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Random networks of integrate-and-fire neurons with strong current-based synapses can,
unlike previously believed, assume stable states of sustained asynchronous and irregular
firing, even without external random background or pacemaker neurons. We analyze the
mechanisms underlying the emergence, lifetime and irregularity of such self-sustained
activity states. We first demonstrate how the competition between the mean and the
variance of the synaptic input leads to a non-monotonic firing-rate transfer in the network.
Thus, by increasing the synaptic coupling strength, the system can become bistable: In
addition to the quiescent state, a second stable fixed-point at moderate firing rates can
emerge by a saddle-node bifurcation. Inherently generated fluctuations of the population
firing rate around this non-trivial fixed-point can trigger transitions into the quiescent state.
Hence, the trade-off between the magnitude of the population-rate fluctuations and the
size of the basin of attraction of the non-trivial rate fixed-point determines the onset
and the lifetime of self-sustained activity states. During self-sustained activity, individual
neuronal activity is moreover highly irregular, switching between long periods of low firing
rate to short burst-like states. We show that this is an effect of the strong synaptic weights
and the finite time constant of synaptic and neuronal integration, and can actually serve to
stabilize the self-sustained state.

Keywords: self-sustained activity, leaky integrate-and-fire neurons, balanced random networks, linear stability,

spike train irregularity

1. INTRODUCTION
The sustained activity of populations of spiking neurons, even in
the absence of external input, is observed in many circumstances,
amongst them spontaneously active neurons in cell cultures (see
e.g., Marom and Shahaf, 2002; Wagenaar et al., 2006), in vitro slice
preparations (see e.g., Plenz and Aertsen, 1996; Mao et al., 2001;
Cossart et al., 2003; Shu et al., 2003) and even in toto prepara-
tions of whole brain parts, such as cortical slabs (Burns and Webb,
1979; Timofeev et al., 2000) or the entire hippocampus (Ikegaya
et al., 2013). Another prominent phenomenon in this context is
the existence of up and down states in striatum and cortex, i.e.,
states in which neurons switch between two preferred membrane
potentials: In the so-called down-state membrane potentials are
close to the resting value, corresponding to a quiescent state, while
in the so-called up-states membrane potentials are at a depolar-
ized level that allows for the emission of spikes. These states are
observed both in vivo (Steriade et al., 1993, 2001) and in vitro
(Sanchez-Vives and McCormick, 2000; Cossart et al., 2003; Shu

et al., 2003). Finally, the persistent activation of groups of neu-
rons is a key element of working memory, the so-called delay
activity, which is commonly observed in the prefrontal cortex of
awake behaving monkeys during active memory tasks, where ani-
mals have to remember a presented stimulus after it is removed
(Goldman-Rakic, 1995).

Several possible explanations of how neuronal networks can
generate and sustain activation of subpopulations of neurons have
been put forward in the past, amongst them persistent activation
by thalamo-cortical and cortico-cortical loops, intrinsic cellular
bistability, or attractor states of local recurrent networks (Wang,
2001; Compte, 2006). Especially the latter idea inspired a lot of
research in the framework of spiking neuronal networks (e.g.,
Compte et al., 2000, 2003a,b; Brunel, 2003; Vogels and Abbott,
2005; Compte, 2006; Holcman and Tsodyks, 2006; Renart et al.,
2007; Kumar et al., 2008; Destexhe, 2009) and neural-field mod-
els (e.g., Wilson and Cowan, 1972, 1973; Amari, 1977; Laing and
Chow, 2001; Coombes, 2005). One important element required
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for stable persistent activation in network models is strong excita-
tory feedback, while inhibition is needed to keep the system from
entering a state of run-away excitation.

Of particular interest is the question of what constitutes the
minimal cortical architecture to generate sustained activity states,
especially states that stay active even without additional external
or non-local input.

Griffith (1963) already presented a general proof of principle
that abstract networks of excitatory and inhibitory neurons can
stably sustain states of persistent ongoing activity. Kumar et al.
(2008), Vogels and Abbott (2005), and El Boustani and Destexhe
(2009) showed, moreover, how balanced random networks of
leaky integrate-and-fire (LIF) neurons with conductance-based
synapses can sustain states of elevated rate in the absence of exter-
nal input. This is due to a non-monotonic input-output firing-
rate function resulting from the shunting of membrane-potential
fluctuations and a modulation of the effective membrane time
constants (Kuhn et al., 2004).

In most of these models, attractor states are characterized by
rather constant individual firing rates and homogeneous popula-
tion activity. In experimental investigations of sustained states in
prefrontal cortex during working memory (Marder et al., 1996;
Wang, 2001; Compte et al., 2003a; Compte, 2006; Druckmann
and Chklovskii, 2012) and also up-states (Shu et al., 2003), how-
ever, it is observed that individual neurons vary a lot in their
relative contribution to the local population activity over time,
with periods of both silence and elevated rates, while the com-
pound activity persists. A computational model of self-sustained
activity should reproduce this pronounced irregularity in the
spike times of individual neurons.

Here, we demonstrate that LIF neurons with current-based
synapses can sustain highly irregular activity at moderate rates
provided the coupling between them is sufficiently strong (see
also the preprint by Gewaltig, 2013). That strong weights indeed
occur in neuronal networks was demonstrated in thorough exper-
imental investigations that showed that distributions of synapse
strength J in cortex are log-normally distributed, with many weak
and some very strong synapses leading to postsynaptic-potential
(PSP) peak-amplitudes of up to a few millivolts (see e.g., Song
et al., 2005; Lefort et al., 2009; Avermann et al., 2012). The
same was observed for inter-pyramidal synapses in hippocam-
pus (Ikegaya et al., 2013). These few but strong synapses suffice to
allow self-sustained asynchronous-irregular (SSAI) activity, pro-
vided the relative inhibitory strength g is in the right range.
Teramae et al. (2012) and Ikegaya et al. (2013) have studied
similar effects in networks of neurons with conductance-based
synapses. Here, we show by numerical simulations that there is a
distinct transition in the g-J-plane above which the system jumps
to very large, virtually infinite lifetimes of persistent activity, and
thus appears to become stable.

We demonstrate by simple arguments how the competition
between the mean and variance of the neuronal input as a func-
tion of synaptic strength leads to a non-monotonic firing-rate
transfer in the network. Thus, by increasing the synaptic coupling
strength the system can become bistable, and in addition to the
quiescent state a second stable fixed point at moderate firing rates,
the SSAI state, can emerge by a saddle-node bifurcation. The
population activity in this SSAI state is characterized by inherent

population fluctuations and highly irregular spiking of individual
neurons.

We show that the high irregularity in the activity of individual
cells is induced by the large fluctuations of the neuronal input cur-
rents which keep the membrane potential far away from threshold
for long times and induce firing at close to maximal rate when
there is a large occasional suprathreshold transient. Hence, the
firing-rate activity of individual neurons is basically binary. In
particular, it demonstrates that highly irregular individual neuron
firing and stable sustained activity states are indeed compati-
ble and do not necessitate extra sources of variability, such as
additional external noise or cellular bistability.

The substantial population fluctuations on the other hand lead
to a constant perturbation of the network activity from the SSAI-
attractor. We show how taking this into account in a simple escape
rate model can explain the observed lifetimes of the persistent
activation as a function of the network coupling parameters g
and J: If the fluctuations are too strong, the system can escape the
basin of attraction and activity spontaneously breaks down, while
for other g-J-pairs the escape probability becomes very small
and the system is virtually stable on biologically relevant time
scales.

The paper is organized as follows: In Section 2 we will shortly
outline the neuron and network model as well as the data analysis
techniques used in this paper. In Section 3.1 we present the essen-
tial features of the SSAI-state in strongly coupled networks, and
then explain the mechanism underlying its emergence and irreg-
ularity in Section 3.2. Section 3.3 discusses the effect of synaptic
weight distributions on the emergence of SSAI. In Section 3.4 we
show how a stochastic rate model can capture the distribution
of lifetimes observed in simulations, and in Section 4 we finally
summarize and discuss our results.

2. MATERIALS AND METHODS
2.1. NETWORK MODEL
We study balanced random networks (van Vreeswijk and
Sompolinsky, 1996; Brunel, 2000) of N leaky integrate-and-fire
(LIF) neurons with current-based synapses. Each network is
composed of NE excitatory and NI = γ NE inhibitory neurons.
Throughout the article, we assume γ = 1/4; see Tables 1, 2 for
a concise summary of models and parameters following Nordlie
et al. (2009). The network topology is random, i.e., all neurons
are connected independently with equal probability ε ∈ [0, 1],
irrespective of their identity.

Though all results we present below hold for a very broad class
of balanced random networks, all neurons in the simulations pre-
sented here received the same number of excitatory and inhibitory
synapses, i.e., CE = εNE and CI = εNI , respectively. Here, we will
use ε ∈ {0.01, 0.1} which spans connection probabilities observed
in local cortical networks.

Finally, we assume that the coupling strength is parametrized
by the peak-amplitude Jij of the postsynaptic potential (PSP) that
is evoked in a neuron i in response to incoming spikes, such that

Jij =

⎧⎪⎨
⎪⎩

J if the presynaptic neuron j is excitatory,

−gJ if the presynaptic neuron j is inhibitory,

0 if the synapse j → i does not exist

. (1)
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Table 1 | Model and simulation description.

A MODEL SUMMARY

Populations Three: excitatory (E), inhibitory (I), external input (Eext)
Connectivity Random convergent connectivity with probability ε

Neuron model Leaky integrate-and-fire (LIF), fixed voltage threshold, exact integration scheme (Rotter and Diesmann, 1999) (update every
0.1 ms)

Synapse model α-shaped post-synaptic current (PSC)
Input Independent Poisson spike trains
B POPULATIONS

Name Elements Size

E,I LIF neuron NE , NI = γ NE

Eext Poisson generator Next = NE + NI

C CONNECTIVITY

Source Target Pattern

{E,I} E ∪ I Random convergent CE = εNE → 1, CI = εNI → 1
Eext E ∪ I Non-overlapping 1 → 1
D NEURON AND SYNAPSE MODEL

Name Leaky integrate-and-fire neuron with α-shaped PSCs

Subthreshold dynamics τmV̇i (t) = −Vi (t) + Rm
(
Isyn,i (t − d ) + Iext,i (t)

)
if t > t∗ + τref

Vi (t) = Vres else

Spiking If V (t − ) < Vthr ∧ V (t + ) ≥ Vthr

1. Set spike time t∗ = t
2 .Emit spike with time-stamp tk = t∗

Postsynaptic currents Isyn,i (t) = ∑
j,k PSCij (t − tj,k ) Network input current of neuron i

Iext,i (t) = ∑
k PSCext,i (t − tk ) External input current of neuron i

PSCij (t) = A(Jij ) t
τsyn

e1−t/τsyn H(t), Jij ∈ {−gJ, 0, J}
PSCext,i (t) = A(J) t

τsyn
e1−t/τsyn H(t)

E INPUT

Type Description

Poisson generators Spike times tk in Iext(t) are Poisson point processes of rate νext

We emphasize that the main results do not crucially depend on
the network density or the fine details of the weight and degree
distribution.

2.2. NEURON MODEL
The dynamics of the subthreshold membrane potential Vi(t) of
neuron i is linear and governed by

τmV̇i(t) = −Vi(t) + RmIsyn,i(t − d) + RmIext,i (t) (2)

with membrane time constant τm, membrane resistance Rm,
a finite transmission delay d, the total synaptic input current
Isyn,i resulting from the local-network activity, and the exter-
nal current Iext,i(t). The synaptic input current is given by the
linear superposition of post-synaptic currents, i.e., Isyn,i(t) =∑

j ∈ Pre[i]
∑

k PSCij(t − tj,k), where Pre[i] denotes the set of presy-
naptic neurons of neuron i, and k denotes the k-th spike emis-
sion of neuron j ∈ Pre[i]. The post-synaptic current PSCij(t) is
given by

PSCij(t) = A(Jij)
t

τsyn
e1−t/τsyn H(t), (3)

resulting in a post-synaptic potential

PSPij(t) = RmA(Jij)e

τmτsyn

(
e−t/τm − e−t/τsyn

(1/τsyn − 1/τm)2

− te−t/τsyn

1/τsyn − 1/τm

)
H(t), (4)

Here, τsyn is the synaptic time constant, whereas A(Jij) denotes
the respective current amplitude needed to evoke a PSP of max-
imal amplitude Jij, cf. Equation (1). H( · ) denotes the Heaviside
function. The current amplitude A(J) can be computed numeri-
cally or in a closed form by using the Lambert-W-function. For
fixed Jij, the current amplitude A(Jij) is a function of Rm, τm,
and τsyn.
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Table 2 | Default parameters.

A CONNECTIVITY

Name Value Description

NE {100000, 5000} Number of excitatory neurons (Figures 1–4,
10, 11, and Figures 5–9, resp.)

NI γ NE , γ = 1/4 Number of inhibitory neurons

ε {0.01, 0.1} Connection density (Figures 1–4, 10, 11,
and Figures 5–9, resp.)

B NEURON

Name Value Description

τm 20 ms Membrane time constant

Rm 20 G� Membrane resistance

Vthr 20 mV Firing threshold

Vres 0 mV Reset potential

τref 2 ms Refractory time

C SYNAPSES

Name Value Description

J ∈ [0.1, 4.5] mV Peak-amplitude of excitatory PSP(t)

A(J) ∈ [0.12, 5.44] pA Amplitude of excitatory PSC(t) for α-current
input, normalized such that peak-amplitude
of PSP(t) = J

g ∈ [4., 8.] Relative inhibitory coupling strength

d 1.5 ms Synaptic delay

τsyn 0.5 ms synaptic time constant

D INPUT

Name Value Description

νext 1000(Vthr − Vres)
/

eτsynRmA(J)
Rate of external Poisson stimulus

tstim 1000 ms Stimulus duration

To initially activate the network, in Figures 1–4, 10, 11, exter-
nal currents Iext,i(t) (i ∈ [1, N]) are modeled as shot-noise pro-
cesses (Papoulis and Pillai, 2002) resulting from independent
realizations of an inhomogeneous Poisson process with rate

νext(t) =
{

νext if tstim,on < t ≤ tstim,off

0 else
, (5)

and a filter kernel as defined by Equation 3. Note that in these
cases the external input is only delivered during the period t ∈
(tstim,on, tstim,off].

In Figures 5C,D, 6A, we use external Poisson processes of con-
stant rate filtered by kernels of the form Equation 3 to drive the
network over the whole duration of the simulation in order to
mimic a network situation with uncorrelated stationary input
spike trains, see discussion in Section 3.2.2.

Whenever V(t) = Vthr, the neuron emits a spike and is reset to
V(t+) = Vres < Vthr. The neuron is then absolute refractory for
some time τref and clamped at Vres during this period. We empha-
size that even though here synapses with finite time constants are

FIGURE 1 | Population activity in single trials and trial averaged

activity. The individual colored traces (red, yellow, purple) show the
population activity while the neurons receive external excitatory input for
t ∈ [tstim,on, tstim,off] (here tstim,on = 0 and tstim,off = 1000 ms) and after
(t > tstim,off) for g = 4.4, J = 1.1 mV. The trial averaged population activity
(averaged over 100 simulations with the same parameters) is depicted in
gray. The black curve shows an exponential fit with estimated exponential
constant T = 487 ms that we define as the lifetime (see text). Other
parameters: N = 125 000, ε = 0.01, Vthr = 20 mV, Vres = 0 mV,
Rm = 80 M�, τm = 20 ms, τsyn = 0.5 ms, τref = 2 ms, d = 1.5 ms.

used, all results do not depend on this and generalize, e.g., to net-
works of neurons with instantaneous δ-shaped synaptic currents.
Parameters used in network simulations are specified individually
and summarized in Table 2. All simulations were carried out with
NEST (Gewaltig and Diesmann, 2007).

2.3. DATA ANALYSIS
2.3.1. Lifetime
For each parameter pair (g, J) we performed k = 10 simulations
with different random realizations of the network. The lifetime T
of the self-sustained activity is then defined as follows: For each
of the 10 network realizations we determine the time t at which
activity seizes after the external input was turned off at tstim,off −
d, where d is the synaptic delay. We find that for given parameters
g and J the survival time of the self-sustained activity after turning
off the external input is approximately exponentially distributed
(Figure 1). We thus obtain T by fitting e−(t−tstim,off)/T to this data
(see Figure 1).

2.3.2. Population rate
The population rate is estimated by the temporal average of the
population spike count per time bin 	t = 0.5 ms, i.e.,

ν(t) =
	ttot/	t
∑

l = 1

∑N
i = 1 χ [i, l]

	t
, (6)

where ttot is the total time interval under consideration, and χ [i, l]
is a function that returns the number of spikes of neuron i in time
bin l. To obtain the average firing rate, we compute

ν̄ = E [〈ν(t)〉] (7)
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A B

FIGURE 2 | Externally driven (A) and self-sustained

asynchronous-irregular activity (B). Spiking activity of a subset of 500
randomly selected neurons (top panels) and instantaneous population-averaged

firing rate (“population activity”; bin size 0.5 ms; bottom panels). (A)

J = 0.1 mV, g = 4.2, [tstim,on, tstim,off] = [−1000, 1000] ms. (B) J = 1.0 mV,
g = 4.2, [tstim,on, tstim,off] = [−1000, 0] ms. Other parameters as in Figure 1.

where E[.] denotes the average across network realizations and 〈.〉
denotes the temporal average.

2.3.3. Coefficient of variation of inter-spike intervals
To estimate the coefficient of variation (CV) of inter-spike inter-
vals (ISI), we compute the ISI of n = 500 neurons, if they spiked
at least twice during the time interval ttot under consideration. To
obtain the average CV, the individual

CV[ISIi] =
√

〈ISI2
i 〉 − 〈ISIi〉2

〈ISIi〉 (8)

are computed and averaged over all neurons i ∈ 1, . . . , n, i.e.,

CV = 1

n

n∑
i = 1

CV[ISIi]. (9)

2.3.4. Pairwise correlations
To estimate the pairwise correlations between neurons, we
removed the stimulus period tstim = tstim,off − tstim,on, see
Section 2.3.1, and the initial transient after that stimulus period
from the spike train data, that were then binned in time bins of
size h. h was set such that there would be on average 2.5 spikes
in each bin, but constrained to h ≥ 10 ms. The resulting time
series Si(t) were centralized, i.e., the mean was subtracted, such
that S̄i(t) = Si(t) − 〈Si(t)〉. Then the auto-covariance functions
Ai(τ ) = 〈S̄i(t)S̄i(t + τ )〉 and cross-covariance functions Cij(τ ) =
〈S̄i(t)S̄j(t + τ )〉 were evaluated at time lag τ = 0. The individual
resulting correlation coefficients cij are given by

cij = Cij(0)√
Ai(0)Aj(0)

. (10)

The correlation coefficients cij were computed for a neuron popu-
lation of size n = 500 and then averaged over this subpopulation
in order to produce the average correlation coefficient c̄, i.e.,

c̄ = 2

n(n − 1)

n∑
i = 1

n∑
j = i + 1

cij. (11)

2.3.5. Network response function
The spiking activity of the network is inherently fluctuating and
chaotic. To estimate the response function of the network we thus
assume that the instantaneous population rate ν(t) at time t is a
function of the rate ν(t − δt) at a previous time t − δt plus noise,
with δt = 1.5 ms, or analogously

ν(t + δt) − ν(t) = 	ν(ν(t)) + ξ(t), (12)

where the noise ξ(t) is assumed to be a stationary process. To
estimate the response function 	ν(ν), the instantaneous network
rate, calculated in time bins ti of size 	t = 0.5 ms, was binned
into nb = 40 bins of equal size δν, and for each bin νj, the average
response was calculated as

	ν(νj) = 〈ν(ti + δt)〉ν(ti) ∈ νj − νj, (13)

where the average is taken over all i such that ν(ti) was in the
bin centered on νj, i.e., νj − 1

2δν ≤ ν(ti) < νj + 1
2δν. The data

from k = 10 simulations with different random realizations of the
network was aggregated into one average response function.

2.4. ABELES MODEL
In many simplified integrate-and-fire neuron models that receive
temporally fluctuating input current from a pool of presynaptic
neurons, the probability to emit a spike is determined by two key
properties of this integrated input: its mean and variance with
respect to the firing threshold. In essence, the output rate of such
a neuron will depend on the probability that the free membrane
potential is suprathreshold.

This is the essence of models as proposed in Abeles (1982) and
Amit and Brunel (1997). The membrane potential distribution in
absence of a threshold (free membrane potential Vfree) can often
be approximated by a Gaussian

P(Vfree, μ, σ ) = 1√
2πσ

e
−(μ − Vfree)2

2σ2 , (14)

where μ = μ[Vfree] and σ = σ [Vfree] are the mean and standard
deviation of the free membrane potential. The area under the
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A B

FIGURE 3 | Lifetime (A) and firing rate (B) of SSAI. Dependence of the
SSAI lifetime (A) and mean firing rate (B) [cf. Equation (7)] on the synaptic
weight J and the relative strength g of inhibition. Lifetimes and mean firing
rates were measured after the external input was turned off. Data represent
averages over 10 network realizations. White curves in (A) mark saddle-node

bifurcations obtained from the diffusion approximation of the LIF neuron [see
Brunel, 2000 and Equation S1 in the Supplementary Material with input
current mean and variance derived from Equation (17); dotted curve] and
from the Abeles-type two-state model (19) (dashed; with rmax = 1/2τref, see
Section 3.4.1). Other parameters as in Figure 1.

A B

FIGURE 4 | Spike-train irregularity (A) and pairwise correlations (B) in the

SSAI-state. Dependence of the mean coefficient of variation CV, see
Equation (9), of the inter-spike intervals (A) and the mean spike-train correlation

coefficient Equation (11) (B) on the synaptic weight J and the relative strength
g of inhibition. The gray-shaded area marks regions where activity was not
sufficient for analysis (see Figure 3A). Other parameters as in Figure 1.

Gaussian above firing threshold can then be related to the firing
probability f (μ, σ ) in the following way:

f (μ, σ ) = 1√
2πτ

∫ ∞
Vthr−μ

σ

e−x2/2 dx, (15)

where τ denotes a characteristic memory time constant, e.g., the
membrane time constant.

3. RESULTS
We investigate the transition in the dynamic behavior that
random networks of inhibitory and excitatory LIF neurons
undergo when the synaptic coupling strength J is increased.
For small J, the network needs permanent external drive to
remain active (Brunel, 2000). Depending on the strength of
this external drive and the synaptic coupling parameters g

and J, spiking activity can be asynchronous and irregular
(Figure 2A). For sufficiently large J, however, the network
can stay active even in the absence of external drive, i.e., for
Iext = 0. Spiking is much more irregular in this self-
sustained regime and population activity is characterized
by pronounced fluctuations (Figure 2B). In the present
paper, we investigate the mechanisms underlying the
emergence, the spike-train irregularity, and the life-
time of self-sustained asynchronous-irregular (SSAI)
activity.

3.1. CHARACTERISTICS OF SELF-SUSTAINED ACTIVITY IN RANDOM
LIF NETWORKS WITH STRONG SYNAPSES

To characterize the dynamical features of the SSAI state, we first
analyze the lifetime, firing rate, irregularity and correlations in
dependence of coupling strength J and relative inhibition g, here
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A B

DC

FIGURE 5 | Strong input fluctuations in strongly coupled networks lead

to irregular spiking. (A) The membrane potential V (t) including the spike
threshold and reset (black) vs. the corresponding free membrane potential
Vfree(t) (gray) recorded from a neuron in a SSAI network. The free membrane
potential serves as a monitor of the effective filtered input current the neuron
receives. Whenever Vfree(t) > Vthr, the neuron spikes at high rate r ∝ 1/τref

(spikes indicated by red asterisks at the threshold value Vthr). The inset
shows a zoom into the membrane potential trace to better show the rapid
spiking during suprathreshold fluctuations of the free membrane potential

(zoom window t ∈ [1370, 1570] ms, V (t) ∈ [−20, 700] mV). The average spike
rate of this neuron was 76.4/s with a CV of 2.91. (B) Shows the histogram of
the two traces in (A). (C,D) Show the same for the reduced Abeles-type
model, where the incoming spike trains are assumed to be Poissonian. Here,
average spike rate was 36.2/s with a CV of 1.63. The inset zoom window is
t ∈ [0, 300] ms, V (t) ∈ [−20, 300] mV. The dashed red curve in (D) depicts
the expected Gaussian distribution of Vfree with mean and variance given by
Equation (17). Parameters: simulation time 40 s, g = 4.2, J = 3.5 mV,
CE = 400, CI = 100, other parameters as in Figure 1.

for network size of N = 1.25 × 105 with connection probability
ε = 0.01.

The lifetime of the SSAI increases rapidly from zero to more
than 1000 s (i.e., networks stay active for the whole duration of
the simulation) within a narrow band in the parameter space
spanned by g and J, see Figure 3A. This transition band becomes
wider, i.e., more gradual in terms of J, as g is increased, indi-
cating a more shallow transition between transient and stable
self-sustained activation. The rate of the persistent activity is typi-
cally between 20 and 50 s−1, increasing to 400 s−1 when excitation
becomes dominant at g < 4, see Figure 3B.

Figure 4A, moreover, demonstrates that during SSAI the coef-
ficient of variation (CV) of inter-spike interval (ISI) are typi-
cally substantially higher than unity, meaning that spike trains
are more irregular than a Poisson process, while Figure 4B
shows that pairwise spike-train correlations—indicating residual
synchrony—decrease for longer lifetimes, especially in the region
of large g and J.

In summary, for wide regions of the g-J-parameter space, net-
work activity is sustained without external drive for long time
periods, the firing rates are in an intermediate range and spiking
activity is highly irregular and asynchronous. In the next section,
we suggest a simple mechanism for the emergence of SSAI.

3.2. BASIC MECHANISM UNDERLYING SELF-SUSTAINED
ASYNCHRONOUS-IRREGULAR ACTIVITY

Several earlier studies suggested that the self-sustained
asynchronous-irregular activation we observe here is impossible
in balanced random networks with current-based synapses
(Kumar et al., 2008; El Boustani and Destexhe, 2009). To resolve
this apparent contradiction, we now analyze the membrane
potential dynamics in the SSAI-state. This will lead us to a
reduced Abeles-type model, cf. Equation (15), that demonstrates
the basic mechanism, i.e., the trade-off between the mean and the
variance of the input of the neurons, underlying the occurrence
of self-sustained activity.

3.2.1. Large membrane potential fluctuations induce highly
irregular spiking

Inspection of the membrane potential traces of neurons in SSAI
states reveals that they fluctuate strongly (on the order of volts,
rather than millivolts, depending on the amplitude of input cur-
rent variance), only limited by the threshold for positive values
and the maximally possible inhibitory input for negative values,
which depends on the dynamical state of the system.

If we consider the free membrane potential Vfree(t), i.e., the
membrane potential dynamics if the spike threshold Vthr is set to
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infinity, as a representative monitor for the filtered input from the
network, we see that Vfree(t) also has large excursions to positive
values, cf. Figure 5A, gray curve. The corresponding normalized
histograms for these particular traces are shown in Figure 5B.
Note that for the neuron model with finite spike threshold (black)
the membrane potential cannot be beyond threshold Vthr, and
instead there is a large peak in the histogram around the reset
potential Vres (the amplitude of the peak is approximately 0.056,
not shown).

Moreover, due to these extreme fluctuations the neuron reset
amplitude becomes almost negligible due to the occasional mas-
sive net-excitatory input transients, and as long as the free mem-
brane potential Vfree(t) is above threshold Vthr and has positive
derivative, the neuron fires at close to the maximum rate given
by rmax ∼ 1/τref (see inset in Figure 5A for illustration). The free
membrane potential must have positive derivative, i.e., the neu-
ron must receive net excitatory current, to drive the neuron to
threshold because of the subthreshold reset after the spike. A
large fraction of time, however, the membrane potential spends
far below the threshold, leading to long periods of time where
the neuron does not spike. This results in highly irregular spike
trains with coefficients of variation (CV) larger than unity (here,
CV= 2.91).

3.2.2. LIF-neuron driven by strongly weighted Poisson input
The full self-consistent dynamics of self-sustained activity states
is hard to assess because of the non-linear input-output relation

of LIF neurons and the non-Poissonian nature of the compound
input spike trains that characterizes the SSAI-state. To address the
spiking irregularity in the case of strongly weighted input spikes,
we thus now consider a simplified scenario where we assume
that the incoming spike trains are independent stationary Poisson
processes, implying a CV of unity for the input spike trains.

Already in this case, Vfree(t) spends large fractions of time
at very hyperpolarized values, and only occasionally there are
suprathreshold fluctuations, resulting in long periods of silence,
interrupted by burst-like spiking, see Figure 5C. The distribu-
tion of Vfree(t) (Figure 5D) is narrower than for the full recurrent
dynamics shown in Figures 5A,B, yet already covers several hun-
dred millivolts. The simple structure of the Poisson input, more-
over, allows to derive the distribution of Vfree(t) (red dashed curve
in Figure 5D) as we will discuss in the next section.

The spiking activity, coefficient of variation CV, population
spike count, free membrane statistics, and pairwise spike train
correlation coefficient cij of uncoupled LIF neurons driven by
such approximately balanced, but strongly weighted Poisson
input, are shown in Figures 6A,D–F (light gray). Indeed, even in
this reduced model the average CV of the output spike train-ISI
is beyond unity at CV ∼ 1.6, i.e., spiking is more irregular than
Poisson (Figure 6A). Pairwise spike train correlations were com-
puted for 500 randomly selected neurons. As to be expected for
uncoupled neurons injected with uncorrelated Poisson input, cor-
relation coefficients are symmetrically distributed around zero,
cf. Figure 6F.

A B C

D E F

CV = 1.56 CV = 3.09CV = 1.97

FIGURE 6 | Spiking dynamics, CVs, free membrane potential, and

correlation statistics. (A–C) Show the spiking activity and population
dynamics of 200 neurons in terms of spike counts per millisecond for an
ensemble of Poisson-driven LIF neurons (A, light gray), an ensemble of
neurons in turn driven by spike trains sampled from the ensemble in (A) (B,
dark gray), and the full recurrent SSAI dynamics (C, black), respectively. (D)

Shows the corresponding count distributions, (E) depicts the respective
distributions of the free membrane potentials, and (F) the respective
distributions of the pairwise spike train correlation coefficients cij . The insets
in (A–C) show the respective average coefficients of variation CV of

interpike-intervals. For otherwise identical parameters the full self-sustained
dynamics (D,E, black) is characterized by a much more variable population
spike count and dynamics of the free membrane potential than the simplified
model with Poisson input (D,E, light gray) which is fully explained by
Equation (23) in (D), and by Equations (16) and (17) in (E) (black dashed). (F)

Illustrates how the pairwise spike train correlations gradually shift to positive
values and distributions broaden when neurons sample from the
Poisson-driven population (F, gray) and in the fully-recurrent SSAI-state (F,
black) compared to the Poisson-driven ensemble (F, light gray), where they
cluster around zero. Parameters as in Figure 5.
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Figure 6B shows the spiking and population count activ-
ity for 200 LIF neurons with input spike trains sampled from
the Poisson-driven population shown in Figure 6A, with the
same common input structure as in the recurrent network
(first-order recurrence). The corresponding CV ∼ 2, population
count distribution, and free membrane potential distribution
(Figures 6B,D,E, dark gray lines) show that variability is greater
than for the Poisson-driven case, but still much smaller than in the
full SSAI dynamics (Figures 6A,C–E, black). Spike train correla-
tions are now slightly positive on average, here c̄ = 5.4 × 10−3,
yet correlation coefficients are still approximately symmetrically
distributed around zero.

In Figure 6C the corresponding full self-consistent SSAI
dynamics for identical parameters is shown (∞-order rec-
curence), revealing the higher amplitude of population fluctua-
tions and spiking variability with an average CV of spike train-ISI
of CV ∼ 3. The population spike count is skewed to higher values,
see black line in Figure 6D, indicating the increased transients
of correlated spiking that are visible as vertical stripes in the
spike raster plot in Figure 6C. Indeed, spike train correlations (see
Figure 6F, black line) are now clearly positive on average with a
more than ten-fold increased value of c̄ = 0.068 compared to the
correlations between spike trains shown in Figure 6B.

This demonstrates how the full recurrent network amplifies
weak pairwise correlations and irregularity of spiking, yield-
ing much larger population fluctuations, wider free membrane
potential distribution, and higher CV of ISIs compared to what is
expected from the Poisson-input assumption. Moreover, as the
variability increases, also firing rates increase. For the Poisson-
driven ensemble the average rate is 36 s−1 (Figure 6A), for the
ensemble-sampling neurons it is 51.1 s−1 (Figure 6B), and for
the full self-sustained dynamics it is 81 s−1 (Figure 6C). At the
same time, the fraction of ISIs that are close to the mini-
mal ISI τref = 2 ms becomes larger. If we denote the interval
between τref and τref + 1 ms by ISI1, and the next ISI2 := [τref +
1 ms, τref + 2 ms], the fraction f [ISI] of ISIs falling into these bins
are (f [ISI1], f [ISI2]) = (0.14, 0.15) for spike trains in Figure 6A,
(f [ISI1], f [ISI2]) = (0.22, 0.23) for spike trains in Figure 6B, and
(f [ISI1], f [ISI2]) = (0.54, 0.2) for spike trains in Figure 6C. This
means, that while only about 30% of ISIs are shorter than 4 ms
for neurons sampling from Poisson input, about 75% of ISIs in
the recurrent SSAI-network fall into this category.

3.2.3. Reduced two-state Abeles-type firing rate model
From the observations of the last two sections, we will now derive
a simple dynamical model to analyze the basic mechanism under-
lying the saddle-node bifurcation that leads to the emergence of
a second stable fixed-point at finite rate, i.e., the self-sustained
state. As discussed in Section 3.2.2, if J is strong, the resulting
membrane potential of a LIF neuron undergoes large fluctuations
also in the case of strongly weighted uncorrelated Poisson-input.
Spikes are emitted at high rate r whenever the free membrane
potential, i.e., the effective neuron drive, is (i) above threshold and
(ii) has positive derivative, while the neuron is quiescent at basi-
cally all other times, cf. Figure 5C. The free membrane potential
fluctuates around a fixed mean, and if the input is approximately
balanced, the derivative of Vfree(t) should be positive about half

the time, i.e., we estimate the firing rate during suprathreshold
excursions to be r � rmax =: 1/2τref.

To derive the time that Vfree(t) is in the suprathreshold state,
we observe that for uncorrelated stationary Poisson inputs of rate
νj the distribution of the free membrane potential Vfree is approx-
imately given by a Gaussian with mean μ = μ[Vfree] and standard
deviation σ = σ [Vfree], such that

P(Vfree, μ, σ ) =
exp

[−(Vfree−μ)2

2σ 2

]
√

2πσ
(16)

with

μ[Vfree] =
∑

j ∈ Pre[i]
νj

∫ ∞

0
PSPij(t) dt , σ 2[Vfree]

=
∑

j ∈ Pre[i]
νj

∫ ∞

0
PSP2

ij(t) dt. (17)

The PSP(t) for α-type synapses is defined in Equation (4).
The probability q>Vthr

for the free membrane potential to
be above threshold thus equals the fraction of the area under
P(Vfree, μ, σ ) above the threshold, i.e.,

q>Vthr
(μ, σ ) = 1

2

(
1 − erf

[
Vthr − μ√

2σ

])
. (18)

All neurons in expectation spike at the same rate, such that
Equation (18) can in analogy to the Abeles model Equation (15)
be used to estimate an upper bound 〈ν(t)〉max for the time-
averaged firing rate of the neuron, if we assume that the neurons
keep integrating inputs while in the refractory state1, i.e.,

〈ν(t)〉max = q>Vthr
(μ, σ ) × rmax = q>Vthr

(μ, σ )

2τref
. (19)

Because μ and σ are functions of ν(t), we can find the self-
consistent rate solution for any given parameter set {J, g, CE, CI},
i.e.,

ν0 = q>Vthr
(μ0, σ0) × r, (20)

where μo = μ(ν0) and σ0 = σ (ν0) again are the self-consistent
mean and standard deviation.

Moreover, we can assess the critical parameters for which (i)
there exists a 〈ν(t)〉 = ν0, such that Equation (20) has a self-
consistent solution, and (ii) this solution is stable. The latter is
determined by computing the slope of Equation (19) at ν0, i.e.,

1If we assume absolute refractoriness, i.e., the neuron loses the input during
that period, the dynamics becomes biased toward higher rate because the neu-
ron stays at Vres in the presence of the net-inhibitory input from the network.
In the actual system that will be considered in Section 3.4 this is indeed the
case, and the clamping at Vres during τref is explicitly taken into account in the
diffusion limit solution in Brunel (2000).
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∣∣∣∣d
(
q>Vthr (〈ν(t)〉) × r

)
d〈ν(t)〉

∣∣∣∣
〈ν(t)〉= ν0

=

∣∣∣∣ r

ν0

(μ0 + Vthr)√
8πσ0

e
− (Vthr−μ0)

2

2σ2
0

∣∣∣∣ !
< 1,(21)

where the final condition is necessary for stability.
Figure 7A demonstrates this saddle-node bifurcation by eval-

uating the output rate Equation (19) with μ and σ as a function
of input rate ν for increasing J and g = 4.2. The crossing of the
resulting curve (gray) with the bisection line (black) indicates
identity of input and output, i.e., fixed-points. The saddle-point
that marks the onset of the saddle-node bifurcation is depicted
in light gray, while the resulting new stable high-rate fixed-points
after the saddle-node bifurcation are marked by dark gray dots.

For increasing J, the new intermediate unstable fixed-point
moves closer to the zero-rate fixed-point. This is shown in
Figure 7B which depicts the dependence of the fixed-points of
νmax

0 := q>Vthr
(ν0)/2τref on J for three different g: For increasing

J the resulting high-rate fixed-points (Figure 7B, non-zero solid
lines) of νmax

0 first quickly increase, but eventually level out, in
line with the closer spacing we observe in Figure 7A. The inter-
mediate unstable fixed-points (Figure 7B, dashed lines) move to

smaller rates for increasing coupling strength J, asymptotically
moving toward the zero-rate fixed-point. This indicates a loss
of stability of the zero-rate fixed-point with increasing coupling
strength. This is akin to the situation in the full spiking system
where a single spike– the smallest perturbation from the quies-
cent state– can suffice to activate the SSAI state, if J becomes of the
order of the distance between resting and threshold potential, see
Supplementary Material Section 3. Finally, for fixed J, both inter-
mediate and high-rate fixed-point rates decrease with increasing
inhibition g (from dark to light gray).

In the Abeles model, a smaller fixed-point rate corresponds
to a smaller area of the free membrane potential above thresh-
old, i.e., smaller q>Vthr

(ν). The area above threshold is determined
by the trade-off between mean and standard-deviation: for fixed
mean μ[Vfree], an increase in σ [Vfree] can increase the area above
threshold, while for fixed σ [Vfree] the mean μ[Vfree] will deter-
mine, if and how much mass of the free membrane potential
distribution is suprathreshold. The mean of Vfree in our networks
is typically negative (g ≥ 4), such that σ [Vfree] should be of the
order of (Vthr − μ[Vfree]) to have a significant contribution in
q>Vthr

(ν), see Equation (18).
For example, evaluation of Equations (17) shows that μ[Vfree]

is linearly dependent on CE, CI and 〈ν(t)〉, while the standard
deviation has a square-root dependence instead, such that a

A

C D

B

FIGURE 7 | Self-consistent rates as a function of coupling strength in the

reduced model assuming Poisson input spike trains. (A) The reduced
Abeles-type model allows for a straight-forward evaluation of the rate
fixed-point, its emergence and stability. νmax

0 := q
>Vthr

(ν)/2τref as function of ν

is shown here for different values of J (J = {0.525, 0.825, ..., 3.825} from
bottom to top and g = 4.2), the intersections of the curves with the diagonal
line mark the fixed-points; in particular the coalescence point is marked by a
light gray circle, the stable non-trivial fixed-points by dark gray circles). The
zero-rate fixed-point and unstable fixed-point are not explicitly marked for
sake of visibility. (B) Shows all three fixed-point states νmax

0 as a function of J

for three different g, where the solid lines denote the stable fixed-points at
zero rate and at high rates, while the dashed line denotes the unstable
intermediate fixed-point. (C) shows the self-consistent high rate fixed-point
for a network where input spike trains are Poissonian. The solid gray line
shows the self-consistent rate as obtained from a direct simulation of the
simplified model, and the solid black line shows the rate as predicted from
Equation (20) with rmax = 1/2τref (g = 4.2, cf. B). In (D) rfit, the rate fitted to
match the result for νsim

0 from the direct simulation, is depicted as a function
of coupling strength (gray) and compared to rmax (black). Parameters as in
Figure 5.
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change in any of these parameters can lead to a faster decrease in
mean than increase in standard deviation. Moreover, even though
both mean and standard variation are linear in the respective
synaptic current amplitude A, and thus in g and J, inspection
of Equation (17) shows that the mean outweighs the standard
deviation quickly if the rate ν is not too small and g is not
close to CE/CI . This predicts that in these cases no self-consistent
solutions may exist.

From the full spiking network, however, we saw that there is a
wide range of g and J values that lead to long periods of sustained
activity (see Figure 3A). We hypothesize that this is innately
related to the large population variance, and thus also input cur-
rent variance, and the spiking irregularity in these self-sustained
systems. The variance of the free membrane potential Vfree(t)
is already larger, if a neuron samples from the Poisson-driven
ensemble, cf. Figure 6D, and some of the increased variance is
hence explained by the more irregular input spike statistics.
Counterintuitively, larger population activity fluctuations and
spiking irregularity can thus make the system more likely to sus-
tain spiking activity in the absence of external input by increasing
the likelihood for suprathreshold input transients.

To test how well the reduced two-state approach performs
compared to actual spiking neurons, we simulated a popula-
tion of LIF neurons with balanced Poisson inputs to mimic a
network of size N = 5000 with connection probability ε = 0.1
and a ratio between excitation and inhibition of four, i.e., it
received CE = 400 excitatory and CI = 100 inhibitory input spike
trains.

In order to mimic the self-consistent state, these Poisson inputs
had a rate ν0 = νsim

0 that was numerically tuned such that the N

stimulated neurons on average spiked with ν0 themselves. νsim
0

is smaller than what is predicted by Equation (20) with rmax =
1/2τref, cf. Figure 7C. Indeed, when we solved for the correspond-
ing spike rate r = rfit in Equation (20) that in turn resulted in
νsim

0 , we found it to be generally smaller than 1/2τref for the
parameters chosen here. Also, it depends on the average firing
rate and coupling strength in that it gets closer to 1/2τref for
larger νsim

0 and J, cf. Figure 7D. The discrepancy is mostly due
to the fact that it takes neurons a finite time to move back to fir-
ing threshold after emitting a spike in the presence of fluctuating
input currents, and this effect is stronger for smaller fluctuation
amplitudes. We remark that for the full SSAI-network shown
in Figure 6C, Equation (20) gives the right quantitative rate, if
evaluated with Vfree measured from the simulation. The good
agreement is explained by the much higher fraction of short ISIs
reported in Section 3.2.2, justifying the assumption of r = 1/2τref.

Within the simplified two-state Abeles model approach fol-
lowed here, we cannot only derive the self-consistent firing
rate, but also the approximate distribution of the population
spiking activity. The probability for any neuron to be in the
active state and fire with rate r is given by q>Vthr

(ν0). Thus,
the probability B(k|N, q>Vthr

(ν0)) to have k active neurons in
an ensemble of N identical neurons is given by the binomial
distribution

B(k|N, q>Vthr
(ν0)) =

(
N
k

)
q>Vthr

(ν0)k(1 − q>Vthr
(ν0))N−k. (22)

The expected number and variance of counts in a time bin 	t is
then given by

E[counts] = Nq>Vthr
(ν0) r	t,

Var[counts] = Nq>Vthr
(ν0)(1 − q>Vthr

(ν0)) r	t. (23)

We indeed find very good agreement for Poisson-driven LIF
neurons with ν0 = νsim

0 and r = rfit, see Figure 6D.
The two-state firing rate approximation for Poisson-driven LIF

neurons is thus a valuable tool to gain qualitative insight into
the basic mechanisms that underlie SSAI in random networks of
excitatory and inhibitory spiking neurons.

3.3. EFFECT OF COUPLING STRENGTH HETEROGENEITY ON THE
EMERGENCE OF SSAI IN THE TWO-STATE ABELES-TYPE MODEL

So far we considered networks where all excitatory synapses are
weighted by the same weight J, and all inhibitory synapses by the
same weight −gJ, respectively, and studied how the emergence of
SSAI depends on these parameters, both in explicit simulations,
as well as in the two-state firing rate Abeles-type model. Yet, in
this reduced firing rate framework it is straightforward to investi-
gate the impact of arbitrary parameters on the emergence of SSAI,
in particular the effect of more realistic weight distributions with
finite variance.

If we assume that all synaptic weights are distributed according
to some excitatory and inhibitory weight distribution P(WiE) and
P(WiI), respectively, the variance of the free membrane potential
is given by

σ 2
i [Vfree] = EW

⎡
⎣∑

j∈exc

νjW
2
ij

∫ ∞

0
PSP2

ij(t)dt

+
∑
j∈inh

νjW
2
ij

∫ ∞

0
PSP2

ij(t)dt

⎤
⎦ (24)

= εiENEαiE νE EW [W2
iE] + εiINIαiI νI EW [W2

iI]
≥ εiENEαiE νE EW [WiE]2 + εiINIαiI νI EW [WiI]2,

with expectation value across network realizations EW [.], αiX :=∫ ∞
0 PSP2

iX(t)dt, X ∈ {I, E}, cf. Equation (4), and νI, νE are the fir-
ing rates of the inhibitory and excitatory neurons, which for
simplicity we assume to be stationary and the same for all neu-
rons of one type. Note, that the PSP(t) without loss of generality
are now normalized such that their peak-amplitude equals 1 mV,
and the Wij are dimensionless numbers. So as to be expected,
because EW [W2

ij ] ≥ EW [Wij]2 any finite variance of the weight
distribution will increase the input current distribution variance
as well.

Many experimental studies report lognormally distributed
synaptic weights Wij ∼ Log-N (m, s) (Song et al., 2005; Lefort
et al., 2009; Avermann et al., 2012), i.e., the logarithm of the
weights Log[Wij] is normally distributed. Such distributions are
parametrized by m and s, i.e., the mean and standard deviation of
the distribution of Log[Wij]. The mean and raw variance of the
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lognormally distributed weights are then given by

EW [Wij] = em + s2/2 and EW [W2
ij ] = e2(m + s2). (25)

For this type of weight distribution we obtain

σ 2
i [Vfree] = εiENEαiEe2

(
mE + s2

E

)
νE + εiINIαiIe2

(
mI + s2

I

)
νI . (26)

How this increased input variance in terms of the parameters
m, s of the lognormal weight distribution affects the emergence
and fixed-point firing rate of the SSAI-state for the Abeles-type
model, cf. Section 3.2.3, is shown in Figure 8.

If we fix the average values of the excitatory and inhibitory cou-
pling strengths EW [|WiE|] = J and EW [|WiI |] = gJ, respectively
(and thus μ[Vfree]), a lognormal distribution has left one effec-
tive degree of freedom. If we decide to vary the width-parameter
s, the respective m must be m = Log[W] − s2. So, if EW [W] is
fixed, larger s implies smaller m. The median of the lognormal
distribution is given by em, such that for decreasing m more and
more of the total number of synapses will have very small weight,
while a small number will have very large weight, and the total
variance grows. Figure 8A shows the resulting effect of increas-
ing sE on the weight distribution. The larger sE becomes (from
dark to light gray), the more skewed and heavy-tailed the weight
distribution gets for same mean coupling strength (denoted by
the black dashed line). For comparison, we also plot the weight
distribution as reported in (Song et al., 2005) (red line), where
the authors measured EPSP-amplitudes between layer 5 pyrami-
dal cells from visual cortex. The resulting curve is compatible
with sE ≈ 1.32 for the chosen J = 3.5 mV. In fact, the expec-
tation value of the data curve is E[Wij] = 3.13 mV, which is of

the same order as the average weight chosen here. Other stud-
ies report lognormal weight distributions with expectation values
of the order of E[Wij] = 0.5 mV for unitary EPSP- and IPSP-
amplitudes in layers 2/3 of the mouse barrel cortex (Lefort et al.,
2009; Avermann et al., 2012).

The key effect of increasing the variance of the free mem-
brane potential in this way, while keeping the mean fixed, is a
decrease in the critical average coupling strength for the saddle-
node bifurcation to occur. This is exemplified in Figure 8B: The
black lines show the high-rate fixed-point rate for E[WiE] = 3.5
and E[WiI] = −gE[WiE], with g = 4.2, for varying sE and zero
sI (dash-dotted line), and both varying sE = sI (solid line). For
this average coupling strength, the network is beyond the saddle-
node bifurcation even for zero variance of the weight distribution,
cf. Figure 7B, so in both cases the lines start at non-zero rate for
sE = 0. The main effect of increasing sE is thus an increase in
fixed-point rate, explained by the increased variance of the free
membrane potential distribution for same expectation value, i.e.,
larger q>Vthr

(ν).
The gray lines show the same setup for EW [WiE] = 0.5 mV. In

this case, the zero-variance distribution analysis of Equation (20)
predicts that there is only the zero-rate fixed-point. With increas-
ing finite variance sE the system undergoes a saddle-node bifurca-
tion, see gray curves in Figure 7B. Moreover, because of the larger
variance, this bifurcation happens earlier for the case where both
excitatory and inhibitory weights have finite variance sE (solid
line), but exists as well for the case where inhibitory weights are
all identical (see also Teramae et al., 2012; Ikegaya et al., 2013).

Similar effects are expected from every manipulation that
increases the variance of the free membrane potential, while
keeping the mean approximately fixed, as well as manipulations

A B

FIGURE 8 | Effect of the weight distribution on the SSAI state in the

reduced Abeles-type model. (A) Shows the excitatory weight distribution as
a function of the lognormal parameter sE for fixed expectation value EW [WiE ]
(indicated by the vertical dashed line). Even though the mean coupling
strength is thus the same, the median moves to the left and the variance
increases for increasing sE , such that most synapses are very weak, but few
are very strong. For comparison, we also plot the EPSP-distribution found for
layer 5 pyramidal cells in visual cortex by Song et al. (2005) (red dashed line).
It proves compatible with the curve for sE = 1.325, showing that such values
are not unrealistic for cortical networks. (B) demonstrates the effect of
increasing sE on the saddle-node bifurcation point. Solid lines mark the high
rate stable fixed-point rate for the SSA state as predicted from the two-state
Abeles-type model for Wij ∼ Log-N (m, s) with parameters m, s chosen such

that the mean coupling strengths are constant at EW [|WiE |] = J = 3.5,
EW [|WiI |] = gJ = 4.2J (black lines) and EW [|WiE |] = J = 0.5,
EW [|WiI |] = gJ = 4.2J (gray lines), respectively. The solid lines denote the
case where only excitation is distributed lognormally, while all inhibitory
weights are −gJ (sI ≡ 0), while the dash-dotted lines denote the case where
also inhibition is distributed lognormally with sI = sE ; mE = Log[J] − s2

E/2
and mI = Log[gJ] − s2

I /2, respectively. For J = 3.5 the high-rate fixed-point
exists for all sE , independent of the variance of the inhibitory weight
distribution. The zero-rate and unstable intermediate fixed-points close to
zero (see Figure 7B) are not included. For J = 0.5 we observe a saddle-node
bifurcation for increasing sE that occurs earlier if inhibitory weights are also
lognormally distributed. The intermediate fixed-points are denoted by the
dashed lines. All other parameters as in Figure 5.

Frontiers in Computational Neuroscience www.frontiersin.org October 2014 | Volume 8 | Article 136 | 12

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Kriener et al. Self-sustained activity in random networks

increasing the mean for fixed or increasing variance, e.g., by
varying the number of synaptic inputs CE, CI = γ CE for fixed
weights, as well as changing the amount of relative inhibition by
γ or g.

3.4. LIFETIME OF SSAI STATES IN A STOCHASTIC RATE MODEL
So far we analyzed the occurrence, variability and irregularity
in terms of a reduced two-state Abeles-type model. But can we
understand the transition from finite to virtually infinite life-
times in the fully recurrent networks when the synaptic coupling
strength increases?

As shown in the previous sections large population-rate vari-
ability is an inherent feature of self-sustained activity states. So
the system perpetually perturbs itself and can substantially devi-
ate from the high rate fixed-point ν0. If the basin of attraction
is smaller than the characteristic fluctuation size, the system can
escape the attractor and run into the trivial attractor at zero rate.
Inspection of

	ν(ν) := q>Vthr
(ν) × rmax − ν, (27)

cf. Equation (19), as a function of the input rate ν (Figure 9,
upper panel) reveals the basin of attraction of the high-rate fixed-
point as the interval between the unstable (indicated by white
circles) and the stable (dark gray circles) fixed-points that are the
zeros for ν > 0 of Equation (27). The black circle represents the
zero-rate fixed-point ν = 0.

The upper panel in Figure 9 shows the respective curves for
three different values of J, with all other parameters fixed. The
lower panel shows the distribution of the population activity, as
predicted from Equation (22) with the fitted rfit, around the stable
fixed-point. For J close to the saddle-node bifurcation (indicated
by solid curve, gray circle) the fluctuations extend well beyond
the unstable fixed-point (dashed curves), and thus the system can
be pushed to the trivial attractor by a random fluctuation. For
larger J, however, the basin of attraction is much larger than the
population fluctuations (dashed-dotted curve), and thus lifetimes
should become very long.

To relate these findings from the two-state Abeles-type model
with Poisson input to the full recurrent SSAI, we perform
the analogous analysis with some examples of the data we
obtained from the systematic large-scale simulations discussed in
Figures 3, 4.

Such estimated response functions 	ν are shown in Figure 10.
The intersections of the response function with the x-axis (dashed
line in Figures 10A–D) again determine the fixed-points, while
the slope at this points yields information about their stability: If
the slope is positive, we expect the fixed-point to be unstable.

In the cases where the synapses are sufficiently strong to sus-
tain persistent activity, we see that the distribution may be well
approximated by a Gaussian centered at the upper fixed-point of
the response function. This observation thus motivates the fol-
lowing simple stochastic model for the rate: We assume that the
rate at any time is distributed normally with a mean given by the
fixed-point of the response function. Both the response function
and the width of the distribution are functions of the network and
neuron parameters.

FIGURE 9 | The lifetime of SSAI states is determined by the size of

population fluctuations vs. the size of basin of attraction. The upper
panel shows the emergence of the saddle-node bifurcation that underlies
the SSAI state (coalescence point for critical coupling strength Jc depicted
in light gray), while the lower panel shows the population rate distributions
for neurons that are driven by uncorrelated Poisson inputs, for three
different values of J each (derived from Equation (23) by translating the
counts to rates and approximating the binomial by a Gaussian, solid lines:
J = Jc = 0.641 mV, dashed J = 0.651 mV, dashed-dotted J = 0.731 mV). In
the upper panel the stable high-rate fixed-points for J > Jc are marked by
dark gray, the unstable intermediate fixed-point by white circles. The black
circle indicates the trivial zero-rate fixed-point. In the SSAI state the system
constantly produces large population fluctuations that can drive the system
substantially far away from the high-rate fixed-point. We expect the system
to become stable to this inherently generated fluctuations when the basin
of attraction (here the distance between the unstable and stable fixed-point)
becomes larger than the characteristic size of the fluctuations, given by the
variance of the population rate distribution. Parameters as in Figure 5.

The probability to observe a given rate ν is thus,

Pg,J(ν) ∝ e
− (ν − ν0)2

2σ2 , (28)

where ν0 = ν0(g, J) is the fixed-point of the response function,
and σ = σ (g, J) is the width of the rate distribution.

From the observations of network response functions we can
also see that there is indeed typically another (unstable) fixed-
point λ close to the trivial fixed-point at zero. For the purpose
of the stochastic rate model, we assume that if the rate fluctuates
to a value less than λ, the network activity will move toward the
trivial fixed-point at zero rate and cease.

From the probability distribution above, we can calculate the
probability for the rate to be below λ, i.e.,

P(ν < λ) ∝
∫ λ

−∞
e
− (ν − ν0)2

2σ2 dν = 1

2

(
1 − erf

[
λ − ν0√

2σ

])
. (29)

We conclude that the lifetime for the self-sustained network
activity will be inversely proportional to the probability for the
network activity to cease,

T(g, J) = τ0

P(ν < λ)
, (30)
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A B

C D

FIGURE 10 | Estimated network response function and population rate

distribution. The black solid lines depict the estimated network response
functions, i.e., the local derivative of the firing rate function for various
parameter combinations. It was estimated by computing the difference of

input rate and output rate after a delay of δt = 1.5 ms (see text for details). The
histograms quantify the amount of time spent at a given rate. Parameter values:
(A) g = 4.2, J = 1.1 mV (B) g = 4.2, J = 0.8 mV (C) g = 5.2, J = 1.8 mV (D)

g = 4.8, J = 1.8 mV. Other parameters as in Figure 1.

where τ0 is a constant (see also El Boustani and Destexhe, 2009).
Thus, the lifetime is determined by a trade-off between the mag-
nitude σ of the population-rate fluctuations and the size ν0 − λ

of the basin of attraction of the non-trivial rate fixed point.

3.4.1. Performance of the stochastic model in predicting SSAI
lifetime

We validate the stochastic model approach Equations (29), (30)
by estimating the values for ν0, λ and σ , as well as the lifetimes T,
from network simulations for a range of values for the parameters
g and J and fitting the parameter τ0 using Equation (30).

The values for the parameters ν0 and λ as a function of g and
J were found by inspection of the response functions obtained
by the method described in the previous section. The measured
response curves, being averages over the full simulation, are nois-
ier and less smooth when the lifetime of persistent activity is
short. For longer lifetimes, the points ν0 and λ were found using
an automated approach, using linear interpolation between the
points in the measured response curve. For the more noisy curves,
the points were estimated manually by inspecting the response
curves. The value for σ was the standard deviation of the instanta-
neous population rate observed during the simulation. Figure 11
shows the estimated and measured lifetimes for a range of values
of g and J, revealing a good agreement.

We note that a saddle-node bifurcation as predicted from the
Abeles-type two-state model Equation (19) is also predicted from
the diffusion-approximation (Brunel, 2000 and Equation S1 in
the Supplementary Material) for strong enough coupling strength
J. The respective saddle-node bifurcation lines for Equation (19)
and the diffusion-approximation are depicted for reference as

white lines in Figure 3A. From these equations we can thus also
derive at least qualitative predictions for the lifetime without hav-
ing to estimate parameters from simulations. The resulting plots
are presented in the Supplementary Material Section 1.

4. DISCUSSION
4.1. SELF-SUSTAINED ACTIVITY IN NETWORKS OF LIF NEURONS WITH

CURRENT-BASED SYNAPSES
Local cortical circuits can sustain elevated levels of activity after
removal of the original stimulus or in total absence of external
drive. Moreover, this ongoing activity is often characterized by
highly fluctuating individual firing rates. In contrast to previous
beliefs (see e.g., Kumar et al., 2008; El Boustani and Destexhe,
2009), here we demonstrate that balanced random networks with
strong current-based synapses can actually combine both fea-
tures: the sustained asynchronous activation of groups of neurons
in the absence of external drive together with the highly irreg-
ular spiking of individual cells. We call this state self-sustained
asynchronous-irregular, or SSAI.

We analyzed and identified simple mechanistic explanations
for these activity features. The emergence of a stable attractor
at non-zero rates is due to a saddle-node bifurcation: At suffi-
ciently large synaptic efficacy, two fixed-points with finite rate
exist in addition to the quiescent mode. These modes exist even
when there is no external input to the network. The intermedi-
ate low-rate fixed-point is always unstable, while the fixed-point
at higher rate can be long-lived with a lifetime rapidly increasing
with synaptic efficacy.

Using a simple stochastic rate model, we have shown that the
lifetime is determined by a trade-off between the size of the basin
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A

B

C

FIGURE 11 | Lifetime of SSAI-states. Lifetime of SSAI-states estimated
from measured parameters (solid lines) using Equation (30) with τ0 = 15 ms
and observed directly (dots). (A) Lifetime for selected values of inhibition

level g. (B) Lifetime for selected values of synapse strength J. (C) Observed
vs. estimated lifetimes for several simulations with different parameters
(g, J). Other parameters as in Figure 1.

of attraction of the high-rate fixed-point and the intrinsic vari-
ance of the network activity in this state. The stochastic model
explains the lifetime over a wide range of network parameters.

4.2. ORIGIN OF IRREGULAR SSA IN A TWO-STATE ABELES-TYPE
MODEL

The saddle-node bifurcation appears also in the simplified ana-
lytical models introduced by Siegert (1951), Griffith (1963) (see
Supplementary Material Section 1) and Abeles (1982). Here we
showed in particular, how a simple two-state Abeles-type model
can be translated to the specific case of leaky integrate-and-fire
(LIF) neurons with subthreshold linear dynamics. We find that
in the SSAI state most of the time individual neurons will be
strongly hyperpolarized and far below threshold, but at times a
large depolarizing input transient will occur that will drive neu-
rons repetitively across threshold in a short time, leading in effect
to highly irregular firing.

We note that quantitatively the two-state model yields good
agreement with the observed SSAI-states, if the amplitude of the
free membrane potential fluctuations is large, and their mean and
variance are known. The latter can be measured in simulations,
but in practical terms they are hard to assess. For other cases,
such as the Poisson-driven LIF-ensemble shown in Figures 5C,D,
6A, the rate prediction was too low, even though in this case,
mean and variance of Vfree are directly obtained from the fir-
ing rate. Part of the reason for the too low firing rate is the
smaller amplitude of fluctuations. Another reason is that the
self-consistent solution obtained from the Poisson-input scenario
implicitly assumes that sampling spike trains from the output of
neurons in turn yields a Poisson process again. This is clearly
not the case, since every individual spike train will typically be
non-Poissonian with a CV higher than unity, as we discussed in
Section 3.2.2. Neurons sampling from the Poisson-driven pool

in Figure 6A already have increased rate, CV and σ [Vfree], see
Figure 6B. So a more quantitative self-consistent two-state Abeles
model would have to incorporate a better spike train model,
capturing more of the true “binary” statistics we observed here.

Still, our model nicely shows that high variability of the spiking
activity of individual neurons, pronounced population fluctua-
tions, and stable persistent activity can go together well (see also
Druckmann and Chklovskii, 2012 for a related discussion), unlike
previously thought (Kumar et al., 2008), and be realized by sim-
ple networks of integrate-and-fire neurons. Indeed, both during
up-states (e.g., Shu et al., 2003, and persistent mnemonic states
in prefrontal cortex e.g., Compte et al., 2003a), CVs of ISIs con-
siderably larger than unity are common. We expect the effects
reported here also in spiking network models of working mem-
ory that contain a stable low-rate attractor (which is not present
in the simple network analyzed here), if they have a finite amount
of comparably strong synapses. Such a network mechanism for
the generation of fluctuating individual firing rates as presented in
this paper could avoid the necessity to introduce additional noise
sources or cellular bistability to obtain this effect (see e.g., Renart
et al., 2003; Compte, 2006).

4.3. HIGHLY HYPERPOLARIZED MEMBRANE POTENTIALS AS SIDE
EFFECT OF MEMBRANE POTENTIALS WITHOUT LOWER BOUND

Broad membrane potential distributions as observed here are
not very physiological and not possible for neurons with
conductance-based synapses (Kuhn et al., 2004), because of the
limiting effect of the respective reversal potentials for NMDA or
AMPA in the case of excitation, and GABA for inhibition.

Yet, also in networks of leaky integrate-and-fire neurons with
conductance-based synapses self-sustained activity states occur
for broad parameter ranges of excitatory and inhibitory conduc-
tances (Vogels and Abbott, 2005; Kumar et al., 2008; El Boustani
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and Destexhe, 2009). The self-sustained activity state analyzed
there usually requires large networks sizes and low population
rate fluctuations to be stable (Kumar et al., 2008; El Boustani
and Destexhe, 2009) and is much more sensitive to subthreshold
perturbations than the networks investigated here. The coeffi-
cient of variation (CV) of the inter-spike intervals can be larger
than unity, indicating that spiking is more irregular than Poisson
(Kumar et al., 2008; Teramae et al., 2012; Ikegaya et al., 2013), yet
observed CVs in the networks studied in these papers are typically
smaller than those we report here for neurons with current-based
synapses (see however, Vogels and Abbott, 2005; El Boustani and
Destexhe, 2009, that report parameter regimes with CVs in the
range of two to three).

In the Supplementary Material Section 6, we demonstrate
cases of self-sustained activity in comparably small networks
of neurons with conductance-based synapses where CVs of the
inter-spike intervals are considerably larger than unity, and the
membrane potential distributions are typically also comparably
broad. Similar arguments as presented here for current-based
synapses thus explain this higher variability and show that large
network size is not a requirement for SSAI, as suggested by
previous work (Kumar et al., 2008; El Boustani and Destexhe,
2009).

We moreover note that clamping the membrane potential of
LIF neuron with current-based synapses at a minimal value to
avoid unbiological hyperpolarization leads to a shift of the saddle-
node bifurcation line to smaller J-values. This is due to the fact
that the membrane potential distribution is shifted closer to firing
threshold, see Supplementary Material Section 4.

Asynchronous, highly irregular self-sustained activity, even
in comparably small, yet strongly coupled networks, does thus
not crucially depend on the synapse model, nor on extremely
large subthreshold membrane potential fluctuations, but it is
mainly a consequence of the large input fluctuations generated
by the highly variable neuronal activities and the strong synaptic
weights.

4.4. FEW STRONG WEIGHTS SUFFICIENT FOR EMERGENCE OF SSAI
We emphasize that a comparably small fraction of strong weights
suffices to permit self-sustained activity (see Teramae et al., 2012;
Gewaltig, 2013; Ikegaya et al., 2013, and Supplementary Material
Section 5), and such weights are not unbiological. Indeed, recent
experiments consistently showed that the presence of strong
synapses is not uncommon in cortical and hippocampal net-
works, but rather the norm (Song et al., 2005; Lefort et al., 2009;
Avermann et al., 2012; Ikegaya et al., 2013). Weight distribu-
tions follow a lognormal distribution that is characterized by
a high probability for low weights, but a heavy tail probability
for very strong synapses, up to several millivolts. These weight
distributions are usually characterized by high variances.

The reduced Abeles-type model already shows that the crit-
ical average coupling strength for the saddle-node bifurcation
decreases, if the variance of the weight-distribution increases.
For the extreme case of mostly very weak synapses and few very
strong synapses, the reduced model predicts SSAI to occur for
small average coupling strength on the order of J ∼ 0.1 mV. This
observation explains the related finding by Ikegaya et al. (2013)

that deletion of the strongest weights quickly leads to failure
of SSAI.

Song et al. (2005) moreover showed that strong synapses pref-
erentially occur organized non-randomly in structural reciprocal
motifs. It is thus an interesting question in this context, whether
several strongly connected cell-assemblies of current-based leaky
integrate-and-fire neurons in a sea of weak synapses can be acti-
vated selectively as suggested, e.g., in Brunel (2003), without
activating other local attractors or the whole network, and if such
activation is stable to “distractor” activation from other parts of
the network, as would be required, e.g., in working memory.

4.5. EFFECTS OF STRONG SYNAPSES IN COMPLEX RANDOM
NETWORKS

The emergence of a self-sustained activity state is not the only
intriguing dynamical effect caused by the presence of strong
synapses. As pointed out in many studies, strong coupling in com-
plex networks can lead to a breakdown of linearity and give rise to
new collective phenomena, such as pattern formation, oscillations
or traveling waves (see e.g., Amari, 1977; Ben-Yishai et al., 1995;
Usher et al., 1995; Bressloff and Coombes, 1998, 2000; Roxin et al.,
2005; Kriener et al., 2014).

The presence of strong synapses was shown to lead to spike-
based aperiodic stochastic resonance, and thus reliable transmis-
sion of spike patterns, in an optimal self-sustained background
regime in networks of conductance-based LIF neurons (Teramae
et al., 2012). Moreover, strong synaptic weights in the same
random network as discussed here will render the globally syn-
chronous firing mode unstable to any finite perturbation, and
thus stabilize the asynchronous-irregular state, even if all neurons
receive statistically identical input of equal magnitude (Kriener,
2012).

Analogous to our observations, Ostojic (2014) in a recent
paper observed how strong weights lead to highly irregular spik-
ing with individually strongly fluctuating neuronal firing rates
in the same networks analyzed here, but where neurons receive
constant external drive. Similar observations of asynchronous
and highly irregular states were made before for networks of
rate neurons (Sommers et al., 1988), as well as spatially struc-
tured networks of spiking neurons that non-linearly amplify
heterogeneous activity fluctuations (see e.g., Usher et al., 1994,
1995).

Ostojic, as well, explains the effects in random networks by
the breakdown of the linear response approximation and the
non-linear network amplification of heterogeneous perturbations
(see detailed discussion in the Supplementary Material Section
2), and he identifies the emerging state as a qualitative differ-
ent and new asynchronous-irregular state. He shows that in this
state average firing rates characteristically deviate to higher val-
ues as compared to the weakly-coupled balanced random network
states analyzed by Brunel (2000). Most of all the heterogeneity
of activity brings about interesting computational properties in
classifying temporally fluctuating inputs (Ostojic, 2014).

The amplification by the recurrent network is also the reason
that underlies the strengthening of irregularity and population
fluctuations that we observe, e.g., in Figures 6A–C, where we
increase the effect of network feedback from initial Poisson-drive
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(zero-order feedback), over sampling from the resulting output
(first-order feedback) to the full self-consistent SSAI (∞-order
feedback). We showed in Section 3.2 that highly irregular spiking
can already be observed in the uncoupled population of neu-
rons fed with strongly weighted Poisson input, and even Gaussian
white noise with high variance and strongly negative mean, in
which case the firing rate does not deviate from that predicted by
the diffusion-approximation (not shown). We note that although
the breakdown of linear response theory with increasing coupling
strength J, analyzed by Ostojic (2014), does not coincide with the
emergence of the self-sustained activity state (see Supplementary
Material Section 2), it does approximately overlap with the abrupt
increase in firing rates to values ν0 ≥ 10 s−1 in Figure 3B, as well
as of the CV to values ≥ 2.5 as shown in Figure 4A. We can
thus conclude that we see the presence of this new qualitative
state identified by Ostojic also in our simulations. This non-linear
amplification effect might serve to stabilize SSAI by moving the
population firing rate to higher values and thus farther away from
the trivial fixed-point.

The existence of strong synapses in recurrent neuronal net-
works as observed in experiments thus leads to a plethora of
interesting dynamical properties that just start to be explored,
and analysis of how circuits can make use of their presence
computationally is an important topic of future research.
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