinately regulated at a protein level, and that coregulation of protein abundance is strongly maintained for certain
processes. To validate biological significance of these function-based covariation clusters, we further investigated one,
the UPR™ network (elaborated in Fig. 4:6).
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Figure 4:1 SRM-based Protein Quantification and Covariation Network

(A) SRM assay development for targeted proteomic measurements. 309 peptides corresponding to 192
genes were designed and synthesized via SPOT synthesis. Fragment ion spectra were generated on a triple-
quadrupole MS with SRM-triggered MS2 mode, then ions were selected based on their relative intensities.
Dot colors indicate different amino acids. m/z, mass-to-charge ratio. Mouse liver homogenate combined
with the heavy reference proteome was analyzed with SRM on a triple-quadrupole MS. Different dot colors
represent different peptides (Quadrupole 1) or product ions (Quadrupole 3). (B) Biological replicates had
near-perfect reproducibility (r ~ 0.98), shown here for all three biological replicates of the BXD60 CD cohort.
(C) Two-way cluster analysis of protein (upper) and transcript (lower) abundances in all 77 cohorts (40 CD,
37 HFD). Columns are clustered based on samples, and rows are clustered based on gene-product abun-
dances. Protein and transcript abundances are colored in a red-blue scale. Red: high abundance. Blue: low
abundance. White: missing data. (D) Protein association network based on robust Spearman correlation
measures for all protein pairs. Statistically significant and strong positive associations (p < 0.01 & r > 0.6) are
edges. The largest correlation clusters are labeled “a.”, “b.”, and “c.”. Nodes are labeled with protein names
and colored according to their biological process, as reported by DAVID [270]
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4.1.2 Protein and mRNA Gene Products Generally Do Not Correlate

With the general protein measurements validated, we generated a global overview of how genotype and diet influ-
ence differential transcript and protein expression (Fig. 4:2A). At the genetic level, transcripts and proteins map to an
equivalent number of significant QTLs: we detected 65 significant transcript QTLs (eQTLs—blue lines at center) and 57
significant protein QTLs (pQTLs—red lines at center). However, though the total number of eQTLs and pQTLs are rough-
ly equivalent, the predominant type of regulation was very different: 74% of the eQTLs are cis-mapping (ratio of solid to
dashed blue lines), versus only 31% of pQTLs (ratio of solid to dashed red lines). This indicates a closer connection be-
tween a transcript and its gene than a protein and its gene. In general, trans-mapping proteins and transcripts mapped
evenly across the genome, not yielding any clear “hot spots” for these metabolic genes (sample magnification of QTLs
mapping to chromosome 5 in Fig. 4:2B).

Within each diet, we found proteins and transcripts to be nominally correlated for ~25% of genes (i.e. Spearman p
correlation p-value < 0.05; Fig. 4:2C, diets considered separately), similar to findings in other species and populations
[305, 306, 308, 317]. Of the correlated transcript—peptide pairs (46 in CD, 55 in HFD), 31 correlate significantly in both
diets (16%), while 70 pairs (36%) correlate in at least one diet. Correspondingly, while ~50% of genes were affected by
diet, transcripts were more frequently influenced (84 of 189) than proteins (37 of 192), with only 21 genes affected at
both the transcript and protein level (Fig. 4:2D). Genes which were the most strongly affected by diet at the transcript
level (Fig. 4:2E) tend to be similarly affected at the protein level (Fig. 4:2F)—e.g. Cyp3all is higher in CD—though ex-
ceptions are frequent, e.g. SrebfI mRNA is induced by HFD, but unaffected at the protein level, while in another coun-
ter-example, the HFD cohorts have more ETFDH protein, but less of the transcript. Thus, while transcripts and proteins
are moderately covarying estimations of their gene's activity and typically have covarying responses to external factors
(e.g. diet), these trends are too weak to support the measurement of any one particular transcript to serve as a proxy
for the protein (or vice versa) without prior knowledge.
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Figure 4:2 mRNA and Protein Overview

(A) Circos plot of mMRNA and protein data for all 192 genes, labeled on outer edge. Genes are represented by
two bars: light for CD, dark for HFD. Genes are arranged by relative chromosome position; chromosome
length is according to number of genes measured. Blue Bars: Transcript relative expression CD vs. HFD; Or-
ange Bars: Protein relative expression CD vs. HFD. Bars with more unequal heights indicate diet has a larger
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impact. Green Bars: Correlation between transcript and protein for each gene within each diet. Pur-
ple/Yellow Bars: Fuchsia bars represent the strength of the peak eQTL. Yellow bars represent the strength
of the peak pQTL. The two bars are overlaid with transparency. The dashed green line represents the simpli-
fied significance cutoff (LRS > 18). Inner Ring: Chromosome location. Central Lines: Blue lines for significant
eQTLs, red for significant pQTLs. Solid lines represent cis-QTLs, dashed lines represent trans-QTLs. QTL lines
stem from the LRS bar graph, and terminate on the inner side of the chromosome ring at the approximate
QTL location. (B) Magnified view of eQTLs/pQTLs mapping to chromosome 5. (C) In CD ~25% (left) and in
HFD ~30% (right) of transcripts correlate nominally significantly with their protein. The lower strip charts
show correlation distribution. Spearman correlation values corresponding to nominal significance (p < 0.05)
and corrected significance (p < 0.0002) are displayed on the axis. (D) Venn diagram of genes which are dif-
ferentially regulated between CD and HFD as transcripts (blue), proteins (red), both (purple), or neither
(grey). (E) Volcano plot for mRNA showing magnitude of dietary effect versus significance. ~45% vary with
nominal significance (p < 0.05) between the dietary conditions. ~19% vary with corrected significance (raw-p
< 0.0003). Some extreme genes are labeled. (F) Plot of the effect of diet on transcripts vs. the effect of diet
on proteins. In general, transcripts and proteins are similarly affected by diet

4.1.3 Most Transcript and Protein QTLs Do Not Overlap

Of the 192 target genes, 79 map to a significant eQTL or pQTL in at least one dietary condition. A strong majority of
significantly mapped QTLs, ~80%, are unique to either the transcript or protein level (Fig. 4:3A). At the transcript level,
28 genes map to cis-eQTLs, 20 of which in both diets, while 17 transcripts map as trans-eQTLs, none of which are ob-
served in both diets. Together, we observed 65 significant eQTLs stemming from 45 distinct genes (Fig. 4:3B left; the 20
distinct genes which map cis in both diets contribute 40 significant eQTLs). The range of transcript variance within a diet
was a strong predictive factor for observing an eQTL. Transcripts in the least variable quartile (range < 1.5 fold from the
lowest to the highest expressing BXD strain) contained only 10% of the significant QTLs. In contrast, the 2" quartile
(range 1.5-1.65 fold) contained 17%, the 3" quartile (range 1.65-2.0 fold) contained 29%, and the top quartile (range
> 2.0 fold) contained 41% of the significant QTLs.

At the protein level, 57 significant pQTLs stem from 48 distinct proteins (Fig. 4:3B right). In striking contrast to tran-
script regulation, only 13 distinct proteins map to cis-pQTLs, five in both diets, while 36 proteins map as trans-pQTLs.
No trans-pQTLs are consistent across diets, although three proteins significantly map to separate trans-pQTLs in both
diets (Cd44, Acss2, and Ndufs6), and one (Hmgcs1) maps to both cis and trans-pQTLs. Together with transcript data, we
could moderately predict pQTLs: of the 28 genes with cis-eQTLs, 12 correlated well (r > 0.40) between transcript and
protein. Of these 12 genes, five (Dhtkd1, Nnt, Tymp, Gclm, and Bckdhb) map significantly as pQTLs and eQTLs in both
diets (Fig. 43C-D; Bckdhb in Fig. 4:4B), and four (Acox1, Mfn1, Mril, Pm20d1) map as pQTLs and eQTLs in at least one
diet. Interestingly, three proteins mapped as cis-pQTLs and correlated with their transcript, but did not have associated
eQTLs (Hmgcs1, Car3, and Acsf2), suggesting the genetic variant driving these changes manifests more prominently at
the protein level than for the transcript (e.g. Fig. 4:3E).

Diet also plays a clear role in the consistent identification of cis-QTLs. For the 20 genes with cis-eQTLs identified in
both diets, HFD significantly affects the levels of only one (Pmpcb; Fig. 4:3F). Conversely, for the 8 genes mapping to an
eQTL in only one diet, the levels of only three are affected (Ndufs2, Acads, and Aldh4a1l). Similar trends remain are
observed at the protein level: of the five cis-pQTLs found in both diets, none are affected by diet, while for the 8 genes
with cis-pQTLs in only one diet, only the levels of one (Hmgcs1) is affected. This relationship is similar for trans-eQTLs:
of the 17 genes with trans-eQTLs, only four are influenced by diet (whereas ~50% of total transcripts are influenced by
diet). However, diet does not appear to strongly influence trans-pQTLs, where 11 of the 39 are affected by diet, a simi-
lar proportion as the overall effect, recalling that ~20% of proteins have levels influenced by diet (Fig. 4:2D). Together
this suggests diet can change the genetic factors regulating these genes without changing their overall levels.
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(A) Venn diagram separating all genes with distinct QTLs based on provenance. (B) Venn diagrams separat-
ing eQTLs or pQTLs by dietary source and regulatory mechanism. Overlapping regions indicates genes giving
an eQTL or pQTL in both diets; white numbers are counted twice for QTL count, but once for distinct gene
count (e.g. there are 48 significant cis-eQTLs which stem from 28 distinct genes). (C) In both diets, DHTKD1
and Dhtkd1 share a common cis-QTL, are unaffected by diet, and strongly correlate. (D) NNT and Nnt display
a similar pattern. (E) Car3 has only one significant pQTL despite an absence of dietary effect and a strong
transcript—protein correlation. (F) PMPCB does not map to a significant pQTL, however Pmpcb maps to a
significant cis-eQTL in both diets, despite a strong transcriptional upregulation by HFD. The transcript and
protein levels do not correlate. (G) Mup3 and MUP3 do not map to significant QTLs, despite having high lev-
els of variation and a strong transcript—protein correlation

While high expression variability is associated with stronger QTLs, it is not a definitive predictor, e.g., Mup3 is highly
variable, strongly affected by diet, and consistently expressed between mRNA and protein, but does not map to a QTL
in any measurement (Fig. 4:3G). Therefore, while the ability to predict peptide levels based on transcript measurements
on a systems scale is quite powerful (the ~25%—~37% of correlated transcript—peptide pairs is much better than the
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~5% expected by chance), the probability to fail on any one particular gene is quite high. These chances can be adjusted
somewhat—perturbations dramatically affecting transcript levels are more likely to manifest at the protein level and
vice-versa—but even so, prior research must be established before gene expression can be confidently considered a
proxy for protein levels in targeted genetic studies. This also indicates that applying quantitative proteomic data to
pathways established at the transcript level can indicate new links that were previously obscured.

4.1.4 Functional Relationships of pQTLs to Phenotypes

To characterize the cellular function and potential physiological relevance of the pQTLs, we first collated all Entrez
[318] and UniProt [319] entries for genes with the most significant pQTLs (LRS > 20) (Table 4:1). As the BXDs have ex-
tensive historical phenotype and metabolite data available on GeneNetwork [181], we performed a phenome-wide
association study to determine if any collected phenotype data mapped at least suggestively (LRS = 12) as clinical QTLs
(cQTL) to the same loci. A handful of phenotypic connections in the BXDs were supported by literature, including a link
between Nnt and insulin [320], and between Car3 and subcutaneous adipose mass [321]. However, for the majority of

pQTLs, no established cQTLs mapped to the same loci. We thus selected the two genes with the most significant and

novel pQTLs in both diets for follow-up analysis and validation—Bckdhb and Dhtkd1.
Diet LRS QTL Area [Mb]

Function

Phenotype

DHTKD1 | CD | 43 | Chr2: 3-8 cis Lysine Catabolism Reye Syndrome, Glucose Regulation
DHTKD1 | HFD | 41 | Chr2: 3-8 cis Lysine Catabolism Reye Syndrome, Glucose Regulation
NNT CD | 37 | Chr13: 118120 | cis NADPH Regeneration Insulin Secretion

GCLM HFD | 34 | Chr3:118-124 cis Glutathione Synthesis Detoxification, Ischemia, Anemia
NNT HFD | 31 | Chr13: 119-120 | cis NADPH Regeneration Insulin Secretion

PRPS1 CD | 31 | Chr6: 61-66 73 Nucleotide Synthesis Arts Syndrome

GPX1 CD 30 | Chr11:119-122 | 70 Glutathione Peroxidase Detoxification, Cardiomyopathy
PM20D1 | HFD | 29 | Chr1: 134-137 cis Zinc Binding (Putative) Tuberculosis Sensitivity

MT-ND3 | CD | 28 | Chr3: 11-18 21 Complex | Subunit Leigh Syndrome

CMAS CD 28 | Chr7: 95-105 70 Sialic Acid Adhesion Fibrosarcoma, Dermatomyositis
MRI1 CD 28 | Chr8: 88-90 cis Tyrosine Phosphorylation Cell Invasion Regulation

NDUFSé | CD 27 | Chr3: 11-18 21 Complex | Subunit Lactic Acidosis

PUM2 HFD | 27 | Chr10: 106109 | 7 RNA Binding Development, Cell Differentiation
BCKDHB | CD | 26 | Chr9: 83-85 cis BCAA Degradation Maple Syrup Urinary Di

BCKDHB | HFD | 24 | Chr9: 83-83 cis BCAA Degradation Maple Syrup Urinary Disease
TYMP CD | 24 | Chr15: 89-90 cls Thymidine Phosphorylation Angiogenesis, mtDNA Reg.
RPL1BA | CD | 24 | Chr3: 25-31 33 Ribosome 60S Subunit Hepatitis Susceptibility

CAR3 CD | 24 | Chr3: 1421 cis Carbon Dioxide Hydration Laryngeal Disease, Adipogenesis
DAK HFD | 24 | Chr4: 128-130 34 Dihydroxyacetone Kinase, FMN | Glycerolipid Metabolism

NDUFA4 | HFD | 24 | Chr11: 3340 5 Complex | Subunit Glucose Regulation

IACADS CD | 23 | Chrb: 67-76 42 Beta Oxidation, Short Chain SCAD Deficiency

HMGCS1 | HFD | 23 | Chr4: 80-84 10 Cholesterol Synthesis Cholesterolemia

FASN CD | 23 | Chrb: 137-139 38 Fatty Acid Synthesis Obesity

GCLM CD |23 | Chr3:118-124 cis Glutathione Synthesis Ischemia, Anemia

IABCE1 CD |23 | Chr13:114-121 | 28 Ribonuclease L Inhibitor Viral Load, RNA Stability

|IABCB8 CD | 23 | Chrb: 23-25 cis Mito Membrane Transporter Iron Homeostasis

IARG1 HFD | 22 | Chr11: 64-66 13 Urea Cycle Argininemia, Hyperammonemia
DCN HFD | 22 | Chr11: 51-52 1 Collagen Assembly Cell Growth and Proliferation
IAKR7A2 | HFD | 22 | Chr1: 23-24 cis Succinic Semialdehyde Redox Detox of Aldehydes and Ketones
IAFP HFD | 21 | Chr6: 86-88 29 Fetal Serum Albumin (Putative) | Copper, Fatty Acid, Bilirubin Binding
COPB1 CD 21 | Chr16: 8-15 56 Golgi Complex Transporter Lipid Storage, LDL Levels

|IACSS2 HFD | 21 | Chr11:115=121 | 101 | Acetate Activation Lipid Synthesis, Energy Generation
TYMP HFD | 21 | Chr15: 89-90 cis Thymidine Phosphorylation Angiogenesis, mtDNA Reg.
COX6C CD | 20 | Chr7: 141-144 14 Cytochrome C Electron Transfer | Energy Generation

MYBBP1A| HFD | 20 | Chr14: 112-116 | 1 Regulation of Ribosomal DNA Nucleolar Stress Response

GSTK1 HFD | 20 | Chr4: 67-70 3 Glutathione Regulation Cellular Detoxification

EPAS1 HFD | 20 | Chr10: 106—109 | 7 O2-responsive Txn Factor Erythryocytosis, Hypoxia Response
IACSF2 CD | 20 | Chr11:116-118 | cis Fatty Acid Metabolism Tuberculosis Sensitivity

SRSF7 HFD | 20 | Chr15: 40-48 1 Spliceosome, mRNA Export Immune Response

Table 4:1 pQTLs Link to Phenotypes

A list of all genes with highly significant (LRS > 20) pQTLs. For each gene, the significant peak QTL width con-
siders a 5 LRS dropoff on either side of the peak. A count of all genes under the wide peak is displayed, un-
less it is a cis-pQTL as the candidate gene can be easily identified (itself). The cellular function and overt
physiological effect described by literature for each gene is given.

Bckdhb is a subunit of the branched chain amino a-keto acid dehydrogenase (BCKD, EC 2.7.11.4) complex (Fig 4:4A)
and maps to the two of the most significant eQTLs and among the most significant consistent pQTLs (Fig. 4:4B and
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Table 1; eQTLs not all shown). Bckdhb transcript and protein levels are highly variable across strains and are unaffected
by diet (Fig. 4:4B), but no cQTL mapped to this locus. In humans, variant alleles of BCKDHB are known to cause Type IB
maple syrup urinare disease (MSUD), an inborn error of metabolism characterized by a buildup of branched chain ami-
no acids (BCAAs) and branched chain a-keto acids (BCKAs). MSUD manifests in newborns and is associated with neuro-
logical problems and delayed development, and if untreated it can be fatal [322]. This pathway is a multi-tissue system
driven particularly by the muscle and liver, and consequently is diagnosed by significant increases of BCAAs and BCKAs
in both serum and urine, a decrease in alanine, and/or by detection of L-alloisoleucine [322, 323]. Genetically engi-
neered mouse models of MSUD have similar phenotypic progression as humans, including the same metabolite
buildups and related phenotypes such as movement difficulties and reduced body growth [324, 325]. We thus exam-
ined the BXDs with respect to these traits. While L-alloisoleucine was not detected, strains with the less functional B6
allele of Bckdhb had a marked increase in the BCAA/alanine ratio in serum and liver (Fig. 4:4C left and right, respective-
ly). However, no association with movement, growth, or body weight was present in the BXDs (data not shown), sug-
gesting that this Bckdhb variant carries only the subclinical metabolic effects of MSUD. This observation is also in line
with the human disease, where MSUD symptoms are only apparent when BCKD activity is < ~30% of normal [326]. In
contrast, strains with the B6 allele of Bckdhb have ~50% the enzymatic activity compared to those with the D2 allele.
However, this raises the possibility that a sustained BCAA loading test in the BXDs may lead to clinical manifestation of
the intermittent form of MSUD.

To continue scanning for physiological links with the proteins examined, we also investigated the strongest pQTL in
both diets. This gene, Dhtkd1, encodes a mitochondrial protein operating as the E1 subunit of a dehydrogenase com-
plex involved in lysine metabolism (EC 1.2.4.2, Fig. 4:4D). In humans, variants in DHTKD1 have been linked to urinary
buildup of 2-aminoadipate (2-AA) and 2-oxoadipate, yet the few studies on the physiological consequences of these
variants are conflicted [327-329]. After measuring the metabolites involved in this pathway in the BXD liver and serum,
we observed a striking correlation between DHTKD1 levels and 2-AA (Fig. 4:4E left) as well between metabolites in the
pathway itself (Fig. 4:4E right). Moreover, 2-AA mapped significantly in both diets as an mQTL to the locus of Dhtkd1
itself, indicating the BXDs share an inborn error of metabolism similar to humans (Fig. 4:4F). Due to the strength, and
consistency of this correlation across diets, we hypothesized this variant may lead to phenotypic consequences and
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Figure 4:4 Metabolic Consequences of BCKDHB and DHTKD1

(A) BCKDHB is the E1b subunit of the BCKD complex, which irreversibly converts several BCKAs. (B) Bckdhb
mRNA has the strongest eQTLs of the 192 target genes examined in the liver, and has among the strongest
pQTLs. Neither transcript nor protein are affected by diet. (C) The BCAA/alanine ratio is significantly in-
creased in animals with the dysfunctional C57BL/6 allele in CD serum and liver, and HFD liver measurements,
in line with it acting as a risk for MSUD. Purple line = median for strains with the C57BL/6 allele, red line =
median for strains with the DBA/2 allele. (D) DHTKD1 is the E1 subunit of the dehydrogenase complex that
catalyzes the irreversible conversion of 2-oxoadipate to glutaryl-CoA. (E) Left: Serum 2-AA levels are strongly
related to DHTKD1, as are liver levels (not shown). Right: Other upstream metabolites in the DHTKD1 path-
way correlate strongly with one another, e.g. 2-AA and 2-AA semialdehyde, shown here in liver. (F) Serum 2-
AA maps as an mQTL in both diets to proximal chromosome 2, the location of DHTKD1.
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4.1.5 DHTKD1: A Regulator of Glucose Homeostasis

Inhibition of DHTKD1 in human liver cells is known to diminish mitochondrial activity [330], and external administra-
tion of 2-AA improves insulin secretion in mice [92]. We thus examined whether the natural genetic variants in Dhtkd1
may also influence glucose homeostasis in the BXDs. The BXDs have varying responses to HFD-induced diabesity and
include some resistant strains, but most strains are affected, leading to general increases in liver weight, serum choles-
terol, and fasted glucose (Fig. 4:5A). Strikingly, 2-AA is negatively associated with liver mass and fasted glucose levels in
both diets, and with serum cholesterol and insulin in CD (Fig. 4:5B). Other metabolites in this pathway were also con-
nected to the same phenotypes and with negative correlation (e.g. saccharopine, Fig. 4:5C). Interestingly, 2-AA levels
are significantly decreased in the HFD cohorts (Fig. 4:5D), despite that the genetic regulation of 2-AA by Dhtkd1 is
equivalent between CD and HFD cohorts (Fig. 4:4E—F). However, this decrease is not directly linked to diet, but instead
with the animals' progression towards diabetes. Based on HOMA insulin resistance indices [119], most HFD-fed BXD
animals (108 of 180) became glucose intolerant / insulin resistant over the six month period of dietary challenge. Con-
versely, only 18% of CD animals (29 of 165) have poor insulin sensitivity. Strikingly, the changes in 2-AA levels go in
tandem with the HOMA index: animals with worse insulin sensitivity have lower 2-AA, and animals with good insulin
sensitivity have equivalent levels of 2-AA, with no effects linked directly to diet (Fig. 4:5E). With this in mind, we further
examined 2-AA in two independent population studies. In the Hybrid Mouse Diversity Panel, a recent profile of liver
metabolomes in 96 cohorts in the fasted state contained 2-AA measurements [91]. In this diverse population, which
includes ~30 BXD strains (with only one strain overlapping with those in our study), 2-AA is diminished in cohorts with
higher fasted glucose (Fig. 4:5F), and the two are again negatively correlated (not shown). Likewise, we observed the
same trend in a human population study (ColLaus [331]), in which we recently analyzed the spot urine samples of 835
middle-aged or elderly individuals [85]. In this cohort, diabetic patients also displayed a marked decrease in 2-AA levels
(Fig. 4:5F). Together, these findings indicate that Dhtkd1 plays a major role in the regulation of 2-AA in both mice and
humans, and that the modulation of this pathway may influence the development of diabetes.
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Figure 4:5 Physiological Consequences of DHTKD1 Variants

(A) Liver size, serum cholesterol and fasted glucose levels increase after HFD across the BXDs. (B) In CD liv-
ers, 2-AA is associated negatively with liver mass, serum cholesterol, insulin, and glucose. In HFD livers, 2-AA
is associated negatively with liver mass and fasting glucose. (C) Liver levels of saccharopine, a metabolite up-
stream of 2-AA, are also associated negatively with the same phenotypes, although only in CD. (D) 2-AA lev-
els in the liver are significantly decreased in HFD-fed BXD cohorts. (E) However, when correcting for diabetes
status (HOMA-IR > 10 as diabetic, or HOMA-IR < 5 as healthy), there was no difference between CD and
HFD—instead only between diabetic and non-diabetic cohorts. (F) Using publicly available data from a re-
cent metabolomic profiling of livers from the HMDP [91], we can observe that the inverse relationship be-
tween 2-AA and fasted glucose is highly consistent in mouse populations. p = 0.01 if the four high non-
outliers in the low group are suppressed. (G) Also in a human population study with urine metabolomics, di-
abetic patients had markedly lower levels of 2-AA.

4.1.6 The Mitochondrial Unfolded Protein Response (UPR™)

The UPR™ is a mitochondrial stress response pathway that is activated by proteostatic stress, such as by accumula-
tion of unassembled or unfolded proteins in the mitochondria [332], by the presence of an imbalance between mito-
chondrial and nuclear encoded proteins [82], or by electron transport chain defects [200, 333]. The activation of UPR™
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in turn leads to the transcription/translation of nuclear-encoded protective genes such as mitochondrial chaperones
and proteases to reestablish mitochondrial proteostasis (reviewed in [134, 334, 335]). The bulk of research on UPR™
has taken place using C. elegans and mammalian cell lines, thus little is known about when or how UPR™ occurs in vivo
in mammals. Furthermore, as the UPR™ is a stress response tied to maintaining mitochondrial protein balance, we
hypothesized that its protein correlation networks may be different than those generally examined at the transcrip-
tional level.

In the worm, two “classical” approaches have been typically used to induce UPR™: loss-of-function of cco-1, a nu-
clear encoded component of the electron transport chain [200], or loss of function of spg-7, a mitochondrial protein
quality-control protease [336]. We confirmed that the knockdown of either gene by RNAI triggers the UPR™ response in
C. elegans, by strong induction of the mitochondrial chaperone hsp-6 and of the proteases lonp-1 and clpp-1 (Fig. 4:6A).
Moreover, we linked this UPR™ activation to specific phenotypes—a major reduction in size and mobility, as well as a
decrease in oxygen consumption—which are consequences of mitochondrial stress (Fig. 4:6B). However, whether this
coordinated regulation of UPR™ genes is conserved in mammals in vivo, has not been previously shown.
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Figure 4:6 The Mitochondrial Unfolded Protein Response

(A) UPR™ induction in C. elegans triggered by interference with ETC (RNAi of cco-1) or mitochondrial proteo-
stasis (RNAI for spg-7). These triggers result in upregulation of UPR™ effectors hsp-6, clpp-1, and lonp-1 and
a reduction in ubl-5. The orthologous mouse genes are indicated below the respective C. elegans gene sym-
bol. Error bars represent mean + SEM. (B) UPR™ induction in C. elegans decreases movement, size, and oxy-
gen consumption. (C) UPR™ genes and proteins form a network of coordinately expressed mRNAs and pro-
teins in vivo in mice, which is stronger at the protein than at the mRNA level. (D) Cox5b and Spg7 (orthologs
of C. elegans cco-1 and spg-7), are generally negatively associated with the levels of all UPR™ genes in CD
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cohorts, particularly at the protein level, in line with observations in the worm. (E) While the levels of Cox5b
and Spg7 are not affected by diet, expression is consistent by strain across the two diets only for Cox5b. (F)
The UPR™ network in HFD livers is similar to that observed in CD, but somewhat weaker. Ub/5 remains a
striking negative correlate at the mRNA level. (G) In HFD, Cox5b remains a negative correlate of UPRmt tran-
scripts and proteins, while Spg7 does not. (H) The features of the UPR™ network are also conserved in 427
human liver biopsies [337], 405 lung biopsies [338], 180 lymphoblast lines [339], and 43 hippocampi [340].
(1) In humans, SPG7 is a consistent negative correlate of the UPR™ transcripts.

In the BXDs, we investigated the expression of six members of the UPR™ pathway, which are well-conserved from
C. elegans: mitochondrial chaperones (Hspd1, Hspel, Hspa9), proteases (Clpp, Lonp1), and a transcriptional regulator
involved in UPR™ (Ubl5). These UPR™ genes are also coordinately regulated at both mRNA and protein level in the
BXDs, but with much stronger connections among proteins (Fig. 4:6C). Moreover, the UPR™ network correlates nega-
tively with Cox5b and Spg7 (mouse orthologs of worm cco-1 and spg-7, respectively), indicating that low abundance of
these genes amplifies UPR™ in mammals as in C. elegans (Fig. 4:6D). The network is also influenced in part by diet.
While Cox5b expression patterns are similar between CD and HFD, Spg7 covariation is disjointed between the dietary
cohorts (Fig. 4:6E). This may explain why, despite a similar overall UPR™ response in both diets (Fig. 4:6D & F), Spg7
trends positively in HFD cohorts, while Cox5b remains consistent (Fig. 4:6G). Using four large transcriptional studies of
human tissue biopsies, we observe similar transcriptional links, particularly including a strong network between all the
UPR™ genes (Fig. 4:6H). In humans, SPG7 is a consistent negative correlate of this network, in contrast to COX5B, which
generally has positive covariation with the UPR™ response (Fig. 4:6l). Thus, while many of the overall regulators of
UPR™ remain coregulated across species—worm, mouse and human—particular nuances of its activation pathways
appear variable dependent on species, environment, tissue, and likely other factors.

4.1.7 Discussion

Due to major differences in transcript and protein regulation, it has become increasingly clear that systems prote-
omics is essential for the analysis of complex systems such as metabolism [121, 308]. Traditionally this was attempted
by semi-quantitative immunoassays such as ELISA or Western blotting, yet these techniques allow only a handful of
proteins to be measured in parallel, and are moreover limited by the scarcity of quantitative immunoassays and the
dubious quality of many antibodies [341]. Recent shotgun proteomics experiments on diverse populations have provid-
ed fundamental data on protein variance in populations of yeast [308, 309], mammals [305], and humans [133]. How-
ever, the inability to measure target proteins has limited the application of this approach in the study of disease path-
ways. New developments in mass spectrometry have led to SRM, a targeted quantitative systems proteomics technique
in which choice proteins can be quantified based on a priori information. This technique has been recently applied in a
moderate-sized yeast population study [316], but until now has not been applied to study genetic regulation in multi-
cellular species nor for the study of a choice pathway.

In this study, we quantified 192 metabolism genes at the transcript and protein level in livers from 77 cohorts of the
BXD GRP under two different dietary conditions. Along with sequence variants, basic metabolomics, and phenotype
data, this combined multilayered population dataset enabled us to accurately estimate abundance changes in gene
products due to genotype, diet, and gene-by-environment interactions (GXE). By complementing these layers, we were
able to tentatively link dozens of pQTLs with phenotypes. Of the ~50 of significant pQTLs identified, we established links
between four genes leading to phenotypic consequence: two novel, two confirmatory. For these genes, Nnt, Car3,
Dhtkd1, and Bckdhb, coding differences between B6 and D2 alleles were linked to robust differences at both the tran-
script and protein level, leading to shared cis-regulatory eQTLs and pQTLs, and then to phenotypic consequences. While
Nnt has been previously attributed as causal to differences in insulin secretion in the BXDs [320], the other pQTLs are
novel, including for Car3, which was previously linked to adiposity only in knockout mice [321]. For Bckdhb, strains
carrying the B6 allele have a ~50% reduction in enzyme levels which leads to a buildup of BCAA levels and decrease in
alanine levels, as in the intermittent form of MSUD. In humans, MSUD is a rare inborn error of metabolism, and while
BXDs do not suffer any overt physiological consequences of BCKDHB deficiency in the basal state, certain dietary stress-
es may magnify the symptoms and make the BXDs appropriate to model MSUD.

For Dhtkd1, the BXD strains map to highly significant and overlapping eQTLs and pQTLs with an approximately bi-
modal distribution with 2-fold variance between strains with the B6 (low) or the D2 allele (high) of the gene, and with
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no effect from diet. Furthermore, the metabolite 2-AA maps as a significant mQTL to the Dhtkd1 locus in both diets,
despite a marked decrease of 2-AA levels in HFD cohorts. Interestingly the decrease in 2-AA is not directly due to the
HFD, but rather due to the increased penetrance of insulin resistance after HFD. Moreover, prior works show that ex-
ternal administration of 2-AA can improve insulin sensitivity and glucose response in mice [92], indicating that variants
in Dhtkd1 and 2-AA levels may be driving the pathogenesis of diabetes, rather than being mere passive biomarkers of
the disease. Strikingly, we replicated this association between 2-AA and high glucose levels in a recent and completely
independent metabolomic dataset collected in the Hybrid Mouse Diversity Panel [91]. Furthermore and clinically rele-
vant, we demonstrated in a human population-based sample, Colaus, that diabetic patients likewise have lower urinary
levels of 2-AA [85]. Thus, 2-AA levels are consistently linked to diabetes status in both mice and humans, and in the
BXDs we can unequivocally attribute a causal part of this variance to variants in Dhtkd1. The BXD strains were necessary
to bring the hypothesis to power a human study, and also confirm that the mouse link has relevance for human disease.
Together, these findings further validate the BXD mouse population as a model for human metabolic diseases [16], and
they indicate a critical need for multi-layered measurements to effectively analyze complex systems, particularly within
the context of the study of GXE.

It is worth stressing that novel regulatory mechanisms can be found either through QTL analysis and their equiva-
lent from GWAS, SNP analysis, or through network analyses, which are a complementary and powerful approach to
dissect complex traits. The network approach is particularly viable when backed by high-depth multilayered datasets
such as illustrated by our example on UPR™. UPR™ is a reparative pathway activated by mitochondrial proteotoxic
stress that has been primarily studied in the C. elegans and in cultured cells, but little is known about whether it occurs
in vivo in mammals. We examined six genes that are known to be major regulators of C. elegans UPR™ and which are
conserved in mammals. These six genes form a robust coexpression network in both diets at the transcriptional and
proteomic levels, with the proteomic connections being stronger, befitting the role of UPR™ as a sensor and regulator
of protein stress. One observation that stood out in the analysis of the UPR™, was the striking “contradiction” between
the UbI5 transcript and UBL5 protein correlations to the UPR™ network. Ubl5 is a transcriptional regulator known to
induce UPR™, yet in both worms and mice, its transcript levels decrease when UPR™ is activated. Conversely, the UBL5
protein is increased with UPR™ activation in the BXDs, an observation also previously reported in C. elegans [342]. This
discordance in protein/transcript regulation suggests the existence of posttranscriptional mechanisms or a negative
feedback loop, which could not be detected at the transcript or protein level alone. While there remains a great deal of
this pathway left to be explored, it is clear that accurate, systems-scale protein measurements are essential to effec-
tively model complex protein response networks like UPR™,

Today, there is an unprecedented capacity for accurate measurement quantification of nearly all aspects of biology.
Surprisingly perhaps, proteins remain one of the most difficult aspects of biology to precisely measure at a systems
scale, though it has been long clear that transcripts only serve as a weak proxy for protein levels [307]. Our data show
that the integration of systems proteomics datasets with different layered systems measurements provides unprece-
dented insights into the mechanistic regulation of complex systems, such as exemplified by metabolism, that can even-
tually lead to the improved diagnosis and treatment of metabolic disease.

4.1.8 Methods

BXD strains were sourced from the University of Tennessee Health Science Center (Memphis, TN, USA) and bred at
the EPFL animal facility for 2+ generations prior to incorporation into the study. We examined 40 strains of the BXD
population—40 on CD, 37 on HFD—with ~10 male animals from each strain separated into two groups of ~five for each
diet (3 strains on HFD were lost prior to tissue collection), with a total of 183 CD and 168 HFD animals. Strains were
entered staggered one or two weeks apart in random order. Most strains entered with both dietary cohorts at the
same time, with the exception of BXD50, 68, 69, 71, 84, 85, 89, 95, 96, 101, where CD cohorts entered before HFD
cohorts. All cohorts consisted of littermates. HFD feeding started at 8 weeks of age. Cohorts were communally housed
by strain and diet from 3 until 23 weeks of age, and were then individually housed until sacrifice at 29 weeks of age.
Chow Diet (CD) is Harlan 2018 (6% kCal/fat, 20% kCal/protein, 74% kCal/carbohydrates), High Fat Diet (HFD) is Harlan
06414 (60% kCal/fat, 20% kCal/protein, 20% kCal/carbohydrates). All mice were housed under 12 h light, 12 h dark with
ad libitum access to food and water at all times, except prior to sacrifice, when animals were fasted overnight. Body
weight was measured weekly from 8 weeks of age until sacrifice. Sacrifices started at 9:00 am until 10:30 am, with
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isoflurane anesthesia followed by a complete blood draw (~1 mL) from the vena cava, followed by perfusion with phos-
phate-buffered saline. Blood was placed into lithium-heparin coated tubes, shaken, and stored on ice, followed imme-
diately by collection of the liver. Gall bladders were removed and the livers were cut into small pieces before freezing in
liquid nitrogen until preparation into mRNA, protein, or metabolite samples. Blood was centrifuged at 4,500 rpm for 10
minutes at 4°C, and supernatant (serum) was placed in new tubes and flash frozen in liquid nitrogen. Liver and serum
were then stored at -80°C until analysis. All research was approved by the Swiss cantonal veterinary authorities of Vaud
under license 2257.

Serum analysis was performed using ultra performance liquid chromatrography (UPLC) electrospray tandem mass
spectrometry (MS). Plasma was deproteinized using acetonitrile after the addition of internal standards. Amino acids
were separated using reverse phase UPLC and heptafluorobutyric acid as an ion pairing agent, with detection on a
Waters Quattro Premier XE.

For liver analyses, three ~100 mg pieces were taken from cold storage for each individual, then weighed and sorted
for mRNA, protein, and metabolite measurements.

For mRNA, the ~100 mg pieces were suspended in TRIzol (Invitrogen) and homogenized with stainless steel beads
using a TissueLyser Il (Qiagen) at 30 Hz for 2 min, followed by a standard phase separation extraction using chloroform
and precipitated by isopropanol. mRNA concentration was measured for all samples and then pooled equally for each
cohort (i.e. 5 biological replicates for BXD103 CD became 1 mixed pool of BXD103 CD). Pooled RNA was cleaned up
using RNEasy (Qiagen). The mRNA of all cohorts was prepared in direct series over a ~2 week period. 76 of the 77 co-
horts had high quality mRNA based on RNA integrity numbers > 8.0, indicating they are suitable for amplification and
subsequent microarray analysis. Arrays were run for all cohorts in direct series over a three week period using the
Affymetrix MouseGene 1.0 ST array at the Molecular Resource Center of Excellence in The University of Tennessee
Health Science Center. Data were normalized using the RMA method [301], then used analyses in GeneNetwork and R.
Three genes identified at the protein level were not measured on the array (Srp54, mt-ND5, and mt-COX3).

For liver protein, the ~100 mg liver samples were homogenized with 4 mL radioimmune precipitation assay-
modified buffer (1% Nonidet P-40, 0.1% sodium deoxycholate, 150 mM NaCl, 1 mM EDTA, 50 mM Tris, pH 7.5, protease
inhibitors EDTA-free, 10 mM NaF, 10 mM sodium pyrophosphate, 5 mM 2-glycerophosphate) and a glass-glass tight
dounce homogenizer (Wheaton Science Products) at 4°C. After the homogenates were centrifuged (20,000 g at 4 °C for
15 min), the supernatant was collected and kept at 4°C. The pellets were resuspended with UREA-Tris buffer (50 mM
Tris, pH 8.1, 75 mM NaCl, 8 M urea, EDTA-free protease inhibitors, 10 mM NaF, 10 mM sodium pyrophosphate, 5 mM
2-glycerophosphate) and sonicated for 5 min, then centrifuged at 20,000 g for 15 min at 4°C. The supernatant from the
two steps were combined and protein concentration were determined with BCA Protein Assay (Thermo Fisher Scien-
tific). Protein was prepared in two separate batches about six months apart (Batch 1: C57BL/6J, DBA/2J, BXD43, 44, 45,
48, 49, 51, 55, 61, 62, 64, 66, 68, 69, 70, 71, 73, 75, 80, 81, 83, 84, 85, 87, 90, 99, 100, 103; Batch 2: 50, 56, 60, 79, 89,
92, 95, 96, 97, 98, 101). Each batch was run separately on SRM, described in detail in the following section.

For liver metabolites, the ~100 mg liver pieces were homogenized in 1mL 70% Ethanol at -20°C. Metabolites were
extracted by adding 7mL 70% Ethanol at 75°C for 2 min. Extracts were centrifuged for 10 minutes at 4,000 rpm at 4°C.
Clean metabolites extracts were dried in a vacuum centrifuge and resuspended in double-distilled H,O with volume
according to the weight of the extracted liver piece. Quantification of metabolites was performed on an Agilent 6550
QTOF instrument by flow injection analysis time-of-flight mass spectrometry [343]. All samples were injected in dupli-
cates. lons were annotated based on their accurate mass and the Human Metabolome Database reference list [152]
allowing a tolerance of 0.001 Da. Unknown ions and those annotated as adducts were discarded. The m/z ratios are
reported in the online data. In particular, deprotonated a-ketoglutarate, 2-aminoadipic acid, saccharopine, and corre-
spond to 144.0302, 160.0614 and 275.1249, respectively.

For all data, QTL mapping was performed using GeneNetwork [181].

For proteins previously observed in shotgun proteomics experiment, 3 to 4 proteotypic peptides most frequently
observed by mass spectrometry were chosen based on the information present in the publicly accessible proteomic
data repository PeptideAtlas [344] (www.peptideatlas.org). Peptide identifications deriving from isotope-coded affinity
tag experiments were not considered. For proteins with less than three proteotypic peptides available from Pep-
tideAtlas, additional proteotypic peptides amenable for mass spectrometry analysis were derived by bioinformatic
prediction using the analysis software PeptideSieve [345] (tools.proteomecenter.org) and filtered by peptide length
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and hydrophobicity. All peptides were synthesized without tags and lyophilized in a 96-well plate with ~50 nmol of
peptide material per well (JPT Peptide Technologies). Peptides were resuspended in 20% acetonitrile, 1% formic acid,
with 180 pL per well, vortexed for 15 min and sonicated for 10 min in the 96-well plate. Peptides were combined with
each 5 pl and evaporated on a vacuum centrifuge to dryness, resolubilized in 2% acetonitrile, 0.1% formic acid. Eleven
iRT peptides from Biognosys [346] with elution times spanning the whole solvent gradient were spiked into each mix-
ture to facilitate the correlation of relative retention times between LC-MS/MS runs.

For each proteotypic peptide, the two best SRM transitions for both the double- and the triple-charged state were
calculated, corresponding to fragment ions of the y-series. Fragment ions with a mass-to-charge ratio (m/z) greater
than the precursor ion m/z precursor + 20 were prioritized. This selection process was processed through TIQAM [347].
The selected transitions were used to detect the peptides by SRM for synthetic peptides and to trigger acquisition of
the full fragment ion spectra of the peptides. MS/MS spectra were acquired in enhanced product ion mode for the two
highest SRM transitions, using the following settings: dynamic fill time, Q1 resolution low, scan speed 4000 Da/s, m/z
range 380-1400. Raw MS/MS .wiff data was converted to .mzXML format with the program mzWiff and searched
against the target proteins database using Mascot (www.matrixscience.com). A decoy database was generated by
reversing the amino acid sequence and appended to the target database. Precursor mass tolerance was set at 0.8 Da.
Data were searched with full tryptic cleavage except for K/R-proline. Cystein carbamidomethylation was set as the
static modification and methionine oxidation was set as the variable modification. The search results were validated
and filtered with p-value < 0.05 and expect value < 0.05. The resulting Mascot searching result were imported as the
spectral library. For each peptide, the top 3 fragment ions resulting in the highest signals were selected from the QQQ
MS/MS spectra. The corresponding SRM transitions associated with the (}3Cs, 2°Ng)-Arginine, (3Ce, °N,)-Lysine peptide
analog of each peptide were calculated and combined with the endogenous transitions to generate the final SRM assay.

The final SRM assays were used to detect and quantify the proteins in the 77 samples of mouse liver tissue lysate
using time-scheduled SRM/MRM acquisition (retention time window, 240 s; target scan time, 2.5 seconds, up to a
maximum of 550 transitions per run) [348]. Heavy proteome using (}3Cs, °N4)-Arginine, (3Cs, 1°N,)-Lysine cultured
Hepal-6 cells line was generated as previously described [349]. For peptides not detected in Hepal-6 proteome, (*3Cs,
1 N,)-Arginine, (33Cs, °N,)-Lysine peptides were synthesized and spiked into each sample with same amount prior to
mass spectrometry measurements and mixed with equal amounts with the 77 liver homogenate samples respectively
prior to protein digestion. Retention times were predicted using equation calculated from iRT peptides. B-gal runs (B-
gal, 0.1% formic acid, injected) were performed prior to each 2 SRM measurements. 309 peptides were successfully
quantified.

Wild-type Bristol N2 C. elegans provided by the Caenorhabditis Genetics Center (University of Minnesota) were cul-
tured at 20°C and sustained on the OP50 E. coli strain. Bacterial feeding RNAi experiments were carried out as de-
scribed [350]. cco-1 (F26E4.9) and spg-7 (Y47G6A.10) clones were purchased from GeneService and sequenced.

For qPCR analysis, five biological replicates for each condition were prepared, consisting of ~600 worms per sample
in M9 minimal liquid medium. Before mRNA preparation, samples were washed twice with 5 mL M9 to eliminate resid-
ual bacteria. Total RNA was prepared using TRIzol (Invitrogen) according to the manufacturer's instructions. RNA was
treated with DNase, and 1 pg of RNA was used for reverse transcription (RT). 15X diluted cDNA was used for RT-
quantitative PCR (RT-qPCR) reactions. The RT-qPCR reactions were performed using the LightCycler 480 System (Roche
Applied Science) and a gPCR Supermix (QIAGEN) with the indicated primers. act-1 was used as normalization control.
Three technical replicates were used for each biological replicate.

The primers used for the C. elegans genes were as follows:

cco-1 (F26E4.9): Fwd: GCTCGTCTTGCTGGAGATGATCGTT
Rvs: GGTCGGCGTCGACTCCCTTG

spg-7 (YA7G6A.10): Fwd: AAGTATGCAGGACAAACGTGC
Rvs: TGAGGTTTGGGATTTCGCGT

hsp-6 (C37H5.8): Fwd: AACCACCGTCAACAACGCCG

Rvs: AGCGATGATCTTATCTCCAGCGTCC
hsp-60 (Y22D7AL.5): Fwd: TTCTCGCCAGAGCCATCGCC

Rvs: TCTCTTCGGGGGTGGTGACCTTC
hsp-10(Y22D7AL.10): Fwd: GGGAAAAGTCCTTGAAGCCAC

85



Rvs: CTCCGAGAAGATCAGACTCGC

clpp-1 (ZK970.2): Fwd: TGCACAGGGAACCTGCTCGG

Rvs: TTGAGAGCTTCGTGGGCGCT
lonp-1 (C34B2.6): Fwd: CGATGATGGCCATTGTGCAG

Rvs: CGCTTTGAAACATCAATTTCATCCA
ubl-5 (FA6F11.4): Fwd: ACGAATCAAGTGCAATCCATCAG

Rvs: GCTCGAAATTGAATCCCTCGTG
act-1(T04C12.6): Fwd: GCTGGACGTGATCTTACTGATTACC

Rvs: GTAGCAGAGCTTCTCCTTGATGTC

For C. elegans phenotyping, oxygen consumption was measured using the Seahorse XF96 equipment (Seahorse Bio-
science Inc.) as described previously [351]. Typically, 100 worms per condition were recovered from plates with Nema-
tode Growth Medium (NGM), then washed three times in 2 mL of M9 liquid medium to eliminate residual bacteria, and
resuspended again in 500 pL of M9. Worms were transferred in 96-well standard Seahorse plates (#100777-004) (10
worms per well) and oxygen consumption was measured 6 times. Respiration rates were normalized to the number of
worms in each individual well.

Movement was recorded for 45 seconds at day 2 of adulthood using a Nikon DS-L2 / DS-Fil camera and controller
setup, attached to a computerized Nikon bright field microscope. Five plates of worms, with 20 worms per plate, were
measured in each condition. The movement of worms during this time was calculated by following the worm centroids
using the same modified version of the freely-available for the Parallel Worm Tracker in MATLAB [180].

Proteins were prepared and measured in two separate batches: the first with 58 cohorts (29 of each diet), the sec-
ond with 19 cohorts (11 CD, 8 HFD). Due to the presence of batch effects between the runs, the protein levels were
converted to Z-scores based on the principle that the means and variation between the two groups should be roughly
equal. This equality was proven by the identification and tracking of cis-pQTLs (particularly DHTKD1 and NNT), which
were identified separately in both batches, but significance was much improved with the total set of 40. E.g. for CD-
DHTKD1, the LRS was 31 for the batch of 29 strains, which increased to 43 when re-normalized and combined with the
remaining 11 strains, indicating the combined data are improved. We measured 309 peptides to represent the 192
proteins, of which 94 proteins were measured by 1 peptide, 79 were measured by 2 peptides, and 19 were measured
by 3 peptides. Of the 103 proteins with more than one measurement peptide, we were able to reduce 91 peptides,
leaving us with 218 peptides measuring 192 proteins. Peptides were consolidated (averaged) if the peptides correlated
> 0.5 with one another. In other cases, one peptide was selected if (a) one peptide correlated > 0.5 with its transcript
and the other peptide(s) did not correlate at least nominally significantly (i.e. rho < ]0.31]), (b) if one peptide had a cis-
pQTL, or (c) if a peptide had technical reproducibility < 0.95 it was removed. After this consolidation and removal, we
were left with 218 peptides for all 192 genes, with 26 proteins retaining 2 independent peptide measurements. In such
cases, it is not known if this independence is due to unidentified isoforms, unknown PTM sites, or other conflicts.

To further establish measurement reliability, we generated a heatmap quantification matrix (Fig. 4:1C, upper). This
matrix displays protein abundance fold changes of condition (light) versus standard (heavy labeling). The peptide fold
changes were computed from transition fold-changes using Skyline [352]. The association network (see Fig. 4:1D) was
constructed from significantly nonzero (p < 0.01, multiple testing correction) and strong positive associations among
proteins (r[XY] > 0.6). To compute the associations we used the Spearman rank correlation measure. The correlations
were computed on peptide level and if multiple peptides were present per protein the median correlation was taken. In
order to assess the stability and significance of the partial correlations obtained, we were resampling with replacement
from the 77 cohorts and re-computing the associations. We also examined how robust the association measures are
with respect to changes in scaling and normalization.

For a given target metabolite we selected its NMR shifts obtained from the HMDB database (www.hmdb.ca). Next,
we excluded shifts with heights less than 20% of the maximal height and also those whose shifts were shared by more
than 10 other metabolites in the database. The resulting shifts are approximately unique signatures of the target me-
tabolite which were then further pruned to avoid counting highly correlated signals multiple times. Finally, the concen-
tration of the target metabolite was approximated as the mean concentration of the filtered and pruned set of most
representative NMR shifts. We applied (permutation-based) regression to estimate the effect of the derived metabolite
concentration proxies on the three selected high level phenotypes: diabetes status, serum glucose, and serum choles-

86



terol levels. We have recently published tese data [85], which contain additional information and metabolite measure-
ments.

All BXD data can be found on the www.genenetwork.org resource. To download the clinical phenotype data,
change the type to “Phenotype” and enter LISP2 to find all associated results. Select all and export to recover the data,
or analyze it online. Microarray data and protein measurements can be found on the same resource; change type to
“Liver Proteome” or “Liver mRNA” and navigate to the named EPFL datasets under CD or HFD (e.g. EPFL/LISP BXD CD
Liver Affy Mouse Gene 1.0 ST (Apr13) RMA). To download these data, please click the “INFO” button at the right-hand
side of the search page and download the raw dataset in the upper right box of the screen. All microarray data can be
found on GEO as well, under the accession GSE60149.
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Chapter 5 Conclusion

In this thesis, | have described and implemented an approach using a complex, genetically diverse population of
mice to study the effects of genetics, sex, diet, and exercise on broad metabolic phenotypes. Particularly, | have sought
to identify and explain how genetic variance pertains to and drives our phenotypic traits, particularly those leading to
metabolic diseases such as diabetes or osteoporosis. In studying the millions of DNA variants in the BXD mouse popula-
tion, which occur spontaneously in nature just as in human populations, | was able to identify a few more pieces in the
puzzle linking our genome to physiological outcomes. In chapter 2, the gene alkaline phosphatase (Alpl) was linked to
major differences in the circulating levels of vitamin Bg and differences in bone strength in mice—and very likely in
humans as well. Similarly, the aryl hydrocarbon receptor (Ahr) was shown to be causal of differences in normal move-
ment activity in a wide array of organisms: C. elegans, Drosophila, and mice, and again likely has similar effects in peo-
ple. Next, in chapter 3, | used data from the same BXD population study to confirm and expand upon several hypothe-
ses formed using gain or loss of function (i.e. genetically modified) organisms. First, using muscle expression data and
related exercise phenotypes, we showed that the nuclear receptor co-repressor 1 (NCoR1) is tied to mitochondrial
function and muscle fitness across a broad population, also identified/confirmed one metabolic pathway by which PARP
inhibitors can improve muscle fitness. Similar experiments using liver expression and liver-related phenotypes con-
firmed that in the BXDs, several different genes connect to form the activator protein-1 (AP-1), and in turn can lead to
opposite effects despite working on the same target genes. Here, as in the G/LOF cohorts, both diet (CD vs HFD) and
genotype influence the development of fatty liver disease. In chapter 4, we explored data acquired through a recent
development in mass spectrophotometry, called SRM, which allowed the accurate, high-throughput measurement of
hundreds of proteins in a single sample. Using these data, | was able to identify the gene dehydrogenase and transketo-
lase domain containing 1 (Dhtkd1) as causal of major changes in 2-aminoadiate, which in turn is associated with re-
sistance to diabetes, and is unaffected by our environmental perturbation, HFD. Further findings from this study include
the observation that the BXD population has a mild form of Maple Syrup Urine Disease (MSUD), a rare genetic condi-
tion affecting amino acid metabolism in certain populations, and that the mitochondrial unfolded protein response
(UPR™) is relatively well conserved from C. elegans to mice. The finding on 2-aminoadipate proposes a new potential
route to treating diabetes (or preventing/slowing its development) in humans, while the finding on MSUD provides a
diverse mouse population that can be used to test drugs or treatments for eventual human trials. The research on
UPR™ is fundamental biological research, and it provides provides critical further evidence for this recently-discovered
pathway which is now thought to be one of the major regulators of overall metabolic well-being. In time and with fur-
ther research, this too is poised to have profound implications on medicine.

The ability to perform these studies was all made possible thanks to technologies and techniques developed over
the past decades, from the BXD population itself, to microarray technology and mass spectrometry. A reductive study
(such as those examining the effects a single gene) can be successful by measuring a few transcripts and proteins by
hand, while the systems approach relies much more on an ability for all transcripts and all proteins can be measured. In
the past 10-15 years, technological advances, particularly in sequencing, have greatly aided the systems approach, yet
there is still a long way to go, particularly regarding quantitative proteomics (as discussed in chapter 4). Even state-of-
the-art protein quantification systems “only” allow the simultaneous quantification of ~2000-3000 proteins, or roughly
10-15% of the proteome. By taking advantage of these new developments, we were able to apply the BXD population
to re-examine an old question but with new eyes—how do genotype, sex, and environment interact to influence me-
tabolism, particularly complex metabolic diseases such as obesity and diabetes? Indeed, we were able to identify novel
factors leading to changes in bone density, in liver damage, in muscle function, in glucose response, and in amino acid
metabolism. These findings can be applied to the rational development of treatments as well: perhaps an NCoR1 inhibi-
tor can restore lost muscle function in the elderly, or drugs targeting AP-1 activity can be used to restore glucose toler-
ance in diabetic patients. In fact, this hypothesis is put to the test in chapter 3.2, where we examine the effects of PARP
inhibitors on muscle function in mice. The findings in this thesis are largely directed related towards understanding the
fundamental interactions of genetic and environmental influences, yet as shown they also provide new starting points
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for the development of novel therapeutics, and provide further evidence for the removal of negative environmental
stressors (e.g. high fat diet) and the addition of beneficial environmental influences (e.g. exercise).

It is my hope that, in the coming decades, the tremendous effort this thesis represents will seem as basic to future
geneticists as we consider much research from the 1980s today. Major pieces of work 30 years ago, such as on se-
guencing and identifying genes, required months of effort originally but can now be done in hours. Taken alone, each of
the findings in my thesis represents a small addition to the greater knowledge of genetic regulation of metabolic phe-
notypes, yet these painstakingly-validated relationships will in the future provide the basis for predictive gene—
phenotype relationships, paving the way for real, effective personalized medicine. Even within the four year scope of
this thesis, new technologies arose providing increased capabilities to understand molecular action, and the cost of
such studies came down. Just as the pace of genetic discovery has exponentially increased over the past decades, the
future outlook indicates that this rate will only continue to increase. The first pieces of a puzzle are the most difficult,
and although we do not yet know how many pieces our genetic puzzle contains, we now have the corner pieces thanks
in large part to DNA sequencing, RNA sequencing, and other “full scale” omics technologies. Already, we can clinically
identify many diseases based on molecular measurements in the blood—fasting glucose is indicative of diabetes, high
LDL cholesterol is indicative of atherosclerosis, and so on. By identifying variation in mice and assessing the physiologi-
cal impact of gene and environmental effectors, we can further identify which genetic factors are associated with dis-
ease by using the same biomarkers (e.g. fasting glucose levels in response to gene knockouts). Thus, we can uncover
genetic variants influencing fasted glucose—and therefore diabetes—and then translate these findings to human popu-
lation studies. Gradually, such experiments fit together to provide an accurate prediction of an individual's risk for any
particular metabolic trait based on their DNA sequence and basic clinical measurements. Already we can see the first
steps into personalized medicine thanks to with commercial entities such as 23andMe. While the confidence in most
results from such platforms is quite low at the moment, the quality is increasingly rapidly. However, we must also real-
ize that genetic tests on complex diseases will never be 100% accurate, as most of us—fortunately—can in part control
our own destiny through environmental modifications. Likewise, we are unlikely to discover a single drug or lifestyle
change which will cure the entire world of any complex disease, diabetes, cancer, or so forth, as the diversity of causes
leading to the diseases means there is no single cure. However, with a tempered understanding of the promises of
“personalized medicine”, we are already able to make better and more accurate lifestyle choices, tailored to our own
genome.

5.1 Applied Systems Genetics : Broad and Narrow

In chapters 2 and 4, we saw broad applications of systems genetics which then focused in on novel, individual vi-
gnettes. In chapter 3, we saw three applied uses of population study to supplement already-established pathways. In
each case, we were able to identify novel regulators and mechanisms underlying general metabolic dysfunctions (e.g.
bone density, muscle function, liver damage). In the past several years, it has become increasingly clear that a reduc-
tionist application of genetics can gain significant power by examining the same hypotheses in larger populations,
demonstrated most prominently with the AP-1 example in chapter 3.3. This necessity is due to the fact that the most
critical molecular regulatory mechanisms have multiple redundancies—if GeneX is inactivated by a random mutation,
GeneY, or GeneZ will become upregulated, thereby preventing the most severe effects of GeneX inactivation. Alterna-
tively, while GeneA may improve muscle regeneration when modified, it is exceptionally unlikely to act entirely by itself.
Instead, such genes are part of a large network with a multitude of other factors, which combined to provide a robust
system of checks-and-balances. This concept, i.e. that the activity of the genome is not simply the individual activity of
all genes summed together, is known as epistasis and is almost certainly the most complicated and critical missing point
behind studies of complex diseases such as cancer and diabetes. While reverse engineering such multi-partner con-
structs is difficult, it is not impossible: this is rwhere broad applications of systems genetics comes in to focus. Large
population studies, particularly in humans and mice, have enjoyed notable success in the past few years towards the
identification of new gene networks and key regulatory genes, often through QTL mapping and GWAS. However, our
current predictive capacity for complex gene networks is too weak to fully examine identified mechanisms in silico, so
at present the links must still be validated with the narrow focus, often through the use of genetically modified organ-
isms or cells. Fortunately, technical developments for performing genomic modifications have improved at least as
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much as the “omics” technologies have in the past decade, and increasingly, we are able to quickly generate models to
validate epistatic interactions using a small number of genes in tandem in a single study. In the coming years, by train-
ing predictive models by using relatively simple examples of epistasis, we may then be able to trust later findings which
bioinformatically identify large-scale gene interaction networks for a more comprehensive understanding of genetics.
As of yet, it is infeasible to test such large epistatic experiments, but it is highly likely that complex diseases stem from
the interactions of dozens of major regulatory genes.

Today, systems biology approaches sit at a point between “too simple to model reality” and “too complex to under-
stand”. A close reading of this thesis may have identified the following somewhat contradictory point: the genes which
were found through the systems genetics approach are largely monogenically linked to phenotypes (Alpl, Dhtkd1, Bck-
dhb, and to a lesser extent, Ahr in chapters 2 and 4), while the three pathways studied using traditional reductionist
approaches (chapter 3) were expanded into large polygenic networks. This is not because such complex pathways were
not identified (see the glucose and oxygen respiration examples in chapter 2.1), but rather due monogenic connections
being “lower hanging fruit”, i.e. they are far more easily identified and validated. Likewise, expanding existing networks
is much easier than identifying and validating a system from scratch—and therefore quicker to publish. Continuing
work on validating complex networks identified in this population study, mainly the UPR™ discussed at the end of
chapter 4, will be the short-term focus of my research following this thesis. As such, it is worth noting that this thesis
represents the BXD systems metabolism project starting from the ground up, but it does not go to the end of the pro-
ject: we are closer to the midpoint.

5.2 Forward Thinking

The majority of the findings in this thesis were developed in animal models, whether mouse or C. elegans, yet fun-
damentally these data must be translated back to human medicine to find utility in the medical world and justify the
project. This process is not a simple one-way exchange from animal models to human cohorts, as simply identifying the
cause(s) of disease is far from developing a treatment or cure. For example, while hypophosphatasia is well-identified
and categorized in humans prior to mouse, the translational (and novel) finding of this disease existing in the BXDs has
strong medical applications. Firstly, this disease is not truly monogenic—although 50% or more of hypophosphatasia
may be attributable to Alp/, many other factors are known to influence vitamin Bg metabolism and bone strength, and
thus could be contributing to (or alleviating) patients with variable symptoms of the disease. Moreover, while hypo-
phosphatasia is well-understood from a biochemical standpoint, there is no cure nor any particularly good treatment,
thus appropriate animal models are necessary to treat the human affliction. While today there already some gene
therapy treatments for humans to cure the most debilitating diseases, it is almost certain that at least for the next few
decades, drug treatments will continue to serve the vast majority of patients. To properly screen potential drug treat-
ments, compounds must be first tested in vitro (i.e. in cell lines grown in petri dishes) for negative signatures of toxicity
and for positive signatures of influencing target genes or metabolites. Next, molecular signatures related to the disease
must be identified in vivo (i.e. in animal models) and monitored. Traditionally, only a single genotype of mouse is used
for compound screening, but as we move into an era where genetic variants are increasingly known to affect drug
response, it is essential that we examine drugs in diverse afflicted populations, as the BXDs are for (e.g.) hypophos-
phatasia. Thus, identifying (or generating) a genetically diverse model population for examining a human disease is a
critical component on the pathway for developing a new treatment. For complex diseases, this means that a new test
compound can be tested not only across a range of afflictions (e.g. severe diabetes to mild diabetes) but also in a popu-
lation that has a diverse response to the drug itself, independent of the disease state.

In my thesis work, | focused on identifying genetic molecular signatures behind disease, with a particular eye for
metabolic disorders, and have translated clear causative cases from human to mouse (i.e. Alp/ levels in conjunction with
vitamin Bg levels can diagnose hypophosphatasia) and also suggested new biomarkers to check for translating from
mouse to human (i.e. an association between Dhtkd1 levels and 2-aminoadipate to diabetes susceptibility). However, it
is often possible to lose perspective in such lengthy work: no single person will work on the entire process from target
identification to drug development to the clinical testing of a new compound. Fortunately, | have had incredible oppor-
tunities at the EPFL to work with dozens of other scientists and share and receive data with people working on all as-
pects of medical development, and the extensive data generated will be continued to used for at least the next several
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years. This network will lead to improved understanding of metabolism, and indeed may directly contribute to better
diagnosis and prevention of diabetes and other metabolic diseases, both through my own direct involvement (e.g. if
Dhtkd1 or 2-aminoadipate do indeed end up being directly relevant to diagnosing or treating diabetes), or by simply
providing a general platform of data which others may build upon (e.g. if someone uses the BXD data | generated to
uncover or validate a novel gene regulating energy metabolism). While this thesis represents the end of my direction in
this project, such broad systems genetics studies do not lead to one particular “conclusion,” and instead | represent one
part of the interim progress of a massive collaborative effort, and in fact is it certain that you will see some datasets
generated for this thesis directly used in other graduate theses and scientific papers in the coming years.
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List of Abbreviations

AHR
ALPL
AUC
B6
BXD
CcD
Chip
D2
DHTKD1
DNA
ES
GEMM
GM
GOF
GRP
GTT
GWAS
GXE
HFD
ITT
LOD
LOF
LRS
mRNA
MS
NAFLD
NCOR1
PARP
PPARG
QTL
RER

RI

SRM
TCDD
VCO;
VO,

Aryl hydrocarbon receptor

Alkaline phosphatase

Area under the curve (i.e. integral)

C57BL/6J, a common strain of inbred laboratory mouse. The mother of all BXDs.
A type of recombinant inbred mouse cross (C57BL/6J x DBA/2J)
Chow diet (i.e. low in fat)

Chromatin Immunoprecipitation

DBA/2J, the first inbred mouse strain. The father of all BXDs.
Dehydrogenase E1 and transketolase domain containing 1
Deoxyribonucleic acid

Embryonic stem (cells)

Genetically modified mouse model

Genetically modified

Gain-of-function

Genetic reference population

Glucose tolerance test

Genome-wide association study

Gene-by-environment

High fat diet

Insulin tolerance test

Logarithm of odds

Loss-of-function

Likelihood ratio statistic

Messenger ribonucleic acid

Mass spectrometry

Non-alcoholic fatty liver disease

Nuclear receptor corepressor 1

Poly ADP ribose polymerase

Peroxisome proliferator-activated receptor gamma
Quantitative trait locus

Respiratory exchange ratio

Recombinant inbred

Selected reaction monitoring
2,3,7,8-tetrachlorodibenzo-p-dioxin

Volume of carbon dioxide

Volume of oxygen
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