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Abstract
The advent of wireless communication technologies has created a paradigm shift in the
accessibility of communication. With it has come an increased demand for throughput,
a trend that is likely to increase further in the future. This has given rise to several
challenges in developing new communication schemes. A key aspect of these challenges
is to develop low complexity algorithms and architectures that can take advantage of the
nature of the wireless medium like broadcasting and physical layer cooperation.
In this thesis, we consider several problems in the domain of low complexity coding,
relaying and scheduling for wireless networks. We begin with the formulation of the
Pliable Index Coding problem that models a server trying to send one or more new
messages over a noiseless broadcast channel to a set of clients that already have a subset of
messages as side information. We show through theoretical upper bounds and algorithms,
that it is possible to design very short length codes, poly-logarithmic in the number of
clients, to solve this problem. The length of the codes are exponentially better than
those possible in a traditional index coding setup.
We next turn our attention to several aspects of low complexity relaying in half-duplex
diamond networks. In such networks, the source transmits information to the destination
through n half-duplex intermediate relays arranged in a single layer. The half-duplex
nature of the relays implies that they can either be in a listening or transmitting state at
any point of time. To achieve high rates, there is an additional complexity of optimizing
the schedule (i.e. the relative time fractions) of the relaying states, which can be 2n in
number. Using approximate capacity expressions derived from the quantize-map-forward
scheme for physical layer cooperation, we show that for networks with n ≤ 6 relays, the
optimal schedule has atmost n+ 1 active states. This is an exponential improvement over
the possible 2n active states in a schedule. We also show that it is possible to achieve at
least half the capacity of such networks (approximately) by employing simple routing
strategies that use only two relays and two scheduling states. These results imply that
the complexity of relaying in half-duplex diamond networks can be significantly reduced
by using fewer scheduling states or fewer relays without adversely affecting throughput.
Both these results assume centralized processing of the channel state information of all
the relays. We take the first steps in analyzing the performance of relaying schemes where
each relay switches between listening and transmitting states randomly and optimizes
their relative fractions using only local channel state information. We show that even
with such simple scheduling that avoids centralized communication, we can achieve a
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significant fraction of the capacity of the network. Next, we look at the dual problem of
selecting the subset of relays of a given size that has the highest capacity for a general
layered full-duplex relay network. We formulate this as an optimization problem and
derive efficient approximation algorithms to solve them.
We end the thesis with the design, analysis and implementation of a practical relaying
scheme called QUILT. As a key component of the scheme, the relay opportunistically
decodes or quantizes its received signal and transmits the resulting sequence in coop-
eration with the source. To keep the complexity of the system low, we use LDPC
codes at the source, interleaving at the relays and belief propagation decoding at the
destination. We show through over-the-air (WiFi) experiments on Warplab testbeds
that the scheme performs better than existing state-of-the-art physical layer cooperation
schemes, achieving improved frame error rates by a factor of 5 for some topologies.

Key words: wireless networks, pliable index coding, relay networks, half-duplex relay
scheduling, relay selection, physical layer cooperation, quantize-map-forward, belief
propagation decoding.
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Résumé
L’avènement des technologies de communication sans fil a créé un changement de para-
digme dans l’accès à la communication. Avec lui est venu une demande accrue de débit,
une tendance qui est susceptible d’augmenter encore à l’avenir. Cela a donné naissance à
plusieurs défis dans le développement de nouveaux systèmes de communication. Un aspect
clé de ces défis est de développer des algorithmes et des architectures de faible complexité
qui peuvent tirer avantage de la nature du support sans fil comme la radiodiffusion et la
coopération avec la couche physique.
Dans cette thèse, nous considérons plusieurs problèmes dans le domaine de codage à
faible complexité, relais et la planification des réseaux sans fil. Nous commençons avec la
formulation du problème de Pliable Index Coding qui modèle un serveur tentant d’envoyer
un ou plusieurs nouveaux messages sur un canal de diffusion non-bruité à un ensemble de
clients qui ont déjà un sous-ensemble de messages comme information supplémentaire. On
montre par le biais de bornes supérieures et d’algorithmes théoriques, qu’il est possible
de concevoir des codes de longueurs très courtes, poly-logarithmique dans le nombre de
clients, pour résoudre ce problème. La longueur des codes est exponentiellement meilleure
que celle possible dans une configuration traditionnelle de codage d’index.
Nous tournons ensuite notre attention sur plusieurs aspects de relayage à faible compléxité
dans les réseaux semi-duplex en configuration diamant. Dans ces réseaux, la source émet
des informations vers la destination à travers n relais intermédiaires semi-duplex disposés
en une seule couche. La nature semi-duplex des relais implique qu’ils ne peuvent être
que soit en reception, soit en transmission, mais pas les deux simultanément. Pour
atteindre des débits élevés, il y da une complexité supplémentaire pour l’optimisation
de la planification (c.à.d. les fractions de temps relatif) des états des relais, au total 2n

combinaisons différentes. Par l’utilisation d’expressions approximatives de la capacité
provenant de la technique quantize-map-forward pour la coopération dans la couche
physique, nous montrons que pour les réseaux avec n ≤ 6 relais, la planification optimale
a au plus n+ 1 états actifs . Ceci est une amélioration exponentielle du nombre d’états
actifs 2n possibles dans la planification. Nous montrons également qu’il est possible de
réaliser au moins la moitié de la capacité de ces réseaux (approximativement) en utilisant
des stratégies de routage simples qui utilisent seulement deux relais et les deux états de
programmation. Ces résultats impliquent que la complexité de relayer dans les réseaux
en diamant semi-duplex peut être considérablement réduite en utilisant moins d’états ou
moins de relais sans affecter le débit.

iii



Ces deux résultats supposent un traitement centralisé de l’information de tous les états
des relais du canal. Nous faisons les premiers pas dans l’analyse de la performance
des régimes où chaque relais commute entre l’écoute et et la transmission au hasard
et optimise sa fraction relative en utilisant uniquement les informations d’état local
du canal. Nous montrons que, même avec un tel ordonnancement simple qui évite la
communication centralisée, on peut atteindre une fraction significative de la capacité
du réseau. Ensuite, nous regardons le double problème de la sélection du sous-ensemble
de relais d’une taille donnée qui a la plus grande capacité pour un réseau général de
relais full-duplex en couches. Nous formulons cela comme un problème d’optimisation et
déduisons des algorithmes d’approximation efficaces pour le résoudre.
Nous terminons la thèse avec la conception, l’analyse et la mise en œuvre d’un système
de relais pratique appelée QUILT. Comme élément clé de cette technique, le relais décode
ou quantifie le message reçu de façon opportuniste, et transmet la séquence résultante en
coopération avec la source. Pour garder la complexité du système faible, nous utilisons des
codes LDPC à la source, l’entrelacement au décodage relais et du décodage à propagation
de croyance (belief propagation) à la destination. Nous montrons par des expériences
sur les ondes (WiFi), sur un banc d’essai Warplab, que le système fonctionne mieux
que les programmes de coopération de la couche physique de pointe existants avec une
amélioration des taux d’erreur de trame jusqu’à un facteur cinq pour certaines topologies.

Mots clés : réseaux sans fil, pliable index coding, les réseaux de relais, planification de relais
semi-duplex, sélection de relais, oopération de la couche physique, quantize-map-forward,
décodage à propagation de croyance.
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Introduction
The development and widespread use of wireless communication technologies has rev-
olutionised the way we communicate and stay in touch with each other. According to
data from the International Telecommunication Union (ITU) [1] , the number of mobile
phone subscriptions in the world is expected to reach almost 7 billion by the end of 2014.
During the same period, with widespread availability of smartphones, the number of
people who access the internet from their mobile devices is expected to exceed 2.3 billion.
This has created a huge demand for higher bandwidth and throughputs, which in turn
has created new challenges for developing more elaborate communication technologies
and architectures that can satisfy this demand.

Most of the wireless communication now takes place through point-to-point links between
two communicating nodes. In the past few decades, extensive research in information
and coding theory combined with their practical application has provided us with a good
understanding of point-to-point communication [2]. However, to achieve further gains we
must look towards more complicated networked architectures. Such architectures take
advantage of two key aspects of the wireless medium - broadcast and multiple access. In
broadcast, a single source can transmit information to multiple receivers over a wireless
channel, while in multiple access, two or more nodes can cooperate to send information
to a destination node. Together they constitute physical layer cooperation in wireless,
which is distinct from the “bit-pipe” view of wired communication or point-to-point
wireless communication [3]. The study of network information theory [4] shows that it is
possible to attain higher throughputs by using techniques that take advantage of physical
layer cooperation and some of these techniques have already started to be included in
official standards [5].

A key challenge in making physical layer cooperation more useful is to devise low
complexity schemes. Depending on the exact scenario or problem, there can be many
interpretations of the term “low complexity”. It can refer to simpler codes (e.g. in
terms of length), lesser operational and computational complexity or using fewer network
resources. In this thesis, we look at several different problems in wireless networks with
an aim of discovering structures or devising techniques that have reduced complexity in
one or more ways.
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We start off with a coding problem in noiseless wireless broadcast networks. In the
well-known Index Coding with side-information problem, a server holds m messages, and
can broadcast over a noiseless channel to a set of n receivers or clients. Each client has as
side information some subset of the m messages, and requests from the server a specific
message she does not have. The objective is to devise a coding strategy that minimizes
the number of broadcast transmissions the server makes to satisfy the demands of all the
clients [6]. The index coding problem has been studied extensively in the literature and
has deep connections with the problem of network coding [7]. We formulate a new variant
of index coding where the clients are pliable and are happy to receive any t messages
they do not already have. We term the new formulation Pliable Index Coding (t) (or
PICOD(t)). There are several applications that motivate this formulation - specifically
scenarios where the clients are interested in receiving with low delay any information
that is not a part of their side information sets. The goal is then to compute the shortest
code that satisfies all the clients. Although we show that computing the shortest code in
PICOD(t) is NP-hard, we derive the surprising result that codes of length O(log2 n) are
sufficient for any instance of PICOD(1). This is an exponential improvement over index
coding, where the length of the code is Ω(n) in the worst case. We also present general
results for any t and also for a scenario where the server has only knowledge about the
cardinality of the side information sets of the clients. The theoretical upper bounds are
accompanied by simple greedy algorithms that perform very well on random instances of
PICOD(t), as shown through extensive simulation results.

A canonical example of physical layer cooperation is a relay network, where a source node
sends information to a destination node through one or more intermediate relays. In the
next topic, we consider the problem of low complexity relaying in half-duplex diamond
networks from several different perspectives. In such networks, the source communicates
with the destination using n half-duplex relays arranged in a single layer, with there
being no inter-relay communication. Being half-duplex, each relay can either be in the
listening (L) or transmitting (T ) state at any point of time, giving rise to 2n relaying
states for the whole network. To achieve high rates close to capacity, the schedule of
relaying states (i.e. their relative time fractions) needs to be optimized. The complexity
of relaying in such networks, among other things, can arise from – (i) the number of
active states in the schedule (which can potentially be 2n), (ii) the number of relays being
used and (iii) the use of global channel state information in computing relaying schedules.
We investigate each of these sources of complexity in isolation and derive results on how
to reduce it. Since the exact capacity of half-duplex diamond networks is not known, we
use simple approximations [8, 9, 10] to the capacity that are a constant gap away from
the true value, i.e., the gap from capacity is only a function of n and independent of
channel strengths. These approximations are based on the quantize-map-forward relaying
scheme that utilizes physical layer cooperation. Further, these approximations can be
expressed as a linear program, whose coefficients are a function of the individual point
to point link capacities in the network.

2



Introduction

First, we show the surprising result that for n ≤ 6, the approximately optimal schedule
has atmost n+ 1 active states. This is an exponential improvement over the possible 2n

scheduling states. In fact, we conjecture this to be true for any n. To prove the result we
develop a computational proof strategy that crucially uses submodularity properties of
information flow across cuts in the network and linear programming duality to derive
contradictions for optimal schedules having more than n+ 1 states. Second, we show
that it is possible to achieve high rates even when using only a subset of relays. More
concretely, we show that very simple routing strategies that use only two relays and
two relaying states can achieve rates that are at least half the capacity of the network
(approximately). For 2-relay networks, we show that routing strategies achieve at least
8/9 of the capacity (approximately). These can also be seen as network simplification
results for half-duplex diamond networks in the same vein as those derived for full-
duplex diamond networks by Nazaroglu et. al. [10]. The proof uses linear programming
duality to derive upper bounds to the capacity expressions and defines an algorithmic
procedure to select a pair of relays with the claimed property in O(n logn) time. Third,
we investigate the performance we can achieve if we restrict ourselves to schedules that
can be derived only using local channel state information. We propose a randomized
strategy in which each relay switches between the L and T state multiples times, at the
same time ensuring that the relative fraction of L and T states obey a local optimality
condition. We show that using this approach for the 2-relay diamond network, we can
achieve at least 3/4 of the capacity of the network (approximately) as the number of
switches increases to infinity. The expected rates achieved by our strategy increases with
the number of switches, with most of the gain achieved using only two switches. To
summarize, each of the three results show that it is possible to reduce the complexity of
relaying in half-duplex diamond networks without adversely affecting the throughput.

We next consider the following problem in full-duplex layered relay networks – how to select
the subset of relays of a given size k that has the highest capacity in a computationally
efficient manner? Using approximate capacity expressions similar to ones used for half-
duplex diamond networks, we formulate this as an integer optimization problem. We then
relax it to a real-valued problem and use the real (or fractional) optimum to generate
approximate solutions for the original problem. For single layered or diamond networks,
using properties of submodular functions and convex optimization, we show that the
real-valued optimization problem can be solved in polynomial time. Simulation results
show that our algorithm achieves high accuracy rates and is significantly faster than an
exhaustive search algorithm. For n-relay full-duplex diamond networks, Nazaroglu et.al.
[10] showed that for any 1 ≤ k < n there exists a subnetwork of relays that achieves at
least k/(k + 1) fraction of the capacity approximately. Thus our algorithm can be used
to compute the best such network efficiently.

The theoretical results on half-duplex diamond networks presented above hint at the
possibility of low complexity relaying schemes based on physical layer cooperation that
use a few relays and relaying states and yet achieve high throughput. This motivates
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us to our final contribution in this thesis. We consider the simplest scenario of a source
communicating with a destination with the help of a single half-duplex relay. We
propose and evaluate QUILT, a system for practical physical-layer relaying based on the
quantize-map-forward scheme. We make several design choices, each of which is justified
theoretically, driven by the need to keep the complexity of the system low. In particular,
we use LDPC codes at the source, symbol level quantization and interleaving at the
relay and a belief propagation algorithm at the destination for fast decoding. The relay
works on the principle of opportunistic decoding, i.e., it decodes whenever possible and
quantizes otherwise. We implement the system over the Warplab software radio testbed
and perform over-the-air (WiFi) experiments to evaluate its performance. We show that
our system outperforms existing approaches to physical layer relaying, achieving frame
error rates five times lower than the next best scheme in some topologies.

Main Contributions

The main contributions presented in this thesis are as follows.

• We propose and study the Pliable Index Coding problem, a novel variant of the
standard Index Coding problem where each client is happy to receive any t messages
it does not have in its side information sets. We show that although finding the
optimum code is NP-hard, any instance of the problem for t = 1 can be solved using
codes of length that grows poly-logarithmically in the number of clients, which is
an exponential improvement over the worst case length of codes in index coding.
The results are generalized to arbitrary t and also for the scenario where the server
only knows the cardinality of the side information sets of the clients.

• We show that for half-duplex diamond networks with n ≤ 6 relays, there exist
approximately optimal schedules that have atmost n+ 1 active states. We design
and implement a computational proof strategy using submodularity properties of
approximate capacity expressions and linear programming duality to prove this
result.

• We show that simple routing strategies employing only two relays and only two
relaying states that avoid multiple access and broadcast, can achieve at least half
the capacity of half-duplex diamond networks (approximately). We use techniques
from linear programming duality to derive this result.

• For half-duplex diamond networks, we show that randomized switching strategies
using only local channel state information can achieve a significant fraction of the
capacity of the network.

• We derive efficient algorithms for selecting the subnetwork of relays of a given size
with the highest capacity for full-duplex diamond networks and also generalize it
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to arbitrary layered networks. The algorithms use submodularity properties of
approximate capacity expressions and convex programming.

• We design, analyze and implement QUILT - a practical, low complexity implemen-
tation of physical relay cooperation for single relay networks. Key features of the
system include - LDPC codes at the source, symbol level quantization followed by
bit-wise interleaving at the relays and belief propagation based joint decoding at
the destination.

Outline

The thesis is divided into six chapters. The contents in each of the chapters is as
follows.

• In Chapter 1, we present our results on Pliable Index Coding which include the
NP-Hardness proof, upper bounds on the length of codes, algorithms and simulation
results on the performance of the algorithms.

• In Chapter 2, we present the computational proof strategy for showing that ap-
proximately optimal schedules in half-duplex diamond networks have atmost a
linear number of states. The implementation details and numerical results are also
presented.

• In Chapter 3, we present our result on the performance of simple routing strategies
for half-duplex diamond networks. We first develop the proof technique for the
special class of antisymmetric networks and then generalize it to arbitrary ones.

• In Chapter 4, we consider randomized relay schedules using only local channel state
information for half-duplex diamond networks. We show theoretical lower bounds
and simulation results on their performance.

• In Chapter 5, is devoted to the problem of relay selection in full-duplex layered
networks. Efficient approximation algorithms are developed and their performance
is evaluated using simulations.

• Finally Chapter 6 contains our results on QUILT – the physical layer cooperation
scheme for single relay networks, including its design, implementation details and
results obtained from over-the-air experiments on Warplab testbeds.

We conclude with a discussion of open problems and possible directions of future work.
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1 Pliable Index Coding

In the well-known Index Coding problem, a server holds m messages and can broadcast
over a noiseless channel to a set of n receivers or clients. Each client has as side information
some subset of the m messages and requests from the server a specific message she does
not have. The objective is to devise a coding strategy that minimizes the number of
broadcast transmissions the server makes to satisfy the demands of all the clients.

In this chapter we formulate the Pliable Index Coding (t) (or PICOD(t)) problem, where
the clients are pliable and are happy to receive any t messages they do not already have.
Although PICOD(t) is more unconstrained than traditional index coding, we show that
computing the shortest code remains NP-Hard. When the size of the side information
sets of all the clients is s < m and each client wants one new message (t = 1), we show
that codes of length O(logn) are sufficient. This is an exponential improvement over
index coding, where the length of the code is Ω(n) in the worst case. In this scenario, for
a general value of t, we show that codes of length O(min(t logn, t+ log2 n)) are sufficient.
That is, if t� logn, then the number of broadcast transmissions needed grows linearly
with t.

We also consider the Oblivious Pliable Index Coding Problem (t) (or OB-PICOD(t)),
where the server only knows the cardinality of the side information sets of the clients
and each client would like to know any t new messages it does not have. When these
cardinalities are all equal to s, we show that codes of length min(s+ t,m− s) are both
sufficient and necessary for linear codes.

All the results for PICOD(t) and OB-PICOD(t) are also generalized to the case when the
side information sets are of different cardinalities. As a final contribution, we propose
heuristic approximation algorithms for PICOD(t). These are based on a natural bipartite
graph representation of the problem and employ coverings of the graph. We show through
extensive simulation results that a simple greedy covering algorithm performs very well
in practice and that the length of the codes closely follow the behavior predicted by the
theoretical upper bounds.
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Chapter 1. Pliable Index Coding

1.1 Related Work

Over the past few years, there has been a significant amount of work on the theory of
index coding, especially for linear codes. The problem was introduced by Birk et. al. [6]
in the context of an application in satellite communication networks. Bar-Yossef et.al.
[11] presented the first theoretical analysis of the problem. They showed that the optimal
length for a scalar linear index code is given by a graph functional called the minrk.
They conjectured this to be true even for non-linear codes, which was later disproved by
Lubetzky et.al. [12]. New graph parameters were introduced in [13] showing the strict
separation of optimal solutions for different field sizes.

Building on the work of [14, 7] which investigate the connections between index coding
and network coding and using information theoretic linear programs, Blasiak et.al [15]
prove some of the tighest known bounds for the index coding problem. The work of
Blasiak et.al. [15, 16] also shows several separation results between the optimal linear
and non-linear index codes. These results can also be used to come up with instances
in network coding that have large gaps between linear and non-linear coding rates.
Techniques from interference alignment have also been used to analyse index codes [17].
There have been other investigations dealing with several aspects of the index coding
problem including the complementary index coding problem [18], index codes with near
extreme rates [19], secure index coding [20], index codes in presence of error [21] and
index coding with outerplanar side information [22].

In terms of research looking at slightly different formulations from the core one, although
as far as we know pliable index coding as we define it has not been examined before
our work, the following are some representative contributions. The so called bipartite
index coding problem is analysed in [23, 24] where multiple clients may “want” a specific
message. A special case of this problem where the side information sets are of size one
was completely characterized in [25]. Finally, instantly decodable network codes were
investigated in [26] where the clients want all the messages that they do not have and
want them to be instantly decodable.

1.2 Problem Formulation

Suppose that the server has m messages b1, · · · , bm and there are n clients c1, · · · , cn.
The messages are assumed to lie in a field (F ,+, ·) that is large enough (this will be
clarified later) and all the encoding and decoding functions are linear. Each client ci
knows a subset of messages bNc[i], where Nc[i] is a strict subset of [m]. Here bNc[i] denotes
the set {bj , j ∈ Nc[i]} and [m] = {1, 2, · · · ,m}. Thus Nc[i] represents the indices of the
messages that client ci has as side information. Let t be the number of new messages
each client wants to know. We will assume that |Nc[i]| ≤ m − t for all i ∈ [n]. The
(linear) Pliable Index Coding Problem PICOD(t) problem is to devise a linear code C
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Server has
messages b1, b2, b3

Client 1
Has b2, b3
Requires b1

Client 2
Has b1
Requires b2

Client 3
Has b2
Requires b3

b1 ⊕ b2, b3
2 Broadcasts

(a) Server has
messages b1, b2, b3

Client 1
Has b2, b3
Requires b1

Client 2
Has b1
Requires b2 or b3

Client 3
Has b2
Requires b1 or b3

b1 ⊕ b2
1 Broadcast

(b)

Figure 1.1 – (a) Index coding instance needs 2 broadcast transmissions and (b) PICOD(1)
instance needs just one broadcast transmission

which consists of

1. A linear encoding function E mapping x ∈ Fm to E(x) ∈ F l, where l = |C| is the
length of the code.

2. Linear decoding functions D1, · · · , Dn for the n clients such that Di(E(x), bNc[i]) =
{bki,1 , . . . , bki,t} for some t distinct indices ki,1, . . . , ki,t ∈ Nc[i] = [m] \Nc[i].

The goal then is to find a code with the minimum length which is also the number of
broadcast transmissions.

To illustrate the difference between index coding and PICOD, consider the scenario
shown in Figure 1.1. The server has three messages (in this case bits) b1, b2, b3 and there
are three clients with the side information sets shown in the figure. In a specific index
coding instance, client 1 wants message b1, client 2 wants b2 and client 3 wants b3. For
solving this, at least 2 broadcast transmissions are needed. Client 1 can decode b1 from
b1 +b2 as she knows b2, where + here denotes addition in the binary field GF (2). Client 2
can decode b2 from b1 + b2 as well, and client 3 gets b3 directly. It is easy to see that one
transmission does not suffice in this case. On the other hand, in PICOD, it is sufficient
to send just b1 + b2 as clients 1 and 3 can decode b1 = b2 + (b1 + b2) while client 3 can
decode b2 = b1 + (b1 + b2).

The Oblivious Pliable Index Coding Problem OB-PICOD(t) models a situation where the
server has limited information about the side information sets Nc[i]. More concretely, we
assume that the server only knows the cardinalities of the side information sets |Nc[i]|.
The (linear) OB-PICOD(t) problem then is to construct a linear code C which consists of

1. A linear encoding function E mapping x ∈ Fm to E(x) ∈ F l, where l = |C| is the
length of the code.

2. Linear decoding functions D1, · · · , Dn for the n clients such that Di(E(x), bNc[i]) =
{bki,1 , . . . , bki,t} for some t distinct indices ki,1, . . . , ki,t ∈ Nc[i] = [m] \Nc[i].
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Note that since the server does not have the exact side information sets but only their
cardinalities, an encoding scheme should be able to deal with all possible such sets with
the given cardinalities.

1.3 PICOD(t) is NP-Hard

For given side information sets, the length of the optimal pliable index code cannot be
worse than the length of the optimal index code. This is because the index code encodes
for a specific set of required messages, which is just one of the many configurations allowed
in the pliable case. However, as we show in this section, computing the pliable index code
of minimum length remains an NP-Hard problem. This will be accomplished by reducing
an instance of the MONOTONE-1in3-SAT problem to an instance of PICOD(1).

Given a 3SAT instance φ with all variables in non-negated form, the MONOTONE-1in3-
SAT problem asks whether there is a satisfying assignment such that exactly one variable
is True in each clause of the formula. MONOTONE-1in3-SAT has been shown to be
NP-Hard by Schaefer [27]. Suppose φ is made up of M variables αi, · · · , αM and N0
clauses

φ(α1, · · · , αM ) =
N0∧
i=1

(αi,1 ∨ αi,2 ∨ αi,3) (1.1)

where clause i is a disjunction of the variables αi,1, αi,2, αi,3. The precise reduction is
shown in the following lemma.

Lemma 1.3.1 Given an instance φ of MONOTONE-1in3-SAT as defined above, there
is an instance Iφ,M,N0 of PICOD(1) such that φ has a satisfying assignment if and only
if there is a code of length 1 for Iφ,M,N0.

Proof: Given the MONOTONE-1in3-SAT instance φ, consider an instance Iφ,M,N0 of
PICOD(1) defined as follows:

1. There are N0 clients ci, i ∈ [N0] corresponding to the clauses where ci corresponds
to clause i.

2. There are M messages bj , j ∈ [M ] corresponding to the variables where message bj
corresponds to variable αj . Here the choice of the field does not matter and can be
chosen to be GF (2).

3. The side information set for ci consists of all the messages that do not correspond
to the variables in clause i. That is

Nc[i] = {j : variable αj is not in clause i} (1.2)
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b1 b2

c1 c2 c3 c4 c5
Figure 1.2 – Covering of the client vertices by neighboring message vertices. Here
B = {b1, b2} and W1(B) = {c1, c2, c4, c5}.

Therefore, |Nc[i]| = M − 3 and |Nc[i]| = 3 for all i ∈ [N0].

Suppose there exists a linear code of length 1 that is a solution to Iφ,M,N0 . It is necessarily
of the following form

S = bj1 + bj2 · · ·+ bjs (1.3)

for some j1, · · · , js ∈ [M ]. Let Js = {j1, · · · , js}. Since every client ci must be able to
decode at least one message not in bNc[i] and there is only one coded message, ∀i ∈ [N0],
there exists jki ∈ Js such that jki ∈ Nc[i]. Since the corresponding message has to
be decodable by ci, there can be at most one such index. Thus, the set Js has the
property that exactly one of its members is present in each Nc[i]. Clearly, if we set the
corresponding variables {αjk , 1 ≤ k ≤ s} to True and others to False, we make sure that
all the clauses (which correspond to the clients) are satisfied and exactly one variable
in each clause is True, which therefore satisfies φ. Thus, a code of length 1 for Iφ,M,N0

can be used to generate a satisfying assignment for φ that has exactly one True variable
in each clause. Exactly the same argument can be reproduced backwards to prove the
converse, which completes the reduction. Finally, it is easy to see that the reduction can
be accomplished in polynomial time.

Since MONOTONE-1in3-SAT is NP-Hard, Lemma 1.3.1 implies that computing the
minimum length code in PICOD(1) is also NP-Hard. This also implies that computing
the minimum length code for PICOD(t) in general is NP-Hard.

1.4 Upper Bounds for PICOD(t)

We know that for the standard index coding problem there are instances which require
Ω(n) coded messages. Is this also the case with PICOD(t)? We show in this section that
for PICOD(t) we can do exponentially better.
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In proving the results claimed in this and subsequent sections, we will be using the
following result from linear algebra.

Lemma 1.4.1 Given n0 symbols in a large enough field F there exist k0 ≤ n0 linear
combinations of the symbols in F such that any subset of k1 ≤ k0 symbols can be recovered
if the remaining n0 − k1 symbols are known.

In fact if the field size is greater than n0, k0 random linear combinations will have the
above property with high probability [28]. This will be a key ingredient in our proofs, so
we will assume that the field F in which the messages reside is of size greater than m
(the number of messages). Unless otherwise stated, the addition operation in F will be
denoted by +.

We will first consider PICOD(1). We can visualize an instance of PICOD(1) using a
bipartite graph G with m vertices on one side representing the messages (called “message
vertices”) and n vertices on the other side representing the clients (called “client vertices”).
We will identify the vertices by the messages or clients they represent. There is an edge
from bj to ci if j ∈ Nc[i], i.e., when message bj is not in the side information set of
client ci. In Figure 1.2 shown above, message b1 is not in the side information sets of
clients c1, c2, c3 and hence is connected to them in G. In what follows, we will denote
the neighborhood of ci in G by N [ci] and its degree by d(ci) = |N [ci]|. Similarly, N [bj ] is
the neighborhood of bj in G and d(bj) = |N [bj ]| is its degree.

Consider two messages b1 and b2 and their neighborhoods N [b1] and N [b2] in G. We
distinguish the client vertices in N [b1] ∪N [b2] into two types, depending on the number
of message vertices they are adjacent to. The set of client vertices that are adjacent
to exactly one of the message vertices in B, is denoted by W1(B). In Figure 1.2, for
B = {b1, b2}, W1(B) = {c1, c2, c4, c5} and is depicted by the double circles. Note that
if b1 + b2 is sent to these |W1(B)| = 4 vertices, each of them can decode a message she
does not have: c1 and c2 can decode b1 as they know b2; similarly, c4 and c5 can decode
b2 as they know b1. On the other hand, the set of clients which are adjacent to more
than one message vertex, as is {c3}, can decode neither b1 nor b2. The same logic can be
extended if B contains more than two message vertices: if we transmit the sum of the
messages in B, all the |W1(B)| client vertices will be able to decode a message they do
not have; in other words, it is sufficient to broadcast the sum message to “satisfy” all the
|W1(B)| clients. We use this intuition to prove the following lemma.

Lemma 1.4.2 Without loss of generality, let C = {c1, c2, . . . , ck} be any group of k
client vertices and dmax = max{d(ci)| i ∈ [k]} and dmin = min{d(ci)| i ∈ [k]}. For some
fixed constant r ≥ 1, let dmax ≤ rdmin. Then there is a code of length O(log k) that
“satisfies” all the clients in C.

12



1.4. Upper Bounds for PICOD(t)

Proof: We will use a probabilistic argument. Consider the neighborhood B0 of C in G,
i.e., B0 = ∪ki=1N [ci]. Randomly select a subset B1 of message vertices by selecting each
vertex of B0 with probability p (which will be determined later). Then the probability
Pi of ci being adjacent to exactly one vertex in B1 is

Pi = d(ci)p(1− p)d(ci)−1 (1.4)

The expected number of vertices in W (B1) is

Ep[|W (B1)|] =
k∑
i=1

d(ci)p(1− p)d(ci)−1 ≥ kdminp(1− p)dmax−1 (1.5)

The expression p(1− p)x−1 is maximized for p = 1
x . Therefore by selecting p = 1

dmax
we

get

Ep[|W (B1)|] ≥ k dmin
dmax

(1− dmax)dmax−1 ≥ k dmin
edmax

≥ k

er
(1.6)

By the probabilistic method, there is at least one subset of B1 for which |W (B1)| ≥ k
er

which means the sum of the bits in B1 can satisfy a constant fraction of the k client
vertices. We are then left with at most k(1− 1

er ) client vertices. The ratio of the maximum
and minimum degrees in this set is also bounded by r and hence the argument can
be repeated until only a constant number of them are left. Since the number of client
vertices reduces by a constant fraction in each iteration, at most O(log k) coded messages
are required to satisfy all the k client vertices.

In particular, if the cardinalities of the side information sets of all the clients are equal, a
code of length O(logn) is sufficient to satisfy all the clients. For a general instance of
PICOD(1) where the cardinalities of the side information sets are arbitrary, we use a
suitable partition of the client vertices along with the above lemma to prove the following
result.

Theorem 1.4.3 For any PICOD(1) instance with m messages and n client vertices, all
the client vertices can be satisfied with a code of length O(min(logm log( n

logm)),m, n).

Proof: The degrees of the client vertices can range from 1 to n. Partition the vertices
into g subsets S1, . . . , Sg such that Si = {cl| 2i−1 ≤ d(cl) ≤ 2i}. For the non-empty ones,
clearly the ratio of the maximum and minimum degrees in each of the sets Si is at most
2 and g ≤ dlog2(m)e. Therefore, by the previous lemma, we need at most K1 log(|Si|)
messages to satisfy the clients in Si, for some absolute constant K1. The total number of
coded messages required is at most

K1t
g∑
i=1

log(|Si|) ≤ K1tg log
(∑g

i=1 |Si|
g

)
= O(t logm log

(
n

logm

)
) (1.7)

13
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b1 b2

c1 c2 c3 c4 c5

W1(B)
W2(B)

(a) Here B = {b1, b2} andW1(B) = {c1, c2, c4, c5}
and W2(B) = {c3}

b1 b2

c1 c2 c3 c4 c5

b3

W1(B) W2(B)

(b) Here B = {b1, b2, b3} and W1(B) =
{c1, c2, c4} and W2(B) = {c3, c5}

Figure 1.3 – Covering of the client vertices by neighboring message vertices.

where the inequality follows from Jensen’s inequality applied to the log(.) function. In
addition, it is easy to see that broadcasting all the messages or broadcasting one message
not in the side information of each client also satisfies all the clients. Combining all
the three, we conclude that O(min(logm log( n

logm),m, n)) messages are sufficient for
satisfying all the clients.

In particular, if the number of messages is polynomially related to the number of clients,
i.e., m = O(nδ) for some constant δ, then a code of length O(log2 n) is sufficient for any
instance of PICOD(1). This is exponentially better than the Ω(n) messages required for
index coding in the worst case.

We will now generalize the bounds for PICOD(1) to PICOD(t). Given a subset of message
vertices B, we can categorize the client vertices in the neighbourhood of B according to
the number of message vertices they are adjacent to. The set of client vertices that are
adjacent to exactly i message vertices in B, is denoted by Wi(B). In Figure 1.3a, for
B = {b1, b2}, W1(B) = {c1, c2, c4, c5} and W2(B) = {c3}. Note that if b1 + b2 is sent to
the 4 vertices in W1(B), each of them can decode a message it does not have: c1 and
c2 can decode b1 as they know b2; similarly, c4 and c5 can decode b2 as they know b1.
Thus a single linear combination of the messages in B can satisfy all the client vertices
in W1(B). Similarly, two independent linear combinations of b1, b2 can be used by client
vertices in W2(B) to decode two messages.

In another example, consider the graph in Figure 1.3b. In this case B = {b1, b2, b3},
W1(B) = {c1, c2, c4} and W2(B) = {c3, c5}. Similar to above, if b1 + b2 + b3 is sent to
the 3 vertices in W1(B), each of them can decode a message it does not have. For the
two vertices in W2(B), notice that they are adjacent to two different subsets of message
vertices. In this case, we can apply Lemma 1.4.1 to get two linear combinations of
{b1, b2, b3} such that each of c3, c5 can decode two messages it does not have.

For any subset of message vertices B, define t(B) = max{i : s.t. Wi(B) 6= ∅}. In general,
using the same reasoning as above, we have:

14



1.4. Upper Bounds for PICOD(t)

Lemma 1.4.4 For any set of message vertices B, there exists a set of t(B) linear
combinations of the messages in B such that each client vertex in Wi(B) can decode i
messages it does not have, for i ∈ [t(B)].

Our approach then will be to select a suitable subset of message vertices such that a
large number of client vertices have approximately t (or a constant fraction of t) message
vertices adjacent to them. To this end, we will use a probabilistic argument. Similar to
Lemma 1.4.2, the following main lemma proves an upper bound to the length of codes
required to solve PICOD(t) for the case when the side information sets have low variation
in their cardinalities.

Lemma 1.4.5 Without loss of generality, let C = {c1, c2, . . . , ck} be any group of k
client vertices and dmax = max{d(ci)| i ∈ [k]} and dmin = min{d(ci)| i ∈ [k]}, where
dmin ≥ t. For some fixed constant r ≥ 1, let dmax ≤ rdmin. Then there is a code of length
O(min(t log k, t+ log2 k)) such that each client vertex can decode t messages it does not
have.

Proof: Randomly select a subset B1 of message vertices by selecting each vertex with
probability p = t

dmax
. Fix a particular client vertex c1 (without loss of generality) with

degree d in the graph. Let Xi denote the indicator variable which is 1 if the i-the
neighbour of c1 is present in the sample B1, for i ∈ [d]. Clearly, the Xi’s are i.i.d
Bernoulli random variable with P (Xi = 1) = p. Let X = X1 + . . .+Xd. Then we have

E[X] = E[
d∑
i=1

Xi] =
d∑
i=1

E[Xi] = dp = dt

dmax
(1.8)

Therefore, t ≥ E[X] ≥ t
r . We will also need concentration bounds on E[X]. Since X is a

sum of i.i.d Bernoulli random variables, we can use the following Chernoff bounds which
are valid for any ε ∈ (0, 1) [29].

P (X < (1− ε)E[X]) ≤ e−
ε2
2 E[X] (1.9)

and

P (X > (1 + ε)E[X]) ≤ e−
ε2
3 E[X] (1.10)

Assume that t ≥ 24r log k. If we choose ε =
√

6r log k
t , then clearly ε ≤ 1

2 . Then, using
the fact that E[X] ≥ t/r, we have

P (X > 3E[X]/2) ≤ P (X > (1 + ε)E[X]) ≤ e−
ε2
3 E[X] (1.11)

≤ e−
6r logn

3t · t
r = e−2 logn = n−2

15
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Thus we can conclude that

P (X > 3E[X]/2) ≤ n−2 (1.12)

Similarly,

P (X < E[X]/2) ≤ P (X < (1− ε)E[X]) ≤ e−
ε2
2 E[X] (1.13)

= e−
6r logn

2t · t
r = e−3 logn = n−3

Thus, we can conclude that

P (X < E[X]/2) ≤ n−3 (1.14)

Combining the above two results, we have

P (E[X]
2 ≤ X ≤ 3E[X]

2 ) ≥ 1− 1
n2 −

1
n3 (1.15)

which implies that with high probability a particular client vertex has between E[X]/2
and 3E[X]/2 adjacent message vertices in B1. Therefore, the expected number of client
vertices having the same property is at least n− 1/n− 1/n2. By the probabilistic method
there is at least one subset B1 for which the expected value is reached or surpassed. This
implies that there is a subset B1 such that all client vertices have between E[X]/2 and
3E[X]/2 message vertices adjacent to them (here there is slight abuse of notation and
E[X] for each client may be different). By an application of Lemma 1.4.4, there is a set
of at most 3E[X]/2 ≤ 3t/2 linear combinations of the corresponding messages such that
each client vertex can decode at least E[X]/2 ≥ t/2r messages it does not have. Note
that if 3t/2 > dmax, then the number of messages can be cut off at dmax.

What this shows is that if t ≥ 24r log k, then by using O(t) broadcast messages we
can make sure all the client vertices learn at least t/2r new messages. We can now
recursively use the same argument for a situation where each client now needs (at most)
t′ = t(1 − 1/2r) new messages, stopping when t′ becomes less than 24r log k. In the
case when t′ < 24r log k, we can use t′ rounds of the argument given in Lemma 1.4.2 for
PICOD(1).. Thus if f(k, t) is the number of messages required for sending t unknown
messages to each of the k clients, we get the following recurrence

f(k, t) ≤

f(k, t(1− 1
2r )) +O(t) if t ≥ 24r log k

O(tr log k) otherwise
(1.16)

This recurrence can be solved to get the required bound of f(k, t) = O(min(t log k, t+
log2 k)).

In particular, if the cardinality of the side information sets of all the clients is the same,
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1.4. Upper Bounds for PICOD(t)

a code of length O(min(t logn, t+ log2 n)) is sufficient to satisfy all the clients. In this
case, when t� logn, the number of messages required grows linearly with t.

For the general case of client vertices having arbitrary degrees, we can partition them
into at most logm groups such that the minimum and maximum degrees of the client
vertices in each group are within a factor of 2. For each group, we can use the above
result and derive the following bound on the length of codes.

Theorem 1.4.6 For any PICOD(t) instance with m messages and n client vertices, all
the client vertices can be satisfied with a code of length that is

O(min(t logm log
(

n

logm

)
, t logm+ logm log2 n,m, tn)) (1.17)

Proof: The degrees of the client vertices can range from 1 to m. Partition the vertices
into g subsets S1, . . . , Sg such that Si = {cl| 2i−1 ≤ d(cl) ≤ 2i}. For the non-empty ones,
clearly the ratio of the maximum and minimum degrees in each of the sets Si is at most
2 and g ≤ dlog2(m)e. Therefore, by Lemma 1.4.5, we need at most the minimum of
K1t log(|Si|) and K2(t+log2(|Si|)) messages to satisfy the clients in Si, for some absolute
constants K1,K2. Using the first term, the total number of coded messages required can
be upper bounded by

K1t
g∑
i=1

log(|Si|) ≤ K1tg log
(∑g

i=1 |Si|
g

)
= O(t logm log

(
n

logm

)
) (1.18)

Using the second term, the total number of coded messages required can be upper
bounded by

K2

g∑
i=1

(t+ log2(|Si|)) = K2(tg +
g∑
i=1

log2(|Si|)) ≤ K2(tg + g log2 n) (1.19)

= O(t logm+ logm log2 n)

Here we have used the fact that |Si| ≤ n. In addition, it is easy to see that broadcasting
all the messages or broadcasting t messages not in the side information set of each client
also satisfies all the clients. Combining all the four bounds, we get our required result.

In particular, if the number of messages is polynomially related to the number of clients
i.e. m = O(nδ) for some constant δ, then a code of length O(min(t log2 n, t logn+log3 n))
is sufficient for any instance of PICOD(t). For random instances of PICOD(t) we have
have the following result.

Theorem 1.4.7 If each message appears in the side information set of a particular
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client with a fixed and constant probability q, then for a large enough n, almost surely any
instance of PICOD(t) can be satisfied with a code of length O(min(t logn, t+ log2 n)).

Proof: By the law of large numbers, the degree of each client vertex in the graph
representation of a random instance of PICOD(t) is concentrated near the mean n(1− q).
For a fixed ε > 0, for a large enough n almost surely d(ci) ∈ [n(1− q − ε), n(1− q + ε)].
If we select an ε < q/3, almost surely the ratio of the maximum and minimum degrees is
≤ 2. Then the claim follows from Lemma 1.4.5.

1.5 Bounds for OB-PICOD(t)

We now consider the OB-PICOD(t) problem. As defined in Section 1.2, in this problem
the server only knows the size of the side information sets of the clients and has to
broadcast messages such that each client can decode t new messages it does not have.
We denote the maximum size of the side information sets by smax and the minimum size
by smin. We assume smax ≤ m− t. Also, let Σ denote the set of distinct cardinalities of
the side information sets in an instant. Our main result in this section is summarized in
the following theorem.

Theorem 1.5.1 For the OB-PICOD(t) problem, if each client knows at least smin and
at most smax messages, then the server needs to broadcast at most min(smax + t,m− smin)
messages to satisfy all the clients. When smax = smin = s, this bound is tight for linear
encoding and decoding.

We prove this result by combining two lemmas, Lemma 1.5.2 and Lemma 1.5.3, that we
next state and prove. The first lemma, Lemma 1.5.2, gives a simple upper bound on the
length of codes for OB-PICOD(t).

Lemma 1.5.2 To solve any instance of OB-PICOD(t), min(smax + t,m− smin) coded
messages are sufficient.

Proof: There are two ways to make sure that all the clients are able to decode at least one
message that they do not have. Select any smax + t messages and send them uncoded, one
at a time. Since the side information sets have size at most smax, there will always exist
at least t messages that a client will not have. As another strategy, consider m− smin
linear combinations of all the messages obtained by the application of Lemma 1.4.1. Since
each client knows at least smin messages, it can recover at least t (in fact all) messages it
does not know. Taking the minimum of the two strategies, we get an upper bound of
min(smax + t,m− smin) messages.
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In particular when smin = smax = s, min(s+ t,m− s) coded messages are sufficient to
solve an instance of OB-PICOD(t). Further, if smax is a constant, the server can satisfy
all the clients using only t plus a constant number of broadcasts, without even knowing
the exact side information sets.

We now derive lower bounds for OB-PICOD(t) for linear encoding and decoding, which
match the upper bounds derived above for smax = smin = s. For this we will need some
notation. Let e1, . . . , em be the unit vectors in Fm, i.e., ei has a 1 (the identity element
in F) in the i-the position and 0 (the zero element in F) elsewhere. Thus, they form
an orthogonal basis for Fm. Since the server uses linear encodings, the j-th encoded
message can be represented as a dot product of an encoding vector Aj and the message
vector b = {b1, . . . , bm}, with operations done over the field F . For l encoded messages,
we will have the corresponding l encoding vectors A = {A1, . . . ,Al}. We will denote the
vector space spanned by the vectors in A by Span(A). For a subset of indices B ⊆ [m],
eB will denote the corresponding set of unit vectors ei, i ∈ B.

Lemma 1.5.3 For linear encoding and decoding, any scheme for OB-PICOD(t) will
need at least max

s∈Σ
min(s+ t,m−s) messages. This simplifies to min(s+ t, n−s) messages

when smax = smin = s.

Proof: Consider a particular s in Σ, the set of side information set cardinalities. The
knowledge of the side information set can be expressed equivalently by the fact that the
client can compute any vector in the span of S = {eα1 , . . . , eαs} where α1, . . . , αs are the
indices of the messages that is in its side information set. For linear codes, for a client
to be able to decode the i-th message using its side information sets and the encoded
messages it is easy to see that ei should belong to the span of A∪S (for a proof see [11]).

ei ∈ Span(A ∪ S) (1.20)

Consider the set of all unique message indices that are decoded by all clients and call
it B. We claim that |B| ≥ s+ t. Indeed, if |B| < s+ t then a client may have as side
information, messages corresponding to a subset of size s of B. But then, it cannot
decode t new messages that it does not have as B was assumed to contain all the decoded
message indices.

For simplicity, assume that |B| = s + t, s + t ≤ m − s and without loss of generality
B = {1, 2, . . . , s+ t}. Let A⊥ be the projection of A onto the first s+ t coordinates, i.e.,
the ones corresponding to B. Consider the following possible side information set:

S1 = {eα1,1 , . . . , eα1,s} (1.21)
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such that α1,1, . . . , α1,s /∈ B (such a set exists as s+ t ≤ m−s ). Clearly, by the condition
of decodability of a new message (Eq. 1.20), at least one vector in eB should be in
Span(A∪ S1). Let it be eγ1 . Since the α1,i indices are disjoint from B, eγ1 ∈ Span(A⊥).
Now consider the side information set

S2 = {eγ1 , eα2,1 , . . . , eα2,s−1} (1.22)

where α2,1, . . . , α2,s−1 /∈ B. In this case an application of Eq. 1.20 implies that there exists
eγ2 ∈ Span(A ∪ S2) . Since eγ2 is orthogonal to all the vectors in S2, eγ2 ∈ Span(A⊥).
We can continue this argument for a total of s+ 1 steps where the last side information
set is

Ss+1 = {eγ1 , . . . , eγs} (1.23)

In this case, since t new messages need to be decoded by the client, we can conclude that
there are vectors eγs+1 , eγs+2 , . . . , eγs+t that are not in Ss+1 but are in Span(A ∪ Ss+1),
which implies they lie in Span(A⊥). Since the vectors eγ1 , . . . , eγs+t are orthogonal and
all of them lie in Span(A⊥), A⊥ and by implication A must contain at least s+ t linearly
independent vectors.

The other case where s+ t > m− s can be handled in a similar manner, where instead
of s+ t sets, we will have n− s side information sets for which the new messages will
correspond to orthogonal vectors. Combining the two, we conclude that A must contain
at least min(s+ t,m− s) linearly independent vectors, which implies at least the same
number of broadcasts need to be made. Finally, the assumption of |B| = s+ t can be
removed by simple choosing the first s+ t elements of B.

The above argument can be repeated for each s ∈ Σ and hence we get the best lower
bound by taking the maximum of the individual bounds. Clearly, when smax = smin = s,
there is only one element in Σ and the lower bound becomes min(s+ t,m− s), which
matches the upper bound in Lemma 1.5.2.

1.6 Heuristic Approximation Algorithms

In this section we propose polynomial time heuristic approximation algorithms for solving
the PICOD(t) problem. Our main algorithm uses a greedy approach to iteratively find
large subsets of clients that can be satisfied with a single coded message. In addition, we
present two other algorithms specifically for PICOD(1) – one based on the upper bound
proof in Section 1.4 and the other based on a reduction to the index coding problem.
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b1 b2 b1 b2 b3 b1 b2 b3 b4

c1

W1(B) = 4 W1(B) = 5 W1(B) = 4 (Stop!)

(a) (b) (c)

c2 c3 c4 c5 c1 c2 c3 c4 c5 c6 c7 c1 c2 c3 c4 c5 c6 c7 c8

Figure 1.4 – Greedy construction of B with maximal |W1(B)|.

1.6.1 Algorithm GRCOV

In this algorithm, using the graphical representation defined in Section 1.4, we try to find
a set of message vertices B such that |W1(B)| is maximized. Rather than trying to obtain
the maximum such set, we greedily find a maximal such set. Let B = {bv1 , · · · , bvt}
be a set of message vertices. B is a maximal set if for any message vertex bvt+1 /∈ B,
|W1(B∪{bvt+1})| < |W1(B)|. To find a maximal set, we start with the empty set and keep
on adding message vertices that greedily maximizes |W1(B)| in each step; we stop when
no further additions are possible without decreasing |W1(B)|. For example, Figure 1.4
represents a possible sequence of operations where B = {b1, b2, b3} is a maximal set.
When b3 is added, the cardinality of W (B) increases but further addition of b4 decreases
it, in which case we stop.

We maintain a counter CNT [i] for each client vertex i to keep track of the remaining
number of messages they want. For an instance of PICOD(t), they are all initialized
to t. After finding a particular B for which |W1(B)| is large we can use the sum of
the messages in B to satisfy the message vertices in W1(B). The edges connecting the
vertices in W1(B) to the message vertices it can decode are removed and the value of
CNT [i] for each vertex in W1(B) is also reduced by one. The algorithm is resumed for
the remaining graph, until all the CNT [i] values go to zero. We call this algorithm GRCOV
(for greedy cover). It is shown in pseudo-code format below and a simple implementation
of the algorithm has a running time of O(mn2t).

1.6.2 Algorithm RANDCOV

The RANDCOV (for randomized cover) algorithm for PICOD(1) follows the procedure in
the proof of Theorem 1.4.3 (in Section 1.4) to find an encoding. The client vertices
are partitioned into at most g = O(logm) groups S1, . . . , Sg such that the ratio of the
maximum and minimum degrees in each group is at most r (a fixed constant). Let the
maximum degree of client vertices in Si be dmax,i. In the neighborhood N [Si], we select
each vertex with probability pi = 1

dmax,i
. If Bi is the set of selected vertices, the clients in

W (Bi) are satisfied. This process is continued until all the vertices in Si are satisfied.
The number of randomly sampled sets required is also the number of coded messages
required. This is done for each of the sets Si to find a code for all the client vertices.
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Algorithm 1 GRCOV(G,m, n, t)
Init: G is an instance of PICOD(t) with n client vertices and m message vertices.
Init: C = {}, CNT [i] = t for i ∈ [n].
while ∃i s.t. CNT [i] 6= 0 do
B ← ∅.
while B is not a maximal set do
Find message vertex bv /∈ B such that |W1(B ∪ {bv})| is maximized.
B ← B ∪ {bv}.

end while

C ← C ∪ {
|B|∑
u=1

bvu , bvu ∈ B}.

for ci ∈W1(B) do
If ci is able to decode bj using the above encoding, then delete the corresponding
edge in G.
CNT [i]← CNT [i]− 1.

end for
end while
Output C.

The expected running time of RANDCOV is O(mn logn).

Algorithm RANDCOV-PP Although the expected length of the code produced by RANDCOV
is upper bounded by the terms derived in Section 1.4, as we shall see in the next section,
a simple implementation does not perform very well as compared to GRCOV on random
instances of PICOD(1). To make it more efficient we propose the following post processing
phase. Let B1 and B2 be two sets of message vertices and let the corresponding client
vertex sets that they satisfy be W1(B1) and W1(B2) respectively. If B1 has no edges
to W1(B2) and B2 has no edges to W1(B1), we can send the sum of all the messages in
B1 ∪B2 to satisfy all the client vertices in W1(B1) ∪W1(B2). This can be extended to
include more than two sets by selecting the sets greedily. When this post-processing step
is added to RANDCOV, we call the algorithm RANDCOV-PP. The expected running time of
RANDCOV-PP remains O(mn logn).

1.6.3 Algorithm ICOD-SETCOV

Finally, we propose another algorithm for PICOD(1) that is based on a reduction to the
index coding problem. In an instance of PICOD(1), it is sufficient that ci is able to decode
any one message in N [ci]. We split client ci into |N [ci]| “pseudo-clients” each with a
distinct message from N [ci] as a requirement and with the same common side information
sets. Therefore, in total we get

∑n
i=1 |N [ci]| pseudo-clients. This is an instance of the

index coding problem and can be solved using one of the algorithms proposed in [6]. We
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use the simplest one based on greedy clique cover.

Let the set of encoded messages be E. For the greedy clique cover algorithm, each
encoded messages allows for decoding in one step. In other words, each client can decode
its required message using just one encoded message and each encoded message can
satisfy the requirements of a certain number of pseudo-clients. This naturally defines a
“covering” relationship where an encoded message covers a set of pseudo-clients. Also
note that each pseudo-client corresponds to an original client, the one from which it was
created. Therefore, for each encoded message ek ∈ E we can define the set of original
clients that it “covers” as

Cov(ek) = {ck,1, · · · , ck,sk} ⊆ {c1, · · · , cn} (1.24)

In fact, the same client can occur in several of these covering sets. Since we only need
a client to be able to decode a single message that it does not know, it is sufficient
to find a collection of ek such that the corresponding Cov(ek)-s cover all the clients.
Further we want to minimize the size of this collection for the optimal encoding. This is
precisely an instance of the minimum set cover problem with clients being the elements
and the Cov(ek) being the sets. In our implementation, we use the standard greedy
approximation algorithm to solve it. We call this algorithm ICOD-SETCOV (for index
coding set-cover) and the running time for a non-optimized implementation is O(m2n2).

1.7 Simulation Results

In this section, we present results of extensive simulations on random instances of
PICOD(t) to evaluate the performance of the algorithms presented in the previous section.
We will first analyze the performance of the all the three algorithms for PICOD(1). The
number of clients and messages is chosen to be both m = n = 512 and the field in which
the messages lie is F = GF (2). For RANDCOV and RANDCOV-PP we choose r = 3. The
random instances of PICOD(1) are generated as a function of the probability pmsg of a
client having a particular message in its side information set. Thus, for each client and
each message we choose to have the message in the side information set of the client
independently with probability pmsg. Equivalently, in the graph representation of the
instance each edge is present with a probability of 1− pmsg. Such random instances can
model block-fading in wireless channels, i.e., when the channel SNR is low, the client
higher layers experience erasures with probability pmsg, while at a next block of high
SNR, we want to perform “lossless” transmissions as efficiently as possible. Figure 1.5
shows the average performance of the algorithms over several runs (more than 10, 000
for each value of pmsg). For comparison, we also plot the performance of the clique
cover algorithm presented in [6] for an instance of the index coding problem on the same
randomly generated instances.
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Figure 1.5 – Performance of PICOD(1) algorithms for varying pmsg

As expected, we observe a significant difference between the performance of the PICOD(1)
algorithms and the index coding algorithm for the same pmsg. While all the three
PICOD(1) algorithms proposed above take less than 26 bits on average, the index coding
solution hovers in this range only for pmsg ≥ 0.87 which is the case when the side
information sets are dense. In the remaining range of pmsg values, all the PICOD(1)
algorithms use fewer bits and the difference only becomes larger when the side information
sets are sparser.

Among the four algorithms for PICOD(1) presented in the chapter, GRCOV performs the
best. For the random graphs on which the simulations were run, arguments similar to
the ones used in Section 1.4 can be used to show that it produces an encoding with
the same asymptotic performance as RANDCOV, but the practical performance is much
better. In fact, the maximum number of coded bits required by GRCOV (this is among the
random instances in the simulation, not globally), which is also plotted in the figure, is
not substantially different from the average number. The performance of RANDCOV-PP is
substantially better than RANDCOV, especially when the side information sets are denser
and hence the G is sparser. Also, the performance of RANDCOV takes a hit in this regime.
Both of these are due to the fact that the number of partitions in the client vertices
increases, although most of them are “disjoint” which allows RANDCOV-PP to improve
the performance significantly. Finally, ICOD-SETCOV performs as good as GRCOV when
pmsg ≤ 0.5 but becomes worse as G becomes sparser. This can be partly explained
by the suboptimal nature of the greedy set-cover algorithm that we are using inside
ICOD-SETCOV.

To show the performance of the GRCOV algorithm for general instances of PICOD(t), we
first generate random instances for a fixed pmsg = 0.5 and varying values of n and t. The
number of messages m is taken to be equal to the number of clients n. Then, for a given
value of n (number of clients/messages) and t (number of messages each client wants
to know) we run GRCOV several times and take an average of the length of the code the
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Figure 1.7 – Performance of GRCOV for varying pmsg and t.

algorithm produces. If in an instance, the size of the side information set for a particular
client vertex is s and t > n− s, then CNT [i] is initialized to n− s. We then plot the
average length of the codes obtained versus t, for several values of n. The plot is shown
in Figure 1.6a.

The figure has several trends that shows the efficacy of our algorithm. Notice that for
each n, after a short initial phase, the average number of bits required grows almost
linearly with t. This matches the trend expected from Theorem 1.4.7. Further, the
contours representing different values of n are approximately parallel for t > 5 i.e. the
slopes are independent of n. This also matches the trend suggested by an O(t+ log2 n)
bound for large enough t. The error bars at the top, that represents the maximum (and
minimum) length of the code encountered for random instances corresponding to n = 750,
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also shows an approximately linear trend.

In Figure 1.6b, the parameter on the x-axis is changed to n and the lines correspond to
particular values of t. Finally, in Figure 1.7, which is similar to Figure 1.5, we plot the
dependence of the average code length with respect to pmsg, for different values of t. In
both figures, we see that the behavior is not substantially different for different values of
t, with curves essentially getting shifted upwards for higher values of t.
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2 Optimal Schedules in Half-
Duplex Diamond Networks

Calculating the capacity of half-duplex wireless relay networks is a hard problem. For
such networks, since each relay can either be in a listening (L) or transmitting (T ) state
at any point of time, an additional dimension of optimization comes into play. For
the n-relay half-duplex diamond network, shown in Fig. 2.1a, there exist 2n possible
combinations of L and T states and any capacity achieving strategy would need to
optimize for how long each of these occurs. Even if the optimal schedule is actually
computed, it is a non-trivial task to operate the network with many cooperating relays
and many scheduling states.

In this chapter, we show that there might be no need for such an exponential size
optimization and high operational complexity. Using a computational proof strategy,
we show that for n ≤ 6, the number of active states in the approximately optimal
schedule is atmost n + 1. This is an exponential improvement over the possible 2n

scheduling states. We use simple approximations to the capacity of half-duplex diamond
networks [8, 9, 10], which can be represented as linear programs, that are a constant
gap (independent of channel SNRs) away from the capacity. The proof strategy then
crucially uses submodularity properties of information flow across cuts in the network
and linear programming duality to derive contradictions for optimal schedules having
more than n+ 1 states.

In fact, we conjecture that the above result is true for any n. The fact that a linear
number of active states is sufficient is interesting both from a practical and theoretical
perspective. Switching between n+ 1 as opposed to 2n states significantly reduces the
operational complexity and could lead to practical schemes. From a theoretical point
of view, this result reveals that the linear programs we are optimizing have a special
structure, which is intimately linked to the flow of information across cuts in wireless
networks. Indeed, our approach essentially identifies this structure and leverages it to
prove the optimal bounds on the number of active states.
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Figure 2.1 – Network model with channel coefficients of the individual links, relaying
states and cuts.

2.1 Related Work

The conjecture that n + 1 states are approximately optimal for n-relay half duplex
diamond networks was first made in [30]. The result for n = 2 follows from the work of
Bagheri et. al. [31]. The conjecture has since been generalized to arbitrary half-duplex
relay networks in the work of Cardone et. al. [32], where the relevant term to be
optimized is the generalized degrees of freedom (gDOF). In this case, the authors show
that it holds for 2-relay networks.

2.2 Problem Formulation and Main Results

2.2.1 Network Model

We consider the Gaussian n-relay diamond network where a source S transmits informa-
tion to a destination D with the help of half-duplex relays. At any given time t, each
relay Rk can either listen (L) or transmit (T ), but not both; we denote byMk[t] ∈ {L, T}
its state. The source and the destination are assumed to be always in the T and L states,
respectively.

Let Xs[t] be the signal transmitted by S at time t, Xk[t] be the signal transmitted by
relay Rk, Yd[t] and Yk[t] the signals received by D and Rk, respectively. Then

Xk[t] = 0 when Mk[t] = L

Yk[t] = hisXs[t] + Zk[t] when Mk[t] = L

= 0 when Mk[t] = T
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Yd[t] =
n∑
k=1

hkdXk[t] + Z[t] when Md[t] = L

where hks, hkd are the complex channel coefficients between S and Rk and Rk and D,
respectively. Zk[t] and Z[t] are i.i.d white Gaussian noise with unit variance. The power
constraints for the source and all the relays are fixed to P . A representative figure is
shown in Fig. 2.1a.

We can then calculate the individual link capacities from S to Rk (lk) and from Rk to D
(rk) as

lk = log(1 + |hks|2P ), rk = log(1 + |hkd|2P ) (2.1)

Let [n] represent the set {1, 2, · · · , n}. For i ∈ [2n], let mi ∈M = {L, T}n be a distinct
relaying state, i.e., a particular configuration of listening and transmitting states for
all the relays. The fraction of time the relays spend in state mi will be denoted by pi,
where

∑
i∈[2n] pi = 1. We will use L(mi), T (mi) ⊆ [n] to denote the set of indices of the

relays in listening and transmitting state in mi, respectively. Also, for j ∈ [2n], Λj ⊆ [n]
denotes the cut separating S ∪ (∪k∈ΛjRk) from D ∪ (∪k∈Λ̄jRk). A representative cut is
shown in Fig. 2.1b

To keep the exposition simple, we will assume that the lk’s and rk’s are all distinct. The
term l-value(s) and r-value(s) will refer to the lk’s and rk’s, respectively. Finally, unless
otherwise stated, the term “constant” will mean a quantity that depends only on the
number of relays and is independent of the channel SNRs.

2.2.2 An Approximation to the Capacity

Let Cnhd denote the capacity of the n-relay half-duplex diamond network; to achieve it,
we need to optimize over pi, the fraction of time that the relays are in state mi. From the
work of [8, 9, 10], Cnhd can be approximated up to constant additive terms by a quantity
Cnlp that is a function only of the individual link capacities {li, ri} as defined in (2.1).

Theorem 2.2.1 For an n relay half-duplex diamond network, there exist constants G(n)
and G′(n) such that

Cnlp −G′(n) ≤ Cnhd ≤ Cnlp +G(n) (2.2)

where

Cnlp = max
pi

min
j∈[2n]

2n∑
i=1

pi

(
max

k∈Λ̄j∩L(mi)
lk + max

k∈Λj∩T (mi)
rk

)
(2.3)

G(n) and G′(n) are both O(n) terms, independent of SNRs.
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Let p denote the vector (p1, p2, . . . , p2n). Cnlp can also be viewed as the optimum solution
of the following linear program, which we denote by LP.

LP : Maximize C
Cj(p) ≥ C for each j ∈ [2n] (2.4)
2n∑
i=1

pi = 1; ∀i, pi ≥ 0, C ≥ 0 (2.5)

where

Cj = CΛj = Cj(p) =
2n∑
i=1

pi

(
max

k∈Λ̄j∩L(mi)
lk + max

k∈Λj∩T (mi)
rk

)
(2.6)

Each primal variable pi denotes the fraction of time spent by the relays in state mi

and each constraint (except the last one) corresponds to a distinct cut Λj . Cj(p) thus
represents the information flow across the cut Λj over all the relaying states for the
schedule p. Thus, Cnlp is the maximum value of the minimum information flow over all
the cuts Λj , the maximization being done over all schedules p such that

∑
i∈[2n] pi = 1.

We will also use the alternate notation of CΛj (p) or simply Cj to represent Cj(p) , when
suitable.

LP is a maximization problem, and hence its dual, which is also a linear program, is a
minimization problem. Let pd denote the vector (pd1, . . . , pd2n). The dual can be written
as follows.

DLP : Minimize Cd

Cdi (pd) ≤ Cd for each i ∈ [2n] (2.7)
2n∑
j=1

pdj = 1; ∀j, pdj ≥ 0, Cd ≥ 0 (2.8)

where

Cdi = Cdmi(p
d) = Cdi (pd) =

2n∑
j=1

pdj

(
max

k∈Λ̄j∩L(mi)
lk + max

k∈Λj∩T (mi)
rk

)
(2.9)

Each dual variable pdj corresponds to the cut Λj and each dual constraint (except the
last one) corresponds to the relaying state mi. pdj can be thought of as non-negative
weights given to each cut with their sum normalized to one. Cdi (pd) thus represents the
information flow when the relays are in state mi over all the cuts for the dual vector pd.
Thus, Cnlp is the minimum value of the maximum information flow for all the relaying
states mi, the minimization being done over all dual vectors pd such that

∑
j∈[2n] p

d
j = 1.

We will also use the alternate notation of Cdmi(p
d) or simply Cdi to represent Cdi (pd)

quantity, when suitable.
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lk(k ∈ [n]) Capacity of point to point channel from S to Rk
rk(k ∈ [n]) Capacity of point to point channel from Rk to D
Cnhd Capacity of n-relay half-duplex diamond network
Cnlp Approximation to capacity through linear program
mi(i ∈ [2n]) Relaying state
Λj(j ∈ [2n]) Cut in the network
pi, p

d
j The primal variable for state mi and dual variable for cut Λj

p,pd The vector of primal variables pi and dual variables pdj , both
of length 2n

Cj(p), Cj , CΛj (p) Information flow through cut Λj in LP for primal vector p
Cdi (pd), Cdi , Cdmi(p

d) Information flow for state mi in DLP for dual vector pd

Table 2.1 – Summary of terms defined in this section.

As an example, consider a 2-relay network with l1 = 3, l2 = 1, r1 = 2 and r2 = 4. Here
the primal vector p = (p1, p2, p3, p4) corresponds to the states m1 = {L,L}, m2 = {L, T},
m3 = {T, L}, m4 = {T, T}. The dual vector p = (pd1, pd2, pd3, pd4) corresponds to the cuts
Λ1 = ∅, Λ2 = {2}, Λ3 = {1} and Λ4 = {1, 2}. Then, C2

lp is the objective value of the
following primal and dual linear programs.

Maximize C

max(3, 1).p1 + 3.p2 + 1.p3 + 0.p4 ≥ C
3.p1 + (3 + 4).p2 + 0.p3 + 4.p4 ≥ C
1.p1 + 0.p2 + (1 + 2).p3 + 2.p4 ≥ C
0.p1 + 4.p2 + 2.p3 + max(2, 4).p4 ≥ C
p1 + p2 + p3 + p4 = 1
p1, p2, p3, p4 ≥ 0

Minimize Cd

max(3, 1).pd1 + 3.pd2 + 1.pd3 + 0.pd4 ≤ Cd

3.pd1 + (3 + 4).pd2 + 0.pd3 + 4.pd4 ≤ Cd

1.pd1 + 0.pd2 + (1 + 2).pd3 + 2.pd4 ≤ Cd

0.pd1 + 4.pd2 + 2.pd3 + max(2, 4).pd4 ≤ Cd

pd1 + pd2 + pd3 + pd4 = 1
pd1, p

d
2, p

d
3, p

d
4 ≥ 0

For this network, C2
lp = 19

10 with optimal primal vector p1 = 1
4 , p2 = 1

5 ,p3 = 11
20 , and

p4 = 0 and optimal dual vector pd1 = 1
2 , p

d
2 = 0, pd3 = 2

5 , p
d
4 = 1

10 .

There is a natural correspondence between cuts and the states making LP andDLP quite
symmetrical. To take advantage of this fact, we will assume that the states and the cuts
are numbered in such a way that Λj and T (mi) are equal as subsets of [n] when i = j. For
example, in the above program, Λ2 = {2} and T (m2) = {2}. In the sequel, we will assume
that the normalization constraints (

∑
i∈[2n] pi = 1 and

∑
j∈[2n] p

d
j = 1) and non-negativity

constraints (C,Cd,p,pd ≥ 0) are always present. The other constraints (Cj(p) ≥ C and
Cdi (pd) ≤ Cd) will be called primal and dual flow constraints, respectively.

The various terms defined in this section are summarized in Table 2.1.
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2.2.3 Main Results

The number of active states in a schedule, i.e., the number of non-zero components in p
is an indicator of schedule complexity. Let (p̃, Cnlp) be the optimal solution to LP. In
[30], the following conjecture was made on the number of active states in in p̃.
Conjecture: There exists an optimal solution (p̃, Cnlp) to LP that has at most n + 1
active states.

If true, this will mean that schedules of only linear complexity, instead of the exponential,
are enough to approximately achieve the capacity of diamond networks. In this chapter,
we describe a computational proof strategy to resolve the conjecture and implement it
for n ≤ 6 to prove the following theorem.

Theorem 2.2.2 There exists an optimal solution (p̃, Cnlp) to LP that has at most n+ 1
active states for networks of size n ≤ 6 relays.

2.3 Proof Strategy and Key Techniques

In the present and the next two sections, we develop a computational proof strategy
for proving Thm. 2.2.2. We start off by assuming that the optimal solution to LP has
exactly t > n + 1 active states. If LP is non-degenerate, there will both be a primal
and dual optimum with exactly t active states. For each pair of such t-tuples (τ, τd) of
active states in the primal and dual optimum, we will try to discover a contradiction.
The contradiction can come from one of the following two sources that constrains these
pairs: (i) submodularity relationships between the expressions Cj(p) and Cdi (pd), or (ii)
complementary slackness conditions of LP and DLP. Through several steps, we arrive
at a contradiction by either showing that such a set of active state pairs violates the
submodular inequalities or by showing that it implies that there are more than 2n − t
inactive states. If this can be shown for all possible pairs of t-tuples (τ, τd), then it will
imply that the optimal solution to LP cannot have exactly t active states.

These two key building blocks of the proof strategy are described next. In the sequel, we
will always assume that the relays are arranged such that the li values are in descending
order, i.e., li > lj for i < j. The ri values will then be relatively ordered in one of the n!
possible ways. We will denote the ordering by π. We will refer to the indices of a set of
primal variables as state indices and those of a set of dual variables as cut indices.

For any cut Λj ⊆ [n], each term CΛj (p) is a convex combination of 2n terms representing
the interaction of the cut with the 2n states mi. We will denote the interaction term by

CΛj ,mi =
(

max
k∈Λ̄j∩L(mi)

lk + max
k∈Λj∩T (mi)

rk

)
(2.10)
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mi ↓, Λj → {} {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
{L,L,L} l1 l2 l1 l1 l3 l2 l1 0
{T, L, L} l2 l2 + r1 l3 l2 l3 + r1 l2 + r1 0 r1
{L, T, L} l1 l3 l1 + r2 l1 l3 + r2 0 l1 + r2 r2
{L,L, T} l1 l2 l1 l1 + r3 0 l2 + r3 l1 + r3 r3
{T, T, L} l3 l3 + r1 l3 + r2 0 l3 + r2 r1 r2 r2
{T, L, T} l2 l2 + r1 0 l2 + r3 r1 l2 + r3 r3 r3
{L, T, T} l1 0 l1 + r2 l1 + r3 r2 r3 l1 + r3 r3
{T, T, T} 0 r1 r2 r3 r2 r3 r3 r3

Table 2.2 – The example network has three relays with l1 > l2 > l3 and r1 < r2 < r3. The
columns denote the relaying states m1, . . . ,m8 and the rows denote the cuts Λ1, . . . ,Λ8.
The number in a particular cell is the interaction term between the state and cut
corresponding to it.

As a running example, we will use a 3 relay network with l1 > l2 > l3 and r1 < r2 < r3.
The relaying states, cuts and their interactions are shown in Table 2.2. The fact that
r1 < r2 < r3, denotes a specific ordering, which we will call π0.

2.3.1 Submodularity Properties of Cj and Cd
i

A function f defined on the subsets of some finite universe U to R is called submodular
if for all subsets A,B ⊆ U ,

f(A) + f(B) ≥ f(A ∪B) + f(A ∩B) (2.11)

For a fixed p, the quantity CΛj (p) is defined for each of the 2n cuts Λj , which are
themselves subsets of [n]. They naturally define a function on the subsets Λj of [n].
Crucially, these functions are not arbitrary and are in fact submodular. This is shown in
the following lemma.

Lemma 2.3.1 For any Λj1 ,Λj2 ⊆ [n],

CΛj1 (p) + CΛj2 (p) ≥ CΛj1∪Λj2 (p) + CΛj1∩Λj2 (p)

Proof: For a fixed i, CΛj ,mi is also a function defined on the subsets Λj . If we prove that
submodularity holds for CΛj ,mi for each i ∈ [2n], then our claim follows. We claim that
the following holds for any two sets Λ′1 and Λ′2

max
k∈Λ′1

rk + max
k∈Λ′2

rk ≥ max
k∈Λ′1∪Λ′2

rk + max
k∈Λ′1∩Λ′2

rk (2.12)
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Let x = max
k∈Λ′1

rk and y = max
k∈Λ′2

rk, then clearly max
k∈Λ′1∪Λ′2

rk = max (x, y). If x ≥ y, then the

claim is reduced to max
k∈Λ′1∩Λ′2

rk ≤ max
k∈Λ′2

rk which is also true as the r.h.s is a maximum over

a superset. The case of x < y is symmetrical. Now substituting Λ′1 = Λj1 ∩ T (mi) and
Λ′2 = Λj2 ∩ T (mi), we get

max
k∈Λj1∩T (mi)

rk + max
k∈Λj2∩T (mi)

rk ≥ max
k∈(Λj1∪Λj2 )∩T (mi)

rk + max
k∈(Λj1∩Λj2 )∩T (mi)

rk (2.13)

Similarly, substituting Λ′1 = Λj1 ∩ L(mi) and Λ′2 = Λj2 ∩ L(mi) and replacing the rk’s
with lk’s, we get

max
k∈Λj1∩L(mi)

lk + max
k∈Λj2∩L(mi)

lk ≥ max
k∈(Λj1∪Λj2 )∩L(mi)

lk + max
k∈(Λj1∩Λj2 )∩L(mi)

lk (2.14)

where we use the fact that Λj1 ∩ Λj2 = Λj1 ∪ Λj2 and Λj1 ∪ Λj2 = Λj1 ∩ Λj2 . Adding the
two inequalities (2.13) and (2.14), we get

CΛj1 ,mi + CΛj2 ,mi ≥ CΛj1∪Λj2 ,mi + CΛj1∩Λj2 ,mi (2.15)

from which the claim of the lemma follows.

Similar properties were also shown in [33]. Thus for each j1, j2 ∈ [2n] (j1 6= j2), and
j3 ∈ [2n] such that Λj3 = Λj1 ∪ Λj2 and j4 ∈ [2n] such that Λj4 = Λj1 ∩ Λj2 , we have

Cj1 + Cj2 ≥ Cj3 + Cj4 (2.16)

Note that in our notation Cj1 = CΛj1 . For a n-relay network, it can be shown that there
are 2n−1(2n + 1) − 3n such submodular inequalities. We will put all distinct 4-tuples
j1, j2, j3, j4 that represent a submodular inequality into the following set.

SM = {(j1, j2, j3, j4) such that Cj1 + Cj2 ≥ Cj3 + Cj4} (2.17)

The relative ordering of j1, j2 and j3, j4 is immaterial. Note that SM is a function of n
only and does not depend on the li, ri values or p and pd. Thus for our example 3-relay
network, SM is the following

SM = {{2, 3, 1, 5}, {2, 4, 1, 6}, {2, 7, 1, 8}, {3, 4, 1, 7}, {3, 6, 1, 8},
{4, 5, 1, 8}, {5, 6, 2, 8}, {5, 7, 3, 8}, {6, 7, 4, 8}} (2.18)

Further, for the s-th submodular inequality involving the tuple (js1, js2, js3, js4)

Cjs1 + Cjs2 − Cjs3 − Cjs4 =
zs∑
k=1

cαs
k
pαs

k
(2.19)
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for some strictly positive quantities cαs
k
that depend only on the relative ordering π. Here

zs is the number of such terms. Thus, if Cjs1 = Cjs2 = Cjs3 = Cjs4 for some value of p,
then each of the pαs

k
’s have to be identically equal to zero. We will denote this set of αsk

for the s-th submodular inequality by Zs(π), i.e.,

Zs(π) = {αsk such that pαs
k
≡ 0 when Cjs1 = Cjs2 = Cjs3 = Cjs4} (2.20)

In our 3-relay example, for the first submodular tuple {2, 3, 1, 5}, we have

C2 + C3 − C1 − C5 = (l2 − l3)p1 + l2p4 + r1p5 + r1p8 (2.21)

Therefore, Zi(π0) = {1, 4, 5, 8} as l2 > l3. Note that Zs(π) is defined only in terms of the
equality of the terms in the s-th submodular inequality and depends only on π. It does
not depend on the exact value of p but only requires the fact that p ≥ 0. The set of
Zs(π) over all the submodular inequality tuples in SM is denoted by ZSM (π). For our
3-relay network, we have the following

ZSM (π) = {{1, 4, 5, 8}, {3, 6, 8}, {1, 3, 4, 5, 6, 8}, {2, 7, 8}, {1, 2, 4, 5, 7, 8}
{1, 2, 3, 6, 7, 8}, {1, 2, 7, 8}, {1, 3, 6}, {1, 4, 5}} (2.22)

Due to the symmetry of LP and DLP, the above argument also holds for Cdi , with an
equivalence between Λj and T (mi) when i = j. The set of tuples in SM is the same and
can equivalently be defined as

SM = {(i1, i2, i3, i4) such that Cdi1 + Cdi2 ≥ C
d
i3 + Cdi4} (2.23)

We can also define Zs(π) for the s-th submodular inequality (is1, is2, is3, is4) from SM as

Zs(π) = {αsk such that pdαs
k

= 0 when Cdis1 = Cdis2 = Cdis3 = Cdis4} (2.24)

where

Cdis1 + Cdis2 − C
d
is3
− Cdis4 =

zs∑
k=1

cdαs
k
pdαs

k
(2.25)

for some strictly positive quantities cdαs
k
.

2.3.2 Linear Programming Duality

Corresponding to the optimal solution p̃ of LP, there is also an optimal dual solution
p̃d of DLP. Assume that this is also basic feasible. This means, at least 2n + 1 of the
constraints must be satisfied with equality for p̃. Here, we will make a mild assumption
of non-degeneracy in the linear programs we are considering. This means that every basic
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feasible solution is defined by exactly 2n + 1 tight constraints. If p̃ has t active states
then exactly t of the flow constraints are satisfied with equality and the remaining 2n − t
flow constraints are strict inequalities. By the condition of complementary slackness,
this implies that p̃d has exactly t active dual states (which correspond to the tight flow
constraints in LP), DLP has exactly t tight dual flow constraints (corresponding to the
active states in LP) and the remaining 2n− t dual flow constraints are strict inequalities.

This basic fact from LP duality will be used extensively in our proof strategy. To
summarize, for each pair (τ, τd) of t-tuples representing the active states in the primal
and dual optimum, the above discussion implies that

Cj(p̃) = Cnlp for j ∈ τd and Cdi (p̃d) = Cnlp for i ∈ τ (2.26)
Cj(p̃) > Cnlp for j ∈ [2n] \ τd and Cdi (p̃d) < Cnlp for i ∈ [2n] \ τ (2.27)

In our proof strategy, we will start from a pair (τ, τd) of t-tuples and try to derive a
contradiction through several methods as described in the next two sections.

2.4 Contradictions from Submodular Inequalities and LP
Duality

The contradictions derived from the submodular inequalities can be of 3 types.

2.4.1 Type I Contradiction

From (2.26) and (2.27), each of {Cj , j ∈ τd} is equal to Cnlp and each of {Cj , j ∈ [2n] \ τd}
is strictly greater than Cnlp. However, the submodular relationships among the Cj ’s
may lead to contradictions. Let the k-th submodular 4-tuple SMk from the set SM
be {k1, k2, k3, k4}. Then, we have a contradiction if there exists a k ∈ [|SM |] and the
following holds

|{k1, k2} ∩ τd| = 2 and |{k3, k4} ∩ ([2n] \ τd)| ≥ 1 (2.28)

This is because if |{k3, k4}∩ ([2n] \ τd)| ≥ 1, then Ck3 +Ck4 > 2Cnlp and Ck1 +Ck2 = 2Cnlp,
while the submodular inequality implies Ck1 + Ck2 ≥ Ck3 + Ck4 . In our 3-relay example,
if τd = {1, 2, 3, 4, 6}, we have C2 = C3 = C1 = C3

lp and C5 > C3
lp. We get a contradiction

for the first submodular tuple in SM which is {2, 3, 1, 5}. On the other hand, for
τd = {1, 2, 3, 5, 8}, we cannot derive any contradictions of Type I.

Similarly, it is also true that each of {Cdi , i ∈ τ} are equal to Cnlp and each of {Cdi , i ∈
[2n] \ τ} are strictly smaller than Cnlp. Then, we have a contradiction if there exists a
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k ∈ [|SM |] and the following holds

|{k3, k4} ∩ τ | = 2 and |{k1, k2} ∩ ([2n] \ τ)| ≥ 1 (2.29)

In this case, Ck1 + Ck2 < 2Cnlp and Ck3 + Ck4 = 2Cnlp, while the submodular inequality
implies Ck1 + Ck2 ≥ Ck3 + Ck4 . In our 3-relay example, if τ = {1, 2, 4, 5, 6}, we have
Cd1 = Cd2 = Cd5 = C3

lp and Cd3 < C3
lp. However, we get a contradiction for the first

submodular tuple in SM which is {2, 3, 1, 5}. On the other hand, for τ = {1, 2, 3, 4, 5},
we cannot derive any contradictions of Type I.

2.4.2 Type II Contradiction

The fact that {Cj , j ∈ τd} are all equal, forces some of the primal variables to be zero
via the submodular inequalities. The state indices that are forced to be zero, denoted by
FZ(τd, π) (FZ stands for forced zeros), is precisely the following

FZ(τd, π) = ∪k∈[|SM |]{Zk(π) such that |SMk ∩ τd| = 4} (2.30)

Similarly, the equality of {Cdi , i ∈ τ} forces some dual variables to be zero. These cut
indices are denoted by FZd(τ, π) and is given by

FZd(τ, π) = ∪k∈[|SM |]{Zk(π) such that |SMk ∩ τ | = 4} (2.31)

If |FZ(τd, π)| > 2n− t or |FZd(τ, π)| > 2n− t, we have a contradiction because we started
off with t active states.

For our 3-relay example, for τd = {1, 2, 3, 5, 8}, we get FZ(τd, π0) = {1, 4, 5, 8}, in which
case we have a contradiction. For τd = {1, 2, 4, 6, 8}, we get FZ(τd, π0) = {3, 6, 8}, in
which case we do not have a contradiction. Similarly, for τ = {1, 2, 3, 4, 5}, we get
FZd(τ, π0) = {1, 4, 5, 8} in which case we also have a contradiction. For τ = {1, 2, 3, 4, 6},
we get FZd(τ, π0) = {3, 6, 8}, in which case we do not have a contradiction.

2.4.3 Type III Contradiction

The equality of {Cj , j ∈ τd} combined with the submodular inequalities can sometimes
imply all the remaining flow constraints automatically, irrespective of the value of p (of
course assuming p is non-negative). Let Id(τd, π) denote the set of cut indices j such
that the condition Cj ≥ Cnlp is implied if we assume Cj = Cnlp for j ∈ τd. Trivially, all the
indices in τd can be included in Id(τd, π). For the k-th tuple {k1, k2, k3, k4} of SM , the
following is true

|{k3, k4} ∩ Id(τd, π)| = 2 and (k1 ∈ τd)⇒ k2 ∈ Id(τd, π) (2.32)
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|{k3, k4} ∩ Id(τd, π)| = 2 and (k2 ∈ τd)⇒ k1 ∈ Id(τd, π) (2.33)

This is because the first condition implies that Ck3 + Ck4 ≥ 2Cnlp and if Ck1 = Cnlp, then
Ck2 ≥ Ck3 + Ck4 − Cnlp ≥ Cnlp. Similarly, if Ck2 = Cnlp, then Ck1 ≥ Ck3 + Ck4 − Cnlp ≥ Cnlp.
The same is true for all the tuples in SM . This process can be repeated over all the
tuples in SM until the size of Id(τd, π) does not increase. At the end of this process, if
|Id(τd, π)| = 2n, then this implies that if all the {Cj , j ∈ τd} are equal to Cnlp, then the
remaining flow constraints are satisfied automatically.

The discussion from the previous subsection on Type II contradictions also implies
that the states corresponding to FZ(τd, π) are zero. Putting these together, LP can
equivalently be replaced by the following linear program.

Maximize C
Cj(p) = C for each j ∈ τd (2.34)∑
i∈[2n]\FZ(τd,π)

pi = 1;
∑

i∈FZ(τd,π)
pi = 0 (2.35)

∀i, pi ≥ 0, C ≥ 0 (2.36)

In this case, the constraints of the linear program are simply a set of equations. Let the
rank of this system of equations be R(τd, π). If R(τd, π) turns out to be less than t+ 1,
then the constraints can be further reduced to a set of R(τd, π) equations. Again by the
theory of linear programming, there is a basic feasible solution that is optimal. Since
there are R(τd, π) equations and t+ 1 variables, at least one state variable (C is always
non-zero in the optimal solution) is zero in the basic feasible solution. But this again
contradicts our assumption that there are exactly t active states in the optimal solution
to LP.

In our 3-relay example, for τd = {1, 2, 4, 6, 8}, FZ(τd, π0) = {3, 6, 8} and in fact
|Id(τd, π0)| = 23 = 8. The reduced form of LP is the following

Maximize C
l1p1 + l2p2 + l1p4 + l3p5 + l1p7 = C

l2p1 + (l2 + r1)p2 + l2p4 + (l3 + r1)p5 = C

l1p1 + l2p2 + (l1 + r3)p4 + (l1 + r3)p7 = C

l2p1 + (l2 + r1)p2 + (l2 + r3)p4 + r1p5 + r3p7 = C

r1p2 + r3p4 + r2p5 + r3p7 = C

p1 + p2 + p4 + p5 + p7 = 1
p1, p2, p4, p5, p7, C ≥ 0

As the sum of the second and third constraints is equal to the sum of the first and fourth
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constraints, the rank of this system is 5, which is less than t+ 1 = 6. We thus have a
contradiction of Type III.

Similarly, the equality of {Cdi , i ∈ τ} combined with the submodular inequalities may
imply all the remaining flow constraints automatically. Let I(τ, π) denote the set of state
indices i such that the condition Cdi ≤ Cnlp is implied if we assume Cdi = Cnlp for i ∈ τ .
Trivially, all the indices in τ can be included in I(τ, π). For the k-the tuple of SM , the
following is true

|{k1, k2} ∩ I(τ, π)| = 2 and (k3 ∈ τ) =⇒ k4 ∈ I(τ, π) (2.37)
|{k1, k2} ∩ I(τ, π)| = 2 and (k4 ∈ τ) =⇒ k3 ∈ I(τ, π) (2.38)

The same is true for all the tuples in SM . This process can be repeated over all the
tuples in SM until the size of I(τ, π) does not increase. At the end, if |I(τ, π)| = 2n,
then this implies that if all the {Cdi , i ∈ τ} are equal to Cnlp, then the remaining dual flow
constraints are satisfied automatically. The remaining steps for deriving a contradiction
are similar to the ones described above, with a contradiction arising when Rd(τ, π), the
rank of the reduced DLP system, is less than t+ 1.

2.4.4 Remarks

The three ways to derive contradictions developed so far can be implemented in a parallel
manner for a set of tight primal constraints τd and a set of tight dual constraints τ as
they do not interact in any way. This is crucial for an efficient implementation of the
proof strategy, as discussed in Section 2.5. However, these techniques by themselves do
not lead to the optimal bounds on the number of active states in LP. Two additional
techniques for deriving contradictions using LP duality are required, as discussed next.

We again start from a pair (τ, τd) of indices, each of size t that correspond to the active
states in the primal and dual optimal solutions, respectively. We derive two more types
of contradictions from the interaction of τ and τd.

2.4.5 Type IV Contradiction

From the complementary slackness conditions of linear programming, it follows that
a tight primal constraint corresponds to a non-zero dual variable and a tight dual
constraint corresponds to a non-zero primal variable. From Section 2.4.2, the submodular
inequalities imply that if {Cj , j ∈ τd} are all equal then all {pi, i ∈ FZ(τd, π)} must be
zero and if {Cdi , i ∈ τ} are all equal then all {pdj , j ∈ FZd(τ, π)} must be zero. Thus, we
have a contradiction if the following condition holds.

|FZ(τd, π) ∩ τ | > 0 or |FZd(τ, π) ∩ τd| > 0 (2.39)
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2.4.6 Type V Contradiction

It is possible that all the above methods fail to discover a contradiction. In that
case, we go back to the original assumptions about τ and τd. First, for two linear
combinations D1(p), D2(p) of p = (p1, . . . , p2n), the relational operator � is defined as
follows. D1(p) � D2(p) iff

D1(p)−D2(p) =
2n∑
i=1

αipi where αi ≥ 0 for i ∈ [2n] (2.40)

Let Cj|τ (p) denote the value of Cj(p) with only the active states of p implied by τ

retained. That is, for p′ = (p′1, . . . , p′2n),

Cj|τ (p) = Cj(p′) where p′i = pi for i ∈ τ and 0 otherwise (2.41)

Similarly, we define Cdi|τd(p
d) for p′d = (p′d1 , . . . , p′d2n) as follows

Cdi|τd(p
d) = Cdi (p′d) where p′dj = pdj for j ∈ τd and 0 otherwise (2.42)

Note that both Cj|τ (p) and Cdi|τd(p
d) should be seen as linear functions of t variables.

By Eq. (2.27), we have a contradiction if the following is true

∃(j1 ∈ τd, j2 ∈ [2n] \ τd) s.t. Cj1|τ (p) � Cj2|τ (p) (2.43)

Similarly, we have a contradiction if the following is true

∃(i1 ∈ τ, i2 ∈ [2n] \ τ) s.t. Cdi2|τd(p
d) � Cdi1|τd(p

d) (2.44)

Finally, we also have a contradiction if the following is true for the primal constraints

∃(j1, j2 ∈ τd, j1 6= j2) s.t. Cj1|τ (p) � Cj2|τ (p) (2.45)

In this case, if Cj1|τ (p)− Cj2|τ (p) is not identically zero, each pi, i ∈ τ appearing in the
expression must be zero, as both the terms are equal to Cnlp. On the other hand, if the
difference is identically zero, then the rank of the constraint matrix is less than t + 1
and there is a contradiction using reasoning similar to the one outlined in Section 2.4.3.
Similarly, we have a contradiction if the following is true for the dual constraints.

∃(i1, i2 ∈ τ, i1 6= i2) s.t. Ci1|τd(p
d) � Ci2|τd(p

d) (2.46)

Note that to check whether an expression of the type Cj1|τ (p) � Cj2|τ (p) holds, it is
enough to specify the ordering π. As before, only the fact that p is non-negative is
required, not its exact value.

The various terms defined in this section are summarized in Table 2.3.
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τ , τd The set of state and cut indices that are active in the optimal
solution

SM Set of 4-tuples defining the submodular inequalities among Cj or
Cdi

Zs(π) Set of state or cut indices that are inactive if all terms in s-th
submodular tuple are equal

FZ(τd, π) Set of state indices that are inactive if Cj = Cnlp for j ∈ τd
FZd(τ, π) Set of cut indices that are inactive if Cdi = Cnlp for i ∈ τ
Id(τd, π) Set of cut indices such that the corresponding flow constraints in

LP are implied if Cj = Cnlp for j ∈ τd
R(τd, π) Rank of the reduced form of LP if |Id(τd, π)| = 2n
I(τ, π) Set of state indices such that the corresponding flow constraints in

LP are implied if Cdi = Cnlp for i ∈ τ
Rd(τ, π) Rank of the reduced form of DLP if |I(τd, π)| = 2n
Cj|τ (p) The expression Cj(p) with pi, i /∈ τ set to zero
Cdi|τd(p

d) The expression Ci(pd) with pdj , j /∈ τd set to zero

Table 2.3 – Summary of terms defined in this section related to different types of
contradictions.

2.5 Proof of Theorem 2.2.2

The proof strategy described in the previous two sections was implemented using symbolic
algebra in Mathematica for n = 3, 4, 5, 6. To minimize computation time, we implement
the proof strategy in two steps.

2.5.1 Proof Implementation: First Stage

In the first stage we will use contradictions of Type I, II and III only for tuples τd of
active dual states in the optimum to derive upper bounds on the number of active states
in LP. The relays are ordered such that li > lj for i < j. We fix the ordering of the
ri’s, where the specific ordering is denoted by π. Suppose LP has exactly t ∈ [n+ 2, 2n]
active states. This means there is a t-tuple τd of active dual states or equivalently tight
primal constraints. For a given n, we first compute the set of submodular inequalities
SM . At this stage, for each of the possible

(2n
t

)
t-tuples, we check whether there is a

Type I contradiction. Rather than first generating all the
(2n
t

)
tuples and then checking

for contradictions, we only generate the t-tuples that do not have a Type I contradiction
using a recursive procedure. This results in greater efficiency. The set of τd that do not
have a Type I contradiction is denoted by Sd,1(n, t).

Since the terms in LP are of the form max
k∈Λj∩L(mi)

lk + max
k∈Λ̄j∩T (mi)

rk, fixing π fixes these

interaction terms as a function of the ri’s (in the sense that the max is resolved). This
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(c) n = 6

Figure 2.2 – Histogram of the cardinalities of the sets in ZSM (π) for n = 4, 5, 6.

also implies we can compute the sets in ZSM (π). For each τd ∈ Sd,1(n, t), we can then
compute the sets FZ(τd, π), Id(τd, π), R(τd, π). This enables us to look for Type II and
Type III contradictions for each tuple. The set of τd that do not have a Type II and
Type III contradiction is denoted by Sd,2(n, t, π) and Sd,3(n, t, π) respectively. This
computation is done for all the possible n! orderings π.

A histogram of the cardinalities of the sets in ZSM (π) is shown in Fig. 2.2 for the
configuration where ri < rj for i < j. We observe in our results that the histograms
are the same for all orderings π. The cardinalities of the sets Sd,1(n, t), S̄d,2(n, t) and
S̄d,3(n, t) for n = 3, 4, 5, 6 and for different values of t ∈ [n + 2, 2n] are shown below.
S̄d,2(n, t) and S̄d,3(n, t) denotes the average value of Sd,2(n, t, π) and Sd,3(n, t, π) over
all the n! orderings π (rounded to the nearest integer), respectively. Numbers are only
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shown for those t where |Sd,1(n, t)| is not zero.

t→ 5 6 8
|Sd,1(3, t)| 6 6 1
|S̄d,2(3, t)| 4 0 0
|S̄d,3(3, t)| 0 0 0

t→ 6 7 8 9 10 12 16
|Sd,1(4, t)| 120 54 62 20 24 12 1
|S̄d,2(4, t)| 64 32 0 0 0 0 0
|S̄d,3(4, t)| 28 0 0 0 0 0 0

t→ 9 10 11 12 13 14 15 16 17 18 20 24 32
|Sd,1(5, t)| 1000 1140 500 780 240 390 120 200 10 100 60 20 1
|S̄d,2(5, t)| 469 30 0 0 0 0 0 0 0 0 0 0 0
|S̄d,3(5, t)| 106 0 0 0 0 0 0 0 0 0 0 0 0

t→ 17 18 19 20 21 22 23 24 25 26
|Sd,1(6, t)| 8550 12990 4110 8700 3420 4800 720 4140 600 1680
|S̄d,2(6, t)| 19 8 0 0 0 0 0 0 0 0
|S̄d,3(6, t)| 19 0 0 0 0 0 0 0 0 0

t→ 27 28 30 32 33 34 36 40 48 64
|Sd,1(6, t)| 360 1530 720 507 12 60 300 12 30 1
|S̄d,2(6, t)| 0 0 0 0 0 0 0 0 0 0
|S̄d,3(6, t)| 0 0 0 0 0 0 0 0 0 0

The minimum t∗ such that for all t > t∗, Sd,3(n, t, π) is an empty set for all the n!
orderings π is an upper bound to the number of active states in LP. Thus, we obtain
the following lemma.

Lemma 2.5.1 There exist optimal solutions to LP for n = 3, 4, 5 and 6 relays such that
it has at most u1(n) active states, where

n 3 4 5 6
u1(n) 4 6 9 17

This already proves the optimal upper bound for n = 3 and upper bounds that are much
better than the trivial 2n for n = 4, 5, 6.

2.5.2 Proof Implementation: Second Stage

Our starting point will be the upper bounds shown above. Note that this stage is only
implemented for n = 4, 5, 6. Suppose LP has exactly t ∈ [n+ 2, u1(n)] active states. This
means there is a t-tuple τd of active dual states and a t-tuple τ of active primal states.
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For a given n, we first compute the set of submodular inequalities SM . At this stage, for
each of the possible

(2n
t

)
τd and τ , we check whether there is a Type I contradiction. As

above, only the tuples that do not have a contradiction are generated using a recursive
procedure. The set of τd and τ that do not have a Type I contradiction is denoted by
Sd,1(n, t) and Sp,1(n, t) respectively.

For a given ordering π, for each τd ∈ Sd,1(n, t), we can then compute the sets FZ(τd, π),
Id(τd, π), R(τd, π) and for each τ ∈ Sp,1(n, t), we can compute the sets FZd(τ, π), I(τ, π),
Rd(τ, π). This enables us to look for Type II and Type III contradictions for each tuple.
The set of τd that do not have a Type II and Type III contradiction is denoted by
Sd,2(n, t, π) and Sd,3(n, t, π) respectively. The set of τ that do not have a Type II and
Type III contradiction is denoted by Sp,2(n, t, π) and Sp,3(n, t, π) respectively

The computations for the primal and dual tuples can be carried out in parallel till this
stage. Next, we check each pair of tuples from the product set Sp,3(n, t, π)× Sd,3(n, t, π)
for Type IV contradictions. The ones that survive are checked for Type V contradictions.
This requires the computation of Cj|τ (p) and Cdi|τd(p

d) as described in Section 2.4. Let the
set of t-tuple pairs that survive all the stages be Sp,d(n, t, π). We repeat this computation
for all the orderings π. We now state the proof of Thm. 2.2.2.

Proof of Theorem 2.2.2: The proof strategy was implemented for n ∈ {4, 5, 6}, for each
t ∈ [n+ 2, u1(n)] and for each of the n! relative orderings of the ri’s. Below we report the
cardinalities of the sets Sp,1(n, t), Sd,1(n, t). We also report S̄d,2(n, t), S̄p,2(n, t), S̄d,3(n, t)
and S̄p,3(n, t) which are the average of the cardinalities of the sets Sd,2(n, t), Sp,2(n, t),
Sd,3(n, t) and Sp,3(n, t) over the n! orderings π, respectively (rounded to the nearest
integer). Finally, the quantity S̄p,d(n, t), which is Sp,d(n, t, π) averaged over all π, is
reported.

For n = 4 and n = 5, we have

t→ 6 7
|Sd,1(4, t)| 120 54
|Sp,1(4, t)| 707 598
|S̄d,2(4, t)| 64 32
|S̄p,2(4, t)| 692 535
|S̄d,3(4, t)| 28 0
|S̄p,3(4, t)| 686 524
|S̄p,d,5(4, t)| 0 0

t→ 7 8 9
|Sd,1(5, t)| 1320 1535 1000
|Sp,1(5, t)| 143900 232570 320920
|S̄d,2(5, t)| 1164 803 469
|S̄p,2(5, t)| 143881 232285 316400
|S̄d,3(5, t)| 924 353 106
|S̄p,3(5, t)| 143871 232240 316310
|S̄p,d,5(5, t)| 0 0 0
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For n = 6 we have.

t→ 8 9 10 11 12 13 14 15
|Sd,1(6, t)| 26620 25060 30270 22980 29040 18240 23490 14060
|Sp,1(6, t)|(×108) 1.1 3.4 9.1 21 44 8.0 13 20
|S̄d,2(6, t)| 21745 20392 18700 13377 8288 4275 1125 498
|S̄p,2(6, t)|(×108) 1.1 3.4 9.1 21 44 8.0 13 20
|S̄d,3(6, t)| 19945 16432 12274 5765 3608 1071 498 0
|S̄p,3(6, t)|(×108) 1.1 3.4 9.1 21 44 8.0 13 20
|S′p,d,5(6, t)| 0 0 0 0 0 0 0 0

t→ 16 17
|Sd,1(6, t)| 17345 8550
|Sp,1(6, t)|(×108) 34 51
|S̄d,2(6, t)| 11 19
|S̄p,2(6, t)|(×108) 34 51
|S̄d,3(6, t)| 11 19
|S̄p,3(6, t)|(×108) 34 51
|S′p,d,5(6, t)| 0 0

The cardinalities of the sets Sp,τd,5(n, t, π) for n = 4, 5, 6 and t ∈ {n+ 2, . . . , u1(n)} are
all 0, which means that any pair of basic feasible optimum solutions of LP and DLP
with more than n+ 1 active states leads to a contradiction. Therefore, for n = 4, 5, 6, the
optimal solution to LP must have atmost n+ 1 states. For n = 3, the optimal bound
was obtained in Lemma 2.5.1 above and the result for n = 2 follows from the work of
Bagheri et. al. [31].
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3 Routing Strategies for Half-
Duplex Diamond Networks

In the previous chapter, we showed that it is possible to achieve rates close to the capacity
of a n-relay half-duplex diamond network by using only n+1 active states in the schedule
(for n ≤ 6), instead of the possible 2n possible states. Even with the exponentially
reduced complexity of scheduling, it may still be difficult to operate the network using
these states because it may require the cooperation of all the n relays. In addition,
computation of these states may itself be a hard problem.

In this chapter, we show that if we are willing to sacrifice a bit on the rates, we can
achieve significant reductions in operational and computation complexity. Following the
network simplification approach of Nazaroglu et. al. [10], we show that very simple
routing strategies that use only two relays and two relaying states can achieve rates at
least half of the capacity of the whole network (approximately). For 2-relay networks, we
show that routing strategies achieve at least 8/9 of the capacity (approximately). The
relaying states employ only point-to-point connections and do not use any broadcasting
or multiple access.

We use the same linear programming approximations to capacity used in Chapter 2. We
use feasible solutions to the dual program to obtain upper bounds to the approximate
capacity expressions, and prove that there exist two relays which, when operated using
the simple 2-state schedule, can achieve a rate at least equal to half the capacity upper
bound. We also show that such a pair can be found in O(n logn) time.

If we are willing to sacrifice on the optimality of schedules, rather than designing a
relaying strategy by solving an optimization problem to find the optimal schedule and
operating the network by switching between these states, through our routing strategies
we can achieve approximately at least half of the capacity of the network by using only a
pair of relays and two scheduling states. This leads to substantial savings in complexity,
especially in time-varying networks where we may often need to redesign and readapt
the relay operations. An additional benefit is that we only need to consume power for
two relays, instead of n.
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(a) The Gaussian n-relay half-duplex diamond
network.
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(b) Relaying states and cuts in the network.

Figure 3.1 – Network model with channel coefficients of the individual links, relaying
states and cuts. For a particular relaying state, an arrow on a link denotes that it is
active.

3.1 Related Work

The results on routing strategies using only a few relays and states adds to the recent
literature of network simplification for diamond relay networks. Nazaroglu et. al. [10]
showed that in full-duplex diamond networks using two relays enables us to achieve
approximately 2/3 of the network capacity; this result, translated to half-duplex networks,
implies that using two relays and 2-state schedules enables us to achieve 1/3 of the
capacity. In this work, we improve this fraction to 1/2, still using two states and notably
avoiding the broadcast and multiple access links. The results in [10] were extended to a
special class of diamond networks with 2 receive and transmit antennas at the source
and destination in [34].

In terms of literature on relay selection in wireless networks, previous work has mainly
addressed full duplex relays. The work of Tannious et. al. [35] and Bletsas et. al. [36]
propose algorithms to select the single best relay (in terms of cooperative diversity) in
diamond networks. The work of Cai et. al. [37] and Zhao et. al. [38] analyse the
performance of heuristics for selecting a subset of relays for Amplify-and-Forward (AF)
based protocols in diamond networks. More recent work by Agnihotri at. al. [39] proves
upper bounds on multiplicative and additive gaps for AF-based relay selection.

3.2 Problem Formulation and Main Results

3.2.1 Network Model

We consider the Gaussian n-relay diamond network where a source S transmits informa-
tion to a destination D with the help of half-duplex relays. The notations and equations
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describing the signals are the same as Chapter 2. A representative figure is shown in Fig.
3.1a.

We can then calculate the individual link capacities from S to Rk (lk) and from Rk to D
(rk) as

lk = log(1 + |hks|2P ), rk = log(1 + |hkd|2P ) (3.1)

Let [n] represent the set {1, 2, · · · , n}. For i ∈ [2n], let mi ∈M = {L, T}n be a distinct
relaying state, i.e., a particular configuration of listening and transmitting states for
all the relays. The fraction of time the relays spend in state mi will be denoted by pi,
where

∑
i∈[2n] pi = 1. We will use L(mi), T (mi) ⊆ [n] to denote the set of indices of the

relays in listening and transmitting state in mi, respectively. Also, for j ∈ [2n], Λj ⊆ [n]
denotes the cut separating S ∪ (∪k∈ΛjRk) from D ∪ (∪k∈Λ̄jRk). A representative cut is
shown in Fig. 3.1b

To keep the exposition simple, we will assume that the lk’s and rk’s are all distinct. The
term l-value(s) and r-value(s) will refer to the lk’s and rk’s, respectively. Finally, unless
otherwise stated, the term “constant” will mean a quantity that depends only on the
number of relays and is independent of the channel SNRs.

3.2.2 An Approximation to the Capacity

Let Cnhd denote the capacity of the n-relay half-duplex diamond network; to achieve it,
we need to optimize over pi, the fraction of time that the relays are in state mi. As
described in Chapter 2, Cnhd can be approximated, upto constant additive terms, by Cnlp
which only depends on the individual link capacities {lk, rk} as defined in (3.1). Cnlp can
also be viewed as the optimum solution of a linear program. For completeness, we state
the minimization version of it (which is the dual program described in Chapter 2).

Let pd denote the vector (pd1, . . . , pd2n). The dual can be written as follows.

DLP : Minimize Cd

2n∑
j=1

pdj

(
max

k∈Λ̄j∩L(mi)
lk + max

k∈Λj∩T (mi)
rk

)
≤ Cd for each i ∈ [2n] (3.2)

2n∑
j=1

pdj = 1; ∀j, pdj ≥ 0, Cd ≥ 0 (3.3)

Each dual variable pdj corresponds to the cut Λj and each dual constraint (except the last
one) corresponds to the relaying state mi. pdj can be thought of as non-negative weights
given to each cut with their sum normalized to one.
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lk(k ∈ [n]) Capacity of point to point channel from S to Rk
rk(k ∈ [n]) Capacity of point to point channel from Rk to D
Cnhd Capacity of n-relay half-duplex diamond network
Cnlp Approximation to capacity through linear program
mi(i ∈ [2n]) Relaying state
Λj(j ∈ [2n]) Cut in the network
pdj The dual variable corresponding to cut Λj
Sij , SRS The rate achieved by routing strategy using Ri,Rj and the

maximum over all pairs

Table 3.1 – Summary of terms defined in this section.

3.2.3 Routing Strategies

We define a routing strategy as one that employs exactly two relays Ri and Rj (i < j), and
operates them using only two states {L, T} and {T, L}, where each relay in T performs
a decode-and-forward operation. Let p1, p2 be the fraction of time (Ri, Rj) are in the
states (L, T ) and (T, L) respectively. We define the maximum rate achieved by such a
strategy as Sij , which is given by

Sij = max
p1,p2

p1+p2=1
min(p1li, p2ri) + min(p2lj , p1rj) (3.4)

where the first term is the rate carried by the first and the second term is the rate carried
by the second relay. This maximization can be solved to obtain ([31, 30])

Sij = lj(rj + li)
lj + rj

if lilj ≤ rirj , li ≤ lj (3.5)

= li(lj + ri)
li + ri

if lilj ≤ rirj , li ≥ lj (3.6)

= ri(li + rj)
li + ri

if lilj ≥ rirj , ri ≥ rj (3.7)

= rj(lj + ri)
lj + rj

if lilj ≥ rirj , ri ≤ rj (3.8)

The maximum rate achievable by our routing strategy is denoted by SRS. It can be
calculated by maximizing Sij over all possible pairs of relays, i.e.,

SRS = max
i,j∈[n],i<j

Sij (3.9)

The various terms defined in this section are summarized in Table 3.1.
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3.2.4 Main Results

The main result in this chapter is the following.

Theorem 3.2.1 For any n-relay half-duplex diamond network,

SRS ≥


8
9C

n
lp for n = 2

1
2C

n
lp for n ≥ 3

(3.10)

Since Cnlp ≥ Cnhd −G(n) (from Section 2 in Chapter 2), if SRS ≥ γCnlp for some fraction
γ ∈ [0, 1], then it follows that SRS ≥ γCnhd − γG(n). That is, routing strategies achieve
at least γ fraction of the capacity of the network, up to constant additive factors. The
proof of the theorem naturally implies the following proposition.

Proposition 3.2.2 In any n-relay half-duplex diamond network, we can find a pair of
relays i, j, which when operated using routing strategies achieves a rate at least equal to
1
2C

n
lp in O(n logn) time.

3.3 Proof for 2-Relay Networks

In this section, we prove Thm. 3.2.1 for 2-relay networks. For brevity, assume
{l1, l2, r1, r2} = {a, b, c, d}. The linear program for C2

lp can be solved exactly to ob-
tain closed form expressions. Depending on the relative values of a, b, c, d, the expressions
can take different forms. We will show the proofs for the case ab ≤ cd and a ≥ b, c ≤ d.
For this case

C2
lp = ac(b+ d) + bd(a− b)

(b+ d)(a+ c− b) (3.11)

and

SRS = a(b+ c)
a+ c

(3.12)

3.3.1 Proof of Thm. 3.2.1 for 2-relay networks

Using the expressions for SRS and C2
lp, we have

9SRS
8C2

lp

− 1 = 9ab2(a− b) + abc(a+ c) + df1(a, b, c)
8(a+ c)(ac(b+ d) + bd(a− b)) (3.13)
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where f1(a, b, c) = a2b−ab2 +a2c−8abc+8b2c+ac2. Writing f1 as a quadratic expression
in c, we have

f1(a, b, c) = ac2 + (a2 − 8ab+ 8b2)c+ ab(a− b)

Clearly, if a2− 8ab+ 8b2 ≥ 0, then f1(a, b, c) ≥ 0. Since the equation x2− 8x+ 8 = 0 has
two roots approximately equal to 1.17 and 6.82, as long as a/b ∈ [1, 1.17] ∪ [6.82,+∞],
a2 − 8ab+ 8b2 ≥ 0 and hence f1(a, b, c) ≥ 0. On the other hand, we can also look at f1
as a quadratic function in c and look at its discriminant ∆(a, b) as a function of a, b. We
have

∆(a, b) = (a2 − 8ab+ 8b2)2 − 4a(ab(a− b))
= (a− 2b)2(a2 − 16ab+ 16b2)

Since the roots of x2 − 16x+ 16 = 0 are approximately 1.07 and 14.92, the discriminant
∆(a, b) < 0 if 1.07 ≤ a/b ≤ 14.92, in which case f1 as a function of c is non-negative.
Since the interval [1, 1.17] ∪ [6.82,+∞] ∪ [1.07, 14.92] covers all possible values of a/b, we
can conclude that f1(a, b, c) ≥ 0 in all cases. Hence

9SRS
8C2

lp

− 1 ≥ 0 =⇒ SRS
C2
lp

≥ 8
9 (3.14)

which proves the theorem.

The multiplicative ratio is essentially the best we can obtain. Consider the network with
a = 2e, b = e, c = e, d = ke for some k > 2 and e > 0. Then, plugging in the expressions
for SRS and C2

lp, we have

SRS
C2
lp

= 4(2 + 2k)
3(2 + 3k) →

8
9 as k →∞

To summarize, we have shown that for the 2-relay half-duplex diamond network, routing
strategies can achieve at least 8/9 of the capacity of the network, approximately.

3.4 Proof for Antisymmetric Networks

We now turn our attention to the proof of Thm. 3.2.1 for networks with n > 2 relays. To
this end, we will show appropriate lower bounds on SRS (the maximum rate achievable
by routing strategies) and upper bounds on Cnlp. The ratio between these two bounds will
lead to a lower bound on SRS/C

n
lp. While the lower bound on SRS can be obtained by

choosing a specific pair of relays, we derive fairly tight upper bounds on Cnlp by computing
suitable dual feasible solutions to LP. In this section, we first prove the theorem for a
special class of diamond networks that we call antisymmetric and then proceed to apply
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Figure 3.2 – Example of an antisymmetic network with l1 = 5, l2 = 3, l3 = 1 and
r1 = 2, r2 = 4, r3 = 6. The tight cuts λ0,λ1,λ2 and λ3 are also shown.

the techniques developed therein to arbitrary diamond networks in the next section.

3.4.1 Antisymmetric Networks

An antisymmetric network has li > lj and ri < rj for i < j, that is, the l-values
and r-values are arranged in descending and ascending order, respectively (hence the
term antisymmetric). An example with 3 relays is shown in Fig. 3.2. The cross cuts
with R1, . . . ,Ri on the side of the source and Ri+1, . . . ,Rn on the other side will be
particularly useful for deriving the upper bounds. We denote them by λi. In the special
cases of λ0 and λn, all the relays are on source side or destination side of the cut. They
are also displayed for the 3 relay example in Fig. 3.2.

3.4.2 Upper Bounds for Antisymmetric Networks

Since LP is a maximization problem, from weak-duality [40], any feasible solution of
DLP is an upper bound to the value of the optimum in LP. To keep these bounds
analytically tractable, we would like to have dual feasible solutions that only have a few
non-zero states. Further, to get upper bounds that are close to Cnlp, we need to assign
values to dual variables that correspond to tight cuts in the network, i.e., the ones that
are likely to be the tight constraints for the optimal solution to LP. In the specific case
of antisymmetric networks, the cross-cuts λi constitute a natural set of candidates for
such tight cuts. In the following lemma, we make this intuition concrete and derive n
upper bounds Ui, i ∈ [n] to Cnlp based on them.

Lemma 3.4.1 Define r0 = ln+1 = 0. In an antisymmetric network, for each i ∈ [n]

Cnlp ≤ Ui ,
(ri − ri−1)(li + ri−1) + (li+1 + ri−1)(li − li+1)

li − li+1 + ri − ri−1
(3.15)
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Figure 3.3 – Dominating relaying states for chosen cuts λi−1 and λi in an antisymmetric
network.

Proof: First consider the case when i ∈ [2, . . . , n − 1]. The non-zero variables we pick
in DLP will correspond to the two successive cross-cuts λi−1 and λi. Let the two
corresponding dual variables be pdα and pdβ. Since the remaining dual variables are zero,
the constraint of DLP corresponding to relaying state m reduces to

pdα( max
k∈λ̄i−1∩L(m)

lk + max
k∈λi−1∩T (m)

rk) + pdβ( max
k∈λ̄i∩L(m)

lk + max
k∈λi∩T (m)

rk) ≤ Cd (3.16)

We will show that in this simplified dual program, exactly two constraints dominate
all others, for any positive values of pdα and pdβ. As shown in Fig. 3.3, these constraints
correspond to the relaying states where R1, . . . ,Ri−1 are in T ( and the remaining in L)
and where R1, . . . ,Ri are in T ( and the remaining in L). Call these states mα and mβ ,
respectively. The constraints for mα and mβ are

pdα(li + ri−1) + pdβ(li+1 + ri−1) ≤ Cd (3.17)
pdα(li+1 + ri−1) + pdβ(li+1 + ri) ≤ Cd (3.18)

Consider any other relaying state m that has Ri in L. In m, let i1 be the highest index
less than i such that Ri1 is in T and i2 be the lowest index greater than i such that Ri2
is in L. Then the constraint for m is

pdα(li + ri1) + pdβ(li2 + ri1) ≤ Cd (3.19)

Since i1 ≤ i− 1 (which implies li1 ≥ li−1) and i2 ≥ i+ 1 (which implies ri2 ≥ ri+1), this
constraint is dominated by (3.17) above. Similarly, if we consider any relaying state that
has Ri in T , the corresponding constraint will be dominated by (3.18).
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Therefore, any value of (pα, pβ) that satisfies (3.17) and (3.18) with equality will au-
tomatically satisfy the other 2n − 2 constraints. Thus, we get the following system of
equations.

pdα(li + ri−1) + pdβ(li+1 + ri−1) = Cd (3.20)
pdα(li+1 + ri−1) + pdβ(li+1 + ri) = Cd (3.21)
pdα + pdβ = 1 (3.22)

By weak duality, solving this system gives us the claimed upper bound for Cnlp. For i = 1
and i = n, a similar argument holds. For i = 1, the dominating constraints correspond
to the relaying states where all the relays are in L (corresponding to mα) and when only
R1 is in T (corresponding to mβ). For i = n, the dominating constraints correspond to
the relaying states when only Rn is in L (corresponding to mα) and when all the relays
are in T (corresponding to mβ).

To get the lower bounds to SRS, we will choose one from the n−1 subnetworks consisting
of the relays Ri,Ri+1 for 1 ≤ i ≤ n − 1. The precise choice will become clear in the
context of the proof of Thm. 3.2.1 for antisymmetric networks, that we present below.

3.4.3 Proof of Thm. 3.2.1 for Antisymmetric Networks

Recall that we denote by Ui the upper bound proved in the previous lemma. For i ∈ [n−1],
consider the determinant ∆i = lili+1 − riri+1. In an antisymmetric network, ∆i is a
decreasing function of i. Suppose the sign of the determinant changes at t, i.e., ∆t ≤ 0
and ∆t−1 > 0 for some t ∈ [2, . . . , n− 1]. We claim that the following holds

max (St−1,t, St,t+1)
Ut

≥ 1
2 (3.23)

For brevity, let b = lt−1, c = lt, d = lt+1, e = rt−1, f = rt, g = rt+1. Indeed, we have

Ut = (c+ e)(f − e) + (d+ e)(c− d)
c− d+ f − e

(3.24)

and

St−1,t = f(c+ e)
c+ f

and St,t+1 = c(d+ f)
c+ f

(3.25)

Thus,

St−1,t + St,t+1
Ut

− 1 = f(c− d)2 + c(e− f)2

(c+ f)((c+ e)(f − e) + (d+ e)(c− d)) ≥ 0 (3.26)

Since Ut is an upper bound to Cnlp, the maximum of St−1,t and St,t+1 will give us the
required bound. When ∆i ≥ 0 for all i ∈ [n − 1], for brevity, let a = ln−1, b = ln,
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c = rn−1, d = rn. We have

Un = d(b+ c)− c2

d− c+ b
, Sn−1,n = d(b+ c)

b+ d
(3.27)

Then,

Sn−1,n
Un

− 1
2 = dc(d− c) + db(d− c) + c2b+ db2

2(d+ b)(d(b+ c)− c2) ≥ 0 (3.28)

In the other extreme case when ∆i ≤ 0 for all i ∈ [n−1], let a = l1, b = l2, c = r1, d = r2.
We have

U1 = a(b+ c)− b2

a− b+ c
, S1,2 = a(b+ c)

a+ c
(3.29)

and

S1,2
U1
− 1

2 = ab(a− b) + ac(a− b) + b2c+ ac2

2(a+ c)(a(b+ c)− b2) ≥ 0 (3.30)

Since in each case we have a pair i, j such that Sij/Cnlp ≥ 1/2, this implies SRS/C
n
lp ≥ 1/2.

3.5 Proof for General Networks

The proof for general networks builds on the proof for antisymmetric networks. The main
idea is to extract a subnetwork, which we call the skeleton, that is in an antisymmetric
configuration and derive lower bounds to SRS and upper bounds to Cnlp based on certain
parameters of the skeleton.

3.5.1 Skeleton of General Networks

The skeleton of a general diamond network is derived as follows. If not already done,
the relays are reordered such that the l-values are arranged in a decreasing order. After
re-ordering, the first relay is always in the skeleton; we then sequentially go through
the relays until we get a relay Rk1 such that lk1 < l1 and rk1 > r1. Next, we look for
another relay Rk2 such that lk2 < lk1 and rk2 > rk1 , and so on. In other words, we grow
a subnetwork which is in an antisymmetric configuration.

We denote the indices of the relays in the skeleton by a1, . . . , ap, where p is the size of
the skeleton. For convenience, we also define a0 = 0 and r0 = 0. Similarly, we define
ap+1 = n+ 1 and ln+1 = 0. The same skeleton can be derived by sorting the relays in
decreasing order of r-values and repeating the procedure above starting from the relay
with the highest r-value.
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Figure 3.4 – (a) The cross cuts λai−1 and λai shown with the relaying state mα. The
relays are ordered with decreasing l-values. (b) The cross cuts λ′ai−1 and λ′ai shown with
the relaying state m′α. The relays are ordered with increasing r-values. The links for
relays not in the skeleton are shown in dashed lines.

Assuming for the moment p ≥ 2, it will be beneficial to visualize the whole network
from the perspective of the skeleton. With the l-values of the whole network sorted in
descending order, a set of three consecutive relays in the skeleton (Rai−1 , Rai , Rai+1)
embedded in the network is shown in Fig. 3.4(a).

3.5.2 Upper Bounds for General Networks

For each relay Rai in the skeleton, we need to define a new variable slai (which stands for
successor left) to denote the greatest l-value in the whole network (including the relays
not in the skeleton) that is lower than the lai . If such a link does not exist, then slai = 0.

We pick two cross cuts λai−1 and λai defined as follows. λai−1 is the cross cut where Rai
and all relays below it belong to the side of the D, whereas λai is the cross cut where
Rai and all relays above it belong to the side of S. Let the dual variables corresponding
to these cuts be pdα and pdβ respectively. With respect to these two cuts, the constraints
that dominate correspond to the states where (i) Rai and every relay (from the whole
network) below it are in state L and the others are in state T (call this relaying state
mα) and (ii) Rai and every relay (from the whole network) above it are in state T and
the others are in state L (call this relaying state mβ).

The interaction between mα and λai−1 and λai is shown in Fig. 3.4(a). The dual
constraint arising from this is

pdα(lai + rai−1) + pdβ(slai + rai−1) ≤ Cd (3.31)

Since the r-values of relays between Rai−1 and Rai are less than rai−1 , these values do
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not play a role. The dual constraint from the interaction between mβ and the two cuts is

pdα(slai + rai−1) + pdβ(slai + rai) ≤ Cd (3.32)

Using the same arguments as in the proof of Lemma 3.4.1, we can show that the value of
(pdα, pdβ, Cd) obtained from the following set of equations is dual feasible for LP.

pdα(lai + rai−1) + pdβ(slai + rai−1) = Cd (3.33)
pdα(slai + rai−1) + pdβ(slai + rai) = Cd (3.34)
pdα + pdβ = 1 (3.35)

On solving, we get the following upper bound to Cnlp

Ui,1 =
(lai − slai)(rai + slai) + (rai−1 + slai)(rai − rai−1)

rai − rai−1 + lai − slai
(3.36)

Since ra0 = r0 = 0, this bound is valid for all i ∈ [p].

We now reorient the network by sorting the relays in ascending order of r-values. The
same skeleton Ra1 , . . . ,Rap can then be defined by starting from the relay with the
highest r-value. Define a new variable srai (which stands for successor right) to denote
the greatest r-value in the whole network (including the relays not in the skeleton) that
is lower than the r-value of Rai . If there is no such link, then srai = 0. With the r-values
of the whole network sorted in ascending order, a set of three consecutive relays in the
skeleton (Rai−1 , Rai , Rai+1) embedded in the network is shown in Fig. 3.4(b).

We pick two cross cuts λ′ai−1 and λ′ai defined as follows. λ′ai−1 is the cross cut where Rai
and all relays below it belong to the side of the D, whereas λ′ai is the cross cut where
Rai and all relays above it belong to the side of S. Note that in general λ′ai 6= λai . Let
the dual variables corresponding to these cuts be pdα and pdβ respectively. With respect to
these two cuts, the constraints that dominate correspond to the states where (i) Rai and
every relay (from the whole network) below it are in state L and the others are in state
T (call this relaying state m′α) and (ii) Rai and every relay (from the whole network)
above it are in state T and the others are in state L (call this relaying state m′β).

The interaction between m′α and λ′ai−1 and λ′ai is shown in Fig. 3.4(b). The dual
constraint arising from this interaction is

pdα(lai + srai) + pdβ(lai+1 + srai) ≤ Cd (3.37)

Since the l-values of relays between Rai−1 and Rai+1 are less than lai+1 , these values do
not play a role. The dual constraint from the interaction between m′β and the two cuts is

pdα(lai+1 + srai) + pdβ(lai+1 + rai) ≤ Cd (3.38)

58



3.5. Proof for General Networks

Using the same arguments as in the proof of Lemma 3.4.1, we can show that the value of
(pdα, pdβ, Cd) obtained from the following set of equations is dual feasible for LP.

pdα(lai + srai) + pdβ(lai+1 + srai) = Cd (3.39)
pdα(lai+1 + srai) + pdβ(lai+1 + rai) = Cd (3.40)
pdα + pdβ = 1 (3.41)

On solving, we get the following upper bound to Cnlp

Ui,2 =
(rai − srai)(lai + srai) + (lai+1 + srai)(lai − lai+1)

lai − lai+1 + rai − srai
(3.42)

Since lap+1 = ln+1 = 0, this bound is valid for all i ∈ [p].

We have thus proven the following lemma, which gives upper bounds to Cnlp for a general
diamond network in terms of the l, r, sl and sr values of the links appearing in the
skeleton.

Lemma 3.5.1 Define lap+1 = ln+1 = ra0 = r0 = 0. In a general diamond network with
p ≥ 2 relays in the skeleton, for each i ∈ [p]

Cnlp ≤ Ui,1 =
(lai − slai)(rai + slai) + (rai−1 + slai)(rai − rai−1)

rai − rai−1 + lai − slai
(3.43)

Cnlp ≤ Ui,2 =
(rai − srai)(lai + srai) + (lai+1 + srai)(lai − lai+1)

lai − lai+1 + rai − srai
(3.44)

Clearly, for antisymmetric networks p = n, slai = li+1 and srai = ri−1 and we get back
the bounds from the previous section with Ui,1 = Ui,2. We are now in a position to prove
our claim SRS/C

n
lp ≥ 1/2 for general diamond networks.

3.5.3 Proof of Thm. 3.2.1 for General Networks

When the skeleton is of size one, i.e., p = 1, there is relay that dominates all others in
terms of the l and r-values. In this case, we can show that

Cnlp ≤ U1 = (l1 − sl1)(r1 + sl1) + sl1r1
r1 + l1 − sl1

(3.45)

Further, if we pick the relay in the skeleton and the relay whose l-value is sl1, then the
rate achieved by running the routing strategy on these two relays is at least U1/2.

Now consider the general case when the skeleton has at least 2 relays (i.e. p ≥ 2). To get a
lower bound on SRS, it will be sufficient to only look at the links in the skeleton. Consider
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the p− 1 2-relay networks consisting of Rai and Rai+1 and define the determinant to be
∆i = lai lai+1 − rairai+1 . Since the skeleton is an antisymmetric network by itself, ∆i is a
decreasing function of i. Suppose the sign of the determinant changes at t, i.e., ∆t ≤ 0
and ∆t−1 > 0 for some t ∈ [2, . . . , p− 1]. We claim that the following holds

max (Sat−1,at , Sat,at+1)
min(Ut,1, Ut,2) ≥ 1

2 (3.46)

where Ut,1, Ut,2 are the upper bounds defined in the previous lemma. For brevity, let
c = lat , d = lat+1 , x = slat and e = rat−1 , f = rat , y = srat .

Then, writing Ut,2 as a function of y = srat , we get

Ut,2(y) = (f − y)(c+ y) + (d+ y)(c− d)
c− d+ f − y

(3.47)

= d+ f(c− d) + y(f − y)
c− d+ f − y

(3.48)

Since f > y and c > d,

∂Ut,2(y)
∂y

= (f − y)(f − y + 2(c− d))
(f − y + c− d)2 > 0 (3.49)

Thus, Ut,2(y) is an increasing function of y and the maximum is reached when y = f

(since y has to be less than f). Therefore, Ut,2(y) < Ut,2(f) = d + f . Similarly, by
considering Ut,1 as a function of x = slat we can conclude that Ut,1(x) < Ut,1(c) = c+ e.
Thus,

Sat−1,at + Sat,at+1

min(Ut,1, Ut,2) >
Sat−1,at + Sat,at+1

min(d+ f, c+ e) (3.50)

Now,

Sat−1,at = f(c+ e)
c+ f

and Sat,at+1 = c(d+ f)
c+ f

(3.51)

Assume d+ f ≤ c+ e. Then,

Sat−1,at + Sat,at+1

d+ f
− 1 = f(c+ e− d− f)

(c+ f)(d+ f) ≥ 0 (3.52)

The case of d+ f ≥ c+ e is analogous. To conclude, the maximum among Sat−1,at and
Sat,at+1 will be greater than min(Ut,1, Ut,2)/2 and hence greater than Cnlp/2. The extreme
cases when ∆i ≥ 0 or ∆i ≤ 0 for all i ∈ [p] can be handled in a manner similar to the
proof for antisymmetric networks.
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Figure 3.5 – Probability density of the ratio of rate achieved by routing strategies and
Cnlp for randomly chosen 5-relay networks.

3.6 Algorithms and Simulation Results

The proof of Thm. 3.2.1 readily gives us an algorithm for determining a pair of relays
that (approximately) achieves at least half the capacity of the network using only routing
strategies.

3.6.1 Proof of Proposition 3.2.2

We first need to compute the skeleton, which can be accomplished in linear time once the
relays have been sorted in descending order of l-values. The exact pair is then determined
by computing the determinant ∆i of the p− 1 successive pairs of relays in the skeleton
(when p ≥ 2). If the determinant is ∆i ≥ 0 for all i ∈ [p], then the last pair is our output,
else if ∆i ≤ 0 for all i ∈ [p], then the first pair is our output. Otherwise, the output is
one of the pairs where the sign of the determinant changes. In case there is just one
relay in the skeleton, the output of the algorithm follows from the first part of the proof
of Thm. 3.2.1 in Section 3.5. Clearly, the time for sorting the network in terms of the
l-values dominates other computations and hence our algorithm takes O(n logn) time.

3.6.2 Simulation Results

Let the rate achieved by the pair of relays output by the algorithm above be Salg. We
have in fact proved that Salg/Cnlp ≥ 1/2. It is easy to construct examples where this
bound is tight, but 1/2 may be a pessimistic bound for other channel configurations. In
Fig. 3.5, we present simulation results that plots the p.d.f for Salg/Cnlp and SRS/C

n
lp for
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106 tuples of l and r-values chosen uniformly at random from the range [1, 200] for a
5-relay diamond network.

The mean value of Salg/Cnlp is about 0.825, which is less than 6% lower than the mean
value of SRS/C

n
lp, i.e., when the best pair of relays is chosen. If we look at the cumulative

distribution, over the random choices of l and r-values, Salg/Cnlp is greater than 0.6 in
more than 98.1% of the cases and is greater than 0.7 in more than 85.7% of the cases.
On the other hand the time taken by the algorithm is O(n logn) in place of O(n2) that
an exhaustive search for the best pair of relays takes.
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4 Local Strategies for Half-Duplex
Diamond Networks

In the previous two chapters, we presented two different approaches to reduce the
operational and design complexity of half-duplex diamond networks. A major assumption
in both these approaches is that the global channel state information is known to a
centralized authority (e.g. the source) which can then compute the low complexity
schedule or select a pair of relays for routing. In many practical scenarios, especially
when the channel strengths are changing rapidly, this assumption may be too prohibitive
as communicating the CSI to a centralized node incurs a cost.

In this chapter, we investigate the performance we can achieve if we restrict ourselves to
only local relay operations. By local, we mean that two conditions are satisfied: (i) each
relay in the network only has access to its incoming and outgoing channel realizations,
and (ii) there can be no communication between the relays to share CSI, and hence, no
node in the network can solve a centralized optimization problem.

We propose the following approach for the network operation: every relay in the n-relay
network uses its incoming and outgoing links to derive the half-duplex listen and transmit
fractions that would be optimal in the absence of all other relays in the network. We
then allow the relays to switch multiple times (say σ) between listen and transmit states
independently at random in the duration of operation, while still respecting the overall
listen-transmit fractions at each relay.

We show that, using this approach for the 2 relay diamond network, we can achieve
at least 3/4 of the capacity of the network (approximately) as the number of switches
σ →∞. We also show that for a deterministic local strategy with only one listen-transmit
cycle the above fraction drops to 1/2. Interestingly, we see that incorporating only a few
switches already enables to leverage most of the benefits that we prove in the limiting
σ →∞ case. Numerical evaluation of our strategies over networks with larger number of
relays show similar trends. To prove the results, we use the same linear programming
approximations to the capacity of half-duplex diamond networks as in Chapter 2.
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(a) The Gaussian n-relay half-duplex diamond
network.
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Figure 4.1 – Network model with channel coefficients of the individual links, relaying
states and cuts. For a particular relaying state, an arrow on a link denotes that it is
active.

4.1 Related Work

In previous work, the authors in [41] show for a specific case that schedules using only
local information and one switch at each relay can achieve rates close to capacity. The
authors in [30], [42] approach low complexity relaying in half-duplex diamond networks
by reducing the number of relaying states or using a subset of relays to approximately
achieve a constant fraction of the capacity . We would like to note that the use of
randomization in our work is fundamentally different from the use of random switching in
[43] and [32]. In their work, the randomness in the switching sequence is used to convey
additional information from the source to the destination while we use randomness to
generate schedules that achieve higher rates.

4.2 Problem Formulation

4.2.1 Network Model

We consider the Gaussian n-relay diamond network where a source S transmits informa-
tion to a destination D with the help of half-duplex relays. The notations and equations
for signals are the same as Chapter 2. A representative figure is shown in Fig. 4.1a.

We can then calculate the individual link capacities from S to Rk (lk) and from Rk to D
(rk) as

lk = log(1 + |hks|2P ), rk = log(1 + |hkd|2P ) (4.1)

Let [n] represent the set {1, 2, · · · , n}. For i ∈ [2n], let mi ∈M = {L, T}n be a distinct
relaying state, i.e., a particular configuration of listening and transmitting states for
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4.2. Problem Formulation

all the relays. The fraction of time the relays spend in state mi will be denoted by pi,
where

∑
i∈[2n] pi = 1. We will use L(mi), T (mi) ⊆ [n] to denote the set of indices of the

relays in listening and transmitting state in mi, respectively. Also, for j ∈ [2n], Λj ⊆ [n]
denotes the cut separating S ∪ (∪k∈ΛjRk) from D ∪ (∪k∈Λ̄jRk). A representative cut is
shown in Fig. 4.1b

The term l-value(s) and r-value(s) will refer to the lk’s and rk’s, respectively. Finally,
unless otherwise stated, the term “constant” will mean a quantity that depends only on
the number of relays and is independent of the channel SNRs.

4.2.2 An Approximation to the Capacity

Let Cnhd denote the capacity of the n-relay half-duplex diamond network. As described
in Chapter 2, Cnhd can be approximated, upto constant additive terms, by Cnlp which is
the optimum solution of the following linear program.

LP : Maximize C (4.2)
2n∑
i=1

pi

(
max

k∈Λ̄j∩L(mi)
lk + max

k∈Λj∩T (mi)
rk

)
≥ C for each j ∈ [2n]

2n∑
i=1

pi = 1; ∀i, pi ≥ 0, C ≥ 0

Each primal variable pi denotes the fraction of time spent by the relays in state mi and
each constraint (except the last one) corresponds to a distinct cut Λj .

4.2.3 Independent Switching at Relays

At a local level, each relay can control when it switches from an L state to a T state
and vice-versa, and it can do so multiple times within the duration of operation. We
normalize the duration to unity and hence, all the switches are made at points in the
interval [0, 1]. For purposes of counting, a switch will always denote a transition from
L to T . We will also assume that each relay always starts in a L state and ends in a T
state. Thus, if a relay makes σ switches, there will be σ transitions from L to T and σ−1
transitions from T to L. Choosing a local switching strategy then amounts to choosing
2σ − 1 points on the unit interval for each relay independently (see Fig. 4.2). For Rk, let
the points (in ascending order) at which the transitions from L to T happen be denoted
by pL→Tk,1 , . . . , pL→Tk,σ and let the points (in asc. order) at which the transitions from T to
L happen be denoted by pT→Lk,1 , . . . , pT→Lk,σ−1. Together, they define the switching sequence
for Rk, which is denoted by Sk(σ).

Sk(σ) = {pL→Tk,1 , pT→Lk,1 , . . . , pT→Lk,σ−1, p
L→T
k,σ } (4.3)
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Figure 4.2 – Example illustration of randomized switching and induced states in a 3-relay
network with each relay using 2 switches. The dashed portions denote the L state.

For ease of notation, we set pT→Lk,σ = 1 and pT→Lk,0 = 0 for all k ∈ [n]. We use S(σ) to
denote the union of all the switching sequences, i.e., S(σ) = ∪k∈[n]{Sk(σ)} . For a given
S(σ), the (approximate) rate achieved by the network is denoted by Cn(S(σ)). We focus
on randomized switching, i.e. each relay Rk chooses the positions in Sk(σ) randomly.
In practice, this can be thought of as a pseudorandom pattern that is shared with the
destination. Note that the above strategy is linear (in n) in terms of the state complexity,
i.e., the number of relaying states with non-zero probabilities. More precisely, the number
of active states for σ switches is at most min{2n, n(2σ − 1) + 1}.

For a given switching sequence S(σ), the total time spent by Rk in state L (denoted by
Pk,L(S(σ))) and in state T (denoted by Pk,T (S(σ))), can then be computed as

Pk,L(S(σ)) =
σ∑
s=1

(pL→Tk,s − pT→Lk,s−1) (4.4)

Pk,T (S(σ)) =
σ∑
s=1

(pT→Lk,s − pL→Tk,s ) (4.5)

4.3 Local Scheduling Strategy

Achieving Cnlp requires global knowledge of the link strengths in order to solve the
optimization problem in (4.2) and determine the fraction of time spent in each scheduling
state mi. In practice, this may be expensive and will require inter-relay communication as
well as a central node (eg. the source) that performs the optimization. The optimization
itself consists of 2n + 1 variables and 2n + 1 constraints; solving it explicitly becomes
prohibitive even for moderately large values of n. Instead, as a more practical approach,
we look at what can be achieved by using only local information at the relays; we assume
that each relay only knows the channel strengths of its incoming and outgoing links, i.e.,
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4.3. Local Scheduling Strategy

Rk knows lk and rk.

4.3.1 Local Optimality Criterion

We have each Rk listen and transmit for an (overall) fraction of time that is optimal
for an isolated single half-duplex relay Rk (essentially a one-hop line network). In the
absence of any other information about the strengths of links connecting the other relays,
this is a reasonable strategy to follow. It is easy to see that for Rk, the optimal listening
and transmitting fractions that our strategy should choose are as follows

Pk,L(S(σ)) = rk
lk + rk

and Pk,T (S(σ)) = lk
lk + rk

(4.6)

The quantity we will be interested in is the expected rate achieved by the network for
σ switches Cnrnd(σ) = E[Cn(S(σ))], where the expectation is taken over all the random
choices of Sk(σ)’s that satisfy the criterion in (4.6).

4.3.2 Varying the Number of Switches

We will also analyze the performance of our strategy as we progressively increase the
number of switches that each relay employs. In that regard, we have the following
extremes cases:

Deterministic Switching When σ = 1, the set S(σ) is uniquely determined. Each
Rk makes only one switch from L to T at the point rk

lk+rk (see Fig. 4.3 for illustration).
Notice that this corresponds to a deterministic switching strategy and hence we denote
the achieved rate by Cndet ≡ Cnrnd(1).
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3,1

R1
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R3

0
LLL LLT TLT TTT
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Figure 4.3 – Deterministic switching and induced states in a 3 relay network. The local
L and T fractions are also shown.
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Continuous Switching In the limit of σ becoming very large, the relays switch in a
manner such that at each instant, Rk is in state L with probability rk

lk+rk and in state T
with probability lk

lk+rk . We denote the limiting rate by Cnlim ≡ limσ→∞C
n
rnd(σ). Table

4.1 summarizes the quantities defined in this section.

σ Number of switches from L to T in each relay.
Cnlp Approximate capacity of the network.
Cnrnd(σ) Expected rate achieved for σ switches.
Cndet Rate achieved for σ = 1.
Cnlim Rate achieved in the limit of large σ.
Cnlploc Upper bound to rates for strategies satisfying (4.6).

Table 4.1 – Summary of quantities considered.

4.3.3 Upper Bound to Local Strategies

In order to further understand the performance limits of our local randomized switching
strategy, we also look at an upper bound to the rates achieved by any strategy that
follows the local optimality criterion (4.6). The optimal rate so obtained is denoted by
Cnlploc. This can be computed by adding the following constraints to the LP (4.2) for
each relay Rk.∑

i:k∈L(mi)
pi = rk

lk + rk
∀k ∈ [n] (4.7)

The quantity on the left of (4.7) represents the total fraction of time Rk is in state L for
a schedule {pi}i∈[2n]. The new linear program is as follows.

LPLOC : Maximize C (4.8)
2n∑
i=1

pi

(
max

k∈Λ̄j∩L(mi)
lk + max

k∈Λj∩T (mi)
rk

)
≥ C for each j ∈ [2n]

∑
i:k∈L(mi)

pi = rk
lk + rk

∀k ∈ [n]

2n∑
i=1

pi = 1; ∀i, pi ≥ 0, C ≥ 0

Thus, the optimum of Cnlploc of LPLOC represents the maximum rate achievable by
strategies (not necessarily without coordination) that follow (4.6).
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4.4. Performance over the 2-relay network

4.3.4 Computation of Rates

A particular switching sequence S(σ) uniquely induces a global schedule {pi(S(σ))}i∈[2n].
The fraction of time the network is in state mi ∈ {L, T}n is the union of (possibly
disjoint) intervals where each Rk is in the state implied by mi. More formally,

pi(S(σ)) =

∣∣∣∣∣∣
⋃

r1,...,rn∈[σ]n

 ⋂
k∈L(mi)

[pT→Lk,rk−1, p
L→T
k,rk

]
⋂

k∈T (mi)
[pL→Tk,rk

, pT→Lk,rk
]


∣∣∣∣∣∣ (4.9)

where the union is over all possible σn n-tuples in [σ]n. In practice, each term pi(S(σ))
can be computed efficiently by first sorting all the points (irrespective of the relay index)
in S(σ) and then traversing the sorted sequence, keeping track of the relay states. Once
this is accomplished, Cn(S(σ)) can be computed by performing a min-cut computation
as follows:

Cn(S(σ)) = min
j∈[2n]

2n∑
i=1

pi(S(σ))
(

max
k∈Λ̄j∩L(mi)

lk + max
k∈Λj∩R(mi)

rk

)
(4.10)

The expected rate Cnrnd(σ) can then be computed numerically by taking a large enough
sample of random S(σ)’s.

The above discussion trivially holds for Cndet. For Cnlim, as the random switches at
each relay occur independently of each other, in the limit of large σ as discussed in
Section 4.3.2, the fraction of time spent in a state ms is given by:

plimi =
∏

k∈L(mi)

rk
lk + rk

∏
k∈T (mi)

lk
lk + rk

(4.11)

Cnlim can then be computed by setting pi(S(σ)) = f lims in (4.10).

In the following sections, we present results that illustrate the performance of our local
random switching strategy.

4.4 Performance over the 2-relay network

For brevity, in this section we use the following substitution for the 2-relay network:
a← l1, b← l2, c← r1, d← r2.

4.4.1 Comparison with Cn
lp - Lower Bounds

For n = 2 relays, the linear program for Cnlp can be solved to obtain a closed form
expression [30]. Four cases arise depending on whether a ≥ b, c ≥ d and the value of
δ = ab− cd. We will only show the proofs for the case a ≥ b, c ≤ d and δ ≤ 0; the other
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cases being similar. For this case, we have (from [30]):

C2
lp = ac(b+ d) + bd(a− b)

(b+ d)(a+ c− b) (4.12)

Using this expression, we can show the following lower bound on the performance of
local continuous switching.

Theorem 4.4.1 For a 2-relay half-duplex diamond network,

C2
lim

C2
lp

≥ 3
4 (4.13)

Proof: For deriving the expression for C2
lim, we order the relaying states as {LL,LT, TL, TT}

and let the corresponding time fractions be p1, p2, p3, p4. From the previous section, for
the limiting (continuous) random local schedule, we have

p1 = cd

(a+ c)(b+ d) , p2 = cb

(a+ c)(b+ d) (4.14)

p3 = ad

(a+ c)(b+ d) , p4 = ab

(a+ c)(b+ d)

By definition

C2
lim = min{ap1 + ap2 + bp3, ap1 + (a+ d)p2 + dp4, bp1 + (b+ c)p3 + cp4,

dp2 + cp3 + dp4} (4.15)

which, for our case, simplifies to

C2
lim =a(bc+ bd+ cd)

(a+ c)(b+ d) if a ≤ d (4.16)

=d(ab+ ac+ bc)
(a+ c)(b+ d) if a > d (4.17)

In the case a ≤ d, showing C2
lim ≥

3
4C

2
lp is equivalent to

4a(a− b+ c)(cd+ b(c+ d))− 3(a+ c)
(
−b2d+ a(cd+ b(c+ d))

)
≥ 0 (4.18)

Denoting the l.h.s by φ, the following inequalities hold.

φ/c
(i)
≥ a2b− 4ab2 + abc+ a2d− 3abd+ 3b2d+ acd

(ii)
≥ −3ab2 + abc+ a2d− 3abd+ 3b2d+ acd
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(iii)
≥ −3ab2 + a2b2/d+ a2d− 3abd+ 3b2d+ a2b

= 1
d

(a2(b2 + d2 + bd) + a(−3b2d− 3bd2) + 3b2d2)

(i) and (ii) hold as a ≥ b; (iii) holds because c ≥ ab/d. The numerator in the last
quantity is a quadratic expression in the variable a and its discriminant is

∆ = 9(bd2 + b2d)2 − 12b2d2(b2 + d2 + bd) = −3b2(b− d)2d2 ≤ 0 (4.19)

Therefore, φ ≥ 0, which establishes our claim. Clearly, equality is attained when a, b, c, d
are equal. The proof for a > d follows similarly.

For deterministic switching, the worst case ratio drops to 1/2, as shown below.

Theorem 4.4.2 For a 2-relay half-duplex diamond network,

C2
det

C2
lp

≥ 1
2 (4.20)

Proof: To derive the expression for C2
det, notice that relay 1 listens for c

a+c of time and
relay 2 listens for d

b+d fraction. Depending on which one is larger, we will have the states
{LL, TL, TT} or {LL,LT, TT}. For the first case, we have

p1 = c

a+ c
, p2 = 0, p3 = ad− bc

(a+ c)(b+ d) , p4 = b

b+ d
(4.21)

Using these, we can derive

C2
det = −b

2c+ a(cd+ b(c+ d))
(a+ c)(b+ d) if a+ c ≤ b+ d (4.22)

= acd+ b
(
−c2 + ad+ cd

)
(a+ c)(b+ d) if a+ c ≥ b+ d (4.23)

For the first case, proving our claim is equivalent to showing

2
(
−b2c+ a(cd+ b(c+ d))

)
(a+ c− b) (4.24)

−(a+ c)(ac(b+ d) + bd(a− b)) ≥ 0 (4.25)

Denoting the l.h.s by φ, the following inequalities hold.

φ/c =− 3ab2 + 2b3 − b2c+ a2d− abd+ b2d+ acd+ (a− b)(ab+ bc)
(i)
≥ − 3ab2 + 2b3 + a2d− abd+ b2(d− c) + acd
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(ii)
≥ a2(b+ d)− a(3b2 + bd) + 2b3 = (a− b)(ab+ ad− 2b2)

(iii)
≥ (a− b)(b(a− b) + b

1
2 (a

3
2 − b

3
2 ))

Here, (i) is true because a ≥ b, (ii) is true because c ≥ d and cd ≥ ab and finally (iii) is
true because d2 ≥ cd ≥ ab =⇒ d ≥

√
ab. Again, equality holds when a, b, c, d are equal.

The proof for the other three cases is similar.

For a finite values of σ > 1, it is more difficult to get closed form expressions and prove
analytical lower bounds. In the case of σ = 2, numerical evidence suggests that the
lowest value of C2

rnd(2)/C2
lp is 0.7 and it is attained when {a, b, c, d} are all equal. In fact,

we show the following lemma.

Lemma 4.4.3 In a 2-relay half-duplex diamond network, when a = b = c = d, then the
following holds.

C2
rnd(2)
Cnlp

= 7
10 (4.26)

Proof: The result follows from a lengthy case by case analysis of different configurations
of the relaying states and is given in the Appendix A.1.

4.4.2 Comparison with Cn
lploc - Lower Bounds

C2
lploc represents the upper bound of the rates achievable by strategies that adhere to

the local optimality criterion (4.6). It is interesting to see how our switching strategies
perform with respect to this bound. We reiterate that Cnlploc also encompasses strategies
that allow inter-relay communication, and hence is strictly an upper bound for the types
of distributed scheduling strategies we propose, albeit a tighter one than Cnlp.

For n = 2 relays, the linear program for Cnlploc can be solved to obtain a closed form
expression. It is as follows

C2
lploc = b(d+ a)

b+ d
if ab ≤ cd, a ≤ b (4.27)

= a(b+ c)
a+ c

if ab ≤ cd, a ≥ b (4.28)

= c(a+ d)
a+ c

if ab ≥ cd, c ≥ d (4.29)

= d(b+ c)
b+ d

if ab ≥ cd, c ≤ d (4.30)

Since C2
lploc is the optimum of LPLOC, which is a more constrained version of LP,
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Figure 4.4 – Numerical evaluations for the 2 relay network with channel strengths sampled
uniformly and independently from [0, 30] dB

C2
lploc ≤ C2

lp. The following lemma is a direct consequence of Thm. 4.4.1 and Thm. 4.4.2.

Lemma 4.4.4

C2
lim

C2
lploc

≥ 3
4 and C2

det

C2
lploc

≥ 1
2 (4.31)

In fact, these are the best bounds that can be obtained because for the case a = b = c = d,
we have

C2
lim

C2
lploc

= 3
4 ,

C2
det

C2
lploc

= 1
2 (4.32)

4.4.3 Numerical Evaluation

The above two theorems show that the worst case performance of randomized switching (in
the limit of large σ) is much better than that of deterministic switching. For finite values
of σ > 1, the worst case value of C2

rnd(σ)/C2
lp is likely to lie between the two extremes

of 0.5 and 0.75. To investigate its performance, we perform the following simulation.
We select the channel strengths for the four links in the network, independently and
uniformly at random, in the range [0, 30] dB. For each configuration, we compute the
quantities C2

det/C
2
lp, C2

lim/C
2
lp and C2

rnd(σ)/C2
lp for σ = 2, 4 and then plot the p.d.f of

these quantities as shown in Fig. 4.4a.

The plot shows that there is a significant jump (about 11%) in the average performance
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Figure 4.5 – Numerical evaluations for 5-relay network and variation with σ

of C2
rnd(2)/C2

lp (0.843) over C2
det/C

2
lp (0.759). Thereafter, as we increase σ, the average

performance slowly saturates to 0.877, which is the mean of C2
lim/C

2
lp. Thus, randomiza-

tion and increasing the number of switches increases the average performance by about
15.5%, a large chunk of which (approximately 71% of the difference) is leveraged by
using two random switches

For comparison with C2
lploc, it is difficult to obtain closed form bounds for C2

rnd(σ)/C2
lploc

for finite σ > 1. When the simulations are repeated for the ratios C2
det/C

2
lploc, C2

lim/C
2
lploc

and C2
rnd(σ)/C2

lploc for σ = 2, 4, trends as shown in Fig. 4.4b is observed. Although the
worst case ratios are the same as those with respect to C2

lp, the average performance is
better.

We observe a jump in mean performance from 0.783 to 0.869 (an increase of 11%) when
we increase σ from 1 to 2. Again, this forms the major chunk of increase in performance
due to randomization. Interestingly, this also shows that our randomized strategy with
just two switches achieves, on an average, about 86.9% of the maximum rate achievable
by any strategy with the local optimality condition, even ones that use global CSI.

4.5 Performance over larger networks

For diamond networks of larger size, the performance trends observed in the previous
section are essentially similar with a few interesting caveats. Fig. 4.5a plots the p.d.f
of C5

det/C
5
lp, C5

lim/C
5
lp and C5

rnd(σ)/C5
lp for σ = 2, 4 for random instances of a 5-relay

network. In this case, the gain of mean performance going from σ = 1 to σ = 2 is
significantly more: 0.642 → 0.798–an increase of about 24.3%. This also shows that
deterministic switching performs worse for larger number of relays, but even σ = 2 greatly
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4.5. Performance over larger networks

boosts performance.

In Fig. 4.5b, we plot the mean performance ratios of different schemes as a function of the
number of switches for n = 2, 5 relays. This plot essentially conveys three messages: (i)
Cnlploc is a more useful outer bound than Cnlp when comparing local scheduling strategies;
(ii) increasing the number of switches has highly diminishing returns for larger σ and
very quick saturation towards the asymptotic value is observed, which is practically
important as too many switches can have significant network overhead, and (iii) Local
CSI helps over not using any CSI: the performance of Cnnsi(σ), which incorporates σ
random switches without respecting (4.6) performs significantly worse, especially for
small σ.
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5 Relay Selection in Full-Duplex
Layered Networks

In the previous three chapters we looked at three different ways to reduce the complexity
of relaying in half-duplex diamond networks. In this chapter we turn our attention to
full-duplex layered relay networks. In such networks, a source communicates with the
destination using relays that are arranged in L layers and a relay in layer l forwards
information to relays in layer l + 1. Using all the relays can be wasteful in terms of
resources and can lead to high communication complexity for large networks.

In this chapter, we consider the following problem – how to select the subset of relays
of a given size K that has the highest capacity in a computationally efficient manner?
In a sense, we are interested in generalizing routing over physical layer cooperation
networks. In routing, we select the best one or best K path(s) over which to forward the
information from a source to a destination; over physical layer cooperation networks, the
corresponding operation would be selecting the best subnetwork (of a given size).

Using approximate capacity expressions similar to the one used in Chapter 2, we represent
subnetwork selection as an integer optimization problem – to every relay R in the network,
we assign a binary selection variable θR that takes value 1 if R is selected and 0 if it
is not. The objective (approximate capacity expression) can then be represented as a
function of θR, which then needs to be maximized. To efficiently solve the resulting
integer program, we first relax the constraint of θR being a binary variable to it being a
continuous variable θR ∈ [0, 1]. Using properties of submodular functions and convex
optimization, we show that the relaxed program is polynomial time solvable for diamond
networks. The fractional optimal solutions are then rounded to obtain a feasible integer
solution.

We present numerical evaluations of the performance of our algorithm on networks with
random channel sets that show its superior accuracy and efficiency. In particular, the
algorithm achieves an accuracy of more than 98% of the integer optimum value with a
probability of 0.97 for networks of 20 relays and takes time that is less than that of an
exhaustive integer optimization by factors of more than 450 for networks of 30 relays.
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Chapter 5. Relay Selection in Full-Duplex Layered Networks

5.1 Related Work

Previous work on relay selection in wireless networks can be divided into three categories:
(i) The work of [35] and the references therein propose algorithms to select the single
best relay (in terms of cooperative diversity) in one-layer networks. (ii) The work of [37]
and the references therein analyse the performance of heuristics for selecting a subset
of relays (again, from a single layer of relays) for Amplify-and-Forward (AF) based
protocols. (iii) Recent work by [39] proves upper bounds on multiplicative and additive
gaps for AF-based relay selection, primarily for diamond networks. The work of [10]
proves general multiplicative lower bounds on the the rate achievable by a subset of
relays in a diamond network.

5.2 Problem Formulation

5.2.1 Communication Model

We consider a full-duplex layered wireless networkW containing L layers of single-antenna
nodes. The source is the singleton node in layer 0, while the destination is the singleton
node in layer L− 1. For ease of exposition, all the intermediate layers are assumed to
have exactly n nodes, although our techniques can handle any configuration. The total
number of relays is then N = n(L− 2). As shown in Fig. 5.1, each signal path from the
source to the destination in a layered network gets relayed by exactly the same number
of hops. The signal flow over this network can then be written as:

Y l+1
i =

n∑
j=1

hlijX
l
j + Z l+1

i (5.1)

where Y l+1
i denotes the received signal at node i ∈ [1 : n] in layer l + 1 (l ∈ [0 : L− 2]),

hlij denotes the complex channel coefficient from node j in layer l to node i in layer l+ 1,
X l
j denotes the transmitted signal from node j ∈ [1 : n] in layer l and Z l+1

i denotes the
i.i.d zero mean complex Gaussian noise at the receiver i in layer l + 1. For our network,
we have a per node power constraint, given by E[|X l

j |2] ≤ 1. We also normalize the noise
powers to unity, i.e., Zi ∼ i.i.d CN (0, 1). Notice that the per node signal flow equations
can be coalesced into per layer equations as:

Yl+1 = HlXl + Zl+1 (5.2)

where Yl+1 = [Y l+1
1 , . . . , Y l+1

n ]T , Xl = [X l
1, . . . , X

l
n]T , Hl is the MIMO channel matrix

from Xl to Yl+1 with Hl(i, j) = hlij and Zl+1 = [Z l+1
1 , . . . , Z l+1

n ]T .
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Layer l Layer l + 1Layer 0 Layer L− 1

Λ

Hl
S,Λ

Hl
Λ

Λ̄

S D

Figure 5.1 – The Gaussian full-duplex layered network with L layers having n relays
each, except the first and last one.

5.2.2 Capacity Outer bounds and Rate Expressions

Since the capacity of such networks cannot be characterized exactly, approximate expres-
sions (similar to the ones used in Chapter 2) that are a constant gap away from capacity
are often used as a metric to evaluate the performance of a given relaying protocol over
such networks.

A standard practice is to use inputs Xj at every network node that are picked from
an i.i.d complex Gaussian distribution, i.e., Xj ∼ i.i.d CN (0, 1). This is precisely the
strategy used to prove the constant gap performance of the QMF and NNC schemes in
[8], [44], and in view of these results, the following modified version of the cutset upper
bound, termed C̄iid in [8], with the above-mentioned inputs is of interest:

C̄iid = min
Λ

L−1∑
l=0

log det
(
I + Hl

ΛHl†
Λ

)
(5.3)

Here, Hl
Λ denotes the MIMO channel matrix from Xl

Λ to Yl+1
Λ̄ and Λ denotes a cut in

the network as shown in Fig. 5.1. For uniformity in dimensions, we choose to represent
Xl

Λ, Yl+1
Λ̄ and Hl

Λ as n× 1, n× 1 and n× n matrices respectively, by inserting zeroes in
the appropriate rows and columns as dictated by the index of elements in Λ or Λ̄.

5.2.3 Subnetwork Selection

We want to select an optimal subnetwork Wopt
S of W that maximizes the subnetwork’s

C̄iid expression over all subnetworks WS with the following size constraint: WS contains
Kl relays (Kl ≥ 1) in layer l ∈ [1 : L − 2]. For this purpose, we first define a set
of n × n diagonal selection matrices, Sl, for each layer l ∈ [1 : L − 2] of the form
Sl = diag(

√
θl1,
√
θl2, . . . ,

√
θln) such that θli ∈ {0, 1} and

∑n
i=1 θli = Kl. For a given
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subnetwork, the matrices Sl will have θli = 1 iff relay i ∈ [1 : n] in layer l is in the
subnetwork and θli = 0 otherwise.

For a given WS , the subnetwork’s C̄iid is given as:

C̄S,iid = min
Λ
IS,Λ (5.4)

where

IS,Λ =
L−1∑
l=0

log det
(
I + Hl

S,ΛHl†
S,Λ

)
(5.5)

Here, Hl
S,Λ denotes the (still n × n) MIMO channel matrix from Xl

S,Λ to Yl+1
S,Λ̄ where

Xl
S,Λ = SlXl

Λ and Yl+1
S,Λ̄ = Sl+1Yl+1

Λ̄ . In this setting, Hl
S,Λ can be related to Hl

Λ as:

Hl
S,Λ =


SlHl

ΛSl+1, l ∈ [1 : L− 2]
H0

ΛS1, l = 0
SL−1HL−1

Λ , l = L− 1
(5.6)

Essentially, Hl
S,Λ is obtained from Hl

Λ by replacing with 0, the rows (resp. columns)
indexed by the relays in layers l (resp. l + 1) that are not selected. This way, we retain
an n× n channel matrix at each layer l that is equivalent in terms of singular values to
the Kl ×Kl+1 channel matrix at that layer.

Now, the problem of finding Wopt
S essentially reduces to optimally selecting the set of

matrices {Sl}{l∈[1:L−2]}. This integer optimization problem can be stated as:

{Sopt
l }{l∈[1:L−2]} = arg max

{Sl}{l∈[1:L−2]}
tr(S2

l )=Kl

C̄S,iid ({Sl}) (5.7)

where the trace condition is equivalent to
∑n
i=1 θli = Kl.

5.3 Relaxed Approximation – Diamond Networks

We first illustrate our relaxation approach for (approximately) solving the above opti-
mization problem in (5.7) by taking the simplest example of an n-relay diamond network.
In this network, there is a set of n relays in layer 1, while layer 0 and layer 2 contain the
source and destination nodes respectively. For this network, we essentially have only 1
selection matrix, S1 = diag(

√
θ11,
√
θ12, . . . ,

√
θ1n) corresponding to the relays in layer 1

that we have to optimize.

For purposes of simplification, we make the following abuse of notation in the remainder
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of this section: (i) θ1i ← θi since there is only 1 layer of relays; (ii) h0
i1 ← h0

i to denote
the channels from the source (indexed as node 1 in layer 0) to relay i; (iii) h1

1i ← h1
i to

denote the channels from relay i (in layer 1) to the destination (indexed as node 1 in
layer 2).

Specializing (5.7) for the diamond network, where we wish to select the optimal subnet-
work having K1 relays, we have:

{θopt
i }i∈[1:n] = arg max

{θi}i∈[1:n]∈{0,1}:∑n

i=1 θi=K1

C̄dia
S,iid ({θi}) (5.8)

where

C̄dia
S,iid({θi}) = min

Λ

log(1 +
∑
i∈Λ

θi|h0
i |2) + log(1 +

∑
i∈Λ̄

θi|h1
i |2)

 (5.9)

5.3.1 Relaxing the Integer Program

For an approximate solution to the integer program in (5.8), we first relax the constraints
in the problem as follows: Instead of using the integer θi’s lying in the discrete set {0, 1},
we replace them with real variables θ̃i’s that lie in the interval [0, 1]. With this relaxation,
the following theorem holds:

Theorem 5.3.1 The optimization problem, defined as:

{θ̃opt
i }i∈[1:n] = arg max

{θ̃i}i∈[1:n]∈[0,1]:∑n

i=1 θ̃i=K1

C̄dia
S,iid

(
{θ̃i}

)
(5.10)

is a concave maximization problem in {θ̃i}i∈[1:n]

Proof: Observe that the constraints on θ̃i are linear. Hence, it remains to show that
C̄dia

S,iid is concave in {θ̃i}i∈[1:n]. To this end, observe that for a given cut Λ, (1 +
∑
i∈Λ

θ̃i|h0
i |2)

and (1 +
∑
i∈Λ̄

θ̃i|h1
i |2) are affine functions of {θ̃i}i∈[1:n]. Hence, log(1 +

∑
i∈Λ

θ̃i|h0
i |2) and

log(1 +
∑
i∈Λ̄

θ̃i|h1
i |2) are concave in {θ̃i}i∈[1:n], and so is their sum. Moreover, since the

point wise minimum of concave functions is also concave, we can conclude that C̄dia
S,iid is

concave in {θ̃i}i∈[1:n], which proves the theorem. Notice here the significance of using
a square root in the diagonal entries of the selection matrices, which lead to the affine
functions inside the log terms.

Theorem 5.3.1 ensures the existence of a polynomial time algorithm (in the number of
relays n) that solves the relaxed optimization problem in (5.10), for example using the
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interior point method for concave maximization, provided there exists a polynomial time
algorithm to find C̄dia

S,iid.

Finding C̄dia
S,iid a priori consists of evaluating 2n terms corresponding to the cuts Λ and

then taking a minimum, which takes exponential time. However, it was shown in [33],
that the terms inside the minimization of C̄dia

S,iid are submodular in the sets Λ. Since
submodular minimization can be accomplished using a polynomial (in n) number of
evaluations of the mutual information terms [45], (5.10) can be solved in polynomial
time.

5.3.2 Rounding the Relaxed θ̃i’s

Since the feasible set for (5.10) is a superset of (5.8), the relaxed optimal value will be
greater. However, the {θ̃opt

i }i∈[1:n] can have fractional values that do not correspond to
an actual subnetwork of size K1. The next step then is to round the fractional solution
of (5.10) to a discrete solution that represents a subnetwork selection. Mathematically,
a rounding is a map fR : {θ̃opt

i }i∈[1:n] 7→ {θsel
i }i∈[1:n] such that {θsel

i }i∈[1:n] ∈ {0, 1} and∑n
i=1 θ

sel
i = K1. An intuitive way to round in this case would be to set θsel

i = 1 iff θ̃opt
i is

among the maximum K1 values in the set {θ̃opt
i }i∈[1:n] and set θsel

i = 0 otherwise.

5.3.3 Applications in other capacity approximations

For n-relay diamond networks, a simpler and more approximate expression based on
point-to-point link capacities has been proposed for capacity approximation in [10], given
by:

C̄dia
P2P = min

Λ

{
max
i∈Λ

log(1 + |h0
i |2) + max

i∈Λ̄
log(1 + |h1

i |2)
}

(5.11)

The inherent advantage of working with (5.11) is that C̄dia
P2P can be evaluated in O(n logn)

time [10], which is faster than the polynomial time submodular minimization algorithms
needed to evaluate C̄dia

iid or Rdia
NNC. On the flip side, this approximation is not good for low

SNRs and it does not generalize to multi-layered networks beyond the diamond topology.
However, for diamond networks, we can still apply our relaxation framework on the C̄dia

P2P
expression to get a set of relays that (approximately) maximizes C̄dia

P2P and see how that
selected set of relays perform in terms of C̄dia

iid . In this case, the relaxed optimization
problem can take the following form:
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{θ̃opt
i }i∈[1:n] = arg max

{θ̃i}i∈[1:n]∈[0,1]:∑n

i=1 θ̃i=K1

C̄dia
S,P2P

(
{θ̃i}

)
(5.12)

where

C̄dia
S,P2P

(
{θ̃i}

)
= min

Λ

{
maxi∈Λ θ̃i log(1 + |h0

i |2)
+ maxi∈Λ̄ θ̃i log(1 + |h1

i |2)

}
(5.13)

Note that unlike (5.10), (5.12) is not a concave optimization problem and in general, non-
linear optimization algorithms can potentially get stuck in local maximas. Nevertheless,
owing to the faster speed in computing C̄dia

S,P2P, it is worth giving this expression a try,
and surprisingly, we show in Section 5.5 that off-the-shelf non-linear optimizers do give
good results with the C̄dia

S,P2P expression used for selection.

5.4 Relaxed Approximation – Multilayer Networks

For multilayer networks, the procedure is similar to the one outlined for diamond networks.
The integer optimization problem over the n(L−2) variables {θli}i∈[1:n],l∈[1:L−2], as given
in (5.7), can be relaxed to the corresponding continuous problem in {θ̃li}’s. Once the
relaxed optimization problem is solved, the optimal fractional solution is rounded to an
integer solution representing a subnetwork of appropriate size.

The objective function in the relaxed version of (5.7) is the minimum of 2n(L−2) terms,
each of which is a sum of terms of the form:

I lS,Λ = log det(I + S̃lHl
ΛS̃2

l+1Hl†
ΛS̃l) (5.14)

where S̃l = diag(
√
θ̃l1, . . . ,

√
θ̃ln), tr(S̃2

l ) = Kl and tr(S̃2
l+1) = Kl+1. In general, the

above term is not a concave function of {θ̃li}i∈[1:n] and {θ̃l+1,i}i∈[1:n]. Empirical evidence
however suggests that it is almost concave.

Firstly, we denote by x, the vector of variables

x = {θ̃l1, . . . , θ̃ln, θ̃l+1,1, . . . , θ̃l+1,n} (5.15)

Thus I lS,Λ(x) defines a hyper-surface. For a fixed set of channel coefficients, if this surface
is exactly concave, then for any pair of points x1,x2 ∈ [0, 1]2n such that

∑n
i=1 x

j
i = Kl

and
∑2n
i=n+1 x

j
i = Kl+1 for j = 1, 2 and for every λ ∈ [0, 1], the following quantity must

be always non-negative:

D(x1,x2, λ) = I lS,Λ(λx1 + (1− λ)x2)− λI lS,Λ(x1)− (1− λ)I lS,Λ(x2) (5.16)
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In our experiments, we compute the probability Pccv(Hl
Λ) that a random pair of x1,x2

satisfies D(x1,x2, λ) ≥ 0 for all values of λ ∈ [0, 1] picked with sufficient granularity
(10−3 to be precise). The individual channel coefficients hlij in each instance were picked
i.i.d as follows: 10 log10(|hlij |2) ∼ U [0, 35] and ∠hlij ∼ U [0, 2π]. Λ was fixed such that
all nodes in layer l were in Λ and all nodes in layer l + 1 were in Λ̄ (but the results
do not depend on the choice of Λ). The empirically observed value of this probability,
averaged over several random channel-set instantiations, for different values of n and
Kl = Kl+1 = n/2 are as follows:

n 2 4 ≥ 6
EHl

Λ

[
Pccv(Hl

Λ)
]

0.9876 0.9997 ≈ 1

This demonstrates that I lS,Λ(x) is almost concave, implying that the relaxed version of
(5.7) also has similar properties.

5.5 Numerical Evaluations

Algorithms

We evaluate three algorithms for subnetwork selection.

1. RLX-FULL: the main algorithm corresponding to the relaxed problem (5.10) for
diamond networks and the relaxed version of (5.7) for multilayer networks.

2. RLX-SMPL: specific to diamond networks, corresponding to the relaxed problem
(5.12).

3. RND: baseline algorithm where a subnetwork of appropriate size is selected at
random.

For both RLX-FULL and RLX-SMPL, the fractional optimum is rounded by picking the top
Ki values in each layer and accordingly selecting the subnetwork (as described in Section
5.3.2).

Implementation

The implementations (done in C++) require two main modules: (i) A submodular min-
imization routine that evaluates C̄S,iid({S̃l}) for a specific set {S̃l}. For this, we used
the C implementation of an algorithm based on the minimum-norm base [46], shown to
be the most efficient general purpose routine in this regard. (ii) A routine that solves
(5.10) and the relaxed version of (5.7). In view of Theorem 5.3.1, suitable interior-point
based methods can solve (5.10) in polynomial time. However, off-the-shelf open source
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Figure 5.2 – Accuracy and Timing Performance of Algorithms

libraries to this end gave less than satisfactory results in practice. Instead, a Nelder-
Mead simplex-based general purpose non-linear optimization routine from the NLopt
library is used [47]. Specifically, the NLOPT_LN_NELDERMEAD function, combined with the
augmented Lagrangian method in NLOPT_AUGLAG_EQ (to encode the size constraints) was
used.

In all our experiments, for a given (n,K1, . . . ,KL−2) size tuple, we ran each algo-
rithm for several (greater than 105) random channel-set instantiations of the network.
The individual channel coefficients hlij in each instance were picked i.i.d as follows:
10 log10(|hlij |2) ∼ U [0, 35] and ∠hlij ∼ U [0, 2π].

5.5.1 Accuracy Results

For each random channel-set instantiation, we compute the ratio Calg/Cexh, where Calg
(resp. Cexh) denotes C̄S,iid({S̃l}) of the optimal subnetwork selected by our algorithms
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(resp. by exhaustive search). Naturally, with this metric, the higher the Calg/Cexh ratio,
the better is the accuracy of the algorithm.

Fig. 5.2a plots the complementary c.d.f. of Calg/Cexh for the three algorithms over
diamond networks. The number of relays is n = 20 and the subnetwork size is K1 = 10.
Clearly, RLX-FULL produces subnetworks that have throughput equal or very close to
the exhaustive optimal most of the time and both RLX-FULL and RLX-SMPL significantly
outperform RND. Some representative values from Fig. 5.2a are as follows:

RLX-FULL RLX-SMPL RND
Pr{Calg/Cexh ≥ 0.98} 0.9697 0.1679 0.0345
Pr{Calg/Cexh ≥ 0.94} 0.9983 0.6349 0.2724
Pr{Calg/Cexh ≥ 0.90} 0.9995 0.8782 0.5617

For multilayer networks (performance shown in Fig. 5.2b), experiments were performed
for two configurations: In the first, marked as 2 × 10 in Fig. 5.2b, there are two
intermediate layers of n = 10 nodes each and K1 = K2 = 5. In the second configuration,
marked as 4 × 5 in Fig. 5.2b, there are 4 intermediate layers of 5 nodes each with a
staggered size constraint of K1 = 2, K2 = 4, K3 = 2, K4 = 3. In both configurations, we
see that the complementary c.d.f of RLX-FULL consistently outperforms that of RND and
the benefits increase significantly at higher accuracies (i.e., higher Calg/Cexh ratios).

5.5.2 Time Complexity

To measure the time efficiency of our algorithms, we construct the following configurations:
(i) A diamond network with N relays, from which we select N/2 relays, and (ii) A layered
network with having 2 intermediate layers of N/2 relays each, and we select N/4 relays
from each layer.
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For each N , we perform a large number of experiments with random channel-set instan-
tiations and plot the average value of Talg/Texh in Fig. 5.2c, where Talg (resp. Texh)
denotes the running time of our algorithms (resp. exhaustive search).

For the diamond network with N = 30, RLX-FULL is more efficient than an exhaustive
search by a factor of 460, while for RLX-SMPL, this factor is more than 2.1× 106.
This is primarily due to the much faster O(N logN) computation time of C̄dia

P2P (in
RLX-SMPL) w.r.t that of the submodular minimization routine for C̄dia

S,iid. For the multilayer
confuguration, RLX-FULL gives time saving factors of more than 50 and 440 for N = 28
and 32 respectively.

While it is difficult to theoretically analyze the time complexity of a Nelder-Mead simplex-
based algorithm for our problem, in Fig. 5.3 we give an empirical demonstration of
time complexity for our implementations, where we plot log(Talg) (averaged over random
channel-set instances) vs log(N) for the two configurations above.

For the diamond network, a fairly linear behavior is obtained, with slopes of approximately
δ = 5.0 and δ = 2.6 for RLX-FULL and RLX-SMPL, implying that their running time is
approximately O(N5.0) and O(N2.6) respectively. For the two-layered configuration, the
slope is not constant, but a slowly growing function of N (about 1.1 logN to a first
approximation). Nevertheless, this is still the first systematic sub-exponential complexity
(≈ O(N1.1 logN )) algorithm for (approximately) solving the original integer optimization
problem for multilayer networks, providing significant time savings w.r.t an exhaustive
search (Fig. 5.2c). Also, with customized solvers (as opposed to the general purpose
routines used here), further complexity gains are expected.
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6 QUILT: A QMF Approach to
Physical Layer Cooperation

Physical layer cooperation of a source with a single relay can significantly boost the
performance of a wireless system, as shown in the theoretical work of Kramer [48] and
verified by first experimental results by Duarte et. al. [49]. A natural question is, which
scheme performs better when deployed in a practical system. The work of Duarte et.
al. [49] on physical layer cooperation in WiFi suggests that Decode-Forward (DF) and
Quantize-Map-Forward (QMF) are two good candidates. The performance of QMF and
DF is competitive, yet which scheme performs best varies depending on the relative
strengths of the channels that connect the source, relay and destination.

In the final chapter of this thesis, we propose and evaluate QUILT – a system for
physical-layer relaying that seamlessly adapts to the underlying network configuration to
achieve competitive or better performance as compared to the best current approaches.
In QUILT, the relay operates on demand, i.e., is activated only if a first sequence
transmitted by the source fails to be decoded by the destination. Once activated, it
supports a second transmission of the source through physical layer cooperation. The
relay decides opportunistically whether to use DF or QMF to recover the source sequence,
on a frame-by-frame granularity and with no coordination from the source.

There are three main components to the system – source encoding, relay operation and
destination decoding. QUILT uses LDPC codes specified in WiFi standards [5] to encode
a sequence of information bits. The relay first attempts to decode its received signal. If
decoding fails, the relay quantizes it to the closest discrete sequence and recovers a noisy
version of the source sequence. In both cases, the relay interleaves it and transmits it
synchronously with the source.

The decoder at the destination tries to decode the first direct transmission from the source.
Only when this is unsuccessful, in which case the source and relay transmit cooperatively,
the decoder makes a second attempt. In this attempt, it combines information that it
has received in both the transmissions to decode the sequence sent by the source. The
decoder employs a belief propagation decoding algorithm over a graphical model of the
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relay network that incorporates the source LDPC code, quantization and interleaving at
the relay and joint decoding at the destination.

We deploy QUILT on a WARPLAB testbed and present exhaustive performance compar-
isons with DF and QMF protocols through over-the-air experiments. Our experimental
results demonstrate benefits up to a factor of 5 for Frame Error Rate (FER) as com-
pared to the next best scheme and two orders of magnitude over the FER of traditional
point-to-point transmissions.

6.1 Related Work

A first implementation of QIF was presented in [49] and offered comparisons with DF
and AF relaying schemes. Although our work builds on [49], QUILT differs in a number
of important features, that include: (a) the opportunistic use of decoding or quantizing
at the relay; (b) the use of interleaving even when decoding was successful; and (c) the
use of hybrid decoding. Completely new to this work is also the theoretical analysis that
illustrates through outage calculations the benefits of interleaving and hybrid decoding,
as well as all the experimental evaluations and comparisons. In summary, all claimed
novel contributions are unique to this chapter.

The works in [50], [51] survey testbed implementations of physical layer relay schemes;
the focus is on the implementation of either DF or AF schemes. A testbed based on
uncoded DF in a single-relay system was investigated in [52]. A WARP radio testbed
based on DF was implemented in [53]. None of these works implemented advanced
error correction or broadband OFDM modulation. In [54] both (uncoded) AF and DF
relaying along with distributed Alamouti-based transmission were implemented over
broadband OFDM. However, this implementation lacked error correcting codes and
distributed frequency-diversity coding. Apart from the relaying strategy, other issues
related cooperative relaying have also been studied through implementation on testbeds;
for example the experimental work in [55] and [56] focuses on the synchronization for
multiple simultaneous transmissions.

The monograph in [48] surveys the recent theoretical development in cooperative relaying.
QMF was originally proposed in [8] for Gaussian networks and shown to approximately
achieve the network capacity. It was later extended to discrete memoryless networks in
[44]. Practical coding schemes of QMF relaying with LDPC and BICM were proposed
for a half-duplex single-relay cooperative MIMO system in [57] and for a full-duplex
multi-relay network in [58], where in the latter interleavers as relay mapping were first
proposed. The use of demodulation instead of quantization was used in [58] and [59].
None of these papers had an experimental evaluation.
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Figure 6.1 – Schematic diagram of QUILT illustrating the various components of the
system. T1 and T2 indicate the first and second phase, respectively.

6.2 QUILT System Overview

QUILT prescribes physical layer operations for a three-node network that consists of
a source, a relay and a destination, building on top of the physical layer procedures of
WiFi IEEE802.11. The relay is half-duplex, i.e., it can either transmit or receive. We
describe its main components in the following and also depict it schematically in Fig. 6.1.

6.2.1 Source Operation

Channel Coding

The source encodes each information packet using an LDPC code (compliant with the
IEEE802.11 specifications) to create a coded packet; all transmitted packets by the
source are coded. We use coding as recommended in the WiFi standards to increase the
end-to-end reliability.

Broadband OFDM Modulation

We employ OFDM modulation as specified in the WiFi physical layer to combat channel
frequency selectivity. After encoding, the codeword bits are first mapped to QAM
symbols and then modulated using OFDM. Each coded packet the source creates results
in several OFDM symbols.
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6.2.2 On Demand Relaying: Two Phase Operation

Gist The source first attempts to directly transmit a packet to the destination. The
relay also overhears this transmission. If the direct transmission is successful, the source
proceeds with the transmission of a new packet; if unsuccessful, the source and the
relay cooperatively transmit to try to help the destination decode. We thus have a
two-phase operation, where the relay aids the information transfer as-needed, only when
the direct transmission from the source is unsuccessful. This enables the system to
adapt to the network conditions and avoid unnecessary relay transmissions when the
source-destination channel is strong.

Signal Exchange

We use vectors X = [X1, X2, . . . , Xm]T , to collect the QAM symbols transmitted
across the m subcarriers of one OFDM symbol. We denote with Xs[k] and Xr[k]
the transmitted signal vectors by the source and the relay, Yr[k], Yd[k], Zr[k] and
Zd[k] the received vectors and the Gaussian noise at the relay and destination, and
Hij [k] = diag(Hij,1[k], . . . ,Hij,m[k]) the channel matrix from node i to node j; k = 1 or
2 indicates the phase.

• Phase 1: The relay is in listening mode. The received signals per OFDM symbol
are:

Yr[1] = Hsr[1]Xs[1] + Zr[1]
Yd[1] = Hsd[1]Xs[1] + Zd[1].

(6.1)

If the destination cannot decode, we enter Phase 2.

• Phase 2: The source transmits an identical packet, i.e., Xs[2] = Xs[1] for all
symbols in the packet. The relay transmits Xr[2]’s created from Yr[1]’s in the
packet:

Yd[2] = Hsd[2]Xs[2] + Hrd[2]Xr[2] + Zd[2]. (6.2)

How the relay creates Xr[2]’s is dealt in the next section.

6.2.3 Relay Operation in Phase 2

At a high level The relay attempts to decode and exactly recover the sequence of
OFDM symbols Xs[1]’s transmitted by the source in a packet; if it fails, it uses symbol
quantization of the elements of the received symbols Yr[1]’s to their closest constellation
points; in both cases, it interleaves the recovered sequences and transmits it synchronously
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with the source, effectively creating a distributed space-frequency code.

In more detail The relay operates as follows.

• Attempts to recover the source information in a packet, using an LDPC decoder
and soft information from its received vectors Yr[1]’s. It infers success through the
CRC check.

– If successful, it re-encodes the source information to create the same vectors
Xs[1]’s as the source.

– If unsuccessful, it quantizes the elements of its received vectors Yr[1]’s to their
closest constellation points, and creates a (noisy, with discrete errors) version
of the Xs[1] vectors the source has.

• Maps the elements of the recovered vectors to bits, interleaves the resulting bit
sequence with a randomly selected bit-interleaver, maps the interleaved bit sequence
to signal constellation points, passes it through an OFDM modulator, and transmits
it synchronously with the source.

Discussion We here discuss the reasons for selecting our particular method for sequence
recovery, and for interleaving at the relay.

To recover the source sequence, if the relay can successfully decode, this is the optimal
operation it can do, as it perfectly cleans up the noise. If the relay fails to decode, our
symbol quantization attempts to recover a sequence that is close to the source transmission
and conveys information to the destination. To achieve this, symbol quantization is not
the only option: infact, the insight from the information theoretic form of QMF is that
we should be using sequence quantization. For instance, a possible choice could be to
select the codeword an ML decoder would identify, even if this is not the correct one;
that is, use the closest codeword to the receiver signal, which amounts to quantizing to
the codeword sequences. We were not able to experiment with this option, as it leads
to impractical complexity both at the relay and the destination. We opted for symbol
quantization that still identifies a sequence close to the transmitted one, yet has viable
complexity.

Interleaving is a key component of our relay operation for two independent reasons. The
first is specific to OFDM modulation: because of interleaving, the relay assigns signals
received through weak or interfered subcarriers in the source-relay channel to potentially
strong or cleaner subcarriers in the relay-destination channel and also induces mixing
of signals from distributed terminals across subcarriers, thus achieving frequency-space
diversity and significant performance benefits (see Section 6.6). This benefit is present
irrespective of quantization or decoding at the relay. The second reason is specific to
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QMF: as our theoretical analysis in Section 6.3 shows, the mapping that interleaving
implements, outperforms random mappings for the QMF operation, offering significant
benefits (see Section 6.3) even when we operate on a single subcarrier; i.e., these benefits
are independent of OFDM.

6.2.4 Hybrid Decoding at the Destination

In phase 1, the destination attempts to decode using a standard LDPC decoder. If it
fails, at the end of phase 2, QUILT takes advantage of the received signals in both phases
to decode the source packet. For this, the destination employs a graphical structure that
captures the streams received in phases 1 and 2, and adapts to whether decoding or
quantization were employed at the relay. The decoder for QUILT is an adaptation of the
QIF decoder in [49][58], wherein the stochastic quantizer nodes become deterministic
perfect connections if the relay decoding succeeds, and are the same as in [49] otherwise.
The decision is guided by a 1-bit flag that the relay transmits, to inform the destination
whether the relay-decoding succeeded. Further, the log-likelihood ratio computations
take into account the received soft information from both transmission phases.

6.3 Theoretical Analysis

We here provide theoretical analysis that substantiates our design choices in QUILT. We
show that we gain:

• Benefits from interleaving over the conventional random mapping operation in
QMF.

• Benefits from hybrid decoding at the destination.

• Benefits from opportunistic relay decoding/quantization.

For our performance evaluations, we compared information theoretical metrics, such as
outage probability, through simulations over narrowband (single-carrier) flat Rayleigh-
fading channels that assume infinite complexity processing at the source, the relay and
the destination.

6.3.1 Performance Metric: Outage Probability

We evaluate the error performance using the classical notion of outage probability [60],
i.e., the probability that a (fixed) transmission rate R is not supported by a scheme.
For our calculations we assume 4-QAM constellations at the source and relay. We also
assume that the channels are fading i.i.d. over the two phases (a situation commonly
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encountered when the two phases occur sufficiently far apart, larger than the coherence
time of the channel), independently across the three links, but the distributions in the
three links may not be identical. The target rate of the transmit packet is R = 1 bit/s/Hz.
Adapting for our two-phase on-demand relaying protocol, we have that

P[Outage] (6.3)

= P
[{
R > CP2P (hsd[1])

}
∩
{
R > CR (hsd[1], hsr[1], hsd[2], hrd[2])

}]
= P

[
R > CP2P (hsd[1])

]
P
[
R > CR (·) |R > CP2P (hsd[1])

]
where CP2P(hsd[1]) is the single-user capacity supported by channel hsd[1] and QAM con-
stellation, and CR (hsd[1], hsr[1], hsd[2], hrd[2]) is the capacity of the cooperative scheme,
which depends on the particular strategy under consideration. For strategies that do not
use hybrid decoding, CR is just a function of hsr[1], hsd[2] and hrd[2]. We evaluate numer-
ically the outage probability by using analytical expressions for CR (hsr[1], hsd[2], hrd[2])
for each strategy, that we derived by modifying the arguments in [8, 44]. The detailed
calculations can be found in the Appendix A.2.

6.3.2 Benefits of Interleaving

We compare the following schemes: (i) QMF: scalar quantization followed by random
mapping at the relay, as in [8], (ii) QIF: scalar quantization followed by bit-level inter-
leaving at the relay and (iii) QF (Quantize-Forward): only scalar quantization at the
relay.

The plot in Fig. 6.2a is generated with all three links having i.i.d. Rayleigh fading
channels with the same SNR. We observe that QIF outperforms QMF, even for very
short interleaver lengths1. This can be intuitively explained as follows: in the original
QMF relaying scheme, the random mapping at relay results in independence between
the transmissions of the source and the relay. Hence the original QMF cannot harness
the coherent combining power gain that may increase the performance in the moderate
SNR regime. Instead, in QIF the interleaver preserves the weight of the quantized
codeword and hence retains certain correlation with the transmission from the source,
while providing enough mixing across source and relay terminals to guarantee spatial
diversity. Indeed, we observe that QIF outperforms QF significantly, since with no
mapping, QF cannot extract the full spatial diversity.

1Due to a multi-letter vector channel representation, it is only feasible to numerically evaluate the
expressions for short length interleavers. However, we do see that performance improves with length of
the interleaver. Thus the theoretical plots for QIF in this section are much more pessimistic than the
long-length interleavers that we use in our over-the-air experiments.
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Figure 6.2 – Outage performance of different relaying schemes.

6.3.3 Benefits of Hybrid Decoding

In Fig. 6.2b (where again all three links have i.i.d. Rayleigh fading channels) we verify
that hybrid decoding leads to a significantly improved performance for QIF and QMF.
The versions of QMF and QIF with hybrid decoding are labeled QMF-HD and QIF-HD
respectively. The gain observed is well expected as the signal received in Phase 1 contains
information that can improve the decoding performance. Interestingly, the gain for
hybrid decoding in QIF, roughly 1.5dB, is almost double of that in QMF.
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6.3.4 Benefits of Opportunistic Decoding or Quantization

We compare the following schemes: (i) DF: relay decodes and forwards if it can, else does
not cooperate (ii) QIF: as mentioned above, and (iii) DQIF (Decode/Quantize-Interleave-
Forward): the relay opportunistically decodes and forwards if possible, else performs
QIF.

In Fig. 6.2c, where all three links have Rayleigh fading channels, but the SNR in the
relay-destination link is four times stronger than that in the source-destination and
source-relay links, we observe the benefit of opportunistic decoding when the reception at
the relay is weak. In particular, while DF slightly outperforms QIF, DQIF is also shown
to extract the combined benefits of both DF and QIF. Moreover, we must point out that
the theoretical demonstrations for QIF are carried out with short length interleavers and
the performance of QIF improves with interleaver length (see Fig. 6.2a). In real-world
experiments, we use long interleavers that will provide better performance than the
demonstrations in this section show. The relative superiority of DF and QIF will of course
vary with channel conditions, but a combination of the two appears to be a promising
scheme in terms of universality.

6.4 System Implementation

6.4.1 Cooperative Schemes Implemented

Below we give a description and motivation of the schemes we analyze via experiments
using our deployed testbed. The cooperative schemes implemented are summarized in
Table 6.1. The relay operations we consider in our experiments are:

Quantize-
Forward

Quantize-
Interleave-
Forward
(QIF)

Decode-
Forward
(DF)

Decode-
Interleave-
Forward
(DIF)

Decode-
Interleave-
Quantize-
Interleave-
Forward
(DIQIF)

No Hybrid
Decoding

QF QIF DF DIF DIQIF

With
Hybrid
Decoding
(HD)

QF-HD QIF-HD DF-HD DIF-HD QUILT=
DIQIF-HD

Table 6.1 – Implemented schemes when the relay is active. The relay operations (columns)
and the destination operations in Phase 2 (rows), are described in Section 6.4.1.
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• Quantize-Forward (QF): Scalar quantization and subsequent forwarding by the
relay.

• Quantize-Interleave-Forward (QIF): Scalar quantization followed by bit-level inter-
leaving of the quantized sequences by the relay and subsequent forwarding.

• Decode-Forward (DF): Decoding at the relay if possible and transmit a 2 × 1
Alamouti jointly with the source. If decoding at the relay is not possible it remains
silent.

• Decode-Interleave-Forward (DIF): Decoding at the relay if possible and transmit
bit-level interleaved signal. If decoding at the relay is not possible it remains silent.

• Decode-Interleave-Quantize-Interleave-Forward (DIQIF): DIF if relay decoding
succeeds; QIF otherwise.

We note that DIF was not considered in our single-carrier theoretical analysis. We
implemented this for our (OFDM-based) over-the-air experiments to provide DF an
option to exploit the frequency diversity across subcarriers that the interleaver in QIF
was inherently providing.

For Phase 2, the destination operations we consider are:

• No Hybrid Decoding: The decoding at destination only uses the signal received in
Phase 2.

• On Demand Hybrid Decoding (HD): The destination first attempts to decode with
only the signal received in Phase 2. If this decoding fails, then the destination
attempts to decode again but this second time with both the signals received in
Phase 1 and Phase 2.

To further demonstrate the utility of cooperation, we implement the following baseline
scheme:

• Direct Transmission (DT): In this baseline scheme (without the need of a relay)
in Phase 2, the source repeats the Phase 1 signal. We also consider DT with the
possibility of hybrid decoding, termed DT-HD.

Also, note that, in the nomenclature used in Table 6.1, QUILT refers to DIQIF-HD,
which is essentially the all-encompassing system that is the cornerstone of this chapter.
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6.4.2 Frame Structure

We designed our system to emulate the physical layer procedures of WiFi (IEEE802.11).
Each transmitted frame consists of a preamble and the payload. We next describe the
preamble and payload fields for the two phases of communication for the schemes we
implemented.

Preamble

The preamble structure follows what is used in 802.11 systems: it consists of training
sequences for Automatic Gain Control (TAGC), training for timing synchronization
(TSYNC), and training for channel estimation (TCHE). The training for channel estima-
tion is used to estimate not only the channel but also to estimate the carrier frequency
offset.

Phase 1 : In this phase, only the source transmits. The preamble structure it transmits
is shown in Fig. 6.3.

Phase 2 : In DT, the source transmits the same preamble it transmitted in Phase 1 and
the relay remains silent. For all other schemes (QF, QIF, DF, DIF, DIQIF) we deal
with joint transmissions from the source and the relay as follows. The TAGC is sent
by the source and relay simultaneously. However, we introduce a cyclic shift between
the TAGC waveforms sent by the source and the relay to avoid accidental nulling. We
send the TSYNC as well as all TCHE fields orthogonally over time, as shown in Fig. 6.3.
Orthogonality for TSYNC ensures that the destination can solve timing synchronization
from at least one of two TSYNC sequences, and thus, even if one of the channels happens
to be very noisy, it can still synchronize. Orthogonality for TCHE ensures clean channel
estimates for separate links (a similar approach is used for MIMO channel training
implementations).

Payload

The payload consists of OFDM symbols, i.e., contains data and pilot subcarriers as
described in 802.11.

Phase 1 : For all the schemes, we transmit the exact same payload waveform, which
corresponds to an OFDM-based single transmitter single receiver antenna system.

Phase 2 : In DT, the source transmits the same payload it transmitted in Phase 1 and
the relay remains silent. In QF, QIF, DIF and DIQIF, the source retransmits the same
payload it transmitted in Phase 1, and the relay transmits its received and processed
signal. In the DF, if the relay has successfully decoded (the CRC passed), we have the
source and relay payload implement a 2×1-antenna distributed Alamouti code to provide
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Figure 6.3 – Time diagram.

spatial diversity as in [49]. In DF and DIF, if the relay cannot decode then it remains
silent.

In QF, QIF and DIQIF schemes, the payload contains one more OFDM symbol than
the DF and DIF schemes which is only sent by the relay. This extra OFDM symbol is
used to forward an estimate of the source–relay SNR to the destination, which needs to
employ it during iterative decoding. The relay first estimates the SNR and quantizes it to
one of 40 possible values ranging from −10 to 30 dB (in steps of 1 dB). We can describe
these 40 values using 6 bits. For QF and QIF we repeat these 6 bits 8 times, modulate
them with BPSK and allocate them to 48 data subcarriers in the OFDM symbol used to
forward the SNR information. For DIQIF, in addition to the 6 bits of SNR information,
we also send one extra bit to the destination to notify if the relay decoded successfully or
not. The 7 bits for DIQIF are sent in the 48 data subcarriers of the extra OFDM symbol.

We note that, for decoding the payload, an estimation of the effective noise variance
is required by the LDPC decoder for computation of the log-likelihood ratios. For the
estimation of SNR and effective noise variance, we follow the same approach as presented
in [49].

As per the 802.11 standard, each OFDM symbol in the payload consists of a total of 48
data subcarriers, 4 pilot subcarriers and 12 unused subcarriers. The 4 pilot subcarriers
are used for residual phase noise and CFO correction. For the joint source and relay
transmissions, we synchronize the carrier and timing between the source and relay
by sharing a wire connection between them as shown in Fig. 6.5–the same approach
as presented in [49]. Yet, we would like to mention that recent work on distributed
transmissions has shown that it possible to also achieve accurate timing and carrier
synchronization in a distributed manner (see [61, 55, 62]); these protocols are enabled
by implementing a large part of the mechanisms in real time in the FPGA to achieve
fast turnaround times. Incorporating this into WARPLab, although feasible, was not our
focus.
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6.5 Iterative Decoder Design

LetA be the discrete channel-alphabet at the source and the relay. In our implementations,
we use a standard 2k-QAM (specifically 16-QAM) alphabet as A. Let N denote the
transmission blocklength. It will be beneficial to rewrite the network model equations in
(6.1) and (6.2) in terms of the vectors in AN . For Phase 1, we have

yr = hsrxs + zr
y1
d = h1

sdxs + z1
d.

(6.4)

If the destination cannot decode, we enter Phase 2.

y2
d = h2

sdxs + hrdxr + z2
d. (6.5)

Here xs,xr ∈ AN are the symbol vectors transmitted by the source and the relay and
yr, ykd, zr and zkd (all ∈ CN ) are the received vectors and the Gaussian noise at the relay
and destination in Phase k ∈ {1, 2}. hkij = diag(hkij,1, . . . , hkij,N ) is the channel matrix
from node i to node j in Phase k ∈ {1, 2}.

6.5.1 Encoding and Relaying

The source encodes the information bit vector u into the symbol vector xs. If decoding at
the destination from y1

d is unsuccessful, then the relay tries to decode yr. If the decoding
is unsuccessful, it quantizes yr symbol wise to the nearest symbol in A. In either case,
we denote the result by xq. This is then interleaved using an interleaver π to produce
the final transmit vector xr at the relay. In summary,

yr → xq
π→ xr (6.6)

Since interleaving is a one-to-one operation, we can write

xr = π(xq) and xq = π−1(xr) (6.7)

where π−1 is the inverse permutation of π.

To describe the decoder structure in detail, we initially focus on the binary communication
problem, i.e A = {±1}. We defer the extension to non-binary constellations to section
6.5.3. For our source codebook C, we use an LDPC code of the desired rate with a
code-membership function 1{xs∈C}.
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Figure 6.4 – Decoding Graph for binary signaling with 1-bit scalar quantizers

6.5.2 Iterative DIQIF Decoder

We derive a compound graphical model to perform iterative decoding of the source bits
xs. In contrast to point-to-point decoding, the network graphical model for our iterative
QMF decoder has to incorporate the following additional features: (i) It should explicitly
characterize of the function-nodes representing the quantization and multiple-access
operations, together with their own set of message passing rules, and (ii) It should have
a well defined information-exchange schedule among the components of the graphical
model. In the following, we detail the derivation and key features of the graphical model.

Sum-Product decomposition of a posteriori probability

The decoding rule for the bit-wise MAP decoder for the i-th bit xs,i of the source
codeword reads:

x̂MAP
s,i (y1

d,y2
d) = argmaxxs,i∈{±1}

∑
∼xs,i

p(xs|y1
d,y2

d) (6.8)

Note that, for hybrid decoding, we use the signals received in both the phases. Here we
use the standard notation ∼ in front of xs,i to denote all variables other than xs,i. The
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a-posteriori probability, p(xs|y1
d,y2

d), can be expressed as,

p(xs|y1
d,y2

d) = 1
p(y1

d,y2
d)

∑
∼xs,y1

d
,y2
d

p(xs,xq,xr,y1
d,y2

d) (6.9)

p(xs|y1
d,y2

d)
(a)
∝

∑
∼xs,y1

d
,y2
d

p(xs) · p(xq|xs) · p(xr|xq) · p(y1
d|xs) · p(y2

d|xs,xr) (6.10)

(b)
∝

∑
∼xs,y1

d
,y2
d

p(π−1(xr)|xs) · p(y1
d|xs) · p(y2

d|xs,xr) · 1{xs∈C} (6.11)

(a) follows from the fact that xs ↔ xq ↔ xr ↔ y2
d and xs ↔ y1

d form Markov chains and
y1
d and y2

d are independent given xs. (b) follows from the uniform distribution on the
source codeword, the one-to-one relationship between xq and xr and the code membership
constraints. Also, from the memoryless property of the channel, the terms p(π−1(xr)|xs),
p(y1

d|xs) and p(y2
d|xs,xr) further factorize on a symbol-by-symbol basis as shown in the

decoder graph in Fig. 6.4. The decoding problem thus reduces to computing the marginal
of a factorized function and choosing the value that maximizes the marginal.

Structure of the decoder

As shown in Fig. 6.4, the compound graph contains the graphs corresponding to the
source codebook (G) and the relay interleaver π. In addition to the variable and check
nodes in G, two other types of function nodes enter the graph structure:

• The source-to-relay (type α) function nodes, which connect the xs and xq variable
nodes, and represent the functions p(xq|xs) at the relay. These nodes correspond
to the decode/quantize operation at the relays. Note that if the relay is successful
in decoding, then p(xq|xs) = 1 and these nodes become redundant.

• The multiple-access (type β) function nodes, connecting the xr and xs variable
nodes, and representing the function p(y2

d|xs,xr). The information-exchange
between the variables at the source and relay via these nodes is an important
ingredient in harnessing the benefits of co-operation from the relays.

Also note that the variable nodes in G also receive soft information extracted from the
transmission in Phase 1 from the nodes of type γ that represent the function p(y1

d|xs).

Message passing rules

The decoding proceeds via a message-passing algorithm on the decoding graph. We
set all messages flowing through the edges to be in log-likelihood ratio form, i.e of the
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form ln p(x=+1)
p(x=−1) . The messages passed from every variable node and also from the check

nodes in G follow usual belief propagation (BP) message passing rules as summarized in
[2]. However, we need to illustrate the message passing rules for the type α and type β
function nodes that are new to the network graphical model.

Each type α function node c is connected to a variable node v0 in G0 and to another node
vi in Π. The messages passed from the type α function node to node v0 in G and to node
vi in Π are given by

mα→G
c→v0 = ln

p+1|+1 · p(vi = +1) + p−1|+1 · p(vi = −1)
p+1|−1 · p(vi = +1) + p−1|−1 · p(vi = −1)

= ln
p+1|+1e

mΠ→α
vi→c + p−1|+1

p+1|−1e
mΠ→α
vi→c + p−1|−1

(6.12)

mα→Π
c→vi = ln

p+1|+1 · p(v0 = +1) + p+1|−1 · p(v0 = −1)
p−1|+1 · p(v0 = +1) + p−1|−1 · p(v0 = −1)

= ln
p+1|+1e

mG→αv0→c + p+1|−1

p−1|+1e
mG→αv0→c + p−1|−1

(6.13)

where p±1|±1 denote the transition probabilities, p(vi|v0), where v0 ∈ xs and vi ∈ xq, and
are obtained from the channel statistics.

Each type β function node c is connected to a variable node v1 in G and to v2 in Π. Using
similar marginalizations of the corresponding functions as in the case of type α nodes,
the messages passed from the type β nodes are derived as

mβ→G
c→v1 = ln p+1,+1e

mΠ→β
v2→c + p+1,−1

p−1,+1e
mΠ→β
v2→c + p−1,−1

(6.14)

mβ→Π
c→v2 = ln p+1,+1e

mG→βv1→c + p−1,+1

p+1,−1e
mG→βv1→c + p−1,−1

(6.15)

where p±1,±1 here represents the pdf (evaluated at the observation y1
d) of channel output,

conditioned on v1 ∈ xs and v2 ∈ xr respectively. The messages mΠ→β
v2→c are derived from

the messages mα→Π
c→vi by applying the permutation defined by π. Similarly, the messages

mΠ→α
v→c are computed by applying π−1 to mβ→Π

c→v .

Decoding Schedule

Having defined the message-passing rules for the variable and function nodes, it remains
to specify the schedule for information exchange in the compound graphical model. We
will start from the type β nodes and push the llrs towards the source graph G through Π
and the type α nodes. After performs local message-passing within G, the llrs are pushed
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back through the type α nodes and Π towards the type β nodes. This process continues
until a hard decision is taken on the value of the source bits xs, based on the sign of
the corresponding messages at the variable nodes in G, which is obtained by adding the
messages from all incident edges. Such a schedule makes good use of the parallelism
inherent in the network structure and is illustrated in the algorithm below.

Algorithm 2 Decoding Schedule
Initialize: mΠ→β

v→c = mG→βv→c = 0
mα→G1
c→v = mα→G2

c→v = 0
Initialize: mβ→G1

c→v , mβ→G2
c→v from channel observations

for l = 1 to max_iter do
Compute mβ→G

c→v and mβ→Π
c→v using (6.14) and (6.15).

Compute mΠ→α
v→c by applying π−1 to mβ→Π

c→v .
Compute mα→G

c→v using (6.12).
Run ω rounds of belief propagation on G with mα→G

c→v , mβ→G
c→v and mγ→G

c→v as input.
Update mG→αv→c and mG→βv→c
Compute mα→Π

c→v using (6.13), from which compute mΠ→β
v→c by applying π.

end for

After a fixed number of global iterations, a hard decision is taken on the value of the
source bits xs, based on the sign of the corresponding messages at the variable nodes
which is obtained by adding the messages from all incident edges. Note that as in the
original QMF strategy, no hard decisions are made on the relay transmissions.

6.5.3 Non-binary signaling

To extend our scheme to a 2k-QAM constellation, we adopt a 2-step procedure–namely
coding in binary, followed by modulating the coded bits to the transmit constellation.
The (non-binary) code and membership functions then factorize as

1{xs∈C} = 1{cs∈C′}.1{Ψ(cs)=xs} (6.16)

where cs denotes the binary coded and mapped vectors at the source and Ψ is the vector
extension of the constellation map. C′ denotes the binary source codebook. From the
perspective of the decoder, each type α node now has k connecting edges to G and Π
while each type β check node has k connecting edges to G and Π. The description of the
iterative decoder for the DIQIF scheme can easily be specialized or adapted to the other
schemes that we consider.

6.6 Experimental evaluation

In this section, we experimentally evaluate QUILT and compare it with alternative cooper-
ative communication strategies. We first describe our performance metrics (Section 6.6.1)
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Figure 6.5 – Node and host PC configuration

and testbed (Section 6.6.2), then present our experimental results (Sections 6.6.3, 6.6.4,
6.6.5 and 6.6.6).

6.6.1 Performance Metrics

We consider the following metrics:

• Frame-Error Rate (FER): The percentage of source packets that were not decoded
after both phases.

• Throughput: The number of information bits successfully delivered to the destination
per channel use (bps/Hz).

6.6.2 Testbed

We used the WARP SDR hardware to implement the source, relay and destination nodes
in our testbed. We used the WARPLab framework to interact with the WARP hardware
via a host PC running MATLAB. The host PC was connected to the nodes via an
Ethernet switch as shown in Figure 6.5. The samples to be transmitted by a node were
generated in MATLAB and downloaded to the transmit buffer of the corresponding node.
The host PC triggered a real-time over-the-air transmission and reception by the nodes.
The samples received at a node were read by the host PC and processed in MATLAB.
The transmitted waveforms were centered at 2.4 GHz and had a 20 MHz bandwidth.

We evaluate the performance of the protocols for different experiment scenarios which
were obtained by keeping the source fixed and varying the relay and destination placement
and source and relay powers. The node locations for each of the three scenarios considered
are shown in Fig. 6.6 and the Received Signal Strength Indicator (RSSI) for each link for
each scenario is shown in Fig. 6.7.

For each setting, we ran the experiment for at least 2500 coded frames. In all experiments,
we used randomly chosen bit-interleavers of length equal to that of an LDPC codeword.

106



6.6. Experimental evaluation

We used 16-QAM constellations with a coding rate of 3/4.
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Figure 6.6 – Node placement illustrating the topologies considered.
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6.6.3 Evaluation of Interleaving

We observed in Section 6.3 that interleaving can significantly improve the outage proba-
bility of QIF vs. QF2 (see Figure 6.2a). The theoretical evaluation was only possible for
short interleavers, and across a single subcarrier. The question is: how much interleaving
helps when we use long interleavers across subcarriers?

2We emphasize once again that the random mapping version of QMF in [8] is not an implementable
strategy due to complexity limitations. Moreover, we have shown in Section 6.3 that QIF outperforms
random mapping.
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(c) FER benefits of hybrid decoding.
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(d) Throughput benefits of hybrid decoding.
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Figure 6.8 – FER and throughput benefits of interleaving, hybrid decoding, and oppor-
tunistic decoding.

Fig. 6.8a and 6.8b present the performance of DF, QF, DIF and QIF. We note that for
these experiments, we allowed DF to implement an Alamouti code when the source and
the relay cooperatively transmit in the phase 2, thus achieving full spatial diversity. We
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make the following observations.

First, QIF outperforms QF in all three scenarios, with throughput gains ranging
from 15% to 30%. We expected significant benefits, as interleaving enables to capture
space-frequency diversity. Infact, it was shown in [58] that interleaving is sufficient to
extract full spatial diversity from distributed transmissions for single carrier systems;
here, we have the additional benefit of capturing frequency diversity through mixing
signals across OFDM subcarriers.

Second, although DF achieves full spatial diversity due to the Alamouti code, DIF still
offers benefits, up to an impressive 45% throughput gain (Scenario 2, Fig. 6.8b). This
reflects the additional frequency diversity gain from interleaving.

Third, Scenario 1 provides evidence that DIF can in some cases outperform QIF.

6.6.4 Evaluation of Hybrid Decoding

Next, we investigate the effect of relay-assisted hybrid decoding. Fig. 6.8c and 6.8d
compare the performance of DIF and QIF, which in the second phase utilize only the
second transmission for decoding, with that of DIF-HD and QIF-HD, which combine the
received signals in both phases 1 and 2 when decoding. We observe that:

First, hybrid decoding consistently offers benefits for both QIF and DIF across all the
three scenarios, for instance up to 25 times FER improvement (in Scenario 1, Fig. 6.8c).

Second, hybrid decoding makes a more significant difference when the channels are less
noisy, i.e., we start with lower FER, as is the case in Scenario 1. This is because there
are comparatively fewer errors in the erroneous codewords, which can be corrected with
hybrid decoding.

Third, hybrid decoding can help QIF more than DIF, as we see in Scenarios 2 and 3.
This is because with DIF, when the relay cannot decode it remains silent in phase 2;
while with QIF the relay always transmits potentially useful information that can be
leveraged through hybrid decoding across both phases, which is reflected in the QIF-HD
performance.

6.6.5 Evaluation of Opportunistic Decoding or Quantizing

To explore the performance of opportunistic decoding/quantizing at the relay, Fig. 6.8e
and 6.8f compare the FER and throughput of DIF and QIF vs. DIQIF. We find that:

DIQIF, that implements opportunistic decoding/quantizing, has competitive or better
performance than the next best scheme, as high as a factor of 8 over DIF and a
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factor of 5 over QIF (as in Scenario 3, Fig. 6.8e). The benefits of DIQIF are more
pronounced when the source-to-relay link is weak, as is the case in Scenarios 2 and
3. This is because, in such cases the relay cannot decode, and DIF cannot exploit the
relay-destination channel, while DIQIF can. Moreover, although QIF outperforms DIF in
terms of FER, there exist frames where relay decoding is possible, and the opportunistic
DIQIF decoding enables to clean them up from the source-relay noise, thus boosting
the end-to-end performance. In Scenario 1, on the other hand, the source-relay link
is very strong and supports relay decoding almost all the time; the DIQIF relay also
performs decoding, but has the added requirement of communicating a 1-bit flag to
inform the destination whether it decoded; we believe it is errors in this bit that result
in the marginal penalty of the DIQIF performance over DIF.

6.6.6 Putting it All Together: Evaluation of QUILT
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Figure 6.9 – Performance of QUILT.

We compare in Fig. 6.9a the FER performance of QUILT with (i) DIF-HD and QIF-HD,
the most competing strategies implemented in this chapter, and (ii) DT-HD, direct
transmissions with hybrid decoding, to benchmark the performance of a system without
a relay. We observe the following:

First, we note FER gains of over 2 orders of magnitude of our relaying strategies vs.
DT-HD (in Scenario 1, Fig. 6.9a), clearly illustrating the benefits of relaying.

Second, QUILT has competitive or better performance than the next best scheme, up
to a factor of 5 over QIF-HD (in Scenario 3, Fig. 6.9a). In Scenario 1, where the
source-relay link is very strong, we observed very few errors for DIF-HD, QIF-HD and
QUILT (even after running the experiments in this scenario for over 4000 frames) as
hybrid decoding cleans up most errors in this setup, leading to similar performance across
the three schemes (marginally better for QUILT).
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6.6. Experimental evaluation

Since we operate at quite low FERs, we note that the vast majority of transmissions
are successful and thus, the difference in fraction of frames correctly decoded does not
lead to discernible throughput differences in Fig. 6.9b. However, when operating at
higher FERs, we believe that the FERs trends evidenced in Fig. 6.9a will lead to more
significant throughput differences, as was the case in Fig. 6.8d, 6.8f.

Overall, we find that QUILT, by synthesizing opportunistic selection of decoding/quan-
tizing and interleaving at the relay with hybrid decoding at the destination, achieves
universally competitive performance across all the scenarios we examined.
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Discussion and Open Problems
In this thesis, we have considered several problems in wireless networks from the per-
spective of reducing the complexity of coding, scheduling and relaying. In the first five
chapters we presented various theoretical results on low complexity coding and relaying
while in the final chapter we presented an approach for implementing a low complexity
relaying scheme in practice.

Several open questions remain that can be a focus of future work. We list a few possibilities
from each of the six chapters below.

• Pliable Index Coding – In Chapter 1, we considered two extreme scenarios where
the source either has full side information (PICOD) or very limited side information
(OB-PICOD). Future work will include generalizing the results to a situation
where the source has partial side information (PICOD and OB-PICOD will be two
special cases) and also considering a scenario where there are weights (preferences)
associated with messages (index coding and PICOD will be two special cases).

• Complexity of Schedules – In Chapter 2, we conjectured and proved (for n ≤ 6) that
the number of active states in the approximately optimal schedule in an n-relay
half-duplex diamond network is atmost n+ 1. Future work will include proving the
conjecture analytically for any n and developing polynomial time algorithms for
finding the optimal schedule.

• Routing Strategies – In Chapter 3, we showed that simple routing strategies using
2 relays and 2 scheduling states achieve at least half the capacity of an n-relay
half-duplex diamond network, approximately. Future work will involve generalizing
these results to scenarios where more than two relays and/or more than two relaying
states are used.

• Local Scheduling – In Chapter 4, we showed that relaying strategies using only
local channel state information and randomized switching can achieve a significant
fraction of an 2-relay half-duplex diamond network. Future work will involve
proving similar results for any n-relay network and also proving the claims for finite
number of switches greater than one.
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Discussion and Open Problems

• Relay Selection – In Chapter 5, we formulated the problem of selecting a subnetwork
of relays that has the highest capacity in a layered relay network as an optimization
problem and presented approximation algorithms for it. Future work will involve
proving approximation guarantees for the algorithms we propose and developing
faster ones.

• Practical Relaying – In Chapter 6, we presented the design of a practical relaying
scheme using opportunistic decoding and quantize-and-interleave operation at the
relays. Future work will involve generalizing the scheme for more than one relays,
integrating synchronization and developing faster decoding algorithms.

To summarize, the results presented in this thesis point to several open problems, both
theoretical and practical, in the domain of low complexity scheduling, relaying and coding.
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A Appendix

A.1 Performance of C2
rnd(2)

a1 b1 1
2 − a1 1

2 − b1

a2 b2
1
2 − a2

1
2 − b2

R1

R2

L

L

L

L

T T

T T

Figure A.1 – One of the 20 possible configurations of the switching points of R1 and R2.

In this section, we show that when the link strengths in a 2-relay half-duplex diamond
network are all equal (assumed to be 1 here), then C2

rnd(2) = 0.7. In this case, C2
lp = 1,

so their ratio remains 0.7. For σ = 2, there are two switches from L→ T and one switch
from T → L as shown in Fig. A.1. Let a1 be the fraction of time R1 is in L for the
first time and b1 be the fraction of time R1 is in T for the first time. Since the locally
optimal fraction of listening for both relays is 1

2 , R1 will be in L for 1
2 − a1 and in T for

1
2 − b1 in the second time. The same holds for R2, where a2 and b2 are the corresponding
quantities for R2, as shown in the figure.

According to our randomized scheduling strategy, the values of a1, b1, a2 and b2 lie
uniformly at random in the interval [0, 1

2 ]. Depending on their values, the switching
points of R2 can be in different relative positions with respect to the switching points of
R1. In fact, there are precisely

(6
3
)

= 20 ways in which the three switching points of R2
can be placed. Our proof strategy will be to calculate the value of C2

rnd(2) conditioned
on each configuration and then take their sum.
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Appendix A. Appendix

The optimal value of LP is

C ′ = min{p1 + p2 + p3, p1 + 2p2 + p4, p1 + 2p3 + p4, p2 + p3 + p4} (A.1)

The value of C ′ for a configuration i ∈ [20] (denoted by C ′i) can be computed by
first computing the values of p1, p2, p3, p4 in terms of a1, b1, a2, b2. In addition, the
configuration also imposes constraints on the values of a1, b1, a2, b2. This defines a region
that is a part of [0, 1

2 ]4, which we denote by Γi. To find the expected value of C ′i, we
need to integrate C ′i over Γi.

E[C ′i] =
∫

Γi
16 · C ′i · da1db1da2db2 (A.2)

The factor of 16 comes because the P.d.f of each of the variables a1, b1, a2, b2 is 2 for the
range [0, 1

2 ] and 0 otherwise.

We are now in a position to compute E[C ′i] for each i ∈ [1, 20]. A pictorial representation
is shown for each configuration, along with the constraints on a1, b1, a2, b2 that defines
Γi. The following global constraints are always present and are not shown explicitly.

0 ≤ a1, b1, a2, b2 ≤
1
2 (A.3)

Configuration 1

R1

R2

L

L

L

L

T T

T T

Fractions Constraints
p1 = a2 + (1

2 − a2) = 1
2 None

p2 = b2 + (a1 − (1
2 + b2)) + (1

2 −
a1) = 0

a1 ≥ 1
2 + b2

p3 = 0 None
p4 = b1 + (1

2 − b1) = 1
2 None

C ′1 = 1
2 (A.4)

E[C ′1] = 0 (A.5)

Configuration 2

R1

R2

L

L

L

L

T T

T T

Fractions Constraints
p1 = a2 + (a1 − (a2 + b2)) =
a1 − b2

a1 ≥ a2 + b2

p2 = b2 + (1
2 − a1) None

p3 = 1
2 + b2 − a1 None

p4 = (a1 + b1 − (1
2 + b2)) + (1

2 −
b1) = a1 − b2

a1 + b1 ≥ 1
2 + b2
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A.1. Performance of C2
rnd(2)

C ′2 = 1− a1 + b2 (A.6)

E[C ′2] = 16
∫ 1

2

0

∫ 1
2

b2

∫ 1
2

1
2 (1−2a1+2b2)

∫ a1−b2

0
(1− a1 + b2) da2db1da1db2 = 7

120 (A.7)

Configuration 3

R1

R2

L

L

L

L

T T

T T

Fractions Constraints
p1 = a1 None
p2 = (a1−a2)+(1

2−a1) = 1
2−a2 a1 ≥ a2

p3 = 1
2 − a2 None

p4 = (a2 + b2 − a1) + (a1 + b1 −
(1

2 + b2)) + (1
2 − b1) = a2

a2+b2 ≥ a1, a1+
b1 ≥ 1

2 + b2

C ′3 = 1− a2 (A.8)

E[C ′3] = 16
∫ 1

2

0

∫ 1
2

b2

∫ a1

a1−b2

∫ 1
2

1
2 (1−2a1+2b2)

(1− a2) db1da2da1db2 = 7
240 (A.9)

Configuration 4

R1

R2

L

L

L

L

T T

T T

Fractions Constraints
p1 = a1 None
p2 = 1

2 − a1 None
p3 = (a2−a1)+(1

2−a2) = 1
2−a1 a2 ≥ a1

p4 = b2 + (a1 + b1 − (1
2 + b2)) +

(1
2 − b1) = a1

a1 + b1 ≥ 1
2 + b2

C ′4 = 1− a1 (A.10)

E[C ′4] = 16
∫ 1

2

0

∫ 1
2

1
2 (1−2b1)

∫ 1
2 (2a1+2b1−1)

0

∫ 1
2

a1
(1− a1) da2db2da1db1 = 7

240 (A.11)

Configuration 5

R1

R2

L

L

L

L

T T

T T

Fractions Constraints
p1 = a2 + (a1− (a2 + b2))+ (b2 +
1
2 − (a1 + b1)) = 1

2 − b1
a1 ≥ a2+b2, b2+
1
2 ≥ a1 + b1

p2 = b2 +(1
2 +b1−(1

2 +b2)) = b1 b1 ≥ b2
p3 = b1 None
p4 = 1

2 − b1 None
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Appendix A. Appendix

C ′5 =1− a1 (A.12)

E[C ′5] =16
∫ 1

4

0

∫ b1

0

∫ a1

0

∫ a1−a2

0
(1
2 + b1) db2da2da1db1+ (A.13)

16
∫ 1

4

0

∫ 1
2−b1

b1

∫ a1−b1

0

∫ b1

0
(1
2 + b1) db2da2da1db1+ (A.14)

16
∫ 1

4

0

∫ 1
2−b1

b1

∫ a1

a1−b1

∫ a1−a2

0
(1
2 + b1) db2da2da1db1+ (A.15)

16
∫ 1

4

0

∫ 1
2

1
2−b1

∫ a1−b1

0

∫ b1

a1+b1− 1
2

(1
2 + b1) db2da2da1db1+ (A.16)

16
∫ 1

4

0

∫ 1
2

1
2−b1

∫ 1
2−b1

a1−b1

∫ a1−a2

a1+b1− 1
2

(1
2 + b1) db2da2da1db1+ (A.17)

16
∫ 1

2

1
2

∫ 1
2−b1

0

∫ a1

0

∫ a1−a2

0
(1
2 + b1) db2da2da1db1+ (A.18)

16
∫ 1

2

1
2

∫ b1

1
2−b1

∫ 1
2−b1

0

∫ a1−a2

a1+b1− 1
2

(1
2 + b1) db2da2da1db1+ (A.19)

16
∫ 1

2

1
2

∫ 1
2

b1

∫ a1−b1

0

∫ b1

a1+b1− 1
2

(1
2 + b1) db2da2da1db1+ (A.20)

16
∫ 1

2

1
2

∫ 1
2

b1

∫ 1
2−b1

a1−b1

∫ a2−a1

a1+b1− 1
2

(1
2 + b1) db2da2da1db1 (A.21)

= 7
3840 + 1

160 + 13
3840 + 1

192 + 7
3840 + 1

480 + 17
3840 + 1

480 + 1
480 (A.22)

= 7
240 (A.23)

Configuration 6

R1

R2

L

L

L

L

T T

T T

Fractions Constraints
p1 = a2 + (1

2 + b2 − (a1 + b1)) =
1
2 + a2 + b2 − a1 − b1

1
2 + b2 ≥ a1 + b1

p2 = (a1 − a2) + (1
2 + b1 − (1

2 +
b2)) = a1 + b1 − a2 − b2 a1 ≥
a2,b1 ≥ b2

None

p3 = a1 + b1 − a2 − b2 a1 +b1 ≥ a2 +b2
p4 = (a2 + b2 − a1) + (1

2 − b1) =
1
2 + a2 + b2 − a1 − b1

a2 + b2 ≥ a1

C ′6 =1
2 + a1 + b1 − a2 − b2 (A.24)

E[C ′6] =16
∫ 1

24

0

∫ b1

0

∫ a1

0

∫ a1

a1−b2
(1
2 + a1 + b1 − a2 − b2) da2db2da1db1+ (A.25)

16
∫ 1

24

0

∫ b1

0

∫ b1

a1

∫ a1

0
(1
2 + a1 + b1 − a2 − b2) da2db2da1db1+ (A.26)
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A.1. Performance of C2
rnd(2)

16
∫ 1

24

0

∫ 1
2−b1

b1

∫ b1

0

∫ a1

a1−b2
(1
2 + a1 + b1 − a2 − b2) da2db2da1db1+ (A.27)

16
∫ 1

24

0

∫ 1
2

1
2−b1

∫ b1

a1+b1− 1
2

∫ a1

a1−b2
(1
2 + a1 + b1 − a2 − b2) da2db2da1db1+ (A.28)

16
∫ 1

2

1
24

∫ b1

0

∫ a1

0

∫ a1

a1−b2
(1
2 + a1 + b1 − a2 − b2) da2db2da1db1+ (A.29)

16
∫ 1

2

1
24

∫ b1

0

∫ b1

a1

∫ a1

0
(1
2 + a1 + b1 − a2 − b2) da2db2da1db1+ (A.30)

16
∫ 1

2

1
24

∫ 1
2−b1

b1

∫ b1

0

∫ a1

a1−b2
(1
2 + a1 + b1 − a2 − b2) da2db2da1db1+ (A.31)

16
∫ 1

2

1
24

∫ 1
2

1
2−b1

∫ b1

a1+b1− 1
2

∫ a1

a1−b2
(1
2 + a1 + b1 − a2 − b2) da2db2da1db1+ (A.32)

16
∫ 1

2

1
2

∫ 1
2−b1

0

∫ a1

0

∫ a1

a1−b2
(1
2 + a1 + b1 − a2 − b2) da2db2da1db1+ (A.33)

16
∫ 1

2

1
2

∫ 1
2−b1

0

∫ b1

a1

∫ a1

0
(1
2 + a1 + b1 − a2 − b2) da2db2da1db1+ (A.34)

16
∫ 1

2

1
2

∫ b1

1
2−b1

∫ a1

a1+b1− 1
2

∫ a1

a1−b2
(1
2 + a1 + b1 − a2 − b2) da2db2da1db1+ (A.35)

16
∫ 1

2

1
2

∫ b1

1
2−b1

∫ b1

a1

∫ a1

0
(1
2 + a1 + b1 − a2 − b2) da2db2da1db1+ (A.36)

16
∫ 1

2

1
2

∫ 1
2

b1

∫ b1

a1+b1− 1
2

∫ a1

a1−b2
(1
2 + a1 + b1 − a2 − b2) da2db2da1db1 (A.37)

E[C ′6] = 7
6635520 + 31

29859840 + 41
933120 + 25

11943936 + 2245
1327104 + 9325

5971968
(A.38)

+ 575
186624 + 38855

11943936 + 1
512 + 1

192 + 23
1920 + 43

1920 + 11
1536 (A.39)

= 7
120 (A.40)

Configuration 7

R1

R2

L

L

L

L

T T

T T

Fractions Constraints
p1 = a1 + (1

2 + b2 − (a1 + b1)) 1
2 + b2 ≥ a1 + b1

p2 = b1 − b2 b1 ≥ b2
p3 = (a2− a1) + (a1 + b1− (a2 +
b2)) = b1 − b2

a2 ≥ a1, a1 +
b1 ≥ a2 + b2

p4 = 1
2 + b2 − b1 None
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C ′7 =1− a1 (A.41)

E[C ′7] =16
∫ 1

2

0

∫ 1
2−b1

0

∫ a1+b1

a1

∫ a1−a2+b1

0
(1
2 + b1 − b2) db2da2da1db1+ (A.42)

16
∫ 1

2

0

∫ 1
2

1
2−b1

∫ 1
2

a1

∫ a1−a2+b1

a1+b1− 1
2

(1
2 + b1 − b2) db2da2da1db1 (A.43)

= 7
240 + 7

240 = 7
120 (A.44)

Configuration 8

R1

R2

L

L

L

L

T T

T T

Fractions Constraints
p1 = 1

2 None
p2 = (a1− a2) + (a2 + b2− (a1 +
b1)) + (1

2 + b1 − (1
2 + b2)) = 0

a1 ≥ a2,a2 +
b2 ≥ a1 + b1,
b1 ≥ b2

p3 = 0 None
p4 = 1

2 None

C ′8 =1
2 (A.45)

E[C ′8] =0 (A.46)

Configuration 9

R1

R2

L

L

L

L

T T

T T

Fractions Constraints
p1 = 1

2 + a1 − a2 None
p2 = (a2 + b2− (a1 + b1)) + (1

2 +
b1 − (1

2 + b2)) = 0
a2+b2 ≥ a1+b1,
b1 ≥ b2

p3 = a2 − a1 a2 ≥ a1
p4 = (a1 + b1 − a2) + 1

2 − b1 =
1
2 + a1 − a2

a1 + b1 ≥ a2

C ′9 =1
2 + a2 − a1 (A.47)

E[C ′9] =16
∫ 1

2

0

∫ 1
2−b1

0

∫ a1+b1

a1

∫ b1

a1−a2+b1
(1
2 + a2 − a1) db2da2da1db1+ (A.48)

16
∫ 1

2

0

∫ 1
2

1
2−b1

∫ 1
2

a1

∫ b1

a1−a2+b1
(1
2 + a2 − a1) db2da2da1db1 (A.49)

= 7
240 + 7

240 = 7
120 (A.50)

Configuration 10
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rnd(2)

R1

R2

L

L

L

L

T T

T T

Fractions Constraints
p1 = a1 + (a2− (a1 + b1)) + (1

2 −
a2) = 1

2 − b1
a2 ≥ a1 + b1

p2 = b2 +(1
2 +b1−(1

2 +b2)) = b1 b1 ≥ b2
p3 = b1 None
p4 = 1

2 − b1 None

C ′10 =1
2 + b1 (A.51)

E[C ′10] =16
∫ 1

2

0

∫ 1
2−b1

0

∫ b1

0

∫ 1
2

a1+b1
(1
2 + b1) da2db2da1db1 (A.52)

= 7
240 (A.53)

Configuration 11

R1

R2

L

L

L

L

T T

T T

Fractions Constraints
p1 = a2 + (a1 − (a2 + b2)) =
a1 − b2

a1 ≥ a2 + b2

p2 = b2 + 1
2 − a1 None

p3 = b1 +(1
2 +b2−(1

2 +b1)) = b2 b2 ≥ b1
p4 = 1

2 − b2 None

C ′11 =1
2 + b1 (A.54)

E[C ′11] =16
∫ 1

2

0

∫ 1
2

b2

∫ b1

0

∫ a1−b2

0
(1
2 + b1) da2db1da1db2 (A.55)

= 7
240 (A.56)

Configuration 12

R1

R2

L

L

L

L

T T

T T

Fractions Constraints
p1 = 1

2 + a2 − a1 None
p2 = a1 − a2 a1 ≥ a2
p3 = (a1 + b1− (a2 + b2)) + (1

2 +
b2 − (1

2 + b1)) = a1 − a2

a1+b1 ≥ a2+b2,
b2 ≥ b1

p4 = (a2 + b2 − a1) + (1
2 − b2) =

1
2 + a2 − a2

a2 + b2 ≥ a1
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C ′12 =1
2 + a1 − a2 (A.57)

E[C ′12] =16
∫ 1

2

0

∫ a1

0

∫ a1−b1

0

∫ a1−a2+b1

a1−a2
(1
2 + a1 − a2) db2da2db1da1+ (A.58)

16
∫ 1

2

0

∫ a1

0

∫ a1

a1−b1

∫ a1−a2+b1

b1
(1
2 + a1 − a2) db2da2db1da1+ (A.59)

16
∫ 1

2

0

∫ 1
2−a1

a1

∫ a1

0

∫ a1−a2+b1

b1
(1
2 + a1 − a2) db2da2db1da1+ (A.60)

16
∫ 1

2

0

∫ 1
2

1
2−a1

∫ a1+b1− 1
2

0

∫ 1
2

b1
(1
2 + a1 − a2) db2da2db1da1+ (A.61)

16
∫ 1

2

0

∫ 1
2

1
2−a1

∫ a1

a1+b1− 1
2

∫ a1−a2+b1

b1
(1
2 + a1 − a2) db2da2db1da1+ (A.62)

16
∫ 1

2

1
2

∫ 1
2−a1

0

∫ a1−b1

0

∫ a1−a2+b1

a1−a2
(1
2 + a1 − a2) db2da2db1da1+ (A.63)

16
∫ 1

2

1
2

∫ 1
2−a1

0

∫ a1

a1−b1

∫ a1−a2+b1

b1
(1
2 + a1 − a2) db2da2db1da1+ (A.64)

16
∫ 1

2

1
2

∫ 1
2

1
2−a1

∫ a1+b1− 1
2

0

∫ 1
2

a1−a2
(1
2 + a1 − a2) db2da2db1da1+ (A.65)

16
∫ 1

2

1
2

∫ 1
2

1
2−a1

∫ a1−b1

a1+b1− 1
2

∫ a1−a2+b1

a1−a2
(1
2 + a1 − a2) db2da2db1da1+ (A.66)

16
∫ 1

2

1
2

∫ 1
2

1
2−a1

∫ a1

a1−b1

∫ a1−a2+b1

b1
(1
2 + a1 − a2) db2da2db1da1+ (A.67)

16
∫ 1

2

1
2

∫ a1

1
2

∫ a1−b1

0

∫ 1
2

a1−a2
(1
2 + a1 − a2) db2da2db1da1+ (A.68)

16
∫ 1

2

1
2

∫ a1

1
2

∫ a1+b1− 1
2

a1−b1

∫ 1
2

b1
(1
2 + a1 − a2) db2da2db1da1+ (A.69)

16
∫ 1

2

1
2

∫ a1

1
2

∫ a1

a1+b1− 1
2

∫ a1−a2+b1

b1
(1
2 + a1 − a2) db2da2db1da1+ (A.70)

16
∫ 1

2

1
2

∫ 1
2

a1

∫ a1+b1− 1
2

0

∫ 1
2

b1
(1
2 + a1 − a2) db2da2db1da1+ (A.71)

16
∫ 1

2

1
2

∫ 1
2

a1

∫ a1

a1+b1− 1
2

∫ a1−a2+b1

b1
(1
2 + a1 − a2) db2da2db1da1 (A.72)

= 13
7680 + 1

640 + 1
320 + 13

7680 + 1
640 + 43

7680 + 1
640 + 17

3840 + 1
128

(A.73)

+ 19
3840 + 17

3840 + 1
128 + 19

3840 + 43
7680 + 1

640 (A.74)

= 7
120 (A.75)
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rnd(2)

Configuration 13

R1

R2

L

L

L

L

T T

T T

Fractions Constraints
p1 = 1

2 None
p2 = 0 None
p3 = (a1 + b1− (a2 + b2)) + (1

2 +
b2 − (1

2 + b1)) + (a2 − a1) = 0
a1 + b1 ≥ a2 +
b2,b2 ≥ b1,a2 ≥
a1

p4 = 1
2 None

C ′13 =1
2 (A.76)

E[C ′13] = 0 (A.77)

Configuration 14

R1

R2

L

L

L

L

T T

T T

Fractions Constraints
p1 = a2 + (1

2 + b1 − (a2 + b2)) =
1
2 + b1 − b2

1
2 + b1 ≥ a2 + b2

p2 = (a1− a2) + (a2 + b2− (a1 +
b1)) = b2 − b1

a1 ≥ a2, a2 +
b2 ≥ a1 + b1

p3 = (1
2 +b2−(1

2 +b1)) = b2−b1 b2 ≥ b1
p4 = 1

2 + b1 − b2 None

C ′14 =1
2 + b2 − b1 (A.78)

E[C ′14] =16
∫ 1

2

0

∫ b1

0

∫ 1
2 +a2−b1

a2

∫ 1
2

a1−a2+b1
(1
2 + b2 − b1) db2da1da2db1+ (A.79)

16
∫ 1

2

0

∫ 1
2

b1

∫ 1
2

a2

∫ 1
2−a2+b1

a1−a2+b1
(1
2 + b2 − b1) db2da1da2db1 (A.80)

= 7
240 + 7

240 = 7
120 (A.81)

Configuration 15

R1

R2

L

L

L

L

T T

T T

Fractions Constraints
p1 = a1 + (1

2 + b1 − (a2 + b2)) =
1
2 + a1 + b1 − a2 − b2

1
2 + b1 ≥ a2 + b2

p2 = a2 + b2 − a1 − b1 a2 +b2 ≥ a1 +b1
p3 = (a2 − a1) + (1

2 + b2 − (1
2 +

b1)) = a2 + b2 − a1 − b1
a2 ≥ a1, b2 ≥ b1

p4 = (a1 + b1 − a2) + (1
2 − b2) a1 + b1 ≥ a2
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C ′15 =1
2 + a2 + b2 − a1 − b1 (A.82)

E[C ′15] =16
∫ 1

2

0

∫ b1

0

∫ b1

a1

∫ 1
2

b1
(1
2 + a2 + b2 − a1 − b1) db2da2da1db1+ (A.83)

16
∫ 1

2

0

∫ b1

0

∫ a1+b1

b1

∫ 1
2−a2+b1

b2
(1
2 + a2 + b2 − a1 − b1) db2da2da1db1+

(A.84)

16
∫ 1

2

0

∫ 1
2−b1

b1

∫ a1+b1

a1

∫ 1
2−a2+b1

b1
(1
2 + a2 + b2 − a1 − b1) db2da2da1db1+

(A.85)

16
∫ 1

2

0

∫ 1
2

1
2−b1

∫ 1
2

a1

∫ 1
2−a2+b1

b1
(1
2 + a2 + b2 − a1 − b1) db2da2da1db1+ (A.86)

16
∫ 1

2

1
2

∫ 1
2−b1

0

∫ b1

a1

∫ 1
2

b1
(1
2 + a2 + b2 − a1 − b1) db2da2da1db1+ (A.87)

16
∫ 1

2

1
2

∫ 1
2−b1

0

∫ a1+b1

b1

∫ 1
2−a2+b1

b1
(1
2 + a2 + b2 − a1 − b1) db2da2da1db1+

(A.88)

16
∫ 1

2

1
2

∫ b1

1
2−b1

∫ b1

a1

∫ 1
2

b1
(1
2 + a2 + b2 − a1 − b1) db2da2da1db1+ (A.89)

16
∫ 1

2

1
2

∫ b1

1
2−b1

∫ 1
2

b1

∫ 1
2−a2+b1

b1
(1
2 + a2 + b2 − a1 − b1) db2da2da1db1+ (A.90)

16
∫ 1

2

1
2

∫ 1
2

b1

∫ 1
2

a1

∫ 1
2−a2+b1

b1
(1
2 + a2 + b2 − a1 − b1) db2da2da1db1 (A.91)

E[C ′15] = 3
320 + 1

128 + 1
96 + 1

640 + 5
384 + 1

240 + 13
1920 + 7

1920 + 1
640 (A.92)

= 7
120 (A.93)

Configuration 16

R1

R2

L

L

L

L

T T

T T

Fractions Constraints
p1 = a1 + (a2− (a1 + b1)) + (1

2 +
b1 − (a2 + b2)) = 1

2 − b2
a2 ≥ a1 +b1, 1

2 +
b1 ≥ a2 + b2

p2 = b2 None
p3 = b1 +(1

2 +b2−(1
2 +b1)) = b2 b2 ≥ b1

p4 = 1
2 − b2 None
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rnd(2)

C ′16 =1
2 + b2 (A.94)

E[C ′16] =16
∫ 1

2

0

∫ 1
2

b1

∫ 1
2−a2+b1

b1

∫ a2−b1

0
(1
2 + b2) da1db2da2db1 (A.95)

= 7
240 (A.96)

Configuration 17

R1

R2

L

L

L

L

T T

T T

Fractions Constraints
p1 = a2 None
p2 = (a1−a2)+(1

2−a1) = 1
2−a2 a1 ≥ a2

p3 = 1
2 − a2 None

p4 = b1 + (a2 + b2 − (1
2 + b1)) +

(1
2 − b2) = a2

a2 + b2 ≥ 1
2 + b1

C ′17 =1− a2 (A.97)

E[C ′17] =16
∫ 1

2

0

∫ 1
2

b1

∫ 1
2

a2

∫ 1
2

1
2−a2+b1

(1− a2) db2da1da2db1 (A.98)

= 7
240 (A.99)

Configuration 18

R1

R2

L

L

L

L

T T

T T

Fractions Constraints
p1 = a1 None
p2 = 1

2 − a1 None
p3 = (a2−a1)+(1

2−a2) = 1
2−a1 a2 ≥ a1

p4 = (a1 + b1 − a2) + (a2 + b2 −
(1

2 + b1)) = a1

a1 + b1 ≥ a2,
a2 + b2 ≥ 1

2 + b1

C ′18 =1− a1 (A.100)

E[C ′18] =16
∫ 1

2

0

∫ 1
2

b1

∫ a2

a2−b1

∫ 1
2

1
2−a2+b1

(1− a1) db2da1da2db1 (A.101)

= 7
240 (A.102)

Configuration 19

C ′19 =1− a2 + b1 (A.103)

E[C ′19] =16
∫ 1

2

0

∫ 1
2

b1

∫ a2−b1

0

∫ 1
2

1
2−a2+b1

(1− a2 + b1) db2da1da2db1 (A.104)

= 7
120 (A.105)
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R1

R2

L

L

L

L

T T

T T

Fractions Constraints
p1 = a1 + (a2 − (a1 + b1)) =
a2 − b1

a2 ≥ a1 + b1

p2 = 1
2 + b1 − a2 None

p3 = 1
2 + b1 − a2 None

p4 = (a2 + b2 − (1
2 + b1)) + (1

2 −
b2) = a2 − b1

a2 + b2 ≥ 1
2 + b1

Configuration 20

R1

R2

L

L

L

L

T T

T T

Fractions Constraints
p1 = 1

2 None
p2 = 0 None
p3 = b1 + (a2 − (1

2 + b1)) + (1
2 −

a2) = 0
a2 ≥ 1

2 + b1

p4 = 1
2 None

C ′20 =1
2 (A.106)

E[C ′20] = 0 (A.107)

Therefore, the total expected value, which is the value of C2
rnd(2) is

C2
rnd(2) =

20∑
i=1

E[C ′i] = 7
10 (A.108)

A.2 Outage Calculations

Quantized Forwarding (QF)
In the absence of relay-assisted hybrid decoding, we have,

CQF
R = I(X;Y [2]), (A.109)

where I(·; ·) denotes the mutual information. Since the relay quantizes its received signal,
the overall transformation of the source signal can be represented as an end-to-end
channel whose capacity can be evaluated as above. This capacity computation can be
done numerically as no closed form expressions exist for such (scalar) quantized channels
with QAM inputs. For hybrid decoding, the achievable rate can be evaluated as,

CQF
R = I(X;Y [1], Y [2]), (A.110)
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which can then be again numerically computed to yield the outage probability by using
(6.3).

Quantize-Interleave-Forward (QIF)
We evaluate an interleaver that operates over a block of length K as follows:

XR = Π(ŶR)

where Π denotes a specific permutation on the quantized sequence ŶR. This permuted
sequence is transmitted by the relay. We can numerically evaluate the rate for the
interleaved scheme by usingK-letter mutual information characterization, which is similar
to a vector version of (A.109)-(A.110) while including the aforementioned interleaver
operation.

Quantize-Map-Forward (QMF):
In the originally proposed information-theoretic QMF [8], the mapping codebook at the
relay is generated randomly. The analytical result in [8] can be used to evaluate outage
probability after doing a simple generalization to QAM constellations for transmission
and quantization. We can then numerically evaluate the achievable rate. This can be
done for both the link cooperation scheme as well as hybrid decoding.

Decode-Forward (DF)
In Phase 2, if the relay can decode from its Phase 1 reception, it re-encodes the decoded
message and transmit it, so that coherent cooperation is attained. If the relay cannot
decode, it keeps silent. The outage event can be evaluated as follows.

Outage ⇐⇒ (A.111)

{R > CP2P (h[1])} ∩
{
{R ≤ CP2P (hr[1]) and R > CMISO (h[2], g[2])}∪

{R > CP2P (hr[1]) and R > CP2P (h[2])}
}

Opportunistic-Decoding QIF (DQIF)
A natural way to combine QIF and DF relaying is the following: if the relay can decode,
it performs DF as above; otherwise, it performs QIF instead of keeping silent. With this
opportunistic scheme at the relay, the outage event can be evaluated as follows.

Outage ⇐⇒ (A.112)

{R > CP2P (h[1])} ∩
{
{R ≤ CP2P (hr[1]) and R > CMISO (h[2], g[2])}∪{

R > CP2P (hr[1]) and R > CQIF
R (hr[1], h[2], g[2])

}}
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