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Sampling Sparse Signals on the Sphere:
Algorithms and Applications

Ivan Dokmanić, Member, IEEE, and Yue M. Lu, Senior Member, IEEE

Abstract—We propose a sampling scheme that can perfectly re-
construct a collection of spikes on the sphere from samples of their
lowpass-filtered observations. Central to our algorithm is a gen-
eralization of the annihilating filter method, a tool widely used in
array signal processing and finite-rate-of-innovation (FRI) sam-
pling. The proposed algorithm can reconstruct spikes from

spatial samples. For large , this sampling require-
ment improves over previously known FRI sampling schemes on
the sphere by a factor of four. We showcase the versatility of the
proposed algorithm by applying it to three problems: 1) sampling
diffusion processes induced by localized sources on the sphere, 2)
shot noise removal, and 3) sound source localization (SSL) by a
spherical microphone array. In particular, we show how SSL can
be reformulated as a spherical sparse sampling problem.
Index Terms—Annihilation filter, diffusion sampling, finite rate

of innovavtion, shot noise removal, sparse sampling, sphere, spher-
ical harmonics, sound source localization.

I. INTRODUCTION

N UMEROUS signals live on a sphere. Take, for example,
any signal defined on Earth's surface [1], [2]. Signals

from space measured on Earth [3] also have a spherical domain.
In acoustics, spherical microphone arrays output a time-varying
signal supported on a sphere [4], [5], while in diffusion
weighted magnetic resonance imaging fiber orientations live on
a sphere [6]. In practice, we only have access to a finite number
of samples of such signals. Thus, sampling and reconstruction
of spherical signals is an important problem.
Just as signals in Euclidean domains can be expanded via

sines and cosines, one can naturally represent spherical signals
in the Fourier domain via spherical harmonics [7]. A signal is
bandlimited if it is a linear combination of finitely many spher-
ical harmonics. Sampling bandlimited signals on the sphere has

Manuscript received March 07, 2015; revised August 13, 2015; accepted Au-
gust 21, 2015. Date of publication September 14, 2015; date of current version
December 08, 2015. The associate editor coordinating the review of this manu-
script and approving it for publication was Prof. Antonio Napolitano. The work
of I. Dokmanić was supported by an ERC Advanced Grant—Support for Fron-
tier Research—SPARSAM Nr: 247006, and a Google Ph.D. Fellowship. The
work of Y. M. Lu was supported in part by the U.S. National Science Founda-
tion under grant CCF-1319140. This work appeared in part in theProceedings of
the 40th IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), Brisbane, Australia, April 19–24, 2015.
I. Dokmanić is with the School of Computer and Communication Sciences,

Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne,
Switzerland (e-mail: ivan.dokmanic@epfl.ch@epfl.ch).
Y. M. Lu is with the Paulson School of Engineering and Applied Sciences,

Harvard University, Cambridge, MA 02138 USA (e-mail: yuelu@seas.harvard.
edu).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TSP.2015.2478751

been studied extensively: for signals bandlimited to spherical
harmonic degree , Driscoll and Healy [7] proposed a sam-
pling theorem that requires spherical samples. The best
exact general purpose sampling theorem due to McEwen and
Wiaux uses samples [8]. Recently, Khalid, Kennedy, and
McEwen devised a stable sampling scheme that requires the op-
timal number of samples, [9].
In this paper, we study the problem of sampling localized

spikes on the sphere; in the limit, the spikes become Dirac delta
functions. Such sparse signals on the sphere are encountered
in many problems. For example, various acoustic sources are
well-approximated by point sources; the directional distribution
of multiple sources is then a finite collection of spikes. Stars in
the sky observed fromEarth are angular spikes, and so are plume
sources on Earth.
Localized spikes are not bandlimited, so the bandlimited sam-

pling theorems [7]–[9] do not apply. In this paper, we propose
an algorithm to perfectly reconstruct collections of spikes from
their lowpass-filtered observations. Our algorithm efficiently re-
constructs spikes when the bandwidth of the lowpass filter is
at least .

A. Prior Art

Our work is in the same spirit as finite rate-of-innovation
(FRI) sampling, introduced by Vetterli, Marziliano, and Blu
[10]. They showed that a stream of Diracs on the line can be
efficiently recovered from samples. Initially developed
for 1D signals, the original FRI sampling was extended to 2D
and higher-dimensional signals in [11], [12], and its perfor-
mance was studied in noisy conditions [13], [14].
In a related work [15], [16], Deslauriers-Gauthier and

Marziliano proposed an FRI sampling scheme for signals on
the sphere, reconstructing Diracs from samples. Their
motivating application is the recovery of the fiber orientations
in diffusion weighted magnetic resonance imaging [6], [17].
They further show that if only spectral bins are active, the
required number of samples can be reduced to . Sampling at
this lower rate, however, relies on the assumption that we can
apply arbitrary spectral filters to the signal before sampling.
This is known as spatial anti-aliasing—a procedure that is
generally challenging or impossible to implement in most
applications involving spherical signals, where we only have
access to finite samples of the underlying continuous signals.1
In many applications, the sampling kernels (i.e., the lowpass

filters) through which we observe the spikes are provided by

1This is not to be confused with spatial anti-aliasing in image downsampling,
where we do have access to all pixels.
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some underlying physical process (e.g., point spread functions
and Green's functions). These kernels are often approximately
bandlimited, but we cannot further control or design their spec-
tral selectivity. The impossibility of arbitrary spatial filtering
suggests that our goal is to reduce the required bandwidth, or
more practically, to maximize the number of spikes that we can
reconstruct at a given bandwidth.
Recently, Bendory, Dekel and Feuer proposed a spherical

super-resolution method [18], [19], extending the results of
Candès and Fernandez-Granda [20] to the spherical domain.
They showed that an ensemble of Diracs on the sphere can
be reconstructed from projections onto a set of spherical har-
monics by solving a semidefinite program, provided that the
Diracs satisfy a minimal separation condition. When the Diracs
are constrained to a discrete set of locations, their formulation
allows them to bound the recovery error in the presence of
noise. Our algorithm based on FRI is non-iterative and thus
very fast. We also allow the weights to be complex, which may
be important in applications (for an example in sound source
localization, see Section IV.C). On the other hand, although our
algorithm does not require any separation between the Diracs
in the noiseless setting, a theoretical analysis of the stability in
the presence of noise is not yet available (see Section III.F for
some numerical experiments). We also need to assume that the
number of Diracs is known up to a range, whereas in [18], [19]
no such assumption is necessary.

B. Outline and Main Contributions

We start by reviewing some basic notions of harmonic
analysis on the sphere in Section II. We then present the main
result of this work in Section III: A collection of Diracs
on the sphere can be reconstructed from its lowpass filtered
version, provided that the bandwidth of the sampling kernel is
at least . This bandwidth requirement also implies
that spatial samples taken at generic locations
suffice to reconstruct the Diracs. We establish this result by
constructing a new algorithm for spherical FRI sampling. Com-
pared to samples as required in a previous work [15], our
algorithm reduces the numbers of samples via a more efficient
use of the available spectrum. For large , the required number
of samples is reduced by a factor of up to 4. The proposed
algorithm is first developed for the noiseless case. Procedures
to improve the robustness of the algorithm in noisy situations
are presented in Section III.E, and we compare the perfor-
mance of the algorithm with the Cramér-Rao lower bound [21]
in Section III.F. Section IV presents the applications of the
proposed algorithm to three problems: 1) sampling diffusion
processes on the sphere, 2) shot noise removal, and 3) sound
source localization. These diverse applications demonstrate
the usefulness and versatility of our results. We conclude in
Section V.
This paper follows the philosophy of reproducible research.

All the results and examples presented in the paper can be repro-
duced using the code available at http://lcav.epfl.ch/ivan.dok-
manic.

II. HARMONIC ANALYSIS ON THE SPHERE AND PROBLEM
FORMULATION

A. Spherical Harmonics
We briefly recall the definitions of spherical harmonics and

spherical convolution. The 2-sphere is defined as the locus of
points in with unit norm,

In what follows, we often use to represent a generic point on
the sphere. In addition to the standard Euclidean representation

, points on can also be conveniently param-
eterized by angles of colatitude and azimuth, i.e., ,
with measured from the positive -axis, and measured in
the plane from the positive -axis. The two equivalent rep-
resentations are related by the following conversion,

(1)

The Hilbert space of square-integrable functions on the
sphere, , is defined through the corresponding inner
product. For two functions we have

(2)

where is the usual rotationally invariantmea-
sure on the sphere. With respect to this inner product, spherical
harmonics form a natural orthonormal Fourier basis for .
They are defined as [7]

(3)

where the normalization constant is

(4)

and is the associated Legendre polynomial of degree
and order . Note that different communities sometimes use
different normalizations and sign conventions in the definitions
of spherical harmonics and associated Legendre polynomials.
As long as applied consistently, the choice of convention does
not affect our results.2
In this paper, we adopt the following definition

(5)

where is the Legendre polynomial of degree [22].
Any square integrable function on the sphere, ,

can be expanded in the spherical harmonic basis,

(6)

2It is common to write the spherical harmonic order in the superscript. We
will keep this convention for the associated Legendre polynomials , spher-
ical harmonics , normalization constants and the spherical Fourier co-
efficients . It is not to be confused with integer powers such as .
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The Fourier coefficients are computed as

(7)

The coefficients form a countable set sup-
ported on an infinite triangle of indices,

(8)

We say that is bandlimited with bandwidth if for
. Often we think of as the smallest integer such that

this holds. For a bandlimited function, the triangle is cut off
at . In what follows, we use

(9)

to represent the spectral support of a bandlimited function with
bandwidth . The set contains indices, so we can repre-
sent the spectrum as an -dimensional column vector

(10)

B. Rotations and Convolutions on the Sphere
Let denote the group of rotations in ; any rotation

is parameterized by three angles that specify rotations
about three distinct axes. Thus we can write . The
most common parameterization is called Euler angles [23].
Counter-clockwise rotation of a vector about the
-axis is achieved by multiplying by the corresponding ro-
tation matrix,

where is the rotation angle. Rotation matrices around axes
and can be defined analogously.
We use to represent the rotation operator corresponding

to , that acts on spherical functions. Thus for a function on
the sphere, represents the rotated function, defined as

(11)

where is the inverse rotation of , and by we
mean pre-multiplying by the unit column vector cor-
responding to , cf. (1). Compare this definition with the Eu-
clidean case where shifting the argument to the left (subtracting
a positive number) results in the shift of the function to the right.
There are various definitions of convolution on the sphere,

all being non-commutative. One function, call it , provides the
weighting for the rotations of the other function . A standard
definition is then [7], [24]

(12)

where is the north pole. It is easy to verify that this defi-
nition generalizes the standard convolution in Euclidean spaces,
with the rotation operator playing the same role as translations

do on the line. Because the spherical convolution is not commu-
tative, it is important to fix the ordering of the arguments. In our
case, the second argument— in (12)—will always be the filter,
i.e., the observation kernel.
The familiar convolution-multiplication rule in standard Eu-

clidean domains holds for spherical convolutions too. It can
be shown ([7], Theorem 1) that for any two functions

, the Fourier transform of their convolution is a point-
wise product of the transforms

(13)

We note that can also be a generalized function (a distribu-
tion). In particular, we consider spherical Dirac delta functions,
which may be defined by their action on functions as

(14)

Where appropriate, wewill explicitly use the colatitude-azimuth
notation .

C. Problem Formulation
Consider a collection of Diracs on the sphere

(15)

where the weights and the locations of the Diracs
are all unknown parameters. Let be a

filtered version of , i.e.,

where the filter (or sampling kernel) is a bandlimited func-
tion with bandwidth . We further assume that the spherical
Fourier transform of is nonzero within its spectral support,
i.e., for all . Given spatial samples of , we
would like to reconstruct , or equivalently, recover the un-
known parameters .
Since the filtered signal is bandlimited, we can use

bandlimited sampling theorems on the sphere (e.g., [7], [8]) or
direct linear inversion (see Section III.A) to recover its Fourier
spectrum from its spatial samples of sufficient density.
Using the convolution-multiplication identity in (13), we can
then recover the lowpass subband of as

for and . Being a collection of Diracs,
, but its Fourier transform can still be computed

via (7) and (14) in the sense of distributions:

(16)

The problems we address in this paper can now be stated as
follows: Can we reconstruct a collection of Diracs on the
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sphere from its Fourier coefficients in the lowpass subband
as defined in (9)? If so, then what is the minimum band-

width that allows us to do it? In practice, the sampling kernel
is often given and not subject to our control. In this case, the
previous question can be reformulated as determining the max-
imum number of spikes that we can reconstruct at a given band-
width .
We assume that the number of Diracs is given as part of

the input. If is unknown, a simple strategy to determine it
is to iterate over the admissible range of values, and select the
one that gives the smallest estimation residual. Alternatively, we
may use heuristics based on the decay of the singular values of
the annihilation matrix (see Section III.C).

III. SAMPLING SPHERICAL FRI SIGNALS
In this section we address the questions stated above. Our

main result can be summarized in the following theorem:
Theorem 1: Let be a collection of Diracs on the sphere
as in (15), with complex weights at locations

, such that are distinct, are distinct, and
for all . Convolve with a bandlimited sampling kernel

, where the bandwidth , and sample the re-
sulting signal at points which
form a -admissible sampling grid on . Then the samples

are a sufficient characterization of .
Remark: The definition of an admissible grid is given in the

following section; in short, samples taken on a -admissible
grid allow to reconstruct any bandlimited signal of bandwidth
. Almost all sampling grids containing at least samples are
-admissible.
Remark: It is clear from the statement that the proposed

scheme is coordinate-system-dependent. As will be detailed in
Section III.C, a simple strategy to ensure that all and all
are distinct, and that , is to apply a random rotation
to the coordinate system prior to reconstruction.
We provide a constructive proof of Theorem 1 by presenting

an algorithm that can efficiently recover localized spikes
from samples, where . Before presenting the
algorithm and the proof, we first define some relevant notation
and state two lemmas.

A. From Samples to the Fourier Transform
Our algorithms perform computation with spectral coeffi-

cients. In practice, we have access to spatial samples of the
function, so we need a procedure to convert between the spatial
and the Fourier representations. We first describe a method to
compute the Fourier transform from samples taken at generic
sampling points.
Let the function have bandwidth ; then we can

express it as

(17)

Choose a set of sampling points ,
and let where

, and . Furthermore, let
be the vector of samples of . We

can then write

(18)

where is the -dimensional vector of spectral coefficients as
defined in (10). The goal is to recover the spectral coefficients
. We can recover from as soon as the matrix has full

column rank. In that case, we compute

(19)

where denotes the Moore-Penrose pseudoinverse of
. In relation to the invertibility of , we can define

admissible sampling grids as follows:
Definition 1: A sampling grid is -admissible

if the corresponding matrix has full column rank.
In particular, if we draw the samples uniformly at random on

the sphere, we can show that is regular with probability
one:
Proposition 1: Draw sampling points from

any absolutely continuous probability measure on the sphere
(e.g., uniformly at random). Then is -admissible almost
surely if , that is, if has at least as many rows
as columns.
The proof of this proposition is very similar to that of The-

orem 3.2 in [25], and is thus omitted; the key insight is that the
zero sets of linear combinations of spherical harmonics have
measure zero on the sphere. The same technique is used in the
proof of Lemma 3 in Appendix C.
The above result indicates that we can recover the spectral co-

efficients in the lowpass region from samples taken
at generic points on the sphere. The reconstruction requires a
matrix inversion as in (19).
Much faster reconstruction is possible when the function is

sampled on certain regular grids. In that case, we can leverage
the structure of to accelerate the matrix inversion. Such
efficient schemes were proposed by Driscoll and Healy [7], re-
quiring samples; byMcEwen andWiaux [8], requiring
samples; and most recently, by Khalid, Kennedy and McEwen
[9], requiring samples.

B. The Data Matrix
Using the definition of associated Legendre polynomials in

(5), we rewrite the spherical harmonics (3) as

(20)

where .
The essential observation is that the bracketed term in (20) is a

polynomial in . At bandwidth , the largest spherical
harmonic degree is , so the largest power of in (20) is

as well. It follows that we can rewrite the derivative term
as a linear combination of powers of , i.e.,

(21)
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where and
contains the corresponding polynomial coefficients.
Using the dot-product formulation (21), the spectrum of , as

given by (16), can be expressed as

(22)

where with , and
we factored out of the summation as it does not depend on
.
A key ingredient in our proposed algorithm is what we call

the data matrix , formed as a product of three matrices,

(23)

where

(24)

is a Vandermonde matrix with roots
is the diagonal matrix of Dirac

magnitudes, and we define

(25)

with .
It is convenient to keep a non-standard indexing scheme for

the rows and columns of , as illustrated in Fig. 1(B). Rows
of , indexed by , correspond to decreasing powers of ,
from at the top, to at the bottom; columns
correspond to , with increasing from on the left,
to on the right. We see from (22) and (23) that computing
any spectral coefficient amounts to applying a linear func-
tional on as follows

(26)

where is the vector with one in position for
, and zeros elsewhere, and denotes

the standard inner product between two matrices, defined as
.

The last expresion in (26) implies that the spectral coefficient
can be obtained as an inner product between the data matrix
and a mask that is overlaid over . One can verify

that the support of this mask for is on the column corre-
sponding to , and on the rows corresponding to

. That means that certain parts of the data matrix are not in-
volved in the creation of any spectral coefficient; consequently,
they cannot be recovered from the spectrum. Nevertheless, we
can recover a large part:
Lemma 1: There is a one-to-one linear mapping between

the spherical harmonic coefficients in the lowpass subband,
, and the triangular part of the data matrix

indexed by (with indexing
as illustrated in Fig. 1).

Proof: We see from (26) that the th spectral columnmaps
to the th column of the data matrix; that is, we can decouple

Fig. 1. Illustration of Algorithm 1. Spherical harmonic spectrum (A) is linearly
mapped onto the shaded triangular part of the data matrix (B). Columns of
the data matrix are indexed from left to right by ,
corresponding to spherical harmonic order. Rows are indexed from bottom to
top by corresponding to powers of . Note that the
triangular part of the data matrix does not coincide with the spherical harmonic
spectrum, although there is a one-to-one linear mapping between the two (see
Lemma 1). Existing results on 2D harmonic retrieval can exploit only a small
part of the data matrix, for example the hatched square (see Section III.D). Fi-
nally, sufficiently long columns of are rearranged in the block-Hankel-struc-
tured annihilation matrix , whose nullspace contains exactly the sought anni-
hilation filter, (C).

the mapping over . In particular, by writing out (26) for all
of a given degree , we obtain

(27)

where Point P and
. From the

definition of (21), we see that ,
where is a square lower-antitrian-
gular matrix with no zeros on the main antidiagonal (because
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is a polynomial of degree ). Thus is an
invertible matrix and we can write

(28)

where by we denoted the recoverable part of the th
column of the data matrix (shaded in green in Fig. 1(B)).

C. Reconstruction by Generalized Annihilating Filtering

An element of the data matrix at the position (with
reference to Fig. 1(B)) can be expanded as

(29)

where varies from 0 to , and from to .
For either positive or negative , the sum (29) is a sum of 2D
exponentials. Lemma 1 implies that we can recover the shaded
triangular part of the data matrix in Fig. 1 from the spectrum.
In what follows, we propose a new algorithm to recover the
parameters of the Diracs from that triangular part.
The vector is a linear combination of columns of
, i.e., it is a linear combination of exponentials with bases

(30)

where . Similarly to standard Euclidean FRI sam-
pling [10], we can use the annihilating filter technique to esti-
mate the roots of these exponentials.
An annihilating filter is a finite impulse response (FIR) filter

with zeros positioned so that it annihilates signals of the form
(30). Consider an FIR filter with the transfer function

(31)

where is the vector of filter coefficients.
It holds that (see Appendix A) for any , provided
that is of length at least . Equivalently,

...
(32)

for . In our scenario, we do not know the bases of the
exponentials —they are exactly the parameters we aim
to estimate. Thus we do not know the filter either.
Up to a scaling factor, there is a unique -tap filter

with the sought property. The orthogonality relation (32)
says that lives in the nullspace of .
We need at least such vectors to make their joint nullspace
one-dimensional, thus to pinpoint . Once the filter coefficients
are found, we can obtain the unknown parameters by root
finding and using the factorization in (31).

For the annihilating filter technique to be applicable, we need
to ensure that all the colatitude angles are distinct. Further-
more, the form of our equations reveals that for

for all . In the parameterization (23), this is equiv-
alent to setting , and it prevents us from recovering the
corresponding Dirac. This behavior is undesirable, but we can
guarantee that no Dirac sits on a pole by first applying a random
rotation. This fact is formalized in the following lemma, which
follows immediately from the absolute continuity of the Haar
measure.
Lemma 2: Consider a collection of Dirac delta functions on

the sphere, , and a random rotation
drawn from the Haar measure on (i.e., uniformly over the
elements of the group). Then with probability 1, contains
Diracs with distinct colatitude angles, for , and no
Dirac is on a pole, for all .

We are now well-equipped to prove the main result.

Proof of Theorem 1: We provide a constructive proof, sum-
marized in Algorithm 1. First observe that random samples
almost surely suffice to compute the spectral coefficients
in the lowpass subband with bandwidth , as detailed in
Section III.A (Proposition 1). By Lemma 1, we can then com-
pute the shaded part of given the spectrum .
Our aim is to construct the annihilating matrix , structured

as follows:

...
...

...

...
...

...

(33)

is constructed by stacking segments of length ex-
tracted from the columns of . From the annihilation property
(32), it follows that the nullspace of contains the sought an-
nihilating filter.
The trick now is to count how many such segments we can

get from the shaded part of . For varies from 0 to
. Therefore, we can construct rows of the matrix .

For varies from 0 to , so we can construct
rows of , and the same goes for . This process is

illustrated in Figs. 1(B) and (C). Summing up, we get the total
number of rows of that we can construct from the available
spectrum,

(34)

needs at least rows, as we need a 1D nullspace. Thus

(35)

In Appendix C we show that has rank as soon as it has or
more rows. In other words, it has a one-dimensional nullspace,
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and thus the annihilating filter coefficients are uniquely deter-
mined, up to a scaling factor.
We find the parameters by taking the arc cosine of the

roots of . This procedure is well-posed because arc cosine
is one-to-one on . To ensure that the roots are distinct, we
apply a random rotation before the estimation, and the inverse
of this random rotation after recovering all the parameters of the
Diracs (invoking Lemma 2).
In order to recover the azimuths , note that after re-

covering the colatitudes, we can construct the matrix , and
compute for . The azimuths are then given
as the phase difference between and . The magni-
tudes are obtained simply as .

Algorithm 1: Spherical Sparse Sampling

Input: Spatial samples of with bandwidth ,
number of Diracs

Output: Colatitudes, azimuths and magnitudes
of the Diracs

1: Sample a random rotation
2: Apply to (relabel sampling points)
3: Compute the spectrum from the rotated samples of
4: Form the recoverable part of from using (28)
5: Form from according to (33)
6: Right singular vector of for smallest sing. val.
7: Compute the colatitudes,
8: Construct from according to (24)
9: Using in (23), compute and
10: See the

note
11:
12: Apply the inverse of

Note: we use the symbol to denote element-wise
division of vectors.

D. Sampling Efficiency and Relation to Prior Work

Our proposed sampling scheme and the spherical FRI sam-
pling theorem by Deslauriers-Gauthier and Marziliano [15] are
both naturally expressed in terms of the bandwidth of the
sampling kernel required to recover Diracs. In our case, the
bandwidth requirement is that it be at least . This im-
plies that we need at least spatial samples to re-
cover the Diracs. For comparison, the FRI sampling theorem
of Deslauriers-Gauthier and Marziliano [15] requires ,
and thus their algorithm recovers Diracs given sam-
ples. This is asymptotically four times the number of samples
required by Algorithm 1.
The difference in sampling efficiency can be explained by

spectrum usage. Fig. 2 illustrates the portion of the spectrum
used by the two algorithms. We can see that the proposed al-
gorithm is more efficient in that it uses a larger portion of the
available spectrum to reconstruct the Diracs.
Similar problems have been considered in the literature on 2D

harmonic retrieval [26]. However, these earlier works assume
that the entire data matrix is known. In our case, is known

Fig. 2. Spectrum usage for different algorithms. Spectral coefficients used by
our algorithms are shown hatched. Spectrum used by the algorithm of Deslau-
riers-Gauthier and Marziliano [15] is shaded green. In the example, the band-
width is set to , so the maximum number of Diracs that can be recovered
by Algorithm 1 is . The algorithm in [15] recovers Diracs.

only partially, as illustrated in Fig. 1(B). To apply the existing
results on 2D harmonic retrieval, we could use a square portion
that falls strictly inside a half of the triangle, either for
or for . However, we can see in Fig. 1(B) that this

is an inefficient use of available spectrum, and it requires an
unnecessarily high sampling density.
As mentioned earlier, in most situations we do not get to

choose as it is fixed by the underlying physical process. Then
the question is how many Diracs we can reconstruct given a
kernel with a fixed bandwidth . By solving for
, we get that

(36)

In contrast, the algorithm in [15] can reconstruct up to
Diracs.

E. Denoising Strategies

Theorem 1 and Algorithm 1 provide a tool to recover sparse
signals on the sphere in the noiseless case.Wemay apply several
procedures to improve the robustness of the algorithm in the
presence of noise.
In general, if the samples are noisy then the annihilating ma-

trix in (33) will not have a nontrivial nullspace. A simple and
robust approach is to use the right singular vector corresponding
to the smallest singular value of as the annihilation filter. Let

be the SVD of ; then we set .
To further improve the algorithm performance, we can use

the output of Algorithm 1 to initialize a local search for the
minimizer of the error between the spectrum generated by
the estimated Diracs, and the measured spectrum,

(37)

We note that directly solving (37) with a random starting point
is hopeless due to a multitude of local minima.

F. Cramér-Rao Lower Bound

We evaluate the Cramér-Rao lower bound (CRLB) for the
estimation problem. For simplicity we treat the case,
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Fig. 3. Comparison between the mean squared error (MSE) of the proposed al-
gorithm in estimating the spherical location and the Cramér-Rao lower
bound (CRLB). The location of a single spike was estimated for two
different spike colatitudes (A). Note that the bound is different for different co-
latitudes of the spike, due to the dependence on the parameterization. Estimating
the locations of two spikes at and (B) yields similar
output MSE as estimating either of them separately. In both cases, the MSE is
shown for the output of Algorithm 1 followed by the minimization of (37) using
Matlab's fminsearch function.

so that the minimal bandwidth is , and . We
assume that the spatial samples are taken on the sampling grid
defined by McEwen-Wiaux [8], given at this bandwidth as

(38)

Resulting expressions for elements of the Fisher information
matrix are complicated, and there is no need to exhibit them ex-
plicitly. We give the details of the computation in Appendix B,
and we compute the CRLB numerically. The resulting bound
is plotted in Fig. 3 for , , and two different spike
colatitudes, together with theMSE achieved by Algorithm 1 fol-
lowed by the descent (37). As pointed out before, because our
scheme is coordinate-system-dependent, the bound depends on
the colatitude of the Dirac.

IV. APPLICATIONS

To showcase the versatility of the proposed algorithm, we
present three stylized applications: 1) sampling diffusion pro-
cesses on the sphere, 2) shot noise removal, and 3) sound source
localization with spherical microphone arrays.

A. Sampling Diffusion Processes on the Sphere
The diffusion process models many natural phenomena.

Examples include heat diffusion and plume spreading from
a smokestack. Often, the source of the diffusion process
is localized in space and instantaneous in time. Sampling

such processes in Euclidean domains has been well studied
[27]–[29].
Diffusion processes on the sphere are governed by the fol-

lowing equation [30]:

(39)

where is the Laplace-Beltrami operator on , and is the
diffusion constant. In the spherical harmonic domain, this be-
comes

(40)

giving the solution

(41)

where is the spectrum of the initial distribution. There-
fore, we interpret the term as the spectrum of
the Green's function of the spherical diffusion equation. In other
words, it is the spectrum of the diffusion kernel on the sphere.
Then (41) should be interpreted as the convolution between the
kernel and the initial distribution.
We consider the case when the diffusion process is initiated

by sources localized in space and time, i.e., the initial distri-
bution in (41) is

(42)

We show how to use the proposed sampling algorithm to esti-
mate the locations and the strengths of the sources from spatial
samples of the diffusion field taken at a later time . Recovering
all parameters (locations, amplitudes and release times) of mul-
tiple diffusion sources is a challenging task [27]. To focus on the
proposed sampling result, we make the simplifying assumption
that the sources are released simultaneously, and at a known
time . In principle, the more challenging case of un-
known and different release times can be handled by adapting
the techniques derived in [28], [29], but these generalizations
are out of the scope of this work.
We note that the parameters of the simultaneous diffusion

sources could be recovered by optimal filtering on the sphere
[31]. This approach is designed to perform favorably in noise,
but it assumes that the function is sampled on a dense grid. Our
perspective is sampling-theoretic: we want to estimate these pa-
rameters from as few samples as possible.
In the spatial domain, the diffusion kernel at time after the

release is given as

(43)

Combining (43) with (41) and the spherical convolution-multi-
plication rule (13), we get
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Fig. 4. Estimating the release locations and magnitudes of diffusive sources on
the sphere. We assume that the diffusive sources appear at time s, and
that we sample the field at time s. Shape of the diffusion kernel as a func-
tion of is shown in subfigure A for three different values of the coefficient
(in units of inverse time). The logarithm of the aliasing error (44) is plotted as
a function of the cutoff degree in subfigure B. Subfigures C and D show a
typical reconstruction result for (2 sources) and (3 sources).
Magnitudes of the sources are represented by the distance of the corresponding
symbols from the sphere's center. Blue diamonds represent true source locations
and magnitudes, while red circles represent estimated source locations and mag-
nitudes. The sphere color corresponds to the value of the function induced on
the sphere by the sources (red is large, blue is small). Signal-to-noise ratio in
both C and D was set to 30 dB. We used the approximate bandwidth of ,
so that the number of samples taken in either case was 49.

This signal is a sum of rotations of a known template. The dif-
fusion kernel in (43) is not exactly bandlimited, but it is approx-
imately so. We can therefore apply the spherical FRI theory and
Algorithm 1 to recover the locations and the magnitudes of the
diffusive sources.
Fig. 4(A) shows the shape of the symmetric diffusion kernel

as a function of the colatitude . The high degree of smoothness
is reflected in an approximately bandlimited spectrum. This is
demonstrated in Fig. 4(B), where we see that the aliasing energy
due to spectral truncation, defined as

(44)

rapidly becomes negligible as we increase the cutoff bandwidth
. Figs. 4(C) and (D) demonstrate accurate reconstruction of

the localized diffusion sources at two different values of the
diffusion coefficient (the detailed parameters of the numerical
experiment are given in the figure caption).

B. Shot Noise Removal
Suppose that we sample a bandlimited function on the sphere,

but a small number of samples are corrupted—they contain shot
noise—due to sensor malfunction. Moreover, the identities of
the malfunctioning sensors are not known a priori. Can we de-
tect and correct these anomalous measurements? We show that

our sampling results can be applied to solve this problem, pro-
vided that the number of erroneous sensors is not too large and
that the original sampling grid is oversampling the bandlimited
function. A similar idea was used in [26] to remove shot noise
in the 1D Euclidean case.
For this application we assume that the samples are taken on

a uniform grid on the sphere,
, defined by

(45)

Imagine now that we sample on this sampling grid. Some
samples are corrupted, so we measure

, where

(46)

and holds the indices of the corrupted samples. We will
leverage an elegant quadrature rule by Driscoll and Healy [7]:
Theorem 2 ([7], Theorem 3): Let be a bandlimited function

on such that for . Then for we
have

(47)

where the weights are defined in [7].
In other words, the Fourier coefficients can be expressed

as a dot-product between weighted sample values and the basis
functions evaluated at the sampling points. In analogy with the
Euclidean case, we now observe that the lowpass portion of the
spectrum of coincides with the lowpass portion of the spec-
trum of the generalized function obtained by placing weighted
Diracs at grid points. Let be bandlimited so that for

. Let further ; that is, the grid (45) oversamples .
Then the spectral coefficients can be expressed as the following
inner product,

(48)

for .
This is the key insight. Notice that the lowpass portion of the

spectrum of (for ) can be written as

(49)

But for , so the portion of the spectrum for
contains only the influence of the corrupted samples,

(50)

Consequently, we can use this part of the spectrum to learn
which samples are corrupted, and by howmuch. This is the sub-
ject of the following proposition.
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Fig. 5. Spectrum structure in shot noise removal. Green-shaded bins get contri-
bution from the desired signal with bandwidth ; hatched bins are influenced
by the shot noise; red-shaded columns are (i) long enough to annihilate shot
noise and (ii) recoverable from the corrupted spectrum.

Fig. 6. Shot noise removal via spherical FRI, for and
malfunctioning sensors. Corrupted signal is shown in subfigure A, together with
the true corruption values (blue diamonds) and the estimated corruptions (red
circles); same signal with the shot noise removed is shown in B, with the correct
sample values at the corrupted locations denoted by blue diamonds.

Proposition 2: Let be a signal on the sphere of bandwidth
. Then we can perfectly reconstruct from corrupted samples

taken on the grid (45), as long as the number of corruptions
satisfies

(51)

Proof: As discussed in Section III, we can use any
line in the spectrum to get the rows of the

annihilation matrix. However, we first need to compute the
corresponding columns of the data matrix. From Fig. 5, we
see that the middle columns cannot be used for shot noise
removal: we seek columns influenced only by corruptions. But
the middle columns of the data matrix are obtained from the
middle spectral columns (for ), so they are influenced
both by the desired signal and the corruptions. This means that
we can only use spectral bins for , as illustrated in
Fig. 5. For and , the number of segments of
length that we can get is . For
and it is , and so on. Summing
up we have that the total number of segments of length
we can use is

We need this number to be at least , because we need rows
in the annihilationmatrix.We thus obtain the claim of the propo-
sition by solving the inequality .
After detecting the corrupted readings, we can use the esti-

mated corruption values to estimate the function. Another op-
tion is to simply ignore them altogether, as we have more sam-
ples than the minimum number thanks to oversampling. A shot
noise removal experiment is illustrated in Fig. 6.

C. Sound Source Localization
Spherical microphone arrays output a time-varying spherical

signal. If the signal is induced by a collection of point sources,
we can use the proposed spherical FRI sampling scheme to es-
timate the directions-of-arrival (DOAs) of the sources. For sim-
plicity, we consider the narrowband case, i.e., the sources emit
a single sinusoid.
How does this example fit into our sparse sampling frame-

work? In spherical microphone arrays, the microphones are dis-
tributed on the surface of a sphere, either open or rigid [5].
Therefore, the microphone signals represent samples of a time-
varying function on . If a sound source emits a sinusoid, every
microphone measures the amplitude and the phase of that sinu-
soid shaped by the characteristics of the propagating medium
and of the spherical casing. Equivalently, for every microphone
we get a complex number.
Suppose that a source of unit intensity is located at , and that

the microphones are mounted on a rigid sphere of radius with
center at the origin. The response measured by the microphone
at , such that , is given by the corresponding Green's
function. For a wavenumber , where is the fre-
quency and is the speed of sound, the Green's function is [5]

(52)

where is the spherical Hankel function of the first kind
and of order is the Legendre polynomial, and

. Mode strength is defined as

(53)

where is the spherical Bessel function3 of order , and prime
denotes the derivative with respect to the argument.

The Green's function should be seen as a filter that describes
how the point source's influence spreads over the sphere. It is
shown for two different frequencies in Figs. 7(A) and (D), while
the corresponding spectra are given in Figs. 7(B) and (E). We
see that the absolute pressure on the sphere has a similar shape
for both frequencies, but the real and imaginary parts vary faster
at higher frequencies, implying higher bandwidth. In both cases
we observe that the Green's function is approximately bandlim-
ited.
Assume now that there are sound sources at locations

, with complex intensities . The resulting
measurement by a microphone at point is

(54)

If all the source locations are at the same distance from
the sphere, then the Green's function (52) depends only on the
angle between and . For some fixed source distance , we
can define , where denotes the unit

3We use the standard symbol for the spherical Bessel function. Note the
subtle difference from the imaginary unit j.
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Fig. 7. Multiple DOA estimation by a spherical microphone array. First row of subfigures corresponds to Hz, and second row to Hz. The
sphere is of radius m, and the source is located at m. The real and imaginary parts, and the absolute value of the Green's function are shown in
subfigures A and D. Real part, imaginary part and absolute value of the spectrum are shown in subfigures B and E. Subfigures C and F show the simulation results
for and , and random source placement. Blue diamonds represent the source locations, and thick red lines show the estimated directions. Size of
the sphere is exaggerated for the purpose of illustration. The sphere color corresponds to the absolute value of the function induced on the sphere by the sources
(microphones measure samples of this function). The bandwidth was set to at 1000 Hz and to at 4000 Hz.

vector corresponding to the unit vector corresponding to
the north pole , and the subscript SSL stands for sound source
localization. Then (54) corresponds to a weighted sum of
rotations of a known template function

(55)

As it is unrealistic to assume that the sources are all at the
same distance, we hope that the shape of does not
(strongly) depend on . Indeed, it turns out that the shape is
approximately preserved within a certain range, as illustrated in
Fig. 8. We therefore suppress the dependency of on and
approximate (54) as follows,

(56)

Here, we absorbed and additional (complex) scaling due to
different distances into , and is computed at some pre-
defined mean distance.
We thus reduced the sound source localization problem to a

problem of finding the parameters of a weighted sum of Diracs.
In order to apply our spherical FRI algorithm, we need to verify
that is bandlimited on the sphere. Figs. 7(B) and (E) show that

Fig. 8. Ratios of Green's functions. We computed the Green's function for nine
different source distances (1.0 m, 1.2 m, 1.4 m, 1.6 m, 1.8 m, 2.0 m, 3.0 m, 4.0
m, 5.0 m). Then we plotted the magnitude of the ratio of the Green's function
at each distance and the Green's function at the largest distance (5 m), both in
space (B) and in the spectrum (C). The more parallel the ratio curve is with
the abscissa axis, the more similar the Green's function at that distance is to the
Green's function at 5 m. Curves are plotted in the order of increasing distance
in the direction of the dashed arrow (up to down), as indicated in (A).

it is indeed approximately bandlimited, and that the bandwidth
depends on the frequency (it also depends on the sphere radius).
Figs. 7(C) and (F) show an example of recovering two sources

at 1000 Hz and five sources at 4000 Hz using the proposed
spherical sparse sampling scheme. It is worth noting that the re-
covery is accurate in spite of the model mismatch due to varying
source distances. This provides some numerical indications on
the robustness of the proposed reconstruction algorithm.
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V. CONCLUSION

We presented a new sampling theorem for sparse signals on
the sphere. In particular, by leveraging ideas from finite rate of
innovation sampling, we showed how to reconstruct sparse col-
lections of spikes on the sphere from their lowpass-filtered ob-
servations. Compared to existing sparse sampling schemes on
the sphere, we use the available spectrum more efficiently by
generalizing known results on 2D harmonic retrieval. This al-
lows us to reduce the number of samples required to reconstruct
the parameters of the spikes.
We illustrated the usefulness of our algorithm by applying it

to three problems: sampling diffusion processes, shot noise re-
moval, and sound source localization. But there is a wealth of
other applications, for example in astronomy. Just think about
the numerous spherical signal processing challenges put for-
ward by the square kilometer array (SKA) project [33].
We mentioned some approaches to estimation from noisy

samples, but more efficient denoising schemes should be
studied. One example, effective in the Euclidean setting, is the
Cadzow denoising algorithm [34]. The problem seems more
challenging on the sphere; in particular, the annihilating matrix
is block-Hankel, rather than Hankel. It is particularly important
to understand the interplay between the noise level and the
achievable resolution, and to establish relevant comparisons
with the results in [18], [19].

APPENDIX A

A. Annihilating Property

For the sake of completeness, we show in this Appendix that
the annihilation filter annihilates linear combinations of expo-
nentials. We compute the response of the filter in (31) to
a signal of the form as

B. Computation of the Cramér-Rao Lower Bound

A lowpassed collection of Diracs can be written as follows,

(57)

We take samples on the sphere at the locations
. The th sample is given by

(58)

where independently. By
, we denote the vector of

parameters we estimate. To make the dependence on explicit,
we rewrite (58) slightly as

(59)

where .
With this notation in hand, we can write the conditional prob-

ability density function of the th measurement as

(60)

so that the log-likelihood function is

(61)

Consequently, differentiating with respect to any entry of
gives . The required derivatives are:

Now , and
the Fisher information matrix is

Let be any unbiased estimator of the parameters . The CRLB
can then be computed as .

C. Rank of the Annihilating Matrix
In this Appendix, we show that the rank of the annihilating

matrix (33) is with probability one, as soon as it has at least
rows. It then follows that the annihilating filter is uniquely

determined, up to a scaling factor, by solving .
Consider the factorization

...
...

. . . ...
...
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where and .
To construct the annihilating matrix as in (33), we create

Hankel blocks from columns of . The
Hankel block corresponding to the middle column of

can be factored as

...
... . . . ...

...

Ξ (62)

The second block of the annihilating matrix obtained
from the column corresponding to is similar:

Ξ, where ,
and is obtained by removing the leading rows from .
Then we can write

Ξ
Ξ
Ξ

...
Ξ
Ξ

(63)

with the Ξ factor being common for all row-blocks. We want
to show that the nullspace of has dimension one. To that end,
we just need to establish that the following matrix,

...
(64)

has full column rank. To see why this is the case, let be a
non-zero vector such that Ξ . It then follows
from the full-rankness of that Ξ . Since is a diagonal
matrix with non-zero entries on the diagonal and Ξ is a

Vandermonde matrix with distinct roots, the vector is
uniquely determined up to a multiplicative factor. We now show
that the matrix indeed has full column rank almost surely.
Any column in is of the form

... (65)

where and
. If the locations of the Diracs are random, we can use

the following lemma to show that the matrix will have full
column rank with probability one:
Lemma 3: Draw independently at

random from any absolutely continuous probability distribu-
tion on (w.r.t. Lebesgue measure). Let

be a set of distinct integer pairs
and let , where .
Then has full rank almost surely.

Proof: This proof is parallel to that of Theorem 3.2 from
[25]. Let be the upper left minor of . We define
the bad set as the set on which is singular,

(66)

The goal is to show that , where is the Lebesgue
measure on . We proceed by induction on ; for
, we have that , which is
non-zero almost surely, so the claim holds. Assume now that

and that the bad set has measure zero. Let
, i.e., is invertible. Because it is invert-

ible, there exists a unique coefficient vector
such that

(67)

where by we denote the first entries of the last column
of . The bigger matrix will be singular if and only
if the same linear combination is also consistent with its

st row. In other words, is invertible if and only if
is not in the set

For fixed , this is the set of zeros of a particular
(generalized) trigonometric polynomial, thus it has measure
zero. Note that the definition of makes sense only for

, as otherwise is not invertible. Thus,
the solution to (67) may not exist.
Consider now the following two sets:

The bad set must be a subset of the set . But we
just showed that the set has measure zero; by the induction
hypothesis, also has measure zero. Thus their union, too, has
measure zero.
It follows that has measure zero. Finally, because the

distributions of are absolutely continuous w.r.t. the Lebesgue
measure, so is their product distribution. Hence the probability
that lies in the zero-measure set is zero.
To complete the argument, note that the matrix has the

same form as the matrix in the statement of Lemma 3, with
and .

Thus, the columns of are independent with probability one,
provided that its number of rows is at least .
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