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Abstract—A novel Nonlinear Model Predictive Control (NMPC)

scheme is proposed in order to shape the harmonic response

of constrained nonlinear systems. The salient ingredient is the

short-time Fourier transform (STFT) of the system’s output signal,

which is constrained in an NMPC problem, leading to the novel

formulation of so-called spectrum constraints. Recursive feasibility

and asymptotic stability of the proposed NMPC scheme with such

spectrum constraints are guaranteed by means of an appropriate

ellipsoidal terminal invariant set. The efficacy of the proposed

approach is demonstrated on a nonlinear vibration damping

problem.

Index Terms—Nonlinear Model Predictive Control, Spectrum

Constraints, Short-time Fourier Transform.

I. INTRODUCTION

Many methods for system analysis and controller design
commonly applied in industry are typically based on the
system’s response to exogenous harmonic excitations at spe-
cific frequencies. In the linear time-invariant (LTI) case, the
closed-loop behavior of the system in terms of performance
and robustness is closely related to its harmonic response.
However, in the case of constrained and nonlinear systems,
even though it is possible to achieve specific control objectives
such as tracking or stabilisation, the system’s response to
excitations at specific frequencies is difficult to characterise
and even harder to control. Recently, the harmonic response of
convergent nonlinear systems was analysed via the Frequency
Response Function in [8], yet to the authors’ knowledge, this
approach does not provide any controller design method.

A standard approach for the control of constrained systems
is Model Predictive Control (MPC) [12], but most MPC
approaches do not facilitate designing the harmonic response
of the closed-loop system. Recent work on power converters
has shown that frequency information can be incorporated into
an MPC optimisation problem for the purpose of reducing
the harmonics level in an output signal. In [3], the spectrum
of the load current is shaped by using a band-pass filter
and by penalising the filter output in the cost function of an
MPC problem. In this paper, we propose an MPC method
for shaping the harmonic response of a constrained nonlinear
system. We extend the idea of loop-shaping linear-quadratic

regulator (LQR) techniques [1] by defining spectrum
constraints, which are enforced within a receding-horizon
optimal control problem. Our approach is targeted towards
band-wise spectrum constraints. With the proposed method,
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a given frequency band can be kept below a certain level
while the system is operating in closed-loop and the typically
considered pointwise-in-time input and output constraints are
guaranteed to also be enforced. The damping effect can be
captured by computing the time-localised spectrum of the
output signal using the STFT, for instance. Therefore, in this
paper, the frequency shaping is performed by constraining the
squared magnitude of the STFT, called the spectrogram. In this
context the notion of a system’s harmonic response is based
solely on the system’s output trajectory. Thus, constrained
nonlinear systems can be accommodated, despite the standard
notion of a transfer function not being appropriate.

In this paper, the constrained spectrum control approach first
proposed in [4], [5] for LTI systems is extended to constrained
nonlinear systems. Conditions for recursive feasibility and sta-
bility of the proposed spectrum constrained NMPC scheme are
derived via an ellipsoidal invariant set that ensures satisfaction
of the constraints on the spectrogram as well as the standard
pointwise-in-time state and input constraints, and that can be
computed using semidefinite-programming (SDP). Finally, the
efficacy of the proposed approach is demonstrated on a non-
linear oscillator with hard constraints on the spectrogram as
well as the usual pointwise-in-time state and input constraints.

II. NOTATION

We denote by ⇢ (A) the spectral radius of a matrix A,
and by 1 a vector with all elements equal to 1. Both the
Euclidian 2-norm in Rn and the induced 2-norm in Rn⇥n are
denoted by k·k2. The open ball centred at a point a 2 Rn with
radius r > 0 is denoted as B (a, r). Given a positive definite
matrix M and a positive scalar �, we define the ellipsoid
E (M,�) :=

�
x 2 Rn

��
x

>
Mx  �

 
. The set of square-

integrable functions from a segment [a, b] to C is denoted as
L

2
([a, b],C). The sets of strictly positive and strictly negative

integers are denoted by Z+ and Z�, respectively.

III. SPECTRUM CONSTRAINED NMPC

In this section we demonstrate how frequency features
can be incorporated into a receding horizon optimal control
problem by constraining the magnitude of a filter output. The
proposed approach is targeted at nonlinear systems and builds
upon the ideas introduced in [5] for the LTI case.

A. Problem formulation

Consider a discrete-time constrained nonlinear system

x

k+1 = f(x

k

, u

k

) , (1)
x

k

2 X , u

k

2 U ,

where x

k

2 Rn and u

k

2 Rm. The constraint sets X and U
are assumed to be polyhedral and to contain the origin in their
interiors.

Assumption 3.1: The mapping f is twice continuously
differentiable and f(0, 0) = 0.
Let the linearisation about the origin be defined as

x

(L)
k+1 = A

L

x

(L)
k

+B

L

u

k

. (2)
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Assumption 3.2 (Stabilisability): The pair (A

L

, B

L

) is sta-
bilisable.

Let K be a linear state-feedback gain that stabilises the
linearised system (2), implying that the origin is locally
exponentially stable under x

k+1 = f(x

k

,Kx

k

), that is

9r > 0, 9c1 > 0, 9� 2 (0, 1) such that
kx0k2 < r =) 8k � 0, kx

k

k2  c1�
k kx0k2 . (3)

In the sequel, we denote ¯

A

L

:= A

L

+B

L

K. Note that a gain K

such that ⇢
�
¯

A

L

�
< 1 exists by Assumption 3.2. The system’s

output, whose frequency components are to be constrained, is
defined as follows:

(
8 k 2 Z+, z

k

:= Cx

k

+Du

k

8 k 2 Z�, z

k

:= 0 ,

(4)

where C 2 R1⇥n and D 2 R1⇥m.

Remark 3.1: For clarity of the presentation, we consider
constraints involving a single output, although the extension
to multiple outputs is direct. Note that the output (4) may
describe an actual system output, or any linear combination
of actual outputs, system states, and control inputs.

The spectral content of the output signal {z
k

} is constrained
via a design parameter F 2 L

2
([�⇡,⇡],C) called a frequency

profile, as shown in (7). It is assumed that such a frequency
profile F(!) can be defined as the Fourier transform of the
impulse response of an LTI filter

(
⇠

k+1 = A⇠
k

+ Bz
k

 

k

= C⇠
k

+Dz

k

,

(5)

where A 2 Rq⇥q , B 2 Rq⇥1, C 2 R1⇥q , and D 2 R.

Assumption 3.3 (Stability and observability): The pair
(CA,A) is observable and ⇢ (A) < 1.

Remark 3.2: For the LTI filter (5), either a Finite Impulse

Response (FIR) filter or a stable Infinite Impulse Response

(IIR) filter can be chosen. While FIR filters are simple to
implement, and stable, filters with higher selectivity require
higher filter orders, which results in larger state dimensions.
In contrast, IIR filters can be designed to be more selective
for smaller filter orders, i.e. state dimension. However, in both
cases, increasing the frequency resolution requires observing
the signal for an increasing time length. In the remainder of
the paper we use FIR filters, although the methodology can
be applied immediately when using stable IIR filters.

Time-localised spectrum constraints are based on a
windowing of the output signal {z

k

}. A window is defined
by its length M 2 Z+ and a windowing signal {f

p

}, p 2 Z
that satisfies f

p

= 0 if |p| > M . Choosing an appropriate
time-domain window allows one to mitigate spectral leakage
caused by the finite signal length [2]. Windows that tend to
zero at the boundaries of the selected time interval, such as the
Hamming window, are a good way to mitigate this problem.

The salient ingredient of the spectrum constrained MPC
formulation derived in the sequel is the STFT Z(!, ⌧) of the

windowed signal {z
k

} at time ⌧ 2 Z:

Z(!, ⌧) :=

+1X

i=�1
z

i

f

i�⌧

e

�j!i

. (6)

The goal is to constrain the amplitude of frequency compo-
nents of the signal {z

k

} to lie in a given frequency band
[!

L

,!

U

]. This is achieved by enforcing hard constraints on the
STFT Z(!, ⌧) weighted by the frequency profile F(!) in a
receding horizon optimal control problem. Such constraints are
described via the spectrogram of {z

k

}, or more precisely via

S(⌧) :=

1

2⇡

Z
⇡

�⇡

|F(!)Z(!, ⌧)|2 d! , (7)

where ⌧ 2 Z. A spectrogram constraint at prediction time
⌧ involves samples from time ⌧ � M until time ⌧ + M .
Compared to a standard MPC set-up, the model prediction
is therefore extended before prediction time 0 and after
prediction time N . The resulting spectrum constrained NMPC
problem is formulated as follows

minimise

u0,...,uN�1

N�1X

p=0

l(x

p

, u

p

) + V

N

(x

N

) (8a)

subject to :
System dynamics on {0, . . . , N + 2M}

x

p+1 = f(x

p

, u

p

) 8p 2 {0, . . . , N � 1} (8b)
x

p+1 = f(x

p

,Kx

p

) 8p 2 {N, . . . , N + 2M} (8c)
z

p

= Cx

p

+Du

p

8p 2 {0, . . . , N � 1} (8d)
z

p

= (C +DK)x

p

8p 2 {N, . . . , N + 2M} (8e)

Spectrogram constraints on {�M, . . . , N +M}
S(p)  ↵ 8p 2 {�M, . . . , N +M} (8f)

Polyhedral constraints on {0, . . . , N � 1}
x

p

2 X, u

p

2 U 8p 2 {0, . . . , N � 1} (8g)

Terminal constraint

x

N

2 S , (8h)

where l(·, ·) is a continuous positive-definite stage-cost and
S ⇢ Rn is an appropriate compact invariant set under the
nonlinear dynamics (1), derived in Section IV. The terminal
penalty V

N

(·) is assumed to be continuous positive-definite
and to satisfy the following standard terminal cost decrease
assumption

Assumption 3.4 (Terminal cost decrease): For all x in the
terminal set S,

V

N

(f(x,Kx))� V

N

(x)  �l(x,Kx) . (9)

Remark 3.3: The solution of the spectrum constrained
NMPC program (8) depends on the pre-designed stabilising
control law K.

Remark 3.4: Throughout the rest of the text, prediction
steps are indexed using the p, while steps of the closed-loop
system are indexed by k.
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The two main challenges of the proposed spectrum
constrained NMPC scheme are the derivation of a tractable for-
mulation of program (8), specifically the spectrum constraint
(8f), and the computation of the terminal constraint set (8h).
Next, it is shown that a convex quadratic formulation of the
constraints (8f) can be derived. As this step has been described
in detail in [5], only the main result is stated in this paper.

Remark 3.5: At first glance it may seem that the spectrogram
constraint leads to a time-dependent control law, as for each
given state the spectrogram is a function of past states. How-
ever, the spectrum constrained NMPC problem can be refor-
mulated to provide a time invariant control law by considering
an augmented system with a state including both the actual
system state and the relevant portion of the output history.

B. Properties of the closed-loop spectrum

The spectrogram constraint (8f) enforces that the predicted
output trajectory {z

p

}, p = 0, . . . , N , contributes to the entire,
past and present, output trajectory, in such a manner that the
spectrogram constraint S (⌧) of (7) is satisfied for all ⌧ 2 Z.
Thus, the spectrum of the entire closed-loop system output
{z

k

}, k 2 Z+, is constrained in a time-localised fashion.
Assuming that the spectrum constrained NMPC problem (8)
is recursively feasible, which is proven later in Section IV,
this notion of closed-loop spectrum shaping is formalised in
Theorem 3.1.

Theorem 3.1: If Problem (8) is recursively feasible, then
for any ⌧ � 0, S (⌧)  ↵, where S (·) is computed on the
output of system (1) in closed-loop with the optimal control
law obtained from (8).

Proof: This is a direct consequence of the spectrogram
constraint S (�M)  ↵ in (8), which incorporates only the
first state in the model prediction, and recursive feasibility of
(8), proven in Theorem 4.1.

C. Tractability of spectrum constraints

The key ingredient for the convex quadratic reformulation
of the spectrogram constraint is Parseval’s theorem [7], which
is applied to the output signal of the filter at every prediction
instant. This allows for the transformation of a spectrogram
constraint into an infinite horizon time-domain constraint, of
which a finite horizon formulation can be obtained. Such a
technique has been applied in a filter weighting context in
[11].

Theorem 3.2 ([5], Quadratic spectrum constraints): For any
time ⌧ � 0,

1

2⇡

Z
⇡

�⇡

|F (!)Z(!, ⌧)|2d! =

⌧+MX

k=⌧�M

✓
⇠

⌧

k

z

k

◆>

P

k

✓
⇠

⌧

k

z

k

◆

+ (⇠

⌧

⌧+M

)

>P(⇠

⌧

⌧+M

) (10)

where
• {⇠⌧

k

} is the sequence of states of the filter (5) under input
{f

k�⌧

z

k

}, the output signal windowed around time ⌧ .
Without loss of generality, we assume that ⇠⌧

⌧�M

= 0.

• 8k 2 {⌧ �M, . . . , ⌧ +M},

P

k

:=

✓ C>

f

k�⌧

D>

◆�C f

k�⌧

D� ⌫ 0 . (11)

• P � 0 is the unique solution of the discrete-time
Lyapunov equation

P = (CA)

>CA+A>PA , (12)

that exists by Assumption 3.3.
As a result, the spectrum constrained NMPC problem (8)
can be reformulated as a quadratically constrained nonlinear
program, which can subsequently be solved using nonlinear
interior-point solvers, such as IPOPT [13].

IV. RECURSIVE FEASIBILITY OF SPECTRUM CONSTRAINED
NMPC

In this section, an invariant set for the dynamics
x

k+1 = f (x

k

,Kx

k

) is derived. This set ensures recursive
feasibility of NMPC problem (8). The standard notion of
an invariant set must be adapted to the added requirements
imposed by the spectrogram, since the terminal constraint
should not only be invariant in order to ensure recursive
feasibility, but also, containment of the predicted state x

p

in
the terminal set S at time p � N should guarantee satisfaction
of the spectrogram constraint at time p+M , as a spectrogram
constraint involves M samples backwards in time [5]. In the
sequel, we propose that an invariant set for the nonlinear
dynamics (1) with these properties, can be computed by
solving an SDP. The derivation of such an invariant set is
performed in Lemmas 4.1, 4.2, 4.3 and 4.4. The main result
is stated in Theorem 4.1. Stability of the closed-loop system
under the spectrum constrained NMPC control law then
follows from a standard optimal cost decrease argument.

The following Lemma shows that the spectrogram
computed at time p + M for the nonlinear dynamics is
upper-bounded by the sum of a quadratic function of kx

p

k2,
depending on the filter matrices (A,B) and the linearised
model. By choosing x

p

small enough, the difference between
the spectrogram of the output of the linearised system and
the output of the nonlinear dynamics can be made arbitrarily
small. Let g (x) := f (x,Kx) � ¯

A

L

x. By Assumption 3.1, g
satisfies g (0) = 0, and kg(x)k2/kxk2 ! 0 when x ! 0.

Lemma 4.1: Given r satisfying (3), there exists a constant
c > 0 such that for all p � N

x

p

2 B (0, r) =) S(p+M)  x

>
p

Rx

p

+ c kx
p

k22 , (13)

where R is defined as

R := H>
2M

✓P 0

0 0

◆
H2M +

2M�1X

l=0

H>
l

P

l

H
l

(14)

with P

l

defined in (11) and

H
l

:=

✓P
l�1
k=0 AkB(C +DK)

¯

A

l�k�1
L

(C +DK)

¯

A

l

L

◆
.

for l 2 {0, . . . , 2M}.
Proof: It holds that x

p

2 B (0, r). For i 2 N, i � 1,
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define

h (x

p

, . . . , x

p+i�1) :=

i�1X

j=0

¯

A

j

L

g(x

p+i�1�j

) , (15)

where the sequence of states {x
p

, . . . , x

p+i�1} is obtained
by applying the nonlinear dynamics x

k+1 = f(x

k

,Kx

k

) to
x

p

. Since x

p

2 B (0, r), kg (x
p+i�1�j

)k2 can be bounded by
a linear function in kx

p

k2, using exponential stability (3) of
the origin under the control law K and applying the triangle
inequality:

kg (x
p+i�1�j

)k2  c1�
i�1�j

(1 +

�� ¯
A

L

��
2
) kx

p

k2 , (16)

where � 2 (0, 1) is defined in (3). From the triangle inequality,

kh (x
p

, . . . , x

p+i�1)k2 
i�1X

j=0

��� ¯Aj

L

���
2
kg(x

p+i�1�j

)k2 ,

which implies that for all i � 1, there exists ⌘(i) > 0 such
that

kh (x
p

, . . . , x

p+i�1)k2  ⌘(i) kx
p

k2 . (17)

From Theorem 3.2, there exist matrices ˜

P

k

2
Rn(k�p+1)⇥n(k�p+1) such that

S (p+M) =

p+2MX

k=p

X

>
p:k

˜

P

k

X

p:k , (18)

where X

p:k :=

�
x

>
p

, . . . , x

>
k

�> for k 2 {p, . . . , p+ 2M}.

For k 2 {p+ 1, . . . , p+ 2M}, by writing x

k

=

¯

A

k�p

L

x

p

+

h(x

p

, . . . , x

k�1), one obtains

S(p+M)� x

>
p

Rx

p

=

p+2MX

k=p+1

2

⇣
X

(ĀL)
p:k

⌘>
˜

P

k

X

(h)
p:k

+

p+2MX

k=p+1

⇣
X

(h)
p:k

⌘>
˜

P

k

X

(h)
p:k , (19)

where X

(

ĀL)

p:k :=

✓
x

>
p

,

�
¯

A

L

x

p

�>
, . . . ,

⇣
¯

A

k�p

L

x

p

⌘>
◆>

,

X

(h)
p:k :=

�
0

>
, h (x

p

)

>
, . . . , h (x

p

, . . . , x

k�1)
>�> and R is

defined in (14). It then follows that

S (p+M)� x

>
p

Rx

p



max

k

��� ˜P
k

���
2

p+2MX

k=p+1

���X(h)
p:k

���
2

⇣
2

���X(ĀL)
p:k

���
2
+

���X(h)
p:k

���
2

⌘
.

(20)

From (17) and (20), we can directly deduce the existence of
c > 0 such that

S(p+M)� x

>
p

Rx

p

 c kx
p

k22 . (21)

Note that the constant c does not depend on x

p

.
In the sequel, the matrix R is assumed to be positive definite.
Such an assumption is satisfied, for instance by the linear
system presented in [5]. The following Lemma shows that by
choosing x

p

appropriately in a neighbourhood of the origin,
the spectrogram constraint at time p+M is satisfied.

Lemma 4.2: Let p � N . For all � 2 (0,↵),

x

p

2 E(R,↵� �) \ B
 
0,min

(r
�

c

, r

)!

=) S(p+M)  ↵ , (22)

where r is defined via (3).

Proof: Let � 2 (0,↵) and x

p

2 E(R,↵ � �) \
B
✓
0,min

⇢q
�

c

, r

�◆
. Hence

S(p+M)  x

>
p

Rx

p

+ ckx
p

k22  ↵� � + c

 r
�

c

!2

 ↵ . (23)

In the remainder, we fix � 2 (0,↵). For less conservatism,
� should be chosen as close as possible to ↵. First, a set,
which is invariant under the linearised closed-loop dynamics
x

k+1 =

¯

A

L

x

k

, is computed, guaranteeing satisfaction of
the spectrogram constraint at time p + M , by enforcing
containment in the neighbourhood of the origin defined in
Lemma 4.2.

Lemma 4.3: There exists a matrix S � 0 such that E (S, 1)
is invariant under the linearised dynamics x(L)

k+1 =

¯

A

L

x

(L)
k

and

E (S, 1) ✓ E (R,↵� �) \ B
 
0,min

(r
�

c

, r

)!
. (24)

Proof: The proof of existence is constructive. A matrix
S guaranteeing (24) can be computed by solving an SDP
analogous to the one given in Theorem 3 in [5] with two
additional constraints:

• the ‘spectrogram-ellipsoid’ is shrunk, resulting in the
containment constraint E (S, 1) ✓ E (R,↵� �), which
can be formulated as an LMI in S�1.

• the containment E (S, 1) ✓ B
✓
0,min

⇢q
�

c

, r

�◆
,

which can also be expressed as an LMI in S�1.

The following Lemma guarantees invariance of a sub-level set
of E (S, 1) under the nonlinear dynamics. Its proof follows the
arguments described in [6].

Lemma 4.4: There exists  2 (0, 1] such that E (S,) is
invariant under the nonlinear dynamics x

k+1 = f(x

k

,Kx

k

).

Proof: Define

d (x) :=f (x,Kx)

> Sf (x,Kx) (25)
� x

>Sx� 2x

>S ¯

A

L

g (x)� g (x)

> Sg (x) .

From the invariance of E (S, 1), it is clear that for all x 2
E (S, 1), d (x) < 0. Note that the function d (·) is continuous
and that E(S, 1) is compact. Hence one can define

d1 := max

x2E(S,1)
d(x) < 0 . (26)
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For all x 2 E (S, 1),
f (x,Kx)

> Sf (x,Kx)  d1 + g(x)

>Sg(x)
+ 2g(x)

>S ¯

A

L

x

+ x

>Sx .

From the definition of g (·), g(x)>Sg(x)+2g(x)

>S ¯

A

L

x ! 0

when x ! 0. Then, there exists � > 0 such that

8x 2 B (0,�) ,

��
g(x)

>Sg(x) + 2g(x)

>S ¯

A

L

x

��  �d1 .

Let  > 0 such that E (S,) ✓ E (S, 1) \ B (0,�). Then

x 2 E(S,) =) f(x,Kx)

>Sf(x,Kx)   ,

which proves that E (S,) is invariant under the nonlinear
dynamics (1).

Theorem 4.1: The spectrogram-MPC problem formulated
onto the nonlinear system (1) with terminal constraint x

N

2
E (S,) is recursively feasible.

Proof: The proof follows the same lines as in the linear
case. As the set E (S,) is invariant under the nonlinear
dynamics, shifting the optimal sequence from the current step
and appending the LQR solution u = Kx provides a feasible
solution to problem (8) at the next time instant. Satisfaction
of the spectrogram constraint computed on the nonlinear
dynamics at time N + M is guaranteed by Lemmas 4.1
and 4.2 and the appropriate choice of the terminal constraint
formulated in Lemmas 4.3 and 4.4.

Theorem 4.2: The closed-loop nonlinear system under the
spectrogram-MPC control law is locally asymptotically stable,
with basin of attraction equal to the feasible set of the spectrum
constrained NMPC problem (8).

Proof: Stability of the closed-loop system follows from
recursive feasibility and the fact that the terminal cost satisfies
the standard decrease Assumption (3.4).

V. NUMERICAL EXAMPLE

Oscillations are very common in mechanical systems and
are responsible, e.g., for fatigue and failure of engines, and
thus control techniques for active vibration damping are re-
quired [10]. In this section, an example illustrating the effi-
cacy of the proposed spectrum constrained NMPC approach
for damping resonance frequencies in constrained nonlinear
systems is presented. In practice, many oscillatory dynamical
systems can be modelled as linear resonators with a nonlinear
restoring force [9]. Therefore, we consider the constrained
nonlinear system
8
>>>>>>><

>>>>>>>:

✓
ẋ1

ẋ2

◆
=

✓
0 x2

�!2
0

�
x1 + ✏x

2
1

� �2⌫!0x2

◆
+

✓
0

100

◆
u

z =

�
1 0

�✓
x1

x2

◆

|x1|  15, |x2|  100

|u|  100 ,

where ✏ = 0.1, !0 = 2⇡ · 12 rad/sec and ⌫ = 2 · 10�4. System
(27) is first controlled to track a piecewise constant reference
signal zref = ±0.5 using a standard NMPC formulation
without spectrogram constraints. The continuous dynamics

are sampled at 50 Hz and discretised by applying a Runge-
Kutta method of order four. The linearised model around the
origin is given by (2) with

A

L

=

✓
0 1.00

�5.68 · 103 0.0030

◆
, B

L

=

✓
0

100

◆
. (27)

The stabilising control law used in the spectrum constrained
NMPC problem is K =

��0.87 �0.14

�
. The stage cost of

(8) is defined as a quadratic function l (x, u) := x

>
Qx+u

>
Ru

with Q = 100 · I and R = 1.
When the system output tracks the upper constant reference

+0.5, a resonance can be observed around 12.1 Hz, whereas
when tracking the lower reference �0.5, the resonance is ob-
tained around 10.5 Hz, as shown in the time domain trajectory
in Fig. 1(a) and the spectrogram in Fig. 2(a). Spectrogram
constraints are then incorporated into the NMPC problem. A
3

rd order Butterworth filter has been chosen with a window
length M = 25, the prediction horizon being N = 30. The
spectrogram constraint parameter ↵ is set to 0.1. A constraint
is first enforced at 10.5 Hz, which results in the spectrogram in
Fig. 2(b). The constraint on the first resonance is then removed
and a constraint at 12.1 Hz is added, resulting in the spectro-
gram in Fig. 2(c). Finally, both resonances are constrained,
as shown in the spectrogram of Fig. 2(d). The corresponding
closed-loop trajectories are shown in Fig. 1(a), (b), (c) and (d)
respectively. The spectrum constrained NMPC strategy proves
effective at damping nonlinear resonances. It should be noted
that a waterbed effect can be observed in spectrograms (b)
and (d), where damping the first resonance seems to amplify
the second one, and damping both resonances results in some
energy transfer to lower and higher frequencies.

VI. CONCLUSION

A novel NMPC scheme for shaping of the harmonic
response of constrained nonlinear systems has been presented.
The main idea is to enforce hard constraints on the system’s
output spectrogram within a receding-horizon optimal control
problem. Recursive feasibility of the proposed spectrum
constrained NMPC problem, and asymptotic stability of the
resulting nonlinear closed-loop system, are enforced by an
ellipsoidal terminal constraint. Finally, the effectiveness of the
proposed approach has been demonstrated on a small-scale
nonlinear resonant system.
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