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We investigate the structure of the spectrum of antiferromagnetically coupled spin-1 bosons on a square
lattice using degenerate perturbation theory and exact diagonalizations of finite clusters. We show that the
superfluid phase develops an Anderson tower of states typical of nematic long-range order with broken
SU(2) symmetry. We further show that this order persists into the Mott-insulating phase down to zero
hopping for one boson per site and down to a critical hopping for two bosons per site, in agreement with
mean-field and quantum Monte Carlo results. The connection with the transition between a fragmented
condensate and a polar one in a single trap is briefly discussed.
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Introduction.—Spinor Bose gases have been the subject
of very intensive activity over the past 15 years, both
experimentally and theoretically [1–4]. For spin-1 bosons,
the spin-spin interaction can be ferromagnetic or antiferro-
magnetic depending on the relative scattering lengths in
the S ¼ 0 and S ¼ 2 channels, leading in a harmonic trap to
a ferromagnetic or a singlet condensate [5,6]. When an
optical lattice is introduced, the system can, in addition,
turn into a Mott insulator at commensurate filling if the
tunneling amplitude is small enough as compared to the on-
site repulsion. In the single-band approximation at each
site, such systems can be described by the Bose-Hubbard
Hamiltonian [7,8]

H ¼ −t
X
hi;ji;σ

ða†i;σaj;σ þ H:c:Þ þ U0

2

X
i

niðni − 1Þ

þ U2

2

X
i

ð~S2i − 2niÞ; ð1Þ

where hi; ji stands for pairs of nearest neighbors, σ ¼ −1;
0; 1 is the spin, a†i;σ and ai;σ are creation and annihilation
operators of spin-1 bosons at site i, while ni ¼

P
σnσi ¼P

σa
†
σiaσi and ~Si are the density and spin operators at site i.

The parameters of this model are the tunneling amplitude
t > 0, the on-site repulsion U0 > 0, and the on-site spin-
spin interaction U2, which is positive (negative) for anti-
ferromagnetic (ferromagnetic) interactions.
The mean-field phase diagram of the antiferromagnetic

version of the model has been mapped out quite some time
ago by A. Imambekov et al. [8], who found that the odd-
density Mott-insulating phases are completely nematic
while the even-density ones undergo a transition from a
nonmagnetic singlet phase to a nematic phase upon
increasing the ratio t=U0. In view of the competing orders
(such as valence-bond solid order reported in 1D [9–11]),

this result clearly calls for further investigations beyond
mean field. The first attempt was recently done using the
quantumMonte Carlo (QMC) method, which has no minus
sign problem for this type of bosonic Hamiltonian [12].
This investigation revealed the presence of a local quad-
rupolar moment in the entire Mott-insulating phase with
one boson per site, while a local quadrupolar moment only
develops for large enough hopping in the Mott-insulating
phase with two bosons per site. This is consistent with the
mean-field phase diagram, but one should keep in mind that
the numerical demonstration of nematic long-range order
would require an investigation of quadrupolar correlations,
which was beyond the scope of Ref. [12]. So further work
is definitely needed to check the presence of nematic long-
range order in the phase diagram of the model of Eq. (1).
In this Letter, we show that the superfluid phase of spin-1

bosons with antiferromagnetic interactions indeed develops
true nematic long-range order in the presence of a lattice.
This conclusion is based on a careful investigation of the
excitation spectrum of the model using degenerate pertur-
bation theory in the limit U0 ¼ 0; U2=t → 0 and exact
diagonalizations of finite clusters away from that limit.
The key observation is that, in the presence of a lattice, the
spectrum acquires the structure of an Anderson tower of
states, i.e., a family of low-lying states whose energy
collapses onto that of the ground state in the thermody-
namic limit, and that all these states have even values of the
total spin so that polar states (and not antiferromagnetic
states) can be reconstructed as linear combinations of
degenerate ground states. Exact diagonalizations are further
used to show that this structure persists in the Mott-
insulating phase as long as nematic order is present, leading
to an alternative determination of the singlet-nematic
transition in the S ¼ 2 Mott insulator.
Let us start by solving the problem analytically in the

limit U0 ¼ 0; U2=t → 0 which, as we shall show later,
turns out to be representative of the general case. Let us
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denote by Ns the number of sites and by N the number of
bosons. In the noninteracting case (U0 ¼ U2 ¼ 0), the
bosons condense in the ~k ¼ ~0 state, but since there is no
magnetic interaction, the spin is irrelevant, and the ground
state is vastly degenerate. The ground states are given by

jψn−1;n0;n1i ¼
Y
σ

a†nσ~k¼~0;σffiffiffiffiffiffiffi
nσ!

p j0i ð2Þ

with
P

σnσ ¼ N and a†~k¼~0;σ
¼ ð1= ffiffiffiffiffiffi

Ns
p ÞPNs

i¼1 a
†
i;σ. The

degeneracy is equal to ðN þ 1ÞðN þ 2Þ=2.
Let us now consider the effect ofU2. IfU2=t is small, we

can use degenerate perturbation theory, which means that

we must diagonalize
P

i
~S2i in the subspace spanned by the

degenerate ground states of Eq. (2). Now, this operator

commutes with the square of the total spin ~Stot ¼
P

i
~Si. So,

in the basis of the eigenstates of ~S2tot, the matrix of
P

i
~S2i is

diagonal, and the problem reduces to the evaluation of the

expectation value of
P

i
~S2i in the eigenstates of ~S2tot. SinceP

i
~S2i also commutes with the components of ~Stot, hence,

with S−tot and Sþtot, the expectation value in a state jStot; mi
does not depend on m, and it is sufficient to calculate it in
one member of the family, for instance, jStot; m ¼ Stoti. The
calculation of the expectation value of ~S2i in this state can be
done analytically (see the Supplemental Material [13]),
leading to

h~S2i iStot ¼
2NðNs − 1Þ

N2
s

þ 1

N2
s
StotðStot þ 1Þ: ð3Þ

As anticipated, h~S2i i is only a function of Stot. This
dependence turns out to take the very simple form
StotðStot þ 1Þ, but this is by no means a trivial result in

the sense that
P

i
~S2i is not simply related to ~S2tot. In fact,

~S2tot ¼
P

i
~S2i þ

P
i≠j

~Si · ~Sj, and the expectation value of
~Si · ~Sj in jStot; m ¼ Stoti does not vanish but is given by

h~Si · ~SjiStot ¼ −
2N
N2

s
þ 1

N2
s
StotðStot þ 1Þ: ð4Þ

Equation (3) implies in particular that, in the total singlet,
and in the thermodynamic limit N;Ns → þ∞, ρ ¼ N=Ns
fixed, the local value of the square of the spin is given by

h~S2i iStot¼0 ¼ 2ρ; ð5Þ

where ρ is the boson density. Contrary to what one might
naively expect, this limiting value is not of the form
SðSþ 1Þ for some integer S. It is, however, in good
agreement with the QMC results obtained for one and
two bosons per site [12]. Finally, let us emphasize that, in

Eq. (3), Stot can only take even values because it corre-
sponds to the total spin of spin-1 bosons in a single mode,

the ~k ¼ ~0 one.
Coming back to the Hamiltonian of Eq. (1) in the limit

U0 ¼ 0; U2=t → 0, the low-energy spectrum is, thus,
given by

EStot ¼ −4tN −
N
Ns

U2 þ
U2

2

1

Ns
StotðStot þ 1Þ; ð6Þ

where the first term is the energy of the noninteracting
condensate. The important property is that the slope is
proportional to 1=Ns and tends to zero in the thermody-
namic limit, leading to a quasidegenerate ground state. In
quantum antiferromagnets, this property goes under the
name of Anderson’s tower of states [16–20]: on the basis of
the low-lying states of this tower, it is possible to recon-
struct a wave function very close to the Néel state with spins
up on one sublattice and down on the other sublattice
whose energy is very low and scales to the ground-state
energy when the system size increases so that the appear-
ance of a tower of states in the low-energy spectrum
indicates that the SU(2) symmetry is spontaneously broken
in the ground state in favor of antiferromagnetism.
Note that the tower of states remains a well-defined

concept as long as the energies of the states building this
tower are well separated from those of the elementary
excitations, which also tend to the ground-state energy in
ordered systems. In the present calculation, which is
performed in the U2=t → 0 limit, this is clearly true since
the elementary excitations consist in exciting a particle out
of the condensate with an energy of order t=Ns for small
wave vector, while the states of the tower have energies of
order U2=Ns.
Now, using only states with small values of Stot,

it is possible to reconstruct almost exactly polar states.
Indeed, all polar states are related by a rotation to
jψ0;N;0i ∝ a†N~k¼~0;0

j0i, and this state can be expanded in

the basis of eigenstates of ~S2tot as

jψ0;N;0i ¼
X

S¼0;2;…;N

cNðSÞjS;m ¼ 0i:

The coefficients cNðSÞ can be determined analytically
(Supplemental Material [13]) and are given by

cNðSÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2Sþ 1ÞN!

ðN − SÞ!!ðN þ Sþ 1Þ!!

s
: ð7Þ

These coefficients only take significant values up to
S ¼ Oð ffiffiffiffi

N
p Þ: as shown in Fig. 1, the maximum value of

the spin SN up to which one has to sum to satisfy the sum
rule

P
SjcNðSÞj2 ¼ 1 to a given accuracy scales as

ffiffiffiffi
N

p
. As

a consequence, the polar state jψ0;N;0i has an energy per site
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that scales to the ground state one as 1=Ns in the
thermodynamic limit. It is, thus, a ground state in that
limit, which proves the presence of long-range nematic
order. These results establish that, in the limit
U0 ¼ 0; U2=t → 0, the SU(2) symmetry of the superfluid
ground state of spin-1 bosons on a lattice is spontaneously
broken in favor of nematic order.
It is instructive to compare these results to the case of

spin-1 bosons in a trap [21–25]. In the single-mode
approximation, the Hamiltonian reads

H ¼ Us

2N
~S2; ð8Þ

where Us is the spin interaction energy per atom. The
ground state is a nondegenerate singlet with energy
E0 ¼ 0, and the excitation energies are given by ES ¼
Us=ð2NÞSðSþ 1Þ, S ¼ 2; 4;…. The structure of this spec-
trum is similar to that of Eq. (6), with in particular a slope
that goes to zero as 1=N in the thermodynamic limit.
Accordingly, the consequences in that limit are very
similar: As discussed in Refs. [21–25], spontaneous sym-
metry breaking takes place since a polar state can be
stabilized for infinitesimal quadratic Zeeman coupling
coupling in the thermodynamic limit. The decomposition
of the polar state into the angular momentum basis also
takes a very similar form, our analytical result of Eq. (7)
corresponding to the large-q limit of the result of Ref. [25],
where the transition between a fragmented condensate and
a polar state induced by a quadratic Zeeman coupling q has
been investigated in detail.
Let us now turn to the general case. The phase diagram

has been previously studied using mean-field theory
[8,26,27], variational Monte Carlo method [28], and
quantum Monte Carlo simulations [12,29], and some exact

results have been established [30]. These methods have led
to the conclusion that, for integer filling, there is a super-
fluid-insulator Mott transition upon increasing U0=t, and
the insulating state is always nematic for odd filling while
there is an additional nematic-singlet transition upon
further increasing U0=t for even filling. Now that we have
analytically demonstrated that the superfluid state is nem-
atic in the limitU0=t ¼ 0 on the basis of the structure of the
low-energy spectrum, it is natural to ask to which extent
this structure persists away from that limit. For that
purpose, we have performed exact diagonalizations of
finite-size clusters for one and two bosons per site, with
up to 10 and 8 sites, respectively. The low-energy spectra
for five sites are depicted in Fig. 2 as a function of t=U0.
In both cases, the total spin Stot changes by 2 from one
state to the next, and the energy of a state measured from
the ground state is proportional to StotðStot þ 1Þ, with a
coefficient that tends to U2=2Ns in the large-t=U0 limit,
in agreement with Eq. (6). This structure persists below
the superfluid-insulator transition without any hint that the
system undergoes a phase transition. This suggests that the
nematic order predicted previously in the insulating phases
is continuously related to the nematic order we have
established in the U0 ¼ 0; U2=t → 0 limit. Upon further
reducing the ratio t=U0, the structure of the tower of states
remains essentially unaffected for one boson per site, but a
series of level crossings leads to a completely different
spectrum for two bosons per site, which signals a nematic-
singlet transition. The same structure has been observed on
larger clusters (Supplemental Material [13]).
In the Mott-insulating phase, the identification of the

order as nematic and not antiferromagnetic actually
deserves special attention since, for antiferromagnetic
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FIG. 2 (color online). Low-energy spectra for five sites with
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coupled spins, one might in general expect simple Néel
order on a bipartite lattice. In exact diagonalizations,
antiferromagnetic and nematic order can be distinguished
by the quantum numbers that appear in the tower of states.
For Néel order, all values of Stot are represented in the tower
of states because, to reconstruct the Néel state with up spins
on one sublattice and down spins on the other one, one
needs states with both even and odd total spin, whereas for
quadrupolar order, one only needs states with even total
spin [31,32]. In view of the analytical results of the
U0 ¼ 0; U2=t → 0 limit, we expect by continuity the
low-lying states calculated by exact diagonalizations away
from that limit to carry only even or odd total spin. We have
explicitly checked this to be the case for the five-site cluster.
So the fact that only even steps in Stot appear in the tower of
states is an additional confirmation that, in the regions of
the Mott-insulating phases with spontaneously broken
SU(2) symmetry, the order is indeed nematic.
As an independent confirmation, we have calculated

the ferroquadrupolar structure factor SQð~k ¼ ~0Þ, with

SQð~kÞ ¼ P
j expði~k · ~rjÞh ~Q0 · ~Qji, where the quadrupolar

operator is defined by ~Q¼fðSxÞ2− ðSyÞ2;1= ffiffiffi
3

p ½2ðSzÞ2−
ðSxÞ2− ðSyÞ2�;SxSyþSySx;SySzþSzSy;SzSxþSxSzg. For
two bosons per site, as can be seen in Fig. 3, it increases
with the size for large enough t=U0, and it decreases with
the size for small enough t=U0. The crossing point can
be taken as an approximation of the transition to nematic
order (Supplemental Material [13]), and the critical value
tc=U0 ∼ 0.026 is in excellent agreement with the QMC
estimate based on the development of a local quadrupolar
moment.
In principle, it is possible to locate the singlet-nematic

transition just by investigating the spin gap, which is
expected to be finite in the singlet phase and to scale to
zero in the nematic phase. It turns out that this is not
very accurate for the sizes accessible with exact

diagonalizations, and only a very rough estimate of the
transition can be obtained along these lines (Supplemental
Material [13]). This estimation, however, is still consistent
with other estimates.
Finally, we have attempted to locate the superfluid-

insulator transition, which, as usual, corresponds to the
opening of the charge gap defined by Δc ¼ EðN þ 1Þþ
EðN − 1Þ − 2EðNÞ. As for the singlet-triplet gap, the
results are consistent with the QMC estimate
(tc=U0 ≃ 0.037), but the sizes accessible to exact diago-
nalizations do not lead to a very precise estimate. It is only
with the help of QMC calculations, with the stochastic
Green function algorithm [33], of the energies for larger
system sizes that this criterion can be shown to coincide
with the appearance of a superfluid stiffness [12] (see
Fig. 4). Note that, for U2=U0 ¼ 0.005, the superfluid-Mott
insulator transition is well separated from the singlet-
nematic transition. Increasing U2 pushes the singlet-
nematic transition to larger critical value, and when
U2=U0 ∼ 0.1, there is only one transition from the singlet
Mott phase to the nematic superfluid left (Supplemental
Material [13]).
To summarize, let us put the present results in perspec-

tive. Except in one dimension, where the density matrix
renormalization group can be used [10,34,35], the inves-
tigation of lattice bosonic models is largely dominated by
QMC, and rightly so since, due to the absence of minus
sign problem in many cases, extremely accurate results can
be obtained on very large system sizes. Yet, as demon-
strated in the present Letter, investigating the excitation
spectrum of the model with analytical tools if possible, or
with exact diagonalizations of small clusters, can lead to
very interesting insight into the properties of the system,
even if the sizes accessible are much smaller than those
with QMC. In the present case, the structure of the low-
energy spectrum, which consists of an Anderson tower of
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state in a large portion of the phase diagram, is an extremely
fruitful piece of information. In particular, it has led to the
demonstration that, in the superfluid phase of spin-1 bosons
on a lattice, the SU(2) symmetry is spontaneously broken,
by contrast to the case of bosons in a single mode, which
require an SU(2) symmetry-breaking interaction to build a
polar condensate. It will be very interesting to investigate
the implications of this result on the dynamics of spinor
condensates [36] in the presence of a lattice.
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