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Abstract
The most successful systems for “big data” processing have
all adopted functional APIs. We present a new program-
ming model we call function passing designed to provide
a more principled substrate on which to build data-centric
distributed systems. A key idea is to build up a persistent
functional data structure representing transformations on dis-
tributed immutable data by passing well-typed serializable
functions over the wire and applying them to this distributed
data. Thus, the function passing model can be thought of as a
persistent functional data structure that is distributed, where
transformations to data are stored in its nodes rather than the
distributed data itself. The model simplifies failure recov-
ery by design–in the event of a failure, data is recovered by
replaying function applications atop immutable data loaded
from stable storage. Deferred evaluation is also central to our
model; by incorporating deferred evaluation into our design
only at the point of initiating network communication, the
function passing model remains easy to reason about while
remaining efficient in time and memory. We formalize our
programming model using small-step operational semantics,
and we provide an open-source implementation of our model
in and for the Scala programming language, alongwith a case
study of several example frameworks and end-user programs
written atop of this model.

Categories and Subject Descriptors D.3.2 [Programming
Languages]: Language Classifications – Concurrent, dis-
tributed, and parallel languages; D.3.3 [Programming Lan-
guages]: Language Constructs and Features – Concurrent
programming structures; Procedures, functions, and subrou-
tines

Keywords Functional programming, distributed program-
ming, functions, closures, serialization, concurrency, types,
Scala

1. Introduction
Data-centric programming is now commonplace. Mean-
while, the most successful systems for programming with
“big data” have all adopted ideas from functional program-
ming; i.e., programmingwith first-class functions and higher-
order functions. These functional ideas, declarative inter-
faces to data distributed over tens to thousands of nodes,
have become recognized for providing a more natural way
for end-users and data scientists to reason about large-scale
data.

Popular implementations of the MapReduce (Dean and
Ghemawat 2008)model, such asHadoopMapReduce (Apache
2015) for Java, have taken ideas from functional program-
ming. But due to their impementation language, are unable
to fully make use of functional language features such as
closures, causing Hadoop developers to have to write signif-
icant amounts of boilerplate in order to emulate these func-
tional patterns. Despite this, for nearly a decade, Hadoop has
remained largely unchallenged, becoming the implementa-
tion of choice for many industrial large-scale data processing
needs.

However, in recent years, a new generation of distributed
systems for large-scale data processing have suddenly cropped
up, built on top of emerging functional languages like Scala;
such systems include Apache Spark (Zaharia et al. 2012),
Twitter’s Scalding (Twitter 2015), and Scoobi (NICTA2015).
These systems make use of functional language features in
Scala in order to provide high-level, declarative APIs to
end-users–requiring significantly less boilerplate. Moreover,
these features have enabled computation to be shifted fully
in memory, with systems like Spark achieving up to a 100x
boost in performance over Hadoop (Apache 2016).

This sudden proliferation of new frameworks for dis-
tributed data-centric programming, all pushing the bar far be-
yond Hadoop, concurrent with the sudden growth in popular-
ity of an emerging programming language begs the question–



has it been our programming languages that have limited
us? Could it be that the primitives we build our systems
upon are too low-level, causing us to struggle to reinvent the
same tricky wheel over and over again? As these large-scale
data processing applications continue to grow in importance,
what can we as language designers do to make it easier for
more of these frameworks to rise?

This paper presents a new programming model called the
function passingmodel which has been designed to be amore
principled substrate (or middleware) upon which to build
data-centric distributed systems. It can be viewed as a gen-
eralization of the MapReduce/Spark programming model–
though it is not limited to the MapReduce/Spark program-
ming model alone as we will later show.

The key idea behind the function passing model is to keep
distributed (immutable) data stationary, and to instead send
functionality as function closures over the network. This en-
ables two important benefits for distributed system builders;
(a) since all computations are functional transformations on
immutable data, fault-tolerance is made simple by design,
and (b) communication is made well-typed by design, a com-
mon pain point for builders of distributed systems in Scala.
Said another way, the function passing model attempts to
more naturally model the paradigm of data-centric program-
ming by extendingmonadic programming to the network. On
this note, one might observe that the function passing model
can actually be interpreted as somewhat of a dual to the ac-
tor model;1 rather than keeping functionality stationary and
sending data, in our model, we keep data stationary and send
functionality to the data.

The function passing model brings together immutable,
persistent data structures, monadic higher-order functions,
strong static typing, and deferred evaluation–pillars of func-
tional programming–to provide a more type-safe, and easy to
reason about foundation uponwhich to build data-centric dis-
tributed systems. Interestingly, we found that deferred eval-
uation was an enabler in our model, without complicating
the ability to reason about programs. Without optimizations
based on deferred evaluation, we found this model would be
impractically inefficient in memory and time.

One important contribution of our model is a precise se-
mantic specification of concepts central to fault recovery.
The fault-recovery mechanisms of widespread systems such
as Apache Spark, MapReduce (Dean and Ghemawat 2008)
and Dryad (Isard et al. 2007) are based on the concept of
lineage (Bose and Frew 2005; Cheney et al. 2009). Essen-
tially, the lineage of a data set combines (a) an initial data set
available on stable storage and (b) a sequence of transforma-
tions applied to initial and subsequent data sets. Maintain-
ing such lineages enables fault recovery through recompu-

1 There are many variations and interpretations of the actor model; in saying
our model is somewhat of a dual, we simply mean to highlight that program-
mers need not focus on programming with typically stationary message han-
dlers. Instead, our model focuses on a monadic interface for programming
with data (and sending functions instead).

tation. Practical implementations of lineage-based fault re-
covery suffer from complex code bases, typically eschew-
ing strong static typing. This paper presents a principled ap-
proach to lineage-based computation in a typed, functional
setting–to our knowledge a novelty in the programming lan-
guages literature.

This paper makes the following contributions:

• A new data-centric programming model for functional
processing of distributed data which makes important
concerns like fault tolerance simpler by design. The main
computational principle is based on the idea of sending
safe, guaranteed serializable functions to stationary data.
Using standard monadic operations, our model enables
creating immutable directed acyclic graphs of compu-
tations, supporting decentralized distributed computa-
tions. Deferred evaluation enables important optimiza-
tions while keeping programs simple to reason about.

• A formalization of our programming model based on
small-step operational semantics. In particular, we present
a formal model of the concept of lineage in the context
of a typed functional language. Our treatment using stan-
dard techniques in programming languages aims to offer
a fresh angle on a concept which so far has mainly been
studied in the database and systems communities, using
other methods. Furthermore, the meta-theoretic develop-
ment has enabled us to uncover a deep connection be-
tween type soundness and serializability. Consequently,
the presented type system leverages a notion of serializ-
able types in order to ensure subject reduction.

• Adistributed implementation of the programmingmodel
in and for Scala as a middleware.2 In addition, we present
prototype versions we have built of popular frameworks
like Spark and MBrace using the function passing model,
and end-user applications we have built using each of
these prototype frameworks.

Our approach is to describe our model from a high level,
elaborating upon key benefits and trade-offs, and then to
zoom in and make each component part of our model more
precise. We describe the basic model this way in Section 2.
We go on to show in Section 3 how essential higher-order op-
erations on distributed frameworks like Spark can be imple-
mented in terms of the primitives presented in Section 2. We
present a formalization of our programming model in Sec-
tion 4, and an overview of its prototypical implementation in
Section 5. In Section 6, we show examples of different sorts
of distributed frameworks built atop of the function passing
model. Finally, we discuss related work in Section 7, and
conclude in Section 8.

2 https://github.com/heathermiller/f-p



2. Overview of Model
2.1 Essence
In the broadest sense, the function passing model can be
thought of as a sort of persistent functional data structure
with structural sharing. However, rather than containing pure
data, instead the data structure represents a directed acyclic
graph (DAG) of functional transformations on distributed
data. The root node of is immutable data read from stable
storage (e.g., Amazon S3); edges represent functional trans-
formations on immutable data represented as nodes of the
DAG.

Importantly, since this DAG of computations is a persis-
tent data structure itself, it is safe to exchange (copies of)
subgraphs of a DAG between remote nodes. This enables
a robust and easy-to-reason-about model of fault tolerance.
Subgraphs of the DAG are called lineages; lineages enable
restoring the data of failed nodes through re-applying the
transformations represented by their DAG. This sequence of
applications must begin with data available from stable stor-
age.

Central to the function passing model is the careful use of
deferred evaluation. Computations on distributed data are
typically not executed eagerly; instead, applying a func-
tion to distributed data just creates an immutable lineage.
To make a network call and thus obtain the result of a com-
putation, it is necessary to first “kick off” computation, or
to force its lineage. Within our programming model, this
force operation (called send()) makes network communi-
cation (and thus possibilities for latency) explicit, which is
considered to be a strength when designing distributed sys-
tems (Waldo et al. 1996). Deferred evaluation also enables
optimizing distributed computations through operation fu-
sion, which avoids the creation of unnecessary intermediate
data structures–this is efficient in time as well as space. This
kind of optimization is particularly important and effective
in distributed systems (Chambers et al. 2010).

2.2 The Model
The function passing model consists of three main compo-
nents:
• Silos: stationary, typed, immutable data containers.
• SiloRefs: references to local or remote Silos.
• Spores: safe, serializable functions.

Silos A silo is a typed and immutable data container. It is
stationary in the sense that it does not move between ma-
chines – it remains on the machine where it was created. Data
stored in a silo is typically loaded from stable storage, such as
a distributed file system. A program operating on data stored
in a silo can only do so using a reference to the silo, a SiloRef.

SiloRefs Similar to a proxy object, a SiloRef represents,
and allows interacting with, both local and remote silos.
SiloRefs are immutable, storing identifiers to locate possi-

bly remote silos. SiloRefs are also typed (SiloRef[T]) corre-
sponding to the type of their silo’s data, leading to well-typed
network communication. The SiloRef provides three prim-
itive operations/combinators (some are lazy, some are not):
map, flatMap, send, and cache. The map method makes use
of deferred evaluation; it applies a user-defined function to
data pointed to by the SiloRef, creating in a new silo con-
taining the result of this application, though this application
is deferred. That is, this computation is only kicked off when
the send method is invoked. Calling send triggers queued
up operations, like those scheduled by map invocations, to
be possibly sent over the network and applied to their cor-
responding silo (whether local or remote), and the result to
be returned to the caller, completed as a future. This makes
it possible to queue up or stage transformations in order to
optimize network communication. Like map, the application
of flatMap is deferred. flatMap applies a user-defined func-
tion to data pointed to by the SiloRef. Unlike map, however,
the user-defined function passed to flatMap returns a SiloRef
whose contents are transferred to the new silo returned by
flatMap. Essentially, flatMap enables accessing the contents
of (local or remote) silos from within remote computations.
cache kicks off queued up, deferred evaluation, and caches
the result in memory (possibly remotely). We illustrate these
primitives in more detail in Section 2.4.

Spores Spores (Miller et al. 2014) are safe closures that
are guaranteed to be serializable and thus distributable. They
are a closure-like abstraction and type system which gives
authors of distributed frameworks a principled way of con-
trolling the environment which a closure (provided by client
code) can capture. This is achieved by (a) enforcing a spe-
cific syntactic shape which dictates how the environment of a
spore is declared, and (b) providing additional type-checking
to ensure that types being captured have certain properties.

A spore consists of two parts:

• the spore header, composed of a list of value definitions.
• the spore body (sometimes referred to as the “spore clo-
sure”), a regular closure.

This shape is illustrated below.Safe Closure Passing Haller and Miller

² :H�SUHVHQW�DQ�LPSOHPHQWDWLRQ�RI�VSRUHV�LQ�DQG�IRU�WKH�IXOO�6FDOD�ODQJXDJH��
² :H�GHPRQVWUDWH�WKH�SUDFWLFDOLW\�RI�VSRUHV��D��WKURXJK�DQ�VPDOO�HPSLULFDO�VWXG\�XVLQJ

D�FROOHFWLRQ�RI�6FDOD�SURJUDPV��DQG��E��VKRZ�WKH�SRZHU�RI�WKH�JXDUDQWHHV�VSRUHV
SURYLGH�WKURXJK�D�FDVH�VWXG\�RI�QHZ�GLVWULEXWHG�DQG�FRQFXUUHQW�IUDPHZRUNV�WKDW
WKLV�VDIH�IRXQGDWLRQ�IRU�PLJUDWDEOH�FORVXUHV�FDQ�HQDEOH�

� 6SRUHV

6SRUHV�DUH�D�FORVXUH�OLNH�DEVWUDFWLRQ�ZKLFK�DLP�WR�JLYH�XVHUV�D�SULQFLSOHG�ZD\�RI�FRQ�
WUROOLQJ�WKH�HQYLURQPHQW�ZKLFK�D�FORVXUH�FDQ�FDSWXUH��7KLV�LV�DFKLHYHG�E\��D��HQIRUFLQJ�D
VSHFLÀF�V\QWDFWLF�VKDSH�ZKLFK�GLFWDWHV�KRZ�WKH�HQYLURQPHQW�RI�D�VSRUH�LV�GHFODUHG��DQG
�E��SURYLGLQJ�DGGLWLRQDO�W\SH�FKHFNLQJ�WR�HQVXUH�WKDW�W\SHV�EHLQJ�FDSWXUHG�KDYH�FHUWDLQ
SURSHUWLHV�

:H�GHVFULEH�EHORZ�WKH�V\QWDFWLF�VKDSH�RI�VSRUHV��DQG�LQ�6HFWLRQ "" ZH�LQIRUPDOO\
GHVFULEH�WKH�W\SH�V\VWHP��,Q�D�ODWHU�VHFWLRQ ""��ZH·OO�GHVFULEH�KRZ�WR�XVH�VSRUHV�ZLWK�WKH
W\SH�V\VWHP�H[WHQVLRQ�SURSRVHG�LQ�WKLV�SDSHU�

��� 6SRUH�6\QWD[

$ VSRUH�LV�D�FORVXUH�ZLWK�D�VSHFLÀF�VKDSH�WKDW�GLFWDWHV�KRZ�WKH�HQYLURQPHQW�RI�D�VSRUH
LV�GHFODUHG��,Q�JHQHUDO��D�VSRUH�KDV�WKH�IROORZLQJ�VKDSH�
ɨ ����� Ƈ
ɩ ��� �ɨś �ɨ ʰ ʳ����ɨʴ
ɪ ŜŜŜ
ɫ ��� ��ś �� ʰ ʳ�����ʴ
ɬ ſ�ś �ƀ ʰʴ Ƈ
ɭ � � � � �
ɮ ƈ
ɯ ƈ

$ VSRUH�FRQVLVWV�RI�WZR�SDUWV��WKH�KHDGHU�DQG�WKH�ERG\��7KH�OLVW�RI�YDOXH�GHÀQLWLRQV
DW�WKH�EHJLQQLQJ�LV�FDOOHG�WKH�VSRUH�KHDGHU��7KH�KHDGHU�LV�IROORZHG�E\�D�UHJXODU�FORVXUH�
WKH�VSRUH·V�ERG\��7KH�FKDUDFWHULVWLF�SURSHUW\�RI�D�VSRUH�LV�WKDW�WKH�ERG\�RI�LWV�FORVXUH
LV�RQO\�DOORZHG�WR�DFFHVV�LWV�SDUDPHWHU��YDOXHV�LQ�WKH�VSRUH�KHDGHU��DV�ZHOO�DV�WRS�OHYHO
VLQJOHWRQ�REMHFWV��SXEOLF��JOREDO�VWDWH���,Q�SDUWLFXODU��WKH�VSRUH�FORVXUH�LV�QRW�DOORZHG
WR�FDSWXUH�YDULDEOHV�LQ�WKH�HQYLURQPHQW��2QO\�DQ�H[SUHVVLRQ�RQ�WKH�ULJKW�KDQG�VLGH�RI�D
YDOXH�GHÀQLWLRQ�LQ�WKH�VSRUH�KHDGHU�LV�DOORZHG�WR�FDSWXUH�YDULDEOHV�

%\�HQIRUFLQJ�WKLV�VKDSH��WKH�HQYLURQPHQW�RI�D�VSRUH�LV�DOZD\V�GHFODUHG�H[SOLFLWO\�LQ
WKH�VSRUH�KHDGHU�ZKLFK�DYRLGV�DFFLGHQWDOO\�FDSWXULQJ�SUREOHPDWLF�UHIHUHQFHV��0RUHRYHU�
DQG�WKDW·V�LPSRUWDQW�IRU�22 ODQJXDJHV��LW·V�QR�ORQJHU�SRVVLEOH�WR�DFFLGHQWDOO\�FDSWXUH
WKH ���� UHIHUHQFH�

1RWH�WKDW�WKH�HYDOXDWLRQ�VHPDQWLFV�RI�D�VSRUH�LV�HTXLYDOHQW�WR�D�FORVXUH�REWDLQHG�E\
OHDYLQJ�RXW�WKH ����� PDUNHU�
ɨ Ƈ
ɩ ��� �ɨś �ɨ ʰ ʳ����ɨʴ
ɪ ŜŜŜ
ɫ ��� ��ś �� ʰ ʳ�����ʴ

� 85/ ZLWKKHOG�IRU�WKH�VDNH�RI�DQRQ\PLW\�RI�UHYLHZ�

spore header

closure/spore body

}
}

Figure 1: The syntactic shape of a spore.

1 {
2 val y1: S1 = <expr1>
3 ...
4 val yn: Sn = <exprn>
5 (x: T) => {
6 / / . . .
7 }
8 }

(a) A closure block.

1 spore {
2 val y1: S1 = <expr1>
3 ...
4 val yn: Sn = <exprn>
5 (x: T) => {
6 / / . . .
7 }
8 }

(b) A spore.

Figure 2: The evaluation semantics of a spore is equivalent to that of a closure, obtained by simply
leaving out the spore marker.

A Spores

Spores are a closure-like abstraction and type system which aims to give users a principled way of
controlling the environment which a closure can capture. This is achieved by (a) enforcing a specific
syntactic shape which dictates how the environment of a spore is declared, and (b) providing additional
type-checking to ensure that types being captured have certain properties. A crucial insight of spores is
that, by including type information of captured variables in the type of a spore, type-based constraints for
captured variables can be composed and checked, making spores safer to use in a concurrent, distributed,
or in arbitrary settings where closures must be controlled.

A.1 Spore Syntax

A spore is a closure with a specific shape that dictates how the environment of a spore is declared. The
shape of a spore is shown in Figure 1. A spore consists of two parts:

• the spore header, composed of a list of value definitions.

• the spore body (sometimes referred to as the “spore closure”), a regular closure.

The characteristic property of a spore is that the spore body is only allowed to access its parameter,
the values in the spore header, as well as top-level singleton objects (public, global state). In particular,
the spore closure is not allowed to capture variables in the environment. Only an expression on the
right-hand side of a value definition in the spore header is allowed to capture variables.

By enforcing this shape, the environment of a spore is always declared explicitly in the spore header,
which avoids accidentally capturing problematic references. Moreover, importantly for object-oriented
languages, it’s no longer possible to accidentally capture the this reference.
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The characteristic property of a spore is that the spore
body is only allowed to access its parameter, the values in the
spore header, as well as top-level singleton objects (Scala’s
form of modules). The spore closure is not allowed to cap-
ture variables other than those declared in the spore header
(i.e., a spore may not capture variables in the environment).
By enforcing this shape, the environment of a spore is always
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Figure 1: Basic function passing model.

declared explicitly in the spore header, which avoids acci-
dentally capturing problematic references. Moreover, impor-
tantly for object-oriented languages like Scala, it’s no longer
possible to accidentally capture the this reference.

Spores also come with additional type-checking. Type in-
formation corresponding to captured variables are included
in the type of a spore. This enables authors of distributed
frameworks to customize type-checking of spores to, for ex-
ample, exclude a certain type from being captured by user-
provided spores. Authors of distributed frameworks opt into
this type-checking by simply including information about ex-
cluded types (or other type-based properties) in the signature
of a method. A concrete example would be to ensure that
the mapmethod on RDDs in Spark (a distributed collection) ac-
cepts only spores which do not capture SparkContext (a non-
serializable internal framework class).

For a deeper understanding of spores, see the correspond-
ing publication (Miller et al. 2014).

2.3 Basic Usage
We begin with a simple visual example to illustrate the basics
of the function passing model.

The main handle users have to the framework is via
SiloRefs. A SiloRef can be thought of as an immutable han-
dle to distributed data contained within a corresponding silo.
Users interact with this distributed data by applying func-
tions (as spores) to SiloRefs, which are transmitted over the
wire and later applied to the data within the corresponding
silo. As is the case for persistent data structures, when a func-
tion is applied to a piece of distributed data via a SiloRef, a
SiloRef representing a new silo containing the transformed
data is returned.

The simplest illustration of the model is shown in Fig-
ure 1 (time flows vertically from top to bottom). Here, we
start with a SiloRef[T] which points to a piece of remote
data contained within a Silo[T]. When the function shown
as λ of type T ⇒ S is applied to SiloRef[T] and “forced”
(sent over the wire), a new SiloRef of type SiloRef[S] is
immediately returned. Note that SiloRef[S] contains a refer-
ence to its parent SiloRef, SiloRef[T]. (This is how lineages
are constructed.) Meanwhile, the function is asynchronously
sent over the wire and is applied to Silo[T], eventually pro-
ducing a new Silo[S] containing the data transformed by
function λ. This new SiloRef[S] can be used even before
its corresponding silo is materialized (i.e., before the data
in Silo[S] is computed) – the function passing framework
queues up operations applied to SiloRef[S] and applies them
when Silo[S] is fully materialized.

Different sorts of complex DAGs can be asynchronously
built up in this way. Though first, to see how this is possible,
we need to develop a clearer idea of the primitive operations
available on SiloRefs and their semantics. We describe these
in the following section.

2.4 Primitives
There are four basic primitive operations on SiloRefs that
together can be used to build the higher-order operations
common to popular data-centric distributed systems (how to
build some of these higher-order operations is described in
Section 3). In this section we’ll introduce these primitives in
the context of a running example. These primitives include:
• map
• flatMap
• send
• cache

map def map[S](s: Spore[T, S]): SiloRef[S]
The mapmethod takes a spore that is to be applied to the data
in the silo associated with the given SiloRef. Rather than im-
mediately sending the spore across the network, and wait-
ing for the operation to finish, the map method’s evaluation
is deferred. Without involving any network communication,
it immediately returns a SiloRef referring to a new, soon-to-
be-created silo. This new SiloRef only contains lineage in-
formation, namely, a reference to the original SiloRef, a ref-
erence to the argument spore, and the information that it is
the result of a map invocation. As we explain below, another
method, send or cache, must be called explicitly to force the
materialization of the result silo.

To better understand how DAGs are created and how
remote silos are materialized, we will develop a running
example throughout this section. Given a silo containing a
list of Person records, the following application of map defines
a (not-yet-materialized) silo containing only the records of
adults (graphically shown in Figure 2, part 1):



val persons: SiloRef[List[Person]] = ...
val adults =
persons.map(spore { ps => ps.filter(p => p.age >= 18) })

flatMap
def flatMap[S](s: Spore[T, SiloRef[S]]): SiloRef[S]
Like map, the flatMap method takes a spore that is to be ap-
plied to the data in the silo of the given SiloRef. However,
the crucial difference is in the type of the spore argument
whose result type is a SiloRef in this case. Semantically, the
new silo created by flatMap is defined to contain the data
of the silo that the user-defined spore returns. The flatMap
combinator adds expressiveness to our model that is essen-
tial to express more interesting computation DAGs. For ex-
ample, consider the problem of combining the information
contained in two different silos (potentially located on dif-
ferent hosts). Suppose the information of a silo containing
Vehicle records should be enriched with other details only
found in the adults silo. In the following, flatMap is used to
create a silo of (Person, Vehicle) pairs where the names of
person and vehicle owner match (graphically shown in Fig-
ure 2, part 2):

val vehicles: SiloRef[List[Vehicle]] = ...
// adults that own a vehicle
val owners = adults.flatMap(spore {
val localVehicles = vehicles // spore header
ps =>
localVehicles.map(spore {
val localps = ps // spore header
vs =>
localps.flatMap(p =>
// list of (p, v) for a single person p
vs.flatMap {
v =>
if (v.owner.name == p.name) List((p, v))
else Nil

}
)

})
})

Note that the spore passed to flatMap declares the capturing
of the vehicles SiloRef in its so-called “spore header.” The
spore header spans all variable definitions between the spore
marker and the parameter list of the spore’s closure. The
spore header defines the variables that the spore’s closure is
allowed to access. Essentially, spores limit the free variables
of their closure’s body to the closure’s parameters and the
variables declared in the spore’s header. Within the spore’s
closure, it is necessary to read the data of the vehicles silo in
addition to the ps list of Person records. This requires calling
map on localVehicles. However, map returns a SiloRef; thus,
invoking map on adults instead of flatMapwould be impossi-
ble, since there would be no way to get the data out of the silo
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Figure 2: A simple DAG in the function passing model.

returned by localVehicles.map(..). With the use of flatMap,
however, the call to localVehicles.map(..) creates the final
result silo, whose data is then also contained in the silo re-
turned by flatMap.

Although the expressiveness of the flatMap combinator
subsumes that of the map combinator (see Section 2.4.3),
keeping map as a (lightweight) primitive enables more oppor-
tunities for optimizing computation DAGs (e.g., operation
fusion (Chambers et al. 2010)).



send def send(): Future[T]
Asmentioned earlier, the execution of computations built us-
ing SiloRefs is deferred. The send operation forces the de-
ferred computation defined by the given SiloRef. Forcing is
explicit in our model, because it requires sending the lineage
to the remote node on which the result silo should be cre-
ated. Given that network communication has a latency sev-
eral orders of magnitude greater than accessing a word in
main memory, providing an explicit send operation is a judi-
cious choice (Waldo et al. 1996).

To enable materialization of remote silos to proceed
concurrently, the send operation immediately returns a fu-
ture (Haller et al. 2012). This future is then asynchronously
completed with the data of the given silo. Since calling send
will materialize a silo and send its data to the current node,
send should only be called on silos with reasonably small
data (for example, in the implementation of an aggregate
operation such as reduce on a distributed collection).

cache def cache(): Future[Unit]
The performance of typical data analytics jobs can be in-
creased dramatically by caching large data sets in mem-
ory (Zaharia et al. 2012). To do this, the silo containing the
computed data set needs to be materialized. So far, the only
way to materialize a silo that we have shown is using the
send primitive. However, send additionally transfers the con-
tents of a silo to the requesting node–too much if a large re-
mote data set should merely be cached in memory remotely.
Therefore, an additional primitive called cache is provided,
which forces the materialization of the given SiloRef.

Given the running example so far, we can add another
subgraph branching off of adults, which sorts each Person by
age, produces a String greeting, and then “kicks-off” remote
computation by calling cache and caching the result in remote
memory (graphically shown in Figure 2, part 3 and 4):

val sorted =
adults.map(spore { ps => ps.sortWith(p => p.age) })

val labels =
sorted.map(spore { ps => ps.map(p => "Welcome, " + p.name) })

labels.cache()

Assuming we would also cache the owners SiloRef from the
previous example, the resulting lineage graph would look as
illustrated in Figure 2. Note that vehicles is not a regular
parent in the lineage of owners; it is an indirect input used
to compute owners by virtue of being captured by the spore
used to compute owners.

2.4.1 Creating Silos
Besides a type definition for SiloRef, our framework pro-
vides a companion singleton object (a Scala module). The
singleton object provides factory methods for obtaining
SiloRefs referring to silos populated with some initial data:3

3 For clarity, only method signatures are shown.

object SiloRef {
def fromTextFile(host: Host)(file: File):

SiloRef[List[String]]
def fromFun[T](host: Host)(s: Spore[Unit, T]): SiloRef[T]
def fromLineage[T](host: Host)(s: SiloRef[T]): SiloRef[T]

}

Each of the factory methods has a host parameter that speci-
fies the target host (address/port) on which to create the silo.
Note that the fromFun method takes a spore closure as an ar-
gument to make sure it can be serialized and sent to host. In
each case, the returned SiloRef contains its host as well as
a host-unique identifier. The fromLineage method is particu-
larly interesting as it creates a copy of a previously existing
silo based on the lineage of a SiloRef s. Note that only the
SiloRef is necessary for this operation to successfully com-
plete; the silo originally hosting s might already have failed.

2.4.2 Type Polymorphism and Silos/SiloRefs
An important property of silos is that they are polymorphic
in the type of data that they hold. Importantly, silos are not
just polymorphic in the element type of their data, but in
the type of their entire dataset. For example, a silo might
contain a Red-Black tree with elements of type Person for
some ADT Person, ordered by one of the fields of the Person
type. Another silo might contain a completely different col-
lection type, say, a linked list. This type polymorphism en-
ables optimizing silos according to their data access patterns.
Given that different data types may have specialized opera-
tions (e.g., a tree map could provide a range projection), the
key to enabling this type polymorphism is the fact that a spore
sent to a silo may apply arbitrary functions to the silo’s data.
Thus, the SiloRef API itself is not limited to providing just a
fixed set of built-in operations (in contrast to RDDs in Spark,
for example).

2.4.3 Expressiveness
Expressing map Leveraging the above-mentioned methods
for creating silos, it is possible to express map in terms of
flatMap:

def map[S](s: Spore[T, S]): SiloRef[S] =
this.flatMap(spore {
val localSpore = s
(x: T) =>
val res = localSpore(x)
SiloRef.fromFun(currentHost)(spore {
val localRes = res
() => localRes

})
})

This should come as no surprise, given that flatMap is the
monadic bind operation on SiloRefs, and SiloRef.fromFun
is the monadic return operation. The reason why map is pro-
vided as one of the main operations of SiloRefs is that direct



uses of map enable an important optimization based on oper-
ation fusion.

Expressing cache The cache operation can be expressed
using flatMap and send:

def cache(): Future[Unit] = this.flatMap(spore {
val localDoneSiloRef = DoneSiloRef
res => localDoneSiloRef
}).send()

Here, we first use flatMap to create a new silo that will be
completed with the trivial value of the DoneSiloRef singleton
object (e.g., Unit). Essentially, invoking send on this trivial
SiloRef causes the resulting future to be completed as soon
as this SiloRef has been materialized in memory.

2.5 Fault Handling
The function passing model includes overloaded variants of
the primitives discussed so far which enable the definition
of flexible fault handling semantics. The main idea is to
specify fault handlers for subgraphs of computation DAGs.
Our guiding principle is to make the definition of the failure-
free path through a computation DAG as simple as possible,
while still enabling the handling of faults at the fine-granular
level of individual SiloRefs.

Defining Fault Handlers Fault handlers may be specified
whenever the lineage of a SiloRef is extended. For this pur-
pose, the introduced map and flatMap primitives are over-
loaded. For example, consider our previous example, but ex-
tended with a fault handler:

val persons: SiloRef[List[Person]] = ...
val vehicles: SiloRef[List[Vehicle]] = ...
// copy of `vehicles̀ on different host `h`
val vehicles2 = SiloRef.fromFun(h)(spore {
val localVehicles = vehicles
() => localVehicles

})

val adults =
persons.map(spore { ps => ps.filter(p => p.age >= 18) })

// adults that own a vehicle
def computeOwners(v: SiloRef[List[Vehicle]]) =
spore {
val localVehicles = v
(ps: List[Person]) => localVehicles.map(...)

}

val owners: SiloRef[List[(Person, Vehicle)]] =
adults.flatMap(computeOwners(vehicles),

computeOwners(vehicles2))

Importantly, in the flatMap call on the last line, in ad-
dition to computeOwners(vehicles), the regular spore argu-
ment of flatMap, computeOwners(vehicles2) is passed as

an additional argument. The second argument registers a
failure handler for the subgraph of the computation DAG
starting at adults. This means that if during the execution
of computeOwners(vehicles) it is detected that the vehicles
SiloRef has failed, it is checked whether the SiloRef that
the higher-order combinator was invoked on (in this case,
adults) has a failure handler registered. In that case, the
failure handler is used as an alternative spore to compute
the result of adults.flatMap(..). In this example, we spec-
ified computeOwners(vehicles2) as the failure handler; thus,
in case vehicles has failed, the computation is retried using
vehicles2 instead.

3. Higher-Order Operations
The introduced primitives enable expressing surprisingly in-
tricate computational patterns.

Higher-order operations such as variants of map, reduce,
and join, operating on collections of data partitions, dis-
tributed across a set of hosts, are required when implement-
ing abstractions like Spark’s distributed collections (Zaharia
et al. 2012). Section 3.1 demonstrates the implementation of
some such operations in terms of silos.

In addition, even more patterns are possible thanks to the
decentralized nature of our programming model, which re-
moves the limitations of master/worker host configurations.
Section 3.2 shows examples of peer-to-peer patterns that are
still fault-tolerant.

3.1 Higher-Order Operations
join Suppose we are given two silos with the following
types:

val silo1: SiloRef[List[A]]
val silo2: SiloRef[List[B]]

as well as two hash functions computing hashes (of type K)
for elements of type A and type B, respectively:

val hashA: A => K = ...
val hashB: B => K = ...

The goal is to compute the hash-join of silo1 and silo2 using
a higher-order operation hashJoin:

def hashJoin[A, B, K](s1: SiloRef[List[A]],
s2: SiloRef[List[B]],
f: A => K,
g: B => K)

: SiloRef[List[(K, (A, B))]] = ???

To implement hashJoin in terms of silos, the types of the
two silos first have to be made equal, through initial map
invocations:

val s12: SiloRef[List[(K, Option[A], Option[B])]] =
s1.map(spore { l1 => l1.map(x => (f(x), Some(x), None)) })

val s22: SiloRef[List[(K, Option[A], Option[B])]] =
s2.map(spore { l2 => l2.map(x => (g(x), None, Some(x))) })



Then, we can use flatMap to create a new silo which contains
the elements of both silo s12 and silo s22:

val combined = s12.flatMap(spore {
val localS22 = s22
(triples1: List[(K, Option[A], Option[B])]) =>
s22.map(spore {
val localTriples1 = triples1
(triples2: List[(K, Option[A], Option[B])]) =>
localTriples1 ++ triples2

})
})

The combined silo contains triples of type (K, Option[A], Op-
tion[B]). Using an additional map, the collection can be
sorted by key, and adjacent triples be combined, yielding
a SiloRef[List[(K, (A, B))]] as required.

Partitioning and groupByKey A groupByKey operation on
a group of silos containing collections needs to create multi-
ple result silos, on each node, with ranges of keys supposed
to be shipped to destination hosts. These destination hosts
are determined using a partitioning function. Our goal, con-
cretely:

val groupedSilos = groupByKey(silos)

Furthermore, we assume that silos.size= N whereN is the
number of hosts, with hosts h1, h2, etc. We assume each silo
contains an unordered collection of key-value pairs (a multi-
map). Then, groupByKey can be implemented as follows:

• Each host hi applies a partitioning function (example:
hash(key) mod N) to the key-value pairs in its silo, yield-
ing N (local) silos.

• Using flatMap, each pair of silos containing keys of the
same range can be combined andmaterialized on the right
destination host.

Using just the primitives introduced earlier, applying the
partitioning function in this waywould requireN map invoca-
tions per silo. Thus, the performance of groupByKey could be
increased significantly using a specialized combinator, say,
“mapPartition” that would apply a given partitioning func-
tion to each key-value pair, simultaneously populatingN si-
los (where N is the number of “buckets” of the partitioning
function).

3.2 Peer-to-Peer Patterns
3.2.1 Essence
So far, our examples have focused on master-worker topolo-
gies that underly models like Spark–i.e., a master node spec-
ifies identical DAGs of computation for all worker nodes to
follow.

The function passing model, however, is not limited to
these sorts of topologies. It is indeed possible to develop
decentralized, peer-to-peer topologies on top of the function

passing model. For example, a single compute node may
host silos that are remotely referenced by remote SiloRefs, as
well as SiloRefs remotely referencing silos on other compute
nodes.

Further, as we show in the following example, it’s also
possible for multiple clients to build completely different
DAGs of computation off of some source silo. In effect, this
enables datasets to be shared–they exist once in memory on
some node, but can be used and transformed in different ways
by different clients.

Consider the following example. We start by populating
an initial silo representing a dataset of Vehicle objects on
Host("lmpsrv1.scala-lang.org", 9999).

val lmpsrv1 = Host("lmpsrv1.scala-lang.org", 9999)

// client #1
// populate initial silo
val vehicles: SiloRef[List[Vehicle]] =
Silo.fromTextFile(lmpsrv1)("hdfs://...")

val silo2 = vehicles.map(spore {
(vs: List[Vehicle]) =>
// extract US state from license plate string,
// e.g, "FL329098"
vs.map(v => (v.licensePlate.take(2), v)).toMap

})
val vehiclesPerState = silo2.send()

// client #2
// get siloref for silo that is being materialized
// due to client #1
val vehicles: SiloRef[List[Vehicle]] =
Silo.fromTextFile(lmpsrv1)("hdfs://...")

val silo2 = vehicles.map(spore {
// list all vehicles manufactured since 2013
(vs: List[Vehicle]) =>
vs.filter(v => v.yearManufactured >= 2013)

})
val vehiclesSince2013 = silo2.send()

Here, client #1 would like to perform some sort of compu-
tation based on the states that vehicles are registered in. An-
other client, client #2 would also like to access this dataset.
To do so, one must simply once again invoke fromTextFile
on the same host, Host("lmpsrv1.scala-lang.org",9999) to
obtain a SiloRef that points to a corresponding silo that is al-
ready or soon to be materialized. From here, client #2 is able
to build an entirely different DAG of computations, for in-
stance in this example, filtering the original vehicle dataset
to obtain only vehicles manufactured since 2013.

3.2.2 Decentralized Fault-Handling
Another peer-to-peer pattern possible in the function pass-
ing model is decentralized fault handling. One may specify



strategies to transfer computation to other nodes in the event
of failure.

Consider the following example: an aggregation should
be performed as soon as two silos vehicles and persons have
been materialized. The aggregation result is then combined
with a silo info on some host different from the local host.
The final result is written to a distributed file system:
object Utils {
def aggregate(vs: SiloRef[List[Vehicle]],

ps: SiloRef[List[Person]]): SiloRef[String] = ...
def write(result: String, fileName: String): Unit = ...

}
val vehicles: SiloRef[List[Vehicle]] = ...
val persons: SiloRef[List[Person]] = ...
val info: SiloRef[Info] = ...
val fileName: String = "hdfs://..."
val done = info.flatMap(spore {
val localVehicles = vehicles
val localPersons = persons
(localInfo: Info) =>
aggregate(localVehicles, localPersons).map(spore {
val in = localInfo
res => combine(res, in)

})
}).map(spore {
val captured = fileName
combined => Utils.write(combined, captured)

})
done.cache() // force computation

This program does not tolerate failures of the host of info: if
it fails before the computation is complete, the result is never
written to the file.

We can overcome this using fault handlers. It is possible
to introduce another backup host which takes over in case the
host of info (which is the same as the host of done) fails at
any point. Let’s try the above computation again, this time
using fault handlers to transfer the computation to a backup
node in the event of a failure:
val doCombine = spore {
val localVehicles = vehicles
val localPersons = persons
(localInfo: Info) =>
aggregate(localVehicles, localPersons).map(spore {
val in = localInfo
res => combine(res, in)

})
}
val doWrite = spore {
val captured = fileName
combined => Utils.write(combined, captured)

}
val done = info.flatMap(doCombine).map(doWrite)
val backup = SiloRef.fromFun(hostb)(spore { () => true })
val recovered = backup.flatMap(

spore {
val localDone = done
x => localDone

},
spore { // fault handler
val localInfo = info
val localDoCombine = doCombine
val localDoWrite = doWrite
val localHostb = hostb
x =>
// fromLineage makes sure, we re-run on hostb,
// rather than the host of info. That is, we
// just duplicate the lineage.
val restoredInfo =
SiloRef.fromLineage(localHostb)(localInfo)

restoredInfo.flatMap(localDoCombine)
.map(localDoWrite)

}
)
done.cache() // force computation on host of local
recovered.cache() // force computation on backup host

First, the local variables doCombine and doWrite refer to
the verbatim spores passed to flatMap and map above. Sec-
ond, backup is a dummy silo on a backup host hostb. It is
used to send a spore to the backup host in a way that allows
it to detect whether the host of done/info has failed. The fault
handling is done by calling flatMap on backup, passing (a)
a spore for the non-failure case and (b) a spore for the fail-
ure case. The spore for the non-failure case simply returns
the done SiloRef. Importantly, this enables hostb to detect
failures of the host of done. Upon detecting such a failure,
backup.flatMap applies the spore for the failure case. In this
case, the lineage of the captured info SiloRef is used to re-
store its original contents in a new silo created on the backup
host hostb. Its SiloRef is then used to retry the original com-
putation.

4. Formalization
While so far we have focused on a high-level description of
our model, visualizing, and building intuition via examples,
we now shift gears in an effort to make the primitives of our
model more precise. Rather than presenting a full formal-
ization of our model, we will zoom in on a few interesting
highlights that fell out of our formalization. In particular:
• A new treatment of the concept of lineage using PL tech-
niques as opposed to the way lineage has been studied in
the database and systems communities.

• A newly-uncovered connection between type soundness
and serializability.

This is based on a formalization of our programming model
in the context of a typed lambda calculus with records. The
full formalization and the proof of a subject reduction theo-



rem can be found in the companion technical report (Haller
et al. 2016).

4.1 Formalizing Lineages
In the following we formally model the concept of lineage
which has existed in other communities (in particular, the
database and systems communities), but which has not been
treated in the context of standard PL techniques such as
small-step operational semantics. Formalizing lineages is in-
teresting for two reasons: first, our formal model shows that
lineages nicelymap to and integratewith concepts from func-
tional programming. Second, the reduction relation of the
computation model is significantly different from standard
reduction relations for higher-order functional languages.

In the following we first summarize the abstract syntax
of a core language with essential constructs of our program-
ming model. Then, we provide an overview of reduction se-
mantics, highlighting select reduction rules for lineages.

4.1.1 Syntax
Figure 3 shows the abstract syntax of our core language. Be-
sides standard terms, the language includes terms related to
(a) spores, (b) silos, and (c) futures. The spore term creates a
new spore. It contains a list of variable definitions, the spore
header, and a closure which may only refer to its parame-
ter and variables in the spore header. The spawn term creates
a new host capable of hosting silos. The populate term ini-
tializes a new silo on a given host with a given data value.
The map, flatMap, and persist terms create lineages of silo
transformations represented as silo references. The send term
forces the materialization of the silo corresponding to its ar-
gument silo reference; send returns a future which is asyn-
chronously completed with the silo’s value. The await term
waits for the completion of its argument future and returns
the future’s value. Locations ι are used to refer to both fu-
tures and hosts.

Values in our language are as expected: besides abstrac-
tions and record values they include spore values, locations,
and lineages. Locations and lineages are not part of the “sur-
face syntax” of our language; they are only introduced by
reduction (see Section 4.1.2). A lineage is a value of a sim-
ple datatype with constructorsMat, Mapped, FMapped, and
Persist. The constructors include all information required for
materializing a silo with the result of applying the described
transformations.

In addition to standard function and record types, the lan-
guage has types for spores, hosts, lineages, and futures. A
spore type T ⇒ T ′ { type C = T } includes the types T of
the variables declared in the header of the spore. (The name
C stands for “capture types”.)

4.1.2 Reduction Semantics for Lineages
One of our goals is a formal model of lineages using tools
familiar to the programming languages community. Thus, in
the following we present a small subset of reduction rules

t ::= terms:
x variable

| (x : T ) ⇒ t abstraction
| t t application
| {l = t} record
| t.l selection
| spore { x : T = t ; (x : T ) ⇒ t } spore
| spawn(t) spawn host
| populate(t, t) populate silo
| map(t, t) map
| flatMap(t, t) flatMap
| persist(t) persist
| send(t) send
| await(t) await future
| ι location
| r lineage

v ::= values:
(x : T ) ⇒ t abstraction

| {l = v} record value
| p spore value
| ι location
| r lineage

p ::= spore { x : T = v ; (x : T ) ⇒ t }

r ::= lineage:
Mat(ω) materialized

|Mapped(ω, r, p) map lineage
| FMapped(ω, r, p) flatMap lineage
| Persist(ω, r, v) persist lineage

ω ::= (h, i) where i ∈ N identifier

T ::= types:
T ⇒ T abstraction type

| {l : T} record type
| T ⇒ T { type C = T } spore type
| Host host type
| SiloRef[T ] lineage type
| Future[T ] future type

Figure 3: Abstract syntax of core language.

related to the construction of lineages (complete reduction
semantics can be found in (Haller et al. 2016)).

Every lineage originates from a materialized silo, repre-
sented as a valueMat(ω) in our formal model (see Figure 3).
Here, ω is the silo’s identifier such that ω = (h, i) where h
is a host identifier and i is an integer that is unique on host h.
Assume that a materialized silo Mat(ω) is bound to a vari-
able x; then the following expression (in core language syn-
tax) creates an extended lineage based on the map combinator:



E ::= eval. contexts:
[ ] hole

| E t application (fun)
| v E application (arg)
| {l = v; li = E; l′ = t} record
| E.l selection
| spore { x : T = v;xi : Ti = E;

x′ : T = t; (x : T ) ⇒ t } spore
| spawn(E) spawn
| populate(E, t) populate (host)
| populate(v,E) populate (spore)
| map(E, t) map (ref)
| map(v,E) map (fun)
| flatMap(E, t) flatMap (ref)
| flatMap(v,E) flatMap (fun)
| persist(E) persist
| send(E) send
| await(E) await

Figure 4: Evaluation context.

R-Map
r′ = Mapped((h, i), r, p) i fresh
E[map(r, p)] | µ →h E[r′] | µ′

R-FMap
r′ = FMapped((h, i), r, p) i fresh
E[flatMap(r, p)] | µ →h E[r′] | µ′

R-Persist
r′ = Persist((h, i), r, · ∪ ·) i fresh
E[persist(r)] | µ →h E[r′] | µ′

Figure 5: Select rules for sequential reduction.

map(x, spore { (y : T ) ⇒ t })

The result of reducing this expression is the lineage
Mapped(ω′,Mat(ω), spore { (y : T ) ⇒ t }) where ω′ =
(h, i′), i.e., the resulting silo ω′ is materialized on the same
host h as silo ω.

Since new lineage identifiers can be created locally, cre-
ating lineages does not require network communication.
Therefore, the reduction rules for creating lineages are part
of the local reduction relation.

Figure 5 shows three example rules. The reduction rules
use the definition of evaluation contexts shown in Figure 4.
Evaluation contexts capture the notion of the “next subterm
to be evaluated.” We write E[t] for the term obtained by
replacing the hole in evaluation context E with term t.

The sequential reduction relation has the form
E[t] | µ →h E[t′] | µ′ with stores µ and µ′. Stores are
required for the dynamic allocation of futures and hosts. A
store µ is a partial function mapping locations ι to values v.
The annotation with host h is used for creating identifiers
ω = (h, i) for lineages.

Rules R-Map, R-FMap, and R-Persist describe the cre-
ation of lineages. Rules R-Map and R-FMap create lineages
using the constructors Mapped and FMapped, respectively.
The new lineage has a fresh identifier (h, i) which uniquely
identifies the corresponding (logical) silo. In each case, the
spore value p is stored in the new lineage; this enables amate-
rialization of the silo identified by (h, i) using parent lineage
r and spore p. Rule R-Persist creates a lineage using the Per-
sist constructor. Persist contains a function (· ∪ ·) enabling
host h to persist silo r; essentially, the set-union function is
used to add the silo identifier (h, i) to a set of persisted silos.
The result of materializing a persisted silo is cached. (See
our complete formalization (Haller et al. 2016) for details,
including a corresponding rule for unpersisting a silo.)

As we can see, the above rules do not execute their cor-
responding higher-order functions; they merely create lin-
eages. A lineage contains everything necessary tomaterialize
the contents of its corresponding silo. Moreover, lineages are
serializable: as a result, they can be used to initiate the mate-
rialization of a silo located on a remote node.

The immutability of silos and lineages enables equa-
tional reasoning about programs, a cornerstone of functional
programming. Lineages are also persistent data structures,
where multiple lineages are able to share common ancestors,
thereby avoiding duplicate materializations. Taken together,
we believe that lineages in general, and the function passing
model in particular are a natural fit for functional program-
ming, and lend themselves for embedding in a functional
programming language (see Section 5).

4.2 Type Soundness and Serializability
As part of the meta theory of our core language, we have
proved a subject reduction theorem, an important property
for establishing type soundness (see the companion techni-
cal report (Haller et al. 2016) for the complete proof). The
meta-theoretic development enabled us to uncover a connec-
tion between type soundness and serializability. Essentially,
without a static serializability guarantee for certain values,
subject reduction could be violated. Consequently, we have
devised a type system, both as part of our formal develop-
ment and as part of our implementation, which provides the
required guarantee, ensuring subject reduction.

In a language without concurrency or distribution, sub-
ject reduction (or type preservation) means that the result of
reducing a well-typed term of some type T is again a well-
typed term of type T . In our case, reduction is more complex
due to distributed computation across multiple hosts. Thus,
our formalization extends subject reduction from well-typed
terms to well-formed configurations of hosts.



A configuration H is a set of hosts (t, µ,Q, S)h ∈ H
where h is a host identifier, t is a term reduced by h, µ is a
store (see Section 4.1.2),Q is a queue of incoming messages,
and S is a silo store. The message queueQ buffers incoming
messages which are processed asynchronously by h. The silo
store S maps identifiers ω to silos. Essentially, S contains all
silos hosted on h.

We write∆ ⊢ H to express that configurationH is well-
formed in silo store typing ∆. Analogous to the standard
notion of a store typing (Pierce 2002), a silo store typing
maps silo identifiers ω to types T . The silo store typing is
used to assign types to lineages (see rule T-SiloRef in the
technical report (Haller et al. 2016)).

Using the above definitions the subject reduction theorem
is formulated as follows:

Theorem 1. (Subject Reduction) If ∆ ⊢ H and H ↠ H ′

then∆′ ⊢ H ′ for some∆′ ⊇ ∆.

Essentially, for the subject reduction theorem to hold,
reduction of a well-formed configuration must result in
another well-formed configuration. Importantly, the well-
formedness of a configurationH implies thewell-formedness
of each host inH . In turn, the well-formedness of a host im-
plies the well-formedness of its message queue. This means
that the message queue of a host that received a message as
a result of a reduction step must be well-formed. This is only
possible if values contained in newly-received messages are
well-typed in an empty environment. For example, rule WF-
Q3 in (Haller et al. 2016) requires the value of the current
message to be well-typed in an empty environment. Being
able to type-check received values in an empty environment
is essential, since the type environments of the sender and
the receiver are disjoint.

The following theorem establishes that the serializability
of types implies this property (we use the typing judgement
Γ;Σ;∆ ⊢ t : T as defined in (Haller et al. 2016)):

Theorem 2. (Serializable Values) If Γ;Σ;∆ ⊢ v : T and
serializable(T ) then ∅; ∅;∆ ⊢ v : T .

The predicate serializable(T ) is defined inductively on
the structure of type T . (It corresponds precisely to the use of
the Pickler[T] type class in our implementation.) Essentially,
the type system of our core language ensures that the types of
values sent within messages are serializable. By Theorem 2
these values are well-typed in an empty environment, which,
as discussed, is essential for subject reduction to hold.

5. Implementation
The presented programming model has been fully imple-
mented in Scala, a functional programming language that
runs on both JVMs and JavaScript runtimes. The function
passing model is compiled and run using Scala 2.11.8, and
considers only the JVM backend for now. Our prototype,

which has been published as an open-source project,4 builds
on two main Scala extensions:

• First, Pickling (Miller et al. 2013),5 a type-safe and per-
formant serialization library with an accompanying, op-
tional macro extension that is focused on distributed pro-
gramming. It is used for all serialization tasks. Our func-
tion passing implementation benefits from the maturity
of Pickling, which supports pickling/unpickling a wide
range of Scala type constructors.

• Second, the programming model makes extensive use of
spores, closure-like objects with explicit, typed environ-
ments. While (Miller et al. 2014) has reported an an em-
pirical evaluation of spores, our presented programming
model and implementation turned out to be an extensive
validation of spores in the context of distributed program-
ming. In addition, our implementation required a thor-
ough refinement of the way spores are pickled.

So far, we have used our implementation to build a small
Spark-like distributed collections abstraction, a simple ver-
sion of the MBrace (Dzik et al. 2013) framework, and ex-
ample data analytics applications, such as word count and
group-by-join pipelines. We give an introduction and step
through some of these example applications in Section 6.

5.1 Static Serialization and Generics
In a function passing program, code using SiloRefs may ac-
cess multiple silos hosted on different remote nodes. There-
fore, applying a combinator such as map to a SiloRef gener-
ally requires sending a message to a remote node instruct-
ing it to apply map to the contents of the corresponding silo.
For example, consider the following invocation of map on a
SiloRef in:

val out =
in.map(spore { (l: List[String]) => l.map(_.toUpperCase) })

The above snippet takes a list of strings in an input silo in
and produces an output silo out containing the list with each
string in upper case.

Assuming that the silo that in refers to is hosted on some
remote node RN , materializing out (on the same node) re-
quires sending a message representing this map invocation to
RN . In the above example, the materialization of out would
entail sending an instance of a class Mapped[T, S] where
T = S = List[String] to RN .

While serializing the instance of Mapped with the con-
crete type Mapped[List[String], List[String]] is straight-
forward, the key question is: how to deserialize this onRN?

Importantly, the combinator code on the server-side is
generic; it is not specific to any client code where types are
made concrete.

4 https://github.com/heathermiller/f-p
5 https://github.com/scala/pickling



In the example, thismeans that the concrete type argument
List[String] is only known at run time on RN . As a result,
the remote node must interpret the run-time type on the fly
in order to deserialize the instance of Mapped.

Such interpretation-based deserializers are know to be
significantly slower than type-specific, statically-generated
deserializers (Miller et al. 2013). In fact, a recent study
has identified serialization as a major bottleneck in data-
intensive applications (Ousterhout et al. 2015), one of our
main target applications.

In order to minimize the cost of deserialization, we have
devised a serialization scheme that enables utilizing statically-
generated deserializers, thereby avoiding the performance
penalty of interpretation-based deserializers.

The approach which we call “self-describing pickles”
is as follows. Basically, the idea is to augment the serial-
ized representation with additional information about how
to deserialize (“unpickle”) it. The key is to capture the type-
specific pickler and unpickler when the fully-concrete type
of a Mapped instance is known:

def doPickle[T](msg: T)
(implicit pickler: Pickler[T],

unpickler: Unpickler[T]): Array[Byte] = ...

Essentially, this means when doPickle is called with a
concrete type T, say:6

doPickle[Mapped[List[Int], List[String]]](mapped)

not only a type-specific implicit pickler (a type class in-
stance) is looked up, but also a type-specific implicit *un-
pickler*. The doPicklemethod can then build a self-describing
pickle as follows. First, the actual message is pickled using
the pickler, yielding a byte array. Then, an instance of the
following simple record-like class is created:

case class SelfDescribing(blob: Array[Byte],
unpicklerClassName: String)

Besides the just produced byte array, it contains the class
name of the type-specific unpickler. This enables using this
fully type-specific unpickler, even when the message type to
be unpickled is only partially known. All that is required is
an unpickler for type SelfDescribing. First, it reads the byte
array and class name from the pickle. Second, it instantiates
the type-specific unpickler reflectively using the class name.
(Note that this is possible on both the JVM as well as on
JavaScript runtimes using Scala’s current JavaScript back-
end.) Finally, the unpickler is used to unpickle the byte ar-
ray. In conclusion, this approach ensures (a) that a type that
is pickleable using a type-specific pickler is guaranteed to be
unpickleable by the receiver of the pickled SelfDescribing
instance, and (b) that unpickling is as efficient as pickling,
thanks to using type-specific unpicklers.

6Note that the type arguments are inferred by the Scala compiler; they are
only shown for clarity.

6. Examples
To show that the function passing model is able to serve
as a substrate upon which to build different sorts of data-
centric distributed frameworks, we have built two miniatur-
ized example systems inspired by popular big data frame-
works: Spark’s RDD (Resilient Distributed Dataset) (Zaharia
et al. 2012) and MBrace (Dzik et al. 2013). Using each ex-
ample system, we have implemented several example appli-
cations, excerpts of some of which are discussed below.

Spark’s RDDs provide a set of operations to execute paral-
lel operations on distributed data. MBrace extends F#’s asyn-
chronous workflows (Syme et al. 2011), a way to declare
asynchronous tasks, to distribute computation in the cloud.

Our simplified RDD implementation enables the use of
data structures distributed using silos (see Section 2.2). We
have implemented some of the operations of Spark’s RDD
such as map, reduce, groupBy, and join in terms of the primi-
tives of the function passing model. Methods on RDDs like
flatMap or filter that do not need to communicate across
silos are implemented using the SiloRef map combinator.
On the other hand, join is implemented using the SiloRef
flatMap combinator. Below, we use it to show a simple appli-
cation associating the length of all words in two documents
in a Map to a set of words with the corresponding length.

val content: RDD[String, List[String]] = ...
val lorem: RDD[String, List[String]] = ...

val contentWord = content.flatMap(line => {
line.split(' ').toList

}).map(word => (word.length, word))

val loremWord = lorem.flatMap(line => {
line.split(' ').toList

}).map(word => (word.length, word))

val res: Map[Int, Set[String]] =
contentWord.join[Set, Map](loremWord).collectMap()

In this example, the RDD’s flatMap method is called
on the RDDs content and lorem, respectively. The closures
passed as arguments in these calls split each line into a list of
words; the flatMap calls then flatten the created collections of
lists into single, flat RDDs. The flat RDDs (containing just
words) are mapped to RDDs containing pairs of the form
(word.length, word) where word is a string (a word) taken
from a flat RDD. Then, we do an inner join, which associates
each length to the set of words of the same length, removing
duplicate words in the process. Finally, we collect the final
result in a Map using the collectMapmethod of RDD. Several
other more detailed example programs using Spark on the
function passing model are available on GitHub.7

In the context of MBrace, we have also implemented
k-means clustering (based on an example available on the
7 https://github.com/heathermiller/f-p (branch onward2016)



MBrace website8), an excerpt of which is shown below. Our
implementation of distributed k-means clustering using the
function passing model is an almost identical port of the
MBrace version written in F#. K-means clustering is an al-
gorithm to categorize data points across k different clusters.
It starts with the centroids of the k clusters.

def kMeansIterate(
partitionedPoints: Seq[SiloRef[Array[Point]]],
centroids: Array[Point],
iteration: Int): Array[Point] = {

// Running iteration...
val clusterParts = partitionedPoints.map(silo => {
silo.map(spore {
val lCentroids = centroids
points => kmeansLocal(points, lCentroids)

}).send()
})

val newCentroids =
Await.result(Future.sequence(clusterParts).map(seq =>
seq.reduce(_ ++ _)

.groupBy(_._1)

.toSeq

.sortBy(_._1)

.map(_._2)

.map(clp => clp.map(_._2).toArray.unzip)

.map({ case (ns, points) =>
ns.sum -> sumPoints(points)

})
.map({ case (n, sum) => divPoint(sum, n) })

), 10.seconds).toArray

val diff = newCentroids
.zip(centroids)
.map({ case (p1, p2) => dist(p1, p2) })
.max

// check if converged, else iterate again
if (diff < epsilon) {
newCentroids

} else {
kMeansIterate(partitionedPoints,

newCentroids,
iteration + 1)

}
}

The algorithm proceeds in two steps. It first assigns data
points to the closest cluster. Then, it assigns to each cluster a
new centroid by computing the mean of the points assigned
to the clusters. It stops when the centroids stop changing; if

8 http://mbrace.io/starterkit/HandsOnTutorial.FSharp/examples/
200-kmeans-clustering-example.html

this convergence condition has not been met, the algorithm
is called recursively with the updated set of centroids. In the
distributed version of k-means, we start with a master node
that partitions the points into silos. In each iteration, map is
called on the SiloRefwhich results in a spore (function) being
applied to the data within the corresponding silo. The spore
captures the current iterations’ centroids and uses them to
compute the new cluster for its local set of points (using the
kmeansLocal function). The results are then sent back to the
master node to compute the new centroids, and to check the
algorithm’s convergence condition.

7. Related Work
Alice ML (Rossberg et al. 2004) is an extension of Stan-
dard ML which adds a number of important features for
distributed programming such as futures and proxies. The
design leading up to the function passing model has incor-
porated many similar ideas, such as type-safe, generic and
platform-independent pickling. In Alice, functions intend to
be mobile. Only those functions which capture (either di-
rectly or indirectly) local resources remain stationary. In the
case of functions that must remain stationary, it is possible
to send proxies, mobile wrappers for functions. Sending a
proxy will not transfer the wrapped function; instead, when
a proxy function is applied, the call is forwarded by the sys-
tem to the original site as a remote invocation (pickling ar-
guments and result appropriately). In the function passing
model, however, functions are not wrapped in proxies but
sent directly. Thus, calling a received function will not lead
to remote invocations.

Cloud Haskell (Epstein et al. 2011) leverages guaranteed-
serializable, static closures for a message-passing communi-
cation model inspired by Erlang. In contrast, in our model
spores are sent between passive, persistent silos. Moreover,
the coordination of concurrent activity is based on futures,
instead of message passing. Closures and continuations in
Termite Scheme (Germain et al. 2006) are always serializ-
able; references to non-serializable objects (like open files)
are automatically wrapped in processes that are serialized as
their process ID. Similar to Cloud Haskell, Termite is in-
spired by Erlang. In contrast to Termite, the function pass-
ing model is statically typed, enabling advanced type-based
optimizations. In non-process-oriented models, parallel clo-
sures (Matsakis 2012) and RiverTrail (Herhut et al. 2013)
address important safety issues of closures in a concurrent
setting. However, RiverTrail currently does not support cap-
turing variables in closures, which is critical for the flatMap
combinator in the function passing model. In contrast to par-
allel closures, spores do not require a type system extension
in Scala.

Acute ML (Sewell et al. 2007) is a dialect of ML which
proposes numerous primitives for distributed programming,
such as type-safe serialization, dynamic linking and rebind-
ing, and versioning. The function passing model, in contrast,



is based on spores, which ship with their serialized environ-
ment or they fail to compile, obviating the need for dynamic
rebinding. HashCaml (Billings et al. 2006) is a practical evo-
lution of Acute ML’s ideas in the form of an extension to the
OCaml bytecode compiler, which focuses on type-safe seri-
alization and providing globally meaningful type names. In
contrast, function passing is merely a programming model,
which does not require extensions to the Scala compiler.

ML5 (Murphy VII et al. 2007) provides mobile closures
verified not to use resources not present on machines where
they are applied. This property is enforced transitively (for
all values reachable from captured values), which is stronger
than what plain spores provide. However, type constraints al-
low spores to require properties not limited to mobility. Tran-
sitive properties are supported either using type constraints
based on type classes which enforce a transitive property or
by integrating with type systems that enforce transitive prop-
erties. Unlike ML5, spores do not require a type system ex-
tension. Further, the function passing model sits on top of
these primitives to provide a full programmingmodel for dis-
tribution, which also integrates spores and type-safe pickling.

Systems like Spark (Zaharia et al. 2012),MapReduce (Dean
and Ghemawat 2008), and Dryad (Isard et al. 2007) are
just that–distributed systems. The function passing model is
meant to act as more of a middleware to facilitate the design
and implementation of such systems, and as a result provides
much finer-grained control over details such as fault handling
and network topology (i.e., peer-to-peer vs master/worker).

TheClojure programming language proposes agents (Hickey
2008)–stationary mutable data containers that users apply
functions to in order to update an agent’s state. The function
passing model, in contrast, proposes that data in stationary
containers be immutable, and that transformations by func-
tion application form a persistent data structure. Further, Clo-
jure’s agents are designed to manage state in a shared mem-
ory scenario, whereas the function passing model is designed
with remote references for a distributed scenario.

The function passing model is also related to the actor
model of concurrency (Agha 1986), which features multiple
implementations in Scala (Haller and Odersky 2009; Type-
safe 2015; He et al. 2014). Actors can serve as in-memory
data containers in a distributed system, like our silos. Unlike
silos, actors encapsulate behavior in addition to immutable
or mutable values. While only some actor implementations
support mobile actors (none in Scala), mobile behavior in the
form of serializable closures is central to the function passing
model.

8. Future Work and Conclusion
8.1 Ongoing and Future Work
In ongoing work we are exploring approaches for memory
reclamation. The first approach uses Java’s WeakReferences
to detect when a SiloRef is no longer reachable from local
GC roots. Upon detection the host of the corresponding silo

is notified to decrease the silo’s reference count; the host’s
reference(s) to the silo are nulled out when the reference
count reaches zero. It is important to note that this strategy
requires notifying a silo’s host whenever a SiloRef to the
silo reaches a new machine, to increase the silo’s reference
count. The second approach leverages uniqueness types in
Scala (Haller and Odersky 2010; Haller and Loiko 2016).
Here, SiloRefs are locally unique, and the programmer can
explicitly declare a SiloRef as unused (or “consumed”); the
type system ensures that such an “unused” SiloRef is not used
again subsequently. As in the first approach, upon marking
a SiloRef as unused, the corresponding silo’s host is notified
to decrease the silo’s reference count.

Other future work includes better understanding concerns
of separate compilation in order to evaluate whether our
model could be of help in coordinating microservices.9

8.2 Conclusion
We have presented the function passing model, a new pro-
gramming model and new substrate or middleware upon
which to build data-centric distributed systems. This en-
ables two important benefits for distributed system builders;
since (a) all computations are functional transformations on
immutable data, fault-tolerance is made simple by design,
and (b) communication is made well-typed by design, the
function passing model attempts to more naturally model
the paradigm of data-centric programming by extending
monadic programming to the network. One insight of our
model is that lineage-based fault recovery mechanisms, used
in widespread frameworks for distribution, can be modeled
elegantly in a functional way using persistent data structures.
Our operational semantics shows that this approach makes
it even amenable to formal treatment. We have also shown
that the function passing model is able to express patterns
of computation richer than those supported by common “big
data” frameworks while maintaining fault-tolerance–such as
decentralized peer-to-peer patterns of communication. Fi-
nally, we have implemented our approach in and for Scala,
and have shown that it’s possible to support different popular
patterns of distributed processing, such as batch processing
with Spark’s RDDs andMBrace’s cloud-based asynchronous
tasks.
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