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Abstract

In this paper, we prove a new identity for the least-square solution of an over-determined set of linear equation

Ax = b, where A is an m×n full-rank matrix, b is a column-vector of dimension m, and m (the number of equations)

is larger than or equal to n (the dimension of the unknown vector x). Generally, the equations are inconsistent and

there is no feasible solution for x unless b belongs to the column-span of A. In the least-square approach, a candidate

solution is found as the unique x that minimizes the error function ‖Ax− b‖2.

We propose a more general approach that consist in considering all the consistent subset of the equations, finding

their solutions, and taking a weighted average of them to build a candidate solution. In particular, we show that

by weighting the solutions with the squared determinant of their coefficient matrix, the resulting candidate solution

coincides with the least square solution.

Index Terms

Over-determined linear equation, Least square solution.

I. INTRODUCTION

A. Over-determined Set of Linear Equations

Let A be an m×n full-rank matrix and let b ∈ Rm be a column vector, and consider the linear equation Ax = b,

to be solved for the unknown vector x ∈ Rn. Theory and practice of solving these equations play a major role in

essentially every part of mathematics such as linear algebra, operational research, optimization, combinatorics, etc.

When m > n, we call the equations over-determined and there is a solution if and only if b belongs to the column-

span of A [1]. Generally, the equations are inconsistent and we need some kind of criteria to build a candidate

solution.
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One approach for finding a solution is the least-square approach [2], where we find a solution by minimizing

the quadratic form ‖Ax− b‖22. The resulting solution is given by x̂ = A#b, where A# = (AtA)−1At denotes the

pseudo-inverse of A. In estimation theory, x̂ can be interpreted as the best linear unbiased estimator (BLUE) of the

signal x observed via a linear channel given by the matrix A and contaminated with an i.i.d. Gaussian noise [3].

Note that in this case, if b is in the column-span of A, the resulting estimation error is zero.

Another approach for building a candidate solution is by some kind of averaging all the possible sub-solutions.

To explain this more precisely, we first need to introduce some notations. For k ∈ N, we define [k] = {1, 2, . . . , k}

to be the set of all integers from 1 up to k. We denote by P the set of all subsets of [m] of size n, i.e., P = {p ⊂

[m] : |p| = n}, where |p| denotes the size of the subset p. For a p ⊂ P , we define Ap to be the n × n matrix

obtained by selecting the rows of the matrix A belonging to p by keeping their order as in A.

Suppose p ∈ P is such that det(Ap) 6= 0. By restricting the equations to Ap, we can obtain a sub-solution

xp = A−1p bp, where bp is the a sub-vector of b consisting of the components with index in p whose order is the

same as in b. Taking the weighted average of all possible sub-solutions with a weighting ωp ≥ 0, p ∈ P , we can

build a candidate solution as follows

sω =

∑
p∈P ωpxp∑
p∈P ωp

. (1)

As the matrix A is full-rank, there is at least one p ∈ P with a nonzero det(Ap), thus sω is well-defined. By

changing the associated weighting ωp, we obtain a variety of candidate solutions for the over-determined equation

Ax = b.

Let us consider the weighting function ωp = det(Ap)
2, which is equal to the squared determinant of the sub-

matrix Ap, and let us define the resulting solution by

x̂LS =

∑
p∈P det(Ap)

2A−1p bp∑
p∈P det(Ap)2

. (2)

If for a specific p ∈ P , det(Ap) = 0 then A−1p does not exist but, with some abuse of notation, this term does not

play a role because its corresponding weight det(Ap)
2 is equal to 0.

B. Our Contribution

We prove that with the weighting ωp = det(Ap)
2, the resulting solution x̂LS in Eq. (2) coincides with the least-

square solution given by A#b = (AtA)−1Atb. More importantly, this holds for every full-rank matrix A and for

an arbitrary vector b. We have summarized this in the following theorem.

Theorem 1. Suppose A is a given m × n full-rank matrix with m ≥ n and assume that b ∈ Rm is an arbitrary

vector. Let x̂LS be the weighted average solution given by Eq. (2). Then x̂LS = (AtA)−1Atb, i.e., x̂LS coincides
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with the least square solution.

C. Notation and Auxiliary Results

In this section, we first introduce the required notations for the rest of the paper and prove some auxiliary results

that we need to prove Theorem 1. Let B be an arbitrary n × n matrix and let p ⊂ [m] of size |p| = n. We

denote by embb(B, p,m) the embedding of columns of B inside an n ×m matrix. More precisely, assume that

the components of p are sorted with p1 < p2 < · · · < pn. Then embb(B, p,m) is an n ×m matrix whose pi-th

column, i ∈ [n], is equal to the i-th column of B, and all the other m− n columns are set to zero.

Let r, c ∈ N be arbitrary numbers. We define the linear space of all r × c real-valued matrices by MR(r, c)

with the traditional matrix addition and scalar-matrix multiplication. For arbitrary matrices M,N ∈ MR(r, c), we

define the following bilinear form 〈M,N〉 = tr(MN t) =
∑

i,j MijNij . It is not difficult to see that 〈, 〉 defines

an inner product on MR(r, c). We denote the trace and the determinant of a square matrix M by tr(M) and

det(M) respectively. We need the following auxiliary results from linear algebra. We have included all the proofs

in Appendix A.

Lemma 1. Let r, c ∈ N and let M ∈MR(r, c). If 〈M,N〉 = 0 for every N ∈MR(r, c), then M = 0.

Lemma 2. Let M be an square invertible matrix whose components depend on a parameter u. Then, ∂
∂uM

−1 =

−M−1( ∂
∂uM)M−1.

Lemma 3. Let A be an square matrix whose components depend on a parameter u. Then, ∂
∂udet(A) = det(A)tr(A−1 ∂

∂uA)

Lemma 4. Let M and S be n× n matrices, where S is symmetric. Then tr(SM) = tr(SM t).

Theorem 2 (Cauchy-Binet). Let A and B be m× n matrices with m ≥ n. Then,

det(AtB) =
∑

p⊂[m],|p|=n

det(Ap)det(Bp), (3)

where |p| denotes the number of elements of p ⊂ [m].

II. PROOF OF THE MAIN THEOREM

In the section, we prove Theorem 1. Using Eq. (2), we can write x̂LS in the following form:

x̂LS(A, b) =

∑
p∈P det(Ap)

2A−1p bp

det(AtA)
(4)

=

∑
p∈P det(Ap)

2 embb(A−1p , p,m)b

det(AtA)
, (5)
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where in the last term we used the definition of embb(A−1p , p,m). Recall that for p ∈ P , with elements p1 < p2 <

· · · < pn, we denote by embb(A−1p , p,m) an all-zero n ×m matrix except for its pi-th column witch is equal to

the i-th column of A−1p . Now, we need to prove that for any b ∈ Rm and for any m × n full-rank matrix A, the

following identity holds

(AtA)−1Atb =

∑
p∈P det(Ap)

2 embb(A−1p , p,m)

det(AtA)
b. (6)

As this should be true for every b ∈ Rm, we need to prove the following matrix identity:

det(AtA) (AtA)−1At =
∑

p∈P det(Ap)
2 embb(A−1p , p,m). (7)

As a first step, it is easy to check that both sides are n×m matrices, thus the dimensions are compatible.

In order to prove the identity (7), let us define the function f : MR(m,n)→ R as follows:

f(A) = det(AtA)−
∑
p∈P

det(Ap)
2. (8)

Using the Cauchy-Binet formula as stated in Theorem 2, we obtain

det(AtA) =
∑
p∈P

det(Ap)det(A
t
p) =

∑
p∈P

det(Ap)
2, (9)

which implies that f(A) = 0 for every A ∈MR(m,n). Let u = Aij be a parameter denoting the component of A

at row i and column j. As f(A) = 0, we have ∂
∂uf(A) = 0, which implies that

∂

∂u
det(AtA)

(a)
= det(AtA)tr

{
(AtA)−1

∂

∂u
(AtA)

}
(b)
= det(AtA)tr

{
(AtA)−1

(
(
∂

∂u
A)tA+At ∂

∂u
A
)}

(c)
= det(AtA)tr

{
(AtA)−1

(
At ∂

∂u
A+At ∂

∂u
A
)}

= 2 det(AtA)tr
{
(AtA)−1At ∂

∂u
A
}

(d)
= 2 det(AtA)tr

{
(AtA)−1AtUij

}
(e)
= 2 det(AtA)

〈
(AtA)−1At, U t

ij

〉
,

where (a) follows from Lemma 3 applied to the matrix AtA, (b) follows from the chain rule applied to AtA, (c)

follows from Lemma 4 applied to the symmetric matrix (AtA)−1 and the matrix ( ∂
∂uA)tA, (d) results by taking

the component-wise derivative of A with respect to u = Aij which we denote by Uij , and where (e) results from

the definition of the inner product for two matrices. We can simply check that Uij is an m×n matrix with all-zero

components except for ij-th component which is equal to 1.
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Now, taking the derivative of the other term in Eq. (8) with respect to u = Aij , we obtain

∂

∂u

∑
p∈P

det(Ap)
2 =

∑
p∈P

2 det(Ap)
∂

∂u
det(Ap)

(a)
=
∑
p∈P

2 det(Ap)det(Ap)tr(A
−1
p

∂

∂u
Ap)

(b)
=
∑
p∈P

2 det(Ap)
2tr(embb(A−1p , p,m)

∂

∂u
A)

(c)
= 2 tr

{∑
p∈P

det(Ap)
2embb(A−1p , p,m)Uij

}
(d)
= 2

〈∑
p∈P

det(Ap)
2embb(A−1p , p,m), U t

ij

〉
,

where (a) results from Lemma 3 applied to the matrix Ap. We also have (b) from the definition of the embedding

n columns of A−1p in an m×n matrix. In particular, notice that as the remaining columns of embb(A−1p , p,m) are

all zero, we can replace Ap by A. Finally, (c) results from the linearity of the trace operator tr, and (d) follows

from the definition of the inner product. Therefore, we obtain that

0 =
∂

∂u
f(A) = 2

〈
U t
ij , (10)

det(AtA)(AtA)−1At −
∑
p∈P

det(Ap)
2embb(A−1p , p,m)

〉
.

Notice that equality in Eq. (10) holds for all matrices U t
ij , i ∈ [m], j ∈ [n]. As, U t

ij form an orthonormal basis for

the linear space MR(m,n), from Lemma 1, it immediately results that

det(AtA)(AtA)−1At =
∑

p∈P det(Ap)
2embb(A−1p , p,m).

From Eq. (7), this is exactly what we needed to prove.

APPENDIX A

PROOF OF THE AUXILIARY RESULTS

In this section, we provide the proofs of the auxiliary results.

Proof of Lemma 1: Let i ∈ [r], j ∈ [c] be arbitrary numbers and let N be an all-zero matrix except for the ij-th

element which is set to 1. It results that

0 = 〈M,N〉 =
∑
k,`

Mk`Nk` = Mij = 0.

As this is true for arbitrary i and j, it results that M = 0.
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Proof of Lemma 2: Let I be the identity matrix of the same order as M . Taking derivative from both sides of

the identity I = MM−1, and using the chain rule, we obtain that

0 =
∂

∂u
MM−1 +M

∂

∂u
M−1,

which implies that ∂
∂uM

−1 = −M−1( ∂
∂uM)M−1.

Proof of Lemma 3: Assume that A is a d × d matrix and let us denote by Aij the component of A in row i

and column j. We first find ∂
∂Aij

det(A) and use the chain rule to obtain

∂

∂u
det(A) =

∑
i,j∈[d]

∂

∂Aij
det(A)

∂

∂u
Aij . (11)

Notice that in order to compute det(A), we can expand it with respect to the i-th row, where we obtain

det(A) =
∑
k∈[d]

(−1)i+kdet(Ãik), (12)

where Ãik is a (d − 1) × (d − 1) matrix obtained after removing the i-th row and the k-th column of the matrix

A. In particular, it can be immediately checked that the only term in the summation (12) that depends on Aij is

(−1)i+jdet(Ãij), thus we obtain

∂

∂Aij
det(A) = (−1)i+jdet(Ãij) = adj(A)ji, (13)

where adj(A) denotes the adjoint of the matrix A. Moreover, from the formula A−1 = adj(A)
det(A) for the inverse of

the matrix A, we immediately obtain that

∂

∂Aij
det(A) = det(A)(A−1)ji. (14)

Using the the chain-rule as in Eq. (11), we have

∂

∂u
det(A) = det(A)

∑
ij

(A−1)ji
∂

∂u
Aij = det(A)tr(A−1

∂

∂u
A),

where tr denotes the trace operator and where ∂
∂uA denotes the component-wise partial derivative of A with respect

to u.

Proof of Lemma 4: The proof simply follows from the properties of the trace operator:

tr(SM) = tr((SM)t) = tr(M tSt) = tr(M tS) = tr(SM t),
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where we used the symmetry of S and the fact that for arbitrary square matrices K,L of the same dimension,

tr(KL) = tr(LK).
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