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Abstract—1 Power-line communications are becoming a key
component in home networking. The dominant MAC protocol for
high data-rate power-line communications, IEEE 1901, employs
a CSMA/CA mechanism similar to the backoff process of 802.11.
Existing performance evaluation studies of this protocol assume
that the backoff processes of the stations are independent (the
so-called decoupling assumption). However, in contrast to 802.11,
1901 stations can change their state after sensing the medium
busy, which introduces strong coupling between the stations and,
as a result, makes existing analyses inaccurate.

In this paper, we propose a new performance model for 1901,
which does not rely on the decoupling assumption. We prove that
our model admits a unique solution. We confirm the accuracy of
our model using both testbed experiments and simulations, and
we show that it surpasses current models based on the decoupling
assumption. Furthermore, we study the tradeoff between delay
and throughput existing with 1901. We show that this protocol
can be configured to accommodate different throughput and
jitter requirements, and we give systematic guidelines for its
configuration.

I. INTRODUCTION

Power-line communications (PLC) are increasingly impor-
tant in home networking. HomePlug AV, the most popular
specification for PLC, is employed by over 120 million devices
worldwide [2], and the new HomePlug AV2 devices offer data
rates up to 1 Gbps [3]. Moreover, PLC plays a powerful
role in hybrid networks comprising wireless, Ethernet, and
other technologies [4], as it contributes to increasing the
bandwidth of such networks with an independent, widely ac-
cessible medium. Yet, despite the wide adoption of HomePlug
specifications in home networks, little attention has been
paid to providing an accurate analysis and an evaluation
of the HomePlug MAC layer.

The vast majority of HomePlug devices employ a multiple-
access protocol based on CSMA/CA that is specified by
the IEEE 1901 standard2 [5]. This CSMA/CA mechanism
resembles the CSMA/CA mechanism employed by IEEE
802.11, but with important differences in terms of complexity,
performance and fairness. The main difference stems from
the introduction of a so-called deferral counter that triggers
a redraw of the backoff counter when a station senses the

1This work has been previously published in IEEE ICNP 2014 [1]. This
technical report contains additional details and clarifications on the analysis
and the proof of Theorem 1 of Section IV.

2This CSMA/CA mechanism is the same for all HomePlug specifications,
including 1.0, AV, AV2 and GreenPhy.

medium busy. This additional counter significantly increases
the state-space required to describe the backoff procedure.
Moreover, as we explain in more details later, the use of the
deferral counter introduces some level of coupling between
the stations, which penalizes the accuracy of models based
on the decoupling assumption. This assumption was originally
proposed in the 802.11 analysis of [6] and has been used in all
the works that have analyzed the 1901 CSMA/CA procedure
so far (i.e., [7], [8], [9]). In this paper, we show that this
decoupling assumption leads to inaccurate results, and the
modeling accuracy can be substantially improved by avoiding
it.

The decoupling assumption relies on the approximation that
the backoff processes of the stations are independent and that,
as a consequence, stations experience the same time-invariant
collision probability, independently of their own state and of
the state of the other stations [6]. In addition, to analyze
1901, it has been assumed that a station senses the medium
busy with the same time-invariant probability (equal to the
collision probability), during any time slot [7], [8]. In this
paper, we show that the deferral counter introduces some
coupling among the stations: After a station gains access to the
medium, it can retain it for many consecutive transmissions
before any other station can transmit. As a result, the collision
and busy probabilities are not time-invariant for 1901 networks,
which makes the decoupling assumption questionable.

Figures 1 and 2 provide some evidence on the coupling
phenomenon described above, for a HomePlug AV testbed
with two stations. While Station A transmits during several
consecutive slots, Station B is likely to remain in a state where
it has a larger probability of colliding or sensing the medium
busy. B is then even less likely to attempt a transmission
while in this state, and it might have to wait several tens of
milliseconds before the situation reverts. Thus, the collision
probabilities observed by the stations are clearly time-varying,
which invalidates the decoupling assumption. Note that a
consequence of this coupling is short-term unfairness, which
in turn translates into high delay variance (i.e., high jitter).

In this paper, we propose a theoretical framework for
modeling the CSMA/CA process of 1901 without relying on
the decoupling assumption. First, we introduce a model that
accurately captures the 1901 performance without assuming
that stations are decoupled. This model is relatively compact:
computing the throughput of the network only requires solving
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Fig. 1. Testbed trace of 50 successful transmissions by two saturated stations
with 1901 and 802.11a. The experimental settings and the details on our
testbed are given in Section V-A. 1901 exhibits short-term unfairness: a
station holding the channel is likely to keep holding it for many consecutive
transmissions (during several tens of ms, for example 59 ms as shown
above), which causes high jitter. 802.11 is fairer, which makes the decoupling
assumption viable in this case. This experiment took place under ideal channel
conditions. In realistic channels, where frames are retransmitted due to errors,
the jitter might even be higher.
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Fig. 2. We study a testbed trace of 5 · 104 successful transmissions for
both 1901 and 802.11a when two saturated stations A and B contend for
the medium. Let Xi be the variable that indicates which station transmits
successfully at the i-th transmission. We take Xi := 1 if A transmits and
Xi := 2 if B transmits. We show the autocorrelation function of Xi, 1 ≤
i ≤ 5·104. Observe that it is positive for 1901 at lags smaller than 15. Hence,
if Xi = 1 for some i, it is likely that Xi+1 = 1. For 802.11a, we have in
contrast a negative value of autocorrelation at lag 1 and a positive one at lag
2, which means that if Xi = 1 for some i, it is likely that Xi+1 = 2 and
Xi+2 = 1.

a system of m equations, where m is the number of backoff
stages (the default value for 1901 is m = 4). Second, we prove
that this system of equations admits a unique solution. We
confirm the accuracy of the model by using both simulations
and a testbed of 7 HomePlug AV stations. To the best of
our knowledge, this is the first study that validates a 1901
MAC performance model on a real PLC testbed. We have
employed a similar testbed setup to study and validate the
short-term unfairness (but not a complete model) of the 1901
MAC in [10]. In addition, we investigate the accuracy of our
model and that of previous works that rely on the decoupling
assumption, showing that, to the best of our knowledge, ours is
the first model for 1901 reaching this level of accuracy. Finally,
we study in detail the tradeoff between throughput and delay
variance (or equivalently, short-term fairness), caused by the
deferral counter in 1901. We observe that this tradeoff can
be accurately controlled in 1901, and propose a systematic
method to configure a 1901 network to obtain the best delay
performance under arbitrary throughput constraints.

The remainder of the paper is organized as follows. We
present the 1901 backoff process in Section II. We then review
the related work on MAC layer in Section III. We present our
model for 1901 in Section IV. We evaluate the performance of
our model and discuss the decoupling assumption in Section V.
We study the tradeoff between throughput and fairness in Sec-
tion VI. Finally, we give concluding remarks in Section VII.

II. BACKGROUND

In this section, we present the CSMA/CA protocol of
1901 [5], and highlight the mechanism that causes the strong
coupling between the stations. This mechanism is the main
difference between 1901 and 802.11. In CSMA/CA protocols,
such as 802.11, stations wait for a random number of time
slots (determined by the backoff counter) before transmitting,
in the attempt to avoid that some other station transmits
at the same slot, which causes a collision. Nevertheless, a
collision can still occur and when it does, the stations involved
increase the range in which they select their backoff counter
(called the contention window CW ) to further reduce the
collision probability. Clearly, there exists a tradeoff: if CW
is large, the collision probability is small, but under low-
load conditions stations waste many slots on average before
transmitting, which decreases throughput. As we explain later,
to tackle this backoff inefficiency, 1901 aims at reducing CW .
To counterbalance the resulting large collision probability,
1901 introduces an additional mechanism that increases CW
before a collision occurs: when a station senses a considerable
number of transmissions in the channel, it increases CW . To
count the number of times a station has to sense the medium
busy before increasing CW, a new counter is introduced,
called the deferral counter.

We now describe the technical details of the 1901
CSMA/CA procedure. It includes three counters: the backoff
counter (BC), the deferral counter (DC) and the backoff
procedure counter (BPC). Upon the arrival of a new packet,
a transmitting station enters backoff stage 0. It then draws the
backoff counter BC uniformly at random in {0, . . . , CW0−1},
where CW0 denotes the contention window used at backoff
stage 0. Similarly to 802.11, BC is decreased by 1 at each
time slot if the station senses the medium to be idle (i.e.,
below the carrier-sensing threshold), and it is frozen when the
medium is sensed busy. In the case the medium is sensed busy,
BC is also decreased by 1 once the medium is sensed idle
again. When BC reaches 0, the station attempts to transmit the
packet. Also similarly to 802.11, the station jumps to the next
backoff stage if the transmission fails. In this case, the station
increments the BPC counter and enters the next backoff
stage. The station then draws BC uniformly at random in
{0, . . . , CWi−1}, where CWi is the contention window used
for backoff stage i, and repeats the process. For 802.11, the
contention window is doubled between the successive backoff
stages, i.e., CWi = 2iCW0. For 1901, CWi depends on the
value of the BPC counter and the priority of the packet: There
are four backoff stages that are mapped to the BPC counter,
as given in Table I. Also, there are four different priority
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Fig. 3. An example of the time evolution of the 1901 backoff process with
2 saturated stations A and B. Initially, both stations start at backoff stage 0.
Station A wins the channel for two consecutive transmissions. Observe the
change in CWi when a station senses the medium busy and has DC = 0.
This figure also exposes the short-term unfairness when there are 2 contending
stations; a station that grabs the channel for a successful transmission moves
to backoff stage 0, whereas the other station enters a higher backoff stage
with larger CW and has lower probability to transmit.

classes (CA0 to CA3) that correspond to different values for
the CWi’s.

The main difference between 1901 and 802.11 is that a
1901 station might enter the next backoff stage even if it did
not attempt a transmission. This is regulated by the deferral
counter DC, which works as follows. When the station enters
backoff stage i, DC is set at an an initial DC value di, where
di is given in Table I for each backoff stage i. After having
sensed the medium busy, a station decreases DC by 1 (in
addition to BC). If the medium is sensed busy and DC = 0,
then the station jumps to the next backoff stage (or re-enters
the last backoff stage, if it is already at this stage) and re-draws
BC, without attempting a transmission. An example of such
a backoff process is shown in Figure 3.

Class CA0/CA1 Class CA2/CA3

backoff stage i BPC CWi di CWi di
0 0 8 0 8 0
1 1 16 1 16 1
2 2 32 3 16 3
3 ≥ 3 64 15 32 15

TABLE I
IEEE 1901 VALUES FOR THE CONTENTION WINDOWS CWi AND THE

INITIAL VALUES di OF DEFERRAL COUNTER DC , FOR EACH BACKOFF

STAGE i AND EACH PRIORITY CLASS. CA0/CA1 PRIORITIES ARE USED

FOR BEST-EFFORT TRAFFIC AND CA2/CA3 FOR DELAY-SENSITIVE

TRAFFIC.

The deferral counter was introduced in 1901, so that 1901
can employ small contention window values – which provide
good performance for a small number of stations – while
avoiding collisions, thus also providing good performance for
a large number of stations3. In particular, to reduce collisions,
1901 stations redraw their backoff counter when they sense a
number of transmissions before their backoff counter expires;
in this way, they can react to a high load in the network without

3Indeed, it can be seen from Table I that 1901 contention windows are small.

the need of a collision, which is in contrast to 802.11 that only
reacts to collisions.

Although the above mechanism achieves its goal, i.e., pro-
viding good performance in terms of throughput, it might lead
to short-term unfairness: When a station gets hold of the chan-
nel and uses a small contention window, it is likely to transmit
several frames and thus trigger the deferral counter mechanism
of the other stations, which further increase their contention
windows and hence reduce even more their probability of
accessing the channel. Such a coupling effect penalizes the
accuracy of existing models that assume that the backoff
process of different stations are independent. Furthermore,
another consequence of this behavior is that a station either
holds the channel, and thus experiences low delays, or has to
wait a long time before it can transmit. This causes high jitter
(i.e., high delay variance).

III. RELATED WORK

The backoff process of 802.11 can be considered as a
version of 1901 where the deferral counter DC never reaches
0 (i.e., di = ∞, for all i). Hence, in the following, we first
review relevant studies on 802.11, both with and without the
decoupling assumption, and then we present the existing work
on 1901. Finally, we discuss related works on fairness.

A. Analyses of IEEE 802.11

Most work modeling 802.11 performance relies on the
decoupling assumption, initially proposed by Bianchi in [6].
In his paper, Bianchi proposes a model for single contention
domains, using a discrete-time Markov chain to model the
backoff procedure of 802.11. Under the decoupling assump-
tion, the collision probability experienced by all stations is
time-invariant and can be found via a fixed-point equation
that depends on the parameters of the protocol. Kumar et
al. [11] examine the backoff process of 802.11 using the same
assumptions and renewal theory. The authors also extract a
fixed-point equation for the collision probability. Although
strong, the decoupling assumption has later been examined and
found to be a valid assumption for 802.11 (shown analytically
and experimentally in [12], [13], respectively).

Sharma et al. [14] study 802.11 without the decoupling
assumption. They analyze an m-dimensional chain (m being
the number of backoff stages) that describes the number of
stations at each backoff stage. Drift equations capture the
expected change on the number of stations at each backoff
stage between two consecutive time slots, and their equilib-
rium point yields the average number of stations at each
backoff stage in steady state. Similarly to [14], we also use
drift equations to obtain an accurate model for 1901, without
resorting to the decoupling assumption. However, as the 1901
protocol is much more complex than 802.11, so is our analysis;
it differs substantially from the one of [14].

B. Analyses of IEEE 1901 under the Decoupling Assumption

To the best of our knowledge, the only works analyzing the
backoff mechanism of 1901 rely on the decoupling assumption.



First, Chung et al. [7] introduce a model using a discrete-
time Markov chain similar to Bianchi’s model for 802.11 [6].
The additional state required to capture the effect of the
deferral counter DC significantly increases the complexity of
the Markov chain.

Second, we [8] propose a simplification of the Markov
chain [7] and an equivalent model in the form of a single
fixed-point equation. We apply the same theoretical framework
as [11] and prove that this equation admits a unique solution.

Finally, Cano and Malone [9] provide a simplification of
the analysis of [7] for computing the delay under unsaturated
traffic scenarios and discuss the assumptions used in [7]. Here
too, their analysis relies on the decoupling assumption.

C. MAC Layer Short-Term Fairness

Various investigations evaluating short-term fairness of
MAC protocols have been conducted. First, Berger-Sabbatel et
al. [15] study the 802.11 short-term fairness both analytically
and experimentally. They prove that the 802.11 MAC is short-
term fair when there are few contending stations. Second,
Bredel and Fidler [16] elaborate more on the 802.11 backoff
process and investigate fairness both in short-term and long-
term.

Finally, we explore the 1901 fairness both analytically and
experimentally using simulation and a testbed in [10]. We
reveal that, compared to 802.11, 1901 is short-term unfair,
particularly when there are 2 stations contending for the
medium.

IV. ANALYSIS

In this section, we introduce our model for the 1901
CSMA/CA procedure. Our analysis relies on the following
assumptions:

• There are N stations in the network that belong to a single
contention domain.

• All stations are saturated (always have a packet to send).
• There is no packet loss or errors due to the physical layer,

and transmission failures are only due to collisions.
• The stations have an infinite retry limit; that is, they never

discard a packet until it is successfully transmitted4.

Furthermore, the 1901 standard specifies that only the stations
belonging to the highest contending priority class run the
backoff process5. In our analysis, we follow this property of
1901, and we consider a scenario in which all the contending
stations use the same set of parameters (corresponding to the
highest priority class).

Our model is a dynamical system that describes the expected
change in the number of stations at each backoff stage be-
tween any two consecutive slots. In the stationary regime, the

4Contrary to 802.11, the 1901 standard does not specify a retry limit. There
is a timeout on the frame transmission which is vendor specific. For instance,
for the HomePlug AV devices, the timeout for CA1 priority frames is 2.5 s,
which is very large compared to the maximum frame duration (2.5 ms [5]).
Therefore, this hypothesis is not strong.

5In practice, the contending priority class is decided during a so-called
priority resolution phase, using a simple system of busy tones.

expected number of stations at each backoff stage is constant,
hence we can compute performance metrics by finding the
equilibrium of the dynamical system.

Let us now introduce the variables of our model. Let m
be the number of backoff stages and let ni, 0 ≤ i ≤ m − 1
denote the number of stations at backoff stage i. Note that
∑m−1

i=0 ni = N . Let us further denote with τi the transmission
probability at stage i, i.e., τi is the probability that a station
at backoff stage i transmits at any given time slot. In addition,
for a given station at backoff stage i, we denote with pi the
probability that at least one other station transmits. We also
denote with pe the probability that no station transmits (or
equivalently, that the medium is idle). Under the assumption
of independence of the transmission attempts in a single
contention domain, we have pe =

∏m−1
k=0 (1− τk)nk , and

therefore

pi = 1−
pe

1− τi
= 1−

1

1− τi

m−1
∏

k=0

(1− τk)
nk . (1)

In 1901, a station with DC equal to di can change its backoff
stage either (i) after attempting a transmission or (ii) due
to sensing the medium busy di + 1 times.6 To compute the
probabilities of events (i) and (ii), we introduce xi

k: it is the
probability that a station at backoff stage i jumps to the next
backoff stage i + 1 in k or fewer time slots due to (ii) (we
drop the superscript i in xi

k when the backoff stage is clear
from the context). Note that we can compute xi

k directly from
pi. Let T be the random variable describing the number of
slots among k slots during which the medium is sensed busy.
Because a station at backoff stage i senses the medium busy
with probability pi at each time slot, T follows the binomial
distribution Bin(k, pi). This yields

xi
k = P(T > di) =

k
∑

j=di+1

(
k

j

)

pji (1− pi)
k−j . (2)

Let us denote with bci the expected number of time slots
spent by a station at backoff stage i. Now, recall that when
entering stage i, the stations draw a backoff counter BC
uniformly at random in {0, . . . , CWi − 1}. Let k denote the
value of BC, and di be the value of DC when the station
enters stage i. Depending on k, one of the following happens:

• If k > di, then event (i) occurs with probability (1−xi
k),

in which case the station spends (k + 1) slots in stage
i (the (k + 1)th slot being used for transmission). This
event is illustrated by the two transmissions of station A
in Figure 3. Now, (ii) occurs with probability xi

k. More
precisely, (ii) occurs at slot j, for di + 1 ≤ j ≤ k, with

6A major difference between 1901 and 802.11 is that, contrary to 1901, a
station using 802.11 can only adapt its backoff because of (i), not of (ii).



probability (xi
j−xi

j−1)
7, in which case the station spends

j slots in stage i.
• If k ≤ di, then (ii) cannot happen. Event (i) takes place

with probability 1, which yields that the backoff counter
expires and that the station spends (k+1) slots in stage i.

By grouping all the possible cases described above, it follows
that bci is given by

bci =
1

CWi

CWi−1
∑

k=di+1

⎡

⎣(k + 1)(1− xk) +
k
∑

j=di+1

j(xj − xj−1)

⎤

⎦

+
(di + 1)(di + 2)

2CWi
. (3)

Now, the transmission probability τi can be expressed as a
function of xi

k and bci, using the renewal-reward theorem, with
the number of backoff slots spent in stage i being the renewal
sequence and the number of transmission attempts (i.e., 0 or
1) being the reward. The expected number of transmission
attempts at stage i can be computed similarly to bci. Hence,
by dividing the expected transmission attempts at stage i with
the expected time slots spent at stage i, τi is given by

τi =

∑CWi−1
k=di+1

1
CWi

(1− xk) +
di+1
CWi

bci
. (4)

Similarly, we define βi as the probability that, at any given
slot, a station at stage i moves to the next backoff stage
because it has sensed the medium busy di + 1 times. It can
be easily seen that βi is given by

βi =

∑CWi−1
k=di+1

1
CWi

∑k
j=di+1 (xj − xj−1)

bci
. (5)

Note that τi and βi are functions of pi (through xi
k and bci).

Notation Definition (at backoff stage i, 0 ≤ i ≤ m− 1)

ni Number of stations
n̄i Expected number of stations
pi Probability that at least one other station transmits at any slot
pe Probability that the medium is idle at any slot (same for all i)
xi
k Probability that a station leaves stage i due to sensing the

medium busy di+1 times (the backoff counter does not expire)
bci Expected number of backoff slots
τi Probability that a station transmits at any slot
βi Probability that a station leaves stage i due to sensing the

medium busy di + 1 times at any slot
Fi Expected change in ni between two consecutive slots

TABLE II
NOTATION LIST

7Observe that (xi
j − xi

j−1) is the difference of two complementary
CDFs and denotes the probability that (ii) happens exactly at slot j. The
probability that a station jumps to the next backoff stage exactly at slot j is
(j−1

di

)

pdi+1
i (1−pi)j−di−1, because the station senses the medium busy for

di times in any of the j−1 slots, and for the (di+1)th time at the jth slot.
As xi

j is a complementary CDF of a binomial distribution, we can express it

as an incomplete beta function xi
j = 1− I1−pi (j − di, di + 1) [17]. Now,

by the property Iz(a+1, b) = Iz(a, b)−(Γ(a+b)/(Γ(a)Γ(b)))(1−z)bza

of the incomplete beta function [18] with z = 1 − pi, a = j − di − 1,
b = di +1 and Γ(n) = (n− 1)!, it can be seen that indeed (xi

j − xi
j−1) =

(j−1
di

)

pdi+1
i (1− pi)j−di−1.

We next introduce our model. A key feature of our model
is that we do not assume that the stations are decoupled, as
the collision probability is allowed to depend on the station’s
state. To study the system, we use a vector that includes the
number of stations at each backoff stage. In particular, let
X(t) = (X0(t), X1(t), . . . , Xm−1(t)) represent the number of
stations at each backoff stage (0, 1, . . . ,m− 1) at time slot t.
We use the notation n(t) = (n0(t), n1(t), . . . , nm−1(t)) to
denote a realization of X(t) at some time slot t.

To analyze our system, we assume that the backoff counters
are geometrically distributed with the same mean of that of
the real uniform distribution. With this assumption, a station
at backoff stage i transmits at any slot t with a constant
probability τi given by (4), independently from the previous
slots, and the vector X(t) is a Markov chain. Furthermore, we
assume that at backoff stage i a station might move to the next
backoff stage due to sensing the medium busy with probability
βi. Note that pi, τi, and βi can be computed from (1), (4)
and (5), given the state vector n(t) (hereafter, to simplify
notation we drop the input variable t from pi(t), τi(t), βi(t),
and n(t) as the equations are expressed for any slot t).

Let now F (n) = E[X(t + 1) − X(t)|X(t) = n] be the
expected change in X(t) over one time slot, given that the
system is at state n. The function F (·) is called the drift of
the system, and is given by

Fi(n) = (DRIFT)
⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

∑m−1
k=0 nkτk(1− pk)− n0(τ0 + β0), i = 0

ni−1 (τi−1pi−1 + βi−1)− ni(τi + βi), 0 < i < m− 1

nm−2 (τm−2pm−2 + βm−2)− nm−1τm−1(1− pm−1),

i = m− 1.

(DRIFT) is obtained by balancing, for every backoff stage, the
average rate of stations that enter and leave this backoff stage.
In particular, F0 increases only when some stations transmit
successfully. Since such stations could be in any of the other
backoff stages and there are nk stations in stage k, this occurs
at rate

∑m−1
k=1 nkτk(1 − pk). Similarly, F0 decreases when

some stations at stage 0 are either involved in a collision
(which occurs with probability n0τ0p0), or do not transmit
and sense the medium busy d0 + 1 times (which occurs with
probability n0β0). The decrease of the drift in both cases is
1, thus the expected decrease is equal to the sum of the two
probabilities.

Similarly, Fi, 0 < i < m−1 is computed by observing that
in these backoff stages, Fi changes if and only if some stations
sense the medium busy, or transmit. Finally, Fm−1 increases
after some stations at stage m − 2 experience a collision or
sense the medium busy dm−2+1 times. It decreases only after
a successful transmission at stage m− 1.

The evolution of the expected number of stations n̄(t) :=
E[X(t)] is described by the m-dimensional dynamical system

n̄(t+ 1) = n̄(t) + F (n̄(t)), (6)

where F (n̄(t)) is given by (DRIFT). In order to know the
average number of stations at each backoff stage at steady state,



we can compute the equilibrium point(s) of this system, which
is the stationary regime where the average number of stations
at each backoff stage remains constant. This information will
later enable us to compute actual throughput figures.

Next, we compute the equilibrium point of (6) by imposing
F (n̄(t)) = 0, which yields

n̄i =

(
τi−1pi−1 + βi−1

τi + βi

)

n̄i−1, 1 ≤ i ≤ m− 2,

n̄m−1 =

(
τm−2pm−2 + βm−2

τm−1(1− pm−1)

)

n̄m−2.

Let us define

K0 := 1, Ki :=
τi−1pi−1 + βi−1

τi + βi
, 1 ≤ i ≤ m− 2,

Km−1 :=
τm−2pm−2 + βm−2

τm−1(1− pm−1)
. (7)

Since
∑m−1

i=0 n̄i = N , it follows that the equilibrium of
system (6) is given by the following system of equations:

n̄0 =
N

∑m−1
k=0

∏k
j=0 Kj

, n̄i =
N
∏i

j=0 Kj
∑m−1

k=0

∏k
j=0 Kj

1 ≤ i ≤ m− 1.

(EQ)

Recall that τi and βi are functions of pi, given by (4) and (5).
Thus, the n̄i’s in (EQ) are also functions of pi, 0 ≤ i ≤ m−1.
From the above, substituting (EQ) in (1) yields a system of
m equations and m unknowns pi for 0 ≤ i ≤ m − 1. The
following theorem is one of our main results. It states that,
for configurations satisfying CWi+1 ≥ 2CWi − di − 1, 0 ≤
i < m− 1, the system (EQ), (1) admits exactly one solution,
hence that the equilibrium point of (6) is unique. Note that,
from Table I, these constraints are compliant with the standard,
except for the class CA2/CA3 at backoff stage i = 1. We leave
the extension of the uniqueness result to this priority class, and
the investigation of the stability of (6) for future work.

Theorem 1. Assume that CWi ≥ 6 and di ≤ ⌊CWi/2 −
1⌋, 0 ≤ i ≤ m − 1. In addition, assume that CWi+1 ≥
2CWi − di− 1, 0 ≤ i < m− 1. Then the system of equations

formed by (EQ) has a unique solution.

Proof: Recall that pe =
∏m−1

k=0 (1− τk)n̄k . Combining
(1) with (4) and given Proposition 2 in Appendix, τi can be
computed as a function of pe, and so can βi, pi. Hence, n̄i

can also be computed as a function of pe, given (EQ). With
this, let Φ(pe) :=

∏m−1
k=0 (1− τk(pe))n̄k(pe). Then, a solution

of (EQ) has to satisfy the following equation:

pe = Φ(pe). (8)

We first show that there exists at least one value of pe that
satisfies (8). Observe that our system of equations has as un-
knowns the pi’s, and that we have 0 ≤ pi ≤ 1, 1 ≤ i ≤ m−1.
Let τmax

0 := 2/(CW0+1) denote the maximum transmission
probability at stage 0. Then, pe is defined in [0, 1 − τmax

0 ],
according to Proposition 1 in Appendix. Because we have
ni ≥ 0 and τi < 1 (the maximum value of τi is 2/(CWi +1)

according to Lemma 1), at pe = 0 we obtain Φ(0) > 0. Now,
by computing Φ(1 − τmax

0 ), it is easy to see that the result
is Φ(1 − τmax

0 ) = (1 − τmax
0 )N < 1 − τmax

0 (we only study
the case N > 1, since for N = 1 the solution to the model is
trivial). Therefore, by the intermediate value theorem, Φ(pe)
has at least one fixed-point in [0, 1− τmax

0 ].
We next show that there exists only one value of pe that

satisfies (8). To this end, we show that Φ(pe) is monotonically
decreasing with pe. The derivative of Φ(pe) can be written as

dΦ(pe)

dpe
=

m−1
∑

j=0

(
∂Φ

∂pj

dpj
dpe

+
∂Φ

∂βj

dβj

dpe
+

∂Φ

∂τj

dτj
dpe

)

. (9)

We now examine separately each of the partial derivative
products of (9) with respect to pj , βj and τj .

First, by Lemma 4 in Appendix, ∂Φ/∂pj > 0. Since
dpj/dpe = (dpj/dτj) · (dτj/dpe), it follows from Lemmas 1
and 2 in Appendix that dpj/dpe < 0. Thus, the first product
of partial derivatives in (9) is negative for all j. Second, by
Lemma 3 in Appendix, ∂Φ/∂βj ≥ 0. Moreover, Corollary 2
states that dβj/dpj > 0 and we have shown above that
dpj/dpe < 0. Hence, we have dβj/dpe < 0, and the
second product of partial derivatives in (9) is also negative.
Finally, it follows from Lemma 5 that ∂Φ/∂τj < 0, and by
Lemma 2 we have dτj/dpe > 0. We have shown that all the
partial derivative products of (9) are negative hence, Φ(pe)
monotonically decreases with pe.

Since (9) is strictly negative, there exists a unique value for
pe ∈ [0, 1− τmax

0 ] that solves (8). Computing the correspond-
ing value for pi by (1), we have a solution to (EQ). The
uniqueness of the solution then follows from the fact that all
relationships between τi, βi, pi and pe are bijective, and any
solution must satisfy (8), which (as we have shown) has only
one solution.

Figure 4 illustrates that the average number of stations
at each state obtained from simulations stays close to the
deterministic trajectory of the dynamical system (6) at all
times, and that indeed, the system converges to the equilibrium
point. We plan to investigate the stability of the equilibrium
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Fig. 4. Expected number of stations at backoff stage 3 computed with
our model, and also computed via 5,000 simulations, for a network with
20 stations using the default CA1 configuration of 1901 n̄3(t) is shown
as a function of the time slot t, with initial condition n̄0(0) = 20 and
n̄i(0) = 0, 0 < i ≤ 3.

point (EQ) in our future work.



In Section V, we observe that our model is very accurate
for all configurations. We explain how collision probability
and throughput are computed in the same section.

V. PERFORMANCE EVALUATION

In this section, we evaluate the 1901 performance under
different configurations. First, we validate experimentally our
simulator and our model by using a testbed. Second, we
evaluate our model and compare it with the models based
on the decoupling assumption [7], [8]. These models perform
different computations, but are strictly equivalent in terms of
predicted throughput. We thus refer to these models as (the
unique) “D.A.” model.

A. Experimental Validation

We use simulations to evaluate 1901 performance. We wrote
a Matlab simulator, which implements the full CSMA/CA
mechanism of 19018. In this subsection, we validate the
accuracy of our model and simulator with experimental results
from a HomePlug AV test-bed.

We built a test-bed of 7 stations, each comprising a PLC
interface9. The stations are ALIX boards running the OpenWrt
Linux distribution [20]. Each board is equipped with a Home-
plug AV miniPCI card (Intellon INT6300 chip). In our tests,
N stations send UDP traffic (at a rate higher than the link
capacities) to the same non-transmitting station using iperf.
We run tests for 1 ≤ N ≤ 6. At the end of each test we
request the number of collided and successfully transmitted
frames from each station using the Qualcomm Atheros Open

Powerline Toolkit [21]. Using this information, we evaluate the
collision probability.

We compare the collision probability measured on the
testbed with the one obtained with our model. To this end, we
use our model to compute the steady-state expected number
of nodes n̄0, . . . , n̄m−1 at each backoff stage. Once we have
the average number of stations at each each backoff stage, the
probability pi of collision at backoff stage i is readily given
by (1).

Let γ be the average probability that a transmission in
the system collides. The probability that a given transmis-
sion in the system corresponds to a station at backoff
stage i is given by n̄iτi/

∑m−1
k=0 n̄kτk. We thus have γ =

∑m−1
i=0 n̄iτipi/

∑m−1
i=0 n̄iτi.

The average collision probabilities obtained from 10 testbed
experiments, 10 simulation runs, and our model are shown in
Figure 5. We observe an excellent fit between experimental
and simulation/analytic results.

Contrary to some existing 802.11 interfaces, the MAC
parameters of the HomePlug AV devices cannot be modified,

8Our simulator and the guidelines to reproduce all the testbed experiments
of this work are available in [19].

9The stations also have a wireless interface, a miniPCI card Atheros DNMA-
92. This interface is used only for the experiments of Section I. To avoid
interference with other devices in our building we set the mode to 802.11a
and the wireless channel to 44. To obtain the packet trace of Figures 1, 2 for
802.11a we use tcpdump. To capture the transmitted frames for 1901, we
use the tools described in [19], because this MAC employs frame aggregation
and the number of Ethernet packets per PLC frame varies with time.

0 1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

Number of stations

C
o

lli
si

o
n

 P
ro

b
a

b
ili

ty

 

 

MAC simulation 

Analysis

HomePlug AV measurements

Fig. 5. Collision probability obtained by simulation, our drift model of
Section IV and experiments with HomePlug AV devices for the default
configuration CA1 of 1901 given in Table I.

because they are stored in the firmware, and the required off-
sets of their binary values are not publicly available. Therefore,
the results on throughput and fairness have been obtained with
our validated simulator.

B. Simulation Parameters and Throughput Computation

Our simulator uses the same time slot duration and timing
parameters as specified in the standard (see Table III). The
PLC frame transmission has a duration D and is preceded
by two priority tone slots (PRS), and a preamble (P ). It is
followed by a response inter-frame space (RIFS), the ACK,
and finally, the contention inter-frame space (CIFS). Thus, a
successful transmission has a duration Ts := 2PRS+P+D+
RIFS+ACK+CIFS. In the case of a collision, the stations
set the virtual carrier sense (VCS) timer equal to EIFS, where
EIFS is the extended inter-frame space used by 1901, and
then the channel state is idle. Hence, a collision has a duration
Tc := EIFS. Finally, we assume that all the packets use the
same physical rate.

Parameter Duration (µs)

Slot σ, Priority slot PRS 35.84
CIFS, RIFS 100.00
Preamble P , ACK 110.48
Frame duration D 2050.00
EIFS 2920.64

TABLE III
SIMULATION PARAMETERS.

To analytically evaluate throughput, we employ the model of
Section IV. After solving the equations for finding the steady-
state number of nodes n̄0, . . . , n̄m−1 at each backoff stage,
we can compute the throughput of the network as follows.
The probability that a slot is idle is pe. The probability of a
successful transmission of a station at stage i is τi(1 − pi).
Therefore, the probability ps that a slot contains a successful
transmission is given by ps =

∑m−1
i=0 n̄iτi(1 − pi). Let pc

denote the probability that a slot contains a collision. We have
pc = 1−pe−ps. We now have enough information to compute
the normalized throughput S of the network as

S =
psD

psTs + pcTc + peσ
, (10)
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Fig. 6. Simulations of 1901 (with CA1 parameters) and 802.11 for N =
2, 5, 10. Points show the collision probabilities at different backoff stages
for all stations, and lines represent the solution of the fixed-point equations
for the collision probability from the D.A. models [6], [8]. The decoupling
assumption is viable for 802.11 even for N = 2, whereas the collision
probability depends on the backoff stage for 1901. Our model accurately
predicts the collision probability at each backoff stage i (shown at the right
for N = 2).

where D is the frame duration, Ts is the duration of a
successful transmission, Tc is the duration of a collision, and
σ is the time slot duration.

C. The Decoupling Assumption Does Not Hold for 1901

For 802.11, the decoupling assumption has been shown to
be viable in various settings as N → ∞ [12]. In addition,
it turns out that it also works well for small numbers of
stations [6], [13]. For 1901, the coupling induced by the defer-
ral counter makes the collision probabilities state-dependent,
which penalizes models based on the decoupling assumption
when N is small. To see this, we plot on Figure 6 the collision
probabilities experienced by 802.11 and 1901 stations, as a
function of the backoff stage (i.e., as a function of the stations’
state). On the same figure, we also show the collision proba-
bilities computed with our model. Let Ck be the sequence of
outcomes of attempted transmissions, i.e. Ck := 0 if the kth
transmission attempt results in a success, and Ck := 1 when
the outcome is a collision. The decoupling assumption asserts
that the sequence {Ck} consists of independent and identically
distributed (i.i.d.) random variables. In Figure 6, we observe
that for 1901, {Ck} cannot be considered as i.i.d., because the
collision probability observed at different backoff stages is not
the same. The collision probability depends on the previous
transmission attempts (backoff stage changed due to collision)
or on other stations activity (backoff stage changed due to
sensing the medium busy). In fact, the collision probability
for 1901 is an increasing sequence of the backoff stage i, as
shown in Figure 6, and proved in Corollary 1 in Appendix.

D. Model Evaluation

We now compare our drift model with the D.A. model for
various configurations and number of stations. In Figure 7, we
show the throughput obtained by 1901 with the default param-
eters for the two priority classes CA1 and CA3 (CA0 and CA2
are equivalent). We also show the throughput predicted by the
two models. The model based on the decoupling assumption
is less accurate for CA1 when N is small, because the class
CA1 uses larger contention windows, which increases the time
spent in backoff and, as a result, the coupling between stations.
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Fig. 7. Throughput obtained by simulation, with our model, and the models
based on the decoupling assumption (D.A.), for the default configurations of
1901 given in Table I.

We now study the accuracy of the two models in more
general settings. To this end, we introduce a factor f , such
that at each stage i, the value of di is given by di = f i(d0 +
1)− 1. This enables us to define various sequences of values
for the di’s, using only f and d0. At each stage i, CWi is
given by CWi = 2iCWmin, and there are m backoff stages
(i ∈ {0,m − 1}). In Figure 8, we show the throughput for
various such values of d0 and f , with CWmin = 8 and m =
4. We observe that the D.A. model achieves good accuracy
when the di’s are large, because in these configurations, the
deferral counter is less likely to expire, which reduces the
coupling among stations. Note that the drift model achieves
good accuracy when the di’s are small.
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Fig. 8. Throughput obtained by simulation, with the drift model, and the
D.A. model for different configurations. The initial values di of the deferral
counter at each backoff stage are given by di = f i(d0 + 1)− 1.

Finally, in Figure 9 we show the throughput for different
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Fig. 9. Throughput obtained by simulation, with the drift model, and the D.A.
model for various values of CWmin and m ∈ {4, 6}.

values for CWmin, with m ∈ {4, 6}. In all cases, the drift
model fits very well, contrary to the model based on the
decoupling assumption. The accuracy of the D.A. model is
penalized more when CWmin is large, because the likelihood
that the deferral counter expires increases.

VI. THROUGHPUT, FAIRNESS AND COUPLING

In this section we show how the coupling between 1901
stations is related to throughput and jitter (or, equivalently, un-
fairness). Moreover, based on our model, we propose a method
to optimize jitter under a given throughput requirement.

In the introductory example of Figure 1, we observe a
bistability effect with two 1901 stations, where stations are
likely to remain for long durations in states with large transmit
(resp. backoff) probabilities. We explain that this effect is
caused by the deferral counter, which creates a coupling
between the stations and penalizes the accuracy of models
assuming decoupling. It turns out that this coupling is ben-
eficial for throughput10, and different 1901 configurations
determine different tradeoffs between fairness (or jitter) and
throughput. We now investigate this effect further in terms of
short-term fairness. A MAC protocol is short-term fair when
the stations get similar transmission opportunities over short
time scales. Conversely, an unfair protocol advantages some
stations over others, which in practice results in high delay
variance (jitter). To measure short-term fairness, we compute
Jain’s fairness index [22] over windows of N frame durations.
More precisely, if we let xi(w) be the number of frames
successfully transmitted by station i during a window of w
frame durations, Jain’s index during window w is defined as
J(w) = (

∑N
i=1 xi(w))2/(N

∑N
i=1 xi(w)2). In the following,

we take w = N , as this is the smallest value of w such that
J(w) can be equal to 1 (for a perfectly fair protocol). The
reported results are obtained by averaging the values of J(N)
over windows moving along the whole packet traces.

In Figure 10, we plot throughput and short-term fairness
as a function of the initial values of the deferral counter (in
terms of d0 and f ), for N = 2 and N = 5. Interestingly,
it appears that that there is a direct link between throughput,

10Intuitively, this is easy to understand: without proper synchronization,
having one station transmitting for long durations is more efficient than
alternating transmissions.
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Fig. 10. Throughput and fairness with CWmin = 8 and m = 4 and various
values of d0 and f , for N = 2 (left) and N = 5 (right). The initial value of
the deferral counter at backoff stage i is given by di = f i(d0 + 1)− 1.
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Fig. 11. Short-term fairness and throughput obtained by simulation for
parameters CWmin = 8, m = 6 and various values of d0 and f . The
deferral counter tunes a tradeoff between throughput and fairness in 1901.

fairness and coupling. When the initial deferral counters are
small (corresponding to small d0 and f ), the stations are more
likely to react on sensing the medium busy and thus become
coupled. Indeed, as confirmed by Figure 8, the configurations
employing small deferral counters yield larger throughput but
lower accuracy when assuming decoupling. Conversely, these
configurations have the worse short-term fairness and thus
cause higher jitter.

We study further the throughput/fairness tradeoff on Fig-
ures 11 and 12. Both figures show the throughput and fairness
achieved on networks with a varying number of stations.
Figure 11 presents throughput and fairness for various initial
deferral counter values (in terms of d0 and f ). Figure 12 shows
these two metrics for different numbers of backoff stages m.

Again, both figures show a clear tradeoff between through-
put and short-term fairness. Furthermore, this tradeoff can be
tuned by adapting the parameters that control the number of
backoff stages and the initial values of the deferral counters.
This possibility is a remarkable feature of 1901, enabled by the
deferral counter. We summarize the impact of all parameters
on throughput and fairness in Table IV.

A. Finding Efficient Configurations

We can use the findings summarized in Table IV, together
with our drift model, to find efficient configurations that
meet specific QoS criteria. For example, we propose a simple
heuristic algorithm that finds an efficient configuration in terms
of jitter, given an arbitrary throughput requirement (if such a
configuration exists). Our method is detailed in Algorithm 1
and works as follows. It orders (by increasing order of values)
the sets of possible values taken by d0 and m in two sequences
named D and M, respectively. It then performs a binary
search on D: for a given d0 in D, it tests all combination
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Fig. 12. Short-term fairness and throughput obtained by simulation with
parameters CWmin = 8, d0 = 0, f = 2 and various values of m.

d0 f m CWmin

small
T ↗ T ↗ T ↘ T ↗ if N is small
F ↘ F ↘ F ↗ F →

large
T ↘ T ↘ T ↗ T ↗ if N is large
F ↗ F ↗ F ↘ F →

TABLE IV
SUMMARY OF THE QUALITATIVE EFFECTS OF EACH PARAMETER ON

THROUGHPUT (“T”) AND SHORT-TERM FAIRNESS (“F”).

of parameters (m,CWmin) (by increasing order of m). When
such a configuration satisfies the throughput requirement, the
algorithm stores it and tries a larger value for d0 (as a
larger d0 can potentially yield better jitter). Conversely, if no
configuration meeting the throughput requirement is found, the
algorithm considers smaller values for d0 (which yield higher
throughputs, potentially at the expense of jitter). The algorithm
ends when it finds the best configuration that corresponds to
the largest possible d0 that satisfies the constraint.

Because it employs a binary search, the complexity of
this algorithm is O(|C| · |M| · log(|D|)). We evaluate it
on the sequences C = (8, 16, 32, 64), M = (4, 5, 6) and
D = (0, 1, 2, 3)11. First, we run simulations of all the possible
configurations in {C ×M×D}, and we compute short-term
fairness J(N) and normalized throughput S. Let Smin be the
minimum S achieved by all configurations in {C ×M×D},
and similarly Smax be the maximum S. To test our algorithm,
we draw 100 throughput requirements uniformly at random in
[Smin, Smax]. Then, for each sample i with throughput Si, we
run Algorithm 1 that returns the configuration configi. Now,
let Ji be the short-term fairness of the configuration configi
at sample i, and let Jmax

i denote the maximum short-term fair-
ness of all configurations that satisfy the throughput constraint
Si. To evaluate the algorithm, we employ a normalized fairness
index that is defined as Ji/Jmax

i . The normalized fairness is
a metric that evaluates the distance between the fairness of the
configuration configi and the maximum achievable fairness
given the the throughput constraint Si.

The results of the algorithm evaluation are presented in
Figure 13. We present the normalized fairness of the configu-
rations returned from 100 runs of Algorithm 1. We repeat the
procedure described above for 2 ≤ N ≤ 8. We observe that
Algorithm 1 always returns a configuration with good fairness
given the throughput constraint. Thus, it can be employed

11We use the factor f = 2 because the contention windows are also doubled
between successive backoff stages. Algorithm 1 can be modified to include
different f values given the performance tradeoff of f in Table IV.
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Fig. 13. Normalized fairness of the configurations Algorithm 1 returns when
run for 100 throughput requirements S chosen randomly, for each N value.

to optimize the performance for delay-sensitive traffic that
operates with 1901.

Algorithm 1: 1901 configuration for minimum jitter

1 Input: Throughput requirement S, number of stations N ,
sequences D, M and C of possible values for d0, m and
CWmin, respectively

2 Output: A configuration (d0,m,CWmin) that minimizes the
jitter and provides throughput at least S, if it exists (returns
null otherwise)

3 Initialize:
4 Sort the sequences M and D by increasing order of values
5 Set h1 ← 0 and h2 ← |D|− 1
6 Set config ←null

7 while h1 ≤ h2 do
8 Set break flag ←false

9 h3 ← ⌈(h2 − h1)/2⌉+ h1

10 Set d0 ← Dh3 (i.e., the h3-th element of sequence D)
11 for each m ∈M and CWmin ∈ C do

12 evaluate throughput Ŝ from model when using
configuration (d0,m,CWmin)

13 if Ŝ ≥ S then
14 Set config ← (d0,m,CWmin)
15 Set h1 ← h3 + 1
16 Set break flag ←true

17 break out of for loop
18 end
19 end
20 if break flag ==false then
21 Set h2 ← h3 − 1
22 end
23 end
24 Return: config

VII. CONCLUSION

The IEEE 1901 CSMA/CA protocol has received little atten-
tion from the research community so far, although it is adopted
by the vast majority of power-line communication devices. In
this paper, we focus on the analysis of the performance of
this protocol. One of the key results is the finding that the
decoupling assumption, which is commonly adopted for the
analysis of MAC protocols such as IEEE 802.11 and IEEE
1901, might not hold for 1901. This is due to the coupling
that this protocol introduces to the stations contending for the
medium. Building on this finding, we have proposed a new
model that does not rely on the decoupling assumption and
thus substantially improves the accuracy of previous studies,
in particular for networks with a small number of stations, the
most frequent configuration in practice. Our model reveals that,



as a result of the coupling between stations, 1901 suffers from
short-term unfairness. To address this issue, we have explored
the tradeoff between short-term fairness and throughput that
exists in 1901. In this context, we devised a method that
computes efficient configurations in terms of fairness/jitter,
under arbitrary throughput constraints.

APPENDIX

In this Appendix we give the proofs of some lemmas for
Theorem 1. Table V can be used as a quick reference for the
equations of Section IV.

Notation Value Eq.

xi
k

∑k
j=di+1

(k
j

)

pji (1− pi)k−j (2)

pi 1− pe
1−τi

(1)

pe
∏m−1

k=0 (1− τk)n̄k -

bci

∑CWi−1

k=di+1

[

(k+1)(1−xk)+
∑k

j=di+1 j(xj−xj−1)
]

CWi
(3)

+ (di+1)(di+2)
2CWi

τi

∑CWi−1

k=di+1
1

CWi
(1−xk)+

di+1

CWi
bci

(4)

βi

∑CWi−1

k=di+1
1

CWi

∑k
j=di+1 (xj−xj−1)

bci
(5)

Ki K0 = 1,Ki =
τi−1pi−1+βi−1

τi+βi
, 1 ≤ i ≤ m− 2 (7)

Km−1 =
τm−2pm−2+βm−2

τm−1(1−pm−1)

n̄i n̄0 = N
∑m−1

k=0

∏

k
j=0

Kj
, (EQ)

n̄i =
N

∏i
j=0 Kj

∑m−1
k=0

∏

k
j=0

Kj
1 ≤ i ≤ m− 1

TABLE V
SUMMARY OF VARIABLES

Lemma 1. τi is a decreasing function of pi for any i.

Proof. The probability τi given by (4) can be recast as

τi =
1

Bi + 1
(11)

where Bi is the expected number of backoff slots between two
transmission attempts of a station that always stays at backoff
stage i. Bi can be computed recursively and similarly to bci
in (3), and it is given by12

Bi =
di(di + 1)

2CWi
(12)

+
CWi−1
∑

j=di+1

j(1− xj) +
∑j

k=di+1 (k +Bi)(xk − xk−1)

CWi
.

12From now on, we drop the superscript in xi
k, because the backoff stage

is clear from the context.

We simplify (12) as

Bi =
di(di + 1)

2CWi
+

CWi−1
∑

j=di+1

j

CWi

︸ ︷︷ ︸

1

−
CWi−1
∑

j=di+1

jxj

CWi

︸ ︷︷ ︸

3

+
1

CWi

CWi−1
∑

j=di+1

j
∑

k=di+1

⎛

⎝Bi(xk − xk−1)
︸ ︷︷ ︸

2

+ k(xk − xk−1)
︸ ︷︷ ︸

3

⎞

⎠

=
CWi − 1

2
︸ ︷︷ ︸

1

+
1

CWi

CWi−1
∑

j=di+1

⎛

⎜
⎜
⎜
⎜
⎝

Bixj
︸ ︷︷ ︸

2

−
j−1
∑

k=di+1

xk

︸ ︷︷ ︸

3

⎞

⎟
⎟
⎟
⎟
⎠

, (13)

where we have used that xdi
= 0, for all pi ∈ [0, 1] by the

definition of xk, and we have combined the terms with the
same under-brace indexes.

To prove the lemma, we proceed as follows. (i) First, we
compute dBi/dpi. (ii) Second, we show that this derivative is
positive at pi = 1. (iii) Third, we show that if the derivative is
negative for some 0 < p∗i < 1, it will also be negative at any
value pi > p∗i . The proof then follows by contradiction: if the
derivative was negative at some p∗i , it would also be negative
at pi = 1, which would contradict our previous result.

(i) The derivative of Bi can be computed as

dBi

dpi
=

CWi−1
∑

k=di+1

∂Bi

∂xk

dxk

dpi
. (14)

The partial derivative ∂Bi/∂xk can be computed by (13) as

∂Bi

∂xk
=

Bi − (CWi − 1− k)

CWi
+

∂Bi

∂xk

CWi−1
∑

j=di+1

xj

CWi
, (15)

which yields

dBi

dpi
=

∑CWi−1
k=di+1 (Bi − (CWi − 1− k))dxk

dpi

CWi −
∑CWi−1

j=di+1 xj

. (16)

To compute dxk/dpi, we observe that xk is the comple-
mentary cumulative function of a binomial distribution and
it can be expressed as the incomplete beta function xk =
1− I1−pi

(k−di, di+1) [17]. The derivative of an incomplete
beta function is computed in [23], and by using this we obtain

dxk

dpi
=

k!

(k − di − 1)!di!
pdi

i (1− pi)
k−di−1. (17)

(ii) Next, we show that dBi/dpi > 0 at pi = 1. Note that
xk = 1 at pi = 1 for all di + 1 ≤ k ≤ CWi − 1. Given this,
we have

Bi =
di(di + 1)

2CWi
+

CWi − di − 1

CWi
(di + 1 +Bi). (18)

Solving (18) over Bi yields Bi = CWi−di/2−1 at pi = 1.
Now, notice that dxk/dpi = 0 at pi = 1 for all di + 1 < k ≤
CWi−1, and dxdi+1/dpi = di+1 from (17). Substituting in
(16) yields dBi/dpi = di/2 + 1, i.e., dBi/dpi > 0 at pi = 1.



(iii) Next, we show that if dBi/dpi was negative at some
value p∗i , then it would also be negative for any pi > p∗i .
Observe that in (16) some terms are negative for k < CWi −
1−Bi. Let us assume that the derivative is negative at p∗i . Let
l = ⌈CWi−1−Bi(p∗i )⌉. Given (16), we can express dBi/dpi
as the product of two terms, dBi/dpi = f1(pi)f2(pi), where

f1(pi)
.
=

dxi
l/dpi

CWi −
∑CWi−1

j=di+1 x
i
j

,

f2(pi)
.
=

CWi−1
∑

k=di+1

(Bi − (CWi − 1− k))
dxi

k/dpi
dxi

l/dpi
.

Note that f1(pi) > 0 ∀pi, which implies dBi/dpi < 0 if
and only if f2(pi) < 0. Note also that

df2(pi)

dpi
=

CWi−1
∑

k=di+1

dBi

dpi

dxi
k/dpi

dxl
k/dpi

(19)

+
l−1
∑

k=di+1

(Bi − (CWi − 1− k))
d

dpi

(
dxi

k/dpi
dxi

l/dpi

)

+
CWi−1
∑

k=l+1

(Bi − (CWi − 1− k))
d

dpi

(
dxi

k/dpi
dxi

l/dpi

)

and

d

dpi

(
dxi

k/dpi
dxi

l/dpi

)

= −
k!(l − di − 1)!

l!(k − di − 1)!
(k − l)(1− pi)

k−l−1,

which is positive for k < l and negative for k > l. From the
above equations, it follows that as long as CWi−1−(l−1) >
Bi(pi) > CWi−1−l and dBi/dpi < 0, we have df2/dpi < 0.

Building on the above, next we show that Bi(pi) decreases
for pi ∈ [p∗i , p

l
i], where pli is the pi value for which Bi(pli)−

(CWi−1−l) = 0. At pi = p∗i we have f2(p∗i ) < 0, dBi/dpi <
0 and df2/dpi < 0. Let us assume that, before Bi(pi)
decreases down to CWi − 1 − l, there is some p̂i > p∗i for
which dBi/dpi ≥ 0. This implies that for some p′i ∈ (p∗i , p̂i),
f2(pi) has to stop decreasing, i.e., df2(p′i)/dpi = 0. Note that,
since f2(pi) decreases in [p∗i , p

′
i], we have f2(pi) < 0 for

pi ∈ [p∗i , p
′
i], which implies that Bi(pi) decreases in [p∗i , p

′
i].

Also, since CWi − 1− (l − 1) > Bi(p∗i ) > CWi − 1− l and
(by assumption) Bi(pi) does not reach CWi − 1− l, we also
have CWi − 1− (l − 1) > Bi(p′i) > CWi − 1− l. However,
we have seen that f2(p′i) < 0 and CWi − 1 − (l − 1) >
Bi(p′i) > CWi − 1 − l implies df2(p′i)/dpi < 0, which
contradicts df2(p′i)/dpi = 0. Hence, our initial assumption
does not hold, which implies that dBi/dpi decreases until Bi

reaches CWi − 1− l, i.e., dBi/dpi < 0 for pi ∈ [p∗i , p
l
i].

Following the same rationale for pi ∈ [pli, p
l+1
i ] and choos-

ing

f1(pi) =
dxi

l+1/dpi

CWi −
∑CWi−1

j=di+1 x
i
j

,

f2(pi) =
CWi−1
∑

k=di+1

(Bi − (CWi − 1− k))
dxi

k/dpi
dxi

l+1/dpi
,

we can prove that dBi/dpi < 0 for pi ∈ [pli, p
l+1
i ]. We

can repeat this recursively to show that dBi/dpi < 0 for
pi ∈ [pl+1

i , pl+2
i ], pi ∈ [pl+2

i , pl+3
i ] until reaching pi ∈

[pCWi−2
i , pCWi−1

i ]. If 1 < pCWi−1
i , the proof is completed.

Otherwise, we can follow a similar argument to show that
dBi/dpi < 0 for pi ∈ [pCWi−1

i , 1]. Indeed, let us assume
that f2(pi) ≥ 0 for some p̂i ∈ [pCWi−1

i , 1]. This implies that
for some p′i ∈ [pCWi−1

i , p̂i], we have df2(p′i)/dpi = 0 and
f2(p′i) < 0, which is not possible according to (19).

From the above, if dBi/dpi was negative at any p∗i , it would
also be negative for all pi > p∗i . Since this contradicts result
(ii), we conclude that dBi/dpi ≥ 0 for pi ∈ [0, 1].

Corollary 1. τi is a strictly decreasing sequence of i, and pi
is a strictly increasing sequence of i if CWi+1 ≥ 2CWi −
di − 1, 0 ≤ i < m− 1.

Proof. The result for τi follows from Lemma 1. By the
proof of Lemma 1, the minimum value of Bi+1 is Bmin

i+1 =
(CWi+1 − 1)/2 at pi+1 = 0, and the maximum value of Bi

is Bmax
i = CWi − di/2 − 1 at pi = 1. Setting CWi+1 ≥

2CWi−di−1, yields Bmin
i+1 ≥ Bmax

i , hence Bi+1 > Bi, and,
as a result, τi+1 < τi, for all pi ∈ [0, 1]. From the above, pi
is strictly increasing with i because pi = 1− pe/(1− τi) and
pe is the same for all backoff stages i.

Corollary 2. βi is an increasing function of pi.

Proof. From (4) and (5), we have βi = 1/bci − τi. bci in (3)
can be simplified as follows:

bci =
CWi + 1

2
−

∑CWi−1
k=di+1

∑k
j=di+1 xj

CWi
. (20)

Since dxk/dpi > 0, k ≥ di + 1, bci is decreasing with pi.
Hence, by using Lemma 1, βi is increasing with pi.

Proposition 1. Let us assume that τi is a strictly decreasing

sequence of i. Then, according to the system of equations (1)
for all 0 ≤ i ≤ m − 1, pe is defined in [0, 1 − τmax

0 ], where

τmax
0 is the maximum value of the transmission probability τ0

at backoff stage 0.

Proof. First, because of (1) and pi ≤ 1 for all 0 ≤ i ≤ m− 1,
we have that pe ≥ 0.

Now, because of (1) and pi ≥ 0, we have that pe ≤ 1− τi,
for all τi values. From this, we have that pe has to satisfy
the condition pe ≤ 1 − τmax

i , where τmax
i is the maximum

value of τi, at pi = 0. From the above and because τi is a
strictly decreasing sequence of i (hence, we have 1− τmax

i ≥
1 − τmax

0 ), pe has to satisfy pe ≤ 1 − τmax
0 in order to have

pi ≥ 0, for all 0 ≤ i ≤ m− 1.

Proposition 2. τi can be expressed as an one-to-one function

of pe. All the relationships between τi, pi, βi and pe are

bijective.

Proof. Let τmax
0 := 2/(CW0 + 1) denote the maximum

transmission probability at stage 0, which is equal to the
transmission probability experienced by the only station in
the channel when N = 1. According to Proposition 1, the



minimum and maximum values of pe are 0 and 1− τmax
0 , at

pi = 1, 0 ≤ i ≤ m − 1 and p1 = 0, respectively. We show
that for each value pe ∈ [0, 1− τmax

0 ] there exists a unique τi
value, which results from combining (4) with (1). This implies
that the function τi(pe) resulting from combining (4) with (1)
is one-to-one. The results for pi, βi then follow: For any value
pe, pi can be computed given τi(pe) and pe by (1). Then, βi

is computed simply as a function of pi using (5).

For any fixed value p∗e, τi can be computed via the fixed-
point equation

τi =

∑CWi−1
k=di+1

1
CWi

(1− xk(p∗e, τi)) +
di+1
CWi

bci(p∗e, τi)
:= f(p∗e, τi),

(21)
where we have replaced pi with 1 − p∗e/(1 − τi) in the
expressions for xk (see (2)) and bci (see (3)). Because f(p∗e, τi)
maps the set of possible values of τi to itself, f(p∗e, τi) has at
least one fixed-point by Brouwer’s fixed-point theorem. The
solution to the above fixed-point equation is unique because
the function f(p∗e, τi) is continuous with respect to τi and
strictly increasing:

df

dτi
=

df

dpi

dpi
dτi

=
1

(Bi + 1)2
dBi

dpi

p∗e
(1− τi)2

> 0,

by using the proof of Lemma 5. Note that the above derivative
might be 0 at pi = 0 (when di ̸= 0) due to dBi/dpi = 0,
and it is also equal to 0 at p∗e = 0. At these trivial values,
it is easy to see that again, combining (4) with (1) yields a
unique value for τi. Thus, (21) has a unique solution for any
p∗e , and τi(pe) is an one-to-one function. It then follows by (1)
that also the relationship between pe and pi is bijective. Now,
given that βi is monotone, hence one-to-one, with respect to
pi by Corollary 2, the relationship between pe and βi is also
bijective.

Using the above proposition, we can express all variables
τi, pi, βi as a function of pe. The following lemma shows that
τi(pe) is an increasing function of pe.

Lemma 2. Let us consider the expression of τi as a function

of pe resulting from combining (4) with (1). According to this

expression, τi is an increasing function of pe, if CWi ≥ 6 and

di ≤ ⌊CWi/2− 1⌋.

Proof. Since τi = 1/(Bi + 1), we need to show that
dBi/dpe < 0. Note that

dBi

dpe
=

dBi

dpi

dpi
dpe

. (22)

From pi = 1− pe/(1− τi) = 1− pe(Bi + 1)/Bi, we have

dpi
dpe

= −
Bi + 1

Bi
+

pe
B2

i

dBi

dpe
. (23)

Combining (22) and (23) yields

dBi

dpe
= −

dBi

dpi

Bi + 1

Bi

1

1− pe

B2
i

dBi

dpi

. (24)

Because of Lemma 1, dBi/dpi > 0, and therefore
dBi/dpe < 0 as long as

dBi

dpi
<

B2
i

pe
=

Bi(Bi + 1)

1− pi
. (25)

From (16) we have

dBi

dpi
<

Bi

CWi −
∑CWi−1

k=di+1 xk

CWi−1
∑

k=di+1

dxk

dpi
. (26)

To prove the lemma, we distinguish two cases: one for di =
0 and one for di ̸= 0.

First, let us study (26) with di = 0. We have
dxk/dpi = k(1 − pi)k−1 and xk = 1 − (1 − pi)k.
Let h(pi) =

∑CWi−1
k=0 k(1− pi)k/

∑CWi−1
k=0 (1− pi)k. We

now show that h decreases with pi. Let also G(pi) =
∑CWi−1

k=0 pki /
∑CWi−1

k=0 kpki . By Lemma 5.1 in [11], G(pi) is
strictly decreasing with pi in [0, 1]. Thus, h(pi) = 1/G(1−pi)
is also strictly decreasing with pi in [0, 1], and h(pi) ≤ h(0) =
(CWi−1)/2. Also, Bi(pi) ≥ (CWi−1)/2 by Lemma 1. Given
the above, we have h(pi) ≤ Bi(pi) and (26) yields

dBi

dpi
<

Bi

1− pi

∑CWi−1
k=0 k(1− pi)k
∑CWi−1

k=0 (1− pi)k
≤

B2
i

1− pi
<

Bi(Bi + 1)

1− pi
.

We now move to the case di ̸= 0. We show that dBi/dpi <
B2

i , which is a sufficient condition for (25). From (17) and (2)
we have dxk/dpi = k(xk − xk−1)/pi. Thus, (26) yields

dBi

dpi
<

Bi

pi

CWixCWi−1 −
∑CWi−1

k=di+1 xk

CWi −
∑CWi−1

k=di+1 xk

≤
Bi

pi
xCWi−1.

Let g(pi) = Bipi − xCWi−1. Now, it is sufficient to show
that g ≥ 0 for pi ∈ [0, 1] so that xCWi−1 ≤ Bipi Note that
g(0) = 0, hence a sufficient condition now is dg/dpi > 0. Let
X be a random variable following the binomial distribution
Bin(CWi − 2, pi). Then, observe that using (17) we have

dg

dpi
= Bi +

dBi

dpi
pi − (CWi − 1)P(X = di). (27)

Since Bi ≥ (CWi−1)/2 and dBi/dpi by Lemma 1, dg/dpi >
0 if P(X = di) < 1/2. The maximum of P(X = di) is at
pi = di/(CWi−2). We show that P(Y = di) < 1/2, where Y
now is a random variable following the binomial distribution
Bin(CWi−2, di/(CWi−2)). To this end, we use Theorem 2.1
in [24] that introduces some bounds on the binomial coefficient
(
n
k

)

. This theorem states that
(
n

k

)

<

(

1−
5(k − 1)

6n2

)
n(n− 1)n−1

kk(n− k)n−k
(28)

for n ≥ 4 and 2 ≤ k ≤ ⌊n/2⌋. With n = CWi−2 and k = di,
the above yields

P(Y = di) <

(

1−
5(di − 1)

6(CWi − 2)2

)(

1−
1

CWi − 2

)CWi−3

.

The above is smaller than 0.42 because CWi ≥ 6. Note that
the above result holds for di ≥ 2. For di = 1 we have

P(Y = 1) =

(

1−
1

CWi − 2

)CWi−3

= 0.42.



This completes the proof of the lemma.

Let Φ(pe) =
∏m−1

k=0 (1− τk(pe))n̄k(pe). By using Proposi-
tion 2, we can express all βi(pe), pi(pe), τi(pe), as a function
of pe. The following lemmas examine the function Φ(pe)
where each n̄k(pe) is a function of all βi(pe), pi(pe), τi(pe),
0 ≤ i ≤ m− 1 by (EQ).

Lemma 3. Let Φ(pe) =
∏m−1

k=0 (1− τk(pe))n̄k(pe), where

each n̄k(pe) is a function of all βi(pe), pi(pe), τi(pe), 0 ≤
i ≤ m− 1. Then, ∂Φ/∂βj > 0, for any 0 ≤ j < m− 1, and

∂Φ/∂βm−1 = 0, if CWi+1 > 2CWi−di−1, 0 ≤ i ≤ m−1.

Proof. We consider the expression
∏m−1

k=0 (1− τk)n̄k as a
function of τi, pi and βi, where n̄i is computed as a function
of τi, βi and pi from (EQ). We show that if we increase βj for
a given j, and leave the remaining τi, pi and βi values fixed,
then

∏m−1
k=0 (1− τk)n̄k increases. From (7), it can be seen that

the new Ki values, denoted by K∗
i , satisfy the following.

If j = 0, then K∗
1 > K1 and K∗

i = Ki, i > 1 by (7). Thus,
n̄∗
0 < n̄0 and n̄∗

i > n̄i, 0 < i ≤ m − 113. If j = m − 1, then
K∗

i = Ki and n̄∗
i = n̄i, 0 ≤ i ≤ m−1, thus ∂Φ/∂βm−1 = 0.

Now, for 1 ≤ j ≤ m − 2, we have
∏i

n=1 K
∗
n =

∏i
n=1 Kn, i < j and

∏j
n=1 K

∗
n <

∏j
n=1 Kn.

We also have
∏i

n=1 K
∗
n >

∏i
n=1 Kn, i > j, because

∏i
n=1 K

∗
n

∏i
n=1 Kn

=

τjpj+β∗
j

τj+β∗
j

τjpj+βj

τj+βj

,
∂

∂βj

(
τjpj + βj

τj + βj

)

=
τj(1− pj)

(τj + βj)2
> 0.

Let σ =
∑m−1

i=1

∏i
n=1 Kn. We now show that σ∗ > σ. We

need to show that ∂σ/∂βj > 0. For j = m− 2, ∂σ/∂βj > 0
if and only if τm−2(1−pm−2)− τm−1(1−pm−1) > 0, which
holds by Corollary 1. For j < m − 2, we prove σ∗ > σ by
induction. We first show that σ∗ > σ for j = m− 3, and then
prove that if it holds for j = k, then it holds for j = k − 1.
Taking ∂σ/∂βj we have

∂σ/∂βj =

j−1
∏

l=1

Kl

τj + βj

⎛

⎝−Kj +
Kjτj(1− pj)

τj+1 + βj+1

⎛

⎝1 +
m−1
∑

i=j+2

i
∏

n=j+2

Kn

⎞

⎠

⎞

⎠

Thus, we need to show that:

τj(1− pj)

⎛

⎝1 +
m−1
∑

i=j+2

i
∏

n=j+2

Kn

⎞

⎠− τi+1 − βi+1 > 0. (29)

For j = m− 3, we have

τm−3(1− pm−3)(1 +Km−1)− τm−2 − βm−2

= τm−3(1− pm−3) + τm−3(1− pm−3)
τm−2pm−2 + βm−2

τm−1(1− pm−1)

− τm−2 − βm−2

13Here and in following inequalities we use the fact that the function
y(x) = ax/(b + cx) with a, b, c ∈ R+ is increasing. Replacing x with
the Kj that increases and a, b, c with products of Ki that remain constant
yields the corresponding relations.

> τm−3(1− pm−3) + τm−2pm−2 − τm−2 > 0,

because of Corollary 1. Hence, (29) holds.

Now assume that σ∗ > σ for j = k. We show that σ∗ > σ
holds also for j = k − 1. Let us study (29) for j = k − 1:

τk−1(1− pk−1)

(

1 +
m−1
∑

i=k+1

i
∏

n=k+1

Kn

)

− τk − βk

> τk−1(1− pk−1)

(

1 +Kk+1
τk+1 + βk+1

τk(1− pk)

)

− τk − βk > 0,

by using (29) for j = k, (7), and Corollary 1. This completes
the induction proof for σ∗ > σ.

Finally, given σ∗ > σ we have shown that n̄∗
i < n̄i, i ≤ j.

Clearly, since n̄∗
i < n̄i, i ≤ j (the number of stations at these

backoff stages decreases) and
∑

k n̄
∗
k =

∑

k n̄k = N (the
total number of stations is always preserved), there must exist
a backoff stage l > j such that n̄∗

l > n̄l (the number of stations
at this backoff increases). Since for i ≥ l + 1, n̄i = Kin̄i−1

with K∗
i = Ki, it holds n̄∗

i > n̄i, ∀i > l. Thus,

∏m−1
k=0 (1− τk)n̄

∗
k

∏m−1
k=0 (1− τk)n̄k

=
∏

k<l

(1− τk)
n̄∗
k−n̄k

∏

k≥l

(1− τk)
n̄∗
k−n̄k

> (1− τl−1)
∑

k<l n̄
∗
k−n̄k(1− τl)

∑

k≥l n̄
∗
k−n̄k .

Since
∑

k n̄
∗
k =

∑

k n̄k = N and τl < τl−1, the above is larger
than 1, which proves the lemma for 0 ≤ j ≤ m− 2.

Lemma 4. Let Φ(pe) =
∏m−1

k=0 (1− τk(pe))n̄k(pe), where

each n̄k(pe) is a function of all βi(pe), pi(pe), τi(pe), 0 ≤
i ≤ m − 1. Then, ∂Φ/∂pj > 0, for any 0 ≤ j ≤ m − 1, if

CWi+1 > 2CWi − di − 1, 0 ≤ i ≤ m− 1.

Proof. The proof is similar to Lemma 3. It can be easily seen
from (7) that if pj increases to p∗j , we have

i
∏

n=1

K∗
n =

i
∏

n=1

Kn, i ≤ j and

i
∏

n=1

K∗
n >

i
∏

n=1

Kn, i > j.

Note that the above holds for 0 ≤ j ≤ m− 2. For j = m− 1
we have

i
∏

n=1

K∗
n =

i
∏

n=1

Kn, i < m−1,

i
∏

n=1

K∗
n >

i
∏

n=1

Kn, i = m−1.

Thus, as σ∗ > σ (with σ =
∑m−1

i=1

∏i
n=1 Kn) also holds

here, it is n̄∗
i < n̄i for i ≤ j and n̄∗

i > n̄i for i > j, with
0 ≤ j ≤ m − 2. For j = m − 1 we have n̄∗

i < n̄i for
i < m − 1 and n̄∗

i > n̄i for i = m − 1. Then, following
the same reasoning as for the above lemma, it can be seen
that

∏m−1
k=0 (1− τk)n̄

∗
k >

∏m−1
k=0 (1− τk)n̄k , which proves the

lemma.

Lemma 5. Let Φ(pe) =
∏m−1

k=0 (1− τk(pe))n̄k(pe), where

each n̄k(pe) is a function of all βi(pe), pi(pe), τi(pe), 0 ≤
i ≤ m − 1. Then, ∂Φ/∂τj < 0, for any 0 ≤ j ≤ m − 1, if

CWi+1 > 2CWi − di − 1, 0 ≤ i ≤ m− 1.



Proof. When τj increases to τ∗j
14,
∏i

n=1 K
∗
n =

∏i
n=1 Kn for

i < j, and
∏i

n=1 K
∗
n <

∏i
n=1 Kn for i = j. For i > j we

have

i
∏

n=1

K∗
n =

i
∏

n=1

Kn

τ∗
j pj+βj

τ∗
j +βj

τjpj+βj

τj+βj

, and

∂

∂τj

(
τjpj + βj

τj + βj

)

= −
βj(1− pj)

(τj + βj)2
< 0.

Thus,
∏i

n=1 K
∗
n <

∏i
n=1 Kn for i ≥ j. These yield σ∗ < σ,

where σ =
∑m−1

i=1

∏i
n=1 Kn. From the above, n̄∗

i > n̄i for
i < j and n̄∗

j < n̄j , because K∗
j < Kj . We distinguish two

cases for i > j. Suppose that n̄∗
i < n̄i for i > j. Then,

following the same reasoning as for Lemma 3, it can be seen
that

∏

k ̸=j (1− τk)n̄k decreases:

∏

k ̸=j (1− τk)n̄
∗
k

∏

k ̸=j (1− τk)n̄k
=
∏

k<j

(1− τk)
n̄∗
k−n̄k

∏

k>j

(1− τk)
n̄∗
k−n̄k

< (1− τj−1)
∑

k<j n̄∗
k−n̄k(1− τj−1)

∑

k>j n̄∗
k−n̄k

= (1− τj−1)
n̄j−n̄∗

j < 1, because n̄j − n̄∗
j > 0.

Suppose now that n̄∗
i > n̄i for i > j. Then,

∏

k ̸=j (1− τk)n̄k

decreases because it is a product of the positive decreasing
functions (1 − τk)n̄k with respect to n̄k

15. If we show that
(1− τj)n̄j also decreases, the lemma will be proven.

∂(1− τj)n̄j

∂τj
= −n̄j(1− τj)

n̄j−1 + ln(1− τj)
∂n̄j

∂τj
(1− τj)

n̄j .

By computing the partial derivative of n̄j = Kj n̄j−1, we
have

∂n̄j

∂τj
= −

n̄j

τj + βj
+

∂n̄j−1

∂τj
Kj ≥ −

n̄j

τj + βj
≥ −

n̄j

τj
,

because ∂n̄j−1/∂τj > 0 from (EQ).

Combining the two equations above yields

∂(1− τj)n̄j

∂τj
≤

n̄j(1− τj)n̄j

τj

(

−
τj

1− τj
− ln(1− τj)

)

.

Since −x/(1− x) < ln(1− x), it follows that the above is
smaller than 0, which completes the proof of the lemma.
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